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Abstract

The Rivest Shamir Adleman (RSA) algorithm underpins much of
modern digital security. It protects messages, passwords, and web
services. However, advances in quantum computing pose a long-
term threat to RSA, as quantum algorithms can exploit its math-
ematical structure. In this paper, we analyze how quantum com-
putation can undermine the RSA algorithm using an explainable,
dictionary-based quantum emulation framework. In this approach,
each quantum state is represented as dict[k] = a, where k is a bit-
string and a is a complex amplitude, enabling transparent tracking
of quantum state evolution. We emulate key quantum gates through
updated rules. The Hadamard gate creates superposition by split-
ting dictionary keys; phase gates modify amplitudes via complex
rotations; and controlled-X and Toffoli gates perform conditional
bit flips. These operations are consistent with standard quantum
gate behaviour while remaining easy to analyse. We defined RSA
variables such as prime_p, prime_g, modulus_n, public_key_e,
private_key_d, cipher_c, input_x, and period_r. We demon-
strated how quantum processes can identify periodic structure,
factor the modulus, and recover the private key. By revealing the
full attack path, this research provides an interpretable view of
quantum threats to the RSA algorithm. The proposed framework
supports a useful understanding of quantum security risks. It also
highlights the importance of transitioning toward post-quantum
cryptographic systems that ensure long-term security for all users.
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1 Introduction

The RSA algorithm is one of the most widely used public-key cryp-
tosystems [14, 25]. It secures web traffic, digital signatures, software
updates, and many online services [24]. The security of RSA relies
on the classical difficulty of factoring a large composite number [8].
However, the development of quantum computing threatens this
assumption [18]. Quantum algorithms can exploit the mathematical
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structure of RSA in ways that are not possible with classical compu-
tation [13]. Understanding how and why RSA becomes vulnerable
under quantum computation is therefore critical for long-term dig-
ital security [9].

RSA is not only a cryptographic primitive but also a core building
block of web infrastructures [5]. It underpins HTTPS handshakes,
web certificates, secure software update channels, and many online
authentication workflows [3]. When RSA becomes weak under
quantum computation, long lived web traffic and user credentials
can be recorded today and decrypted in the future by quantum-
capable adversaries [2]. Our work therefore sits directly within
the scope of web security and responsible web AI deployment.
It provides an interpretable analysis of how a standard quantum
period-finding attack compromises widely used web security mech-
anisms and motivates timely migration to post-quantum schemes.

Most existing research on quantum attacks against RSA focuses
on theoretical formulations, such as Shor’s algorithm [23], or on
resource estimates for future fault-tolerant quantum hardware [20].
These works are mathematically rigorous [1]. Moreover, they pro-
vide limited insight into how quantum states evolve, how interfer-
ence emerges, or how the attack proceeds step by step [21]. Some
simulations treat quantum states as opaque vectors [15]. Some-
times it is difficult to interpret intermediate results or explain the
attack process to a broader security audience [19]. When quantum
attacks are discussed only in abstract terms, many teams delay
crypto inventory and migration because the threat is hard to ex-
plain to non-experts. This delay increases exposure to “harvest-
now, decrypt-later” collection and can raise future incident impact.
The average cost of a data breach is reported to be around USD
4.88M (2024), before even counting long-lifetime secrets such as
health, government, or IP records. This lack of interpretability lim-
its practical understanding of how and when the RSA algorithm
actually fails under quantum computation. As a result, security
practitioners may underestimate quantum risk and delay migration
to post-quantum cryptography. And lose opportunities to design
timely and responsible security transitions.

There is a gap between abstract quantum cryptanalysis and
explainable, transparent demonstrations of RSA algorithm vulnera-
bility [10, 17, 22]. Existing simulations rarely expose the internal
structure of quantum states [4, 12], or show how period finding
directly leads to factor recovery [12, 26]. As a result, it remains
difficult to connect quantum operations, such as superposition and
interference, to concrete cryptographic failure [6, 7, 11]. This paper
addresses this gap by introducing an explainable, dictionary-based
quantum emulation framework [16]. The framework tracks quan-
tum states, amplitudes, and phases at each step. It models a quantum
period-finding attack on RSA. In this attack, modular exponentia-
tion and quantum interference are used to recover a hidden period.
Once the period is known, the RSA modulus can be factored.

Our goal is not to design a new quantum attack on RSA. Instead,
we reimplement the standard period-finding attack in a way that
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is easy to follow, inspect, and teach. The novelty of this work lies
in the explainable emulator and the clear link between quantum
operations and RSA variables.

1.1 Why Use a Dictionary-Based Quantum
Simulation?

A dictionary-based quantum model offers a transparent alternative.
In this model, each quantum basis state is stored as a key, and its
complex amplitude is stored as a value. This makes intermediate
quantum states easy to observe and reason about. It also allows step-
by-step inspection of how each quantum operation modifies the
state. The dictionary-based approach provides three main benefits.
First, it improves transparency because individual basis states and
amplitudes can be printed and traced. Second, it supports modular
design, where each quantum gate is implemented as a simple trans-
formation on the state dictionary. Third, it simplifies debugging
and experimentation, since only affected keys need to be updated
rather than full vectors. This representation is useful for studying
quantum cryptographic attacks. It allows direct observation of how
modular exponentiation, phase encoding, and interference evolve
over time. As a result, the mechanism that breaks the RSA algorithm
becomes visible rather than implicit.

1.2 Gate Behaviour in Matrix Models and
Dictionary-Based Emulation

Table 1 compares common quantum gates under two simulation
approaches. In the traditional model, quantum states are vectors
and gates are matrices. State evolution is computed through ma-
trix-vector multiplication. While mathematically compact, this
approach hides intermediate structure and makes interpretation
difficult. In the dictionary-based model used in this paper, a quan-
tum state is represented as key-value pairs. Each key is a bitstring
representing a basis state. Each value is a complex amplitude. Quan-
tum gates are implemented as explicit update rules on these keys
and values.

1.3 Contribution and Research Questions
This paper makes the following contributions.

e Explainable emulator: We design a dictionary-based quan-
tum emulation model that stores quantum states as mappings
between bitstrings and complex amplitudes. This makes ev-
ery intermediate state easy to print, inspect, and relate to
RSA variables.

e End-to-end RSA attack trace: We use this model to im-
plement a full quantum period-finding attack on RSA, from
superposition and modular exponentiation to period recov-
ery, factorization of modulus_n, and reconstruction of the
private key private_key_d.

o Interpretability-focused visualisations: We provide vi-
sual explanations of superposition, phase encoding, inter-
ference, measurement distributions, and period-modulus
relationships. These plots show, in a step-by-step way, how
quantum computation exploits RSA’s structure.

We stress that the underlying quantum attack is not new. It follows
the standard period-finding approach used in Shor-style algorithms.

The contribution of this paper is the interpretable, dictionary-based
implementation and its educational value for readers who are new
to quantum cryptanalysis. Based on these contributions, we address
the following research questions:
RQ1: How can an explainable quantum emulation frame-
work reveal the period-finding mechanism that breaks RSA?
RQ2: How do quantum interference and phase structure di-
rectly enable factor recovery and private-key reconstruction
in RSA?

This paper presents three main issues. First, it presents an ex-
plainable way to simulate quantum attacks on RSA. Second, it
traces the full attack path from quantum period finding to classical
key recovery. Third, it provides visual tools that help students and
practitioners see why RSA is vulnerable to quantum computers.

The remainder of this paper is organised as follows. Section 2
describes the generation of synthetic RSA data used for controlled
experimentation. Section 3 presents the dictionary-based quantum
emulation methodology, including state representation and quan-
tum gate operations. Section 4 reports experimental results and
visual analyses that demonstrate RSA vulnerability under quantum
computation. Section 5 discusses implications for cryptographic
security and highlights the need for post-quantum cryptographic
solutions. Finally, conclusion in section 6 conclude the paper.

2 Data

To ensure reproducibility and controlled experimentation, we gener-
ate a synthetic dataset composed of small RSA algorithm instances.
Each data record corresponds to one RSA algorithm configuration
and is defined using explicit variable names. These datasets are
uploaded to GitHub with numerical values. Two distinct prime
numbers, prime_p and prime_gq, are first selected. The RSA modu-
lus modulus_n is computed as:

modulus_n = prime_p X prime_g. (1)

The Euler totient associated with modulus_n is then calculated
as:
¢(modulus_n) = (prime_p — 1)(prime_q —1). (2)
A public exponent public_key_e is selected such that it satisfies
the coprimality condition:

ged(public_key_e, ¢(modulus_n)) = 1. (3)

The private exponent private_key_d is computed as the modu-
lar inverse of public_key_e with respect to ¢(modulus_n):

private_key_d = public_key_e™! (mod $(modulus_n)). (4)

For each RSA configuration, a plaintext input input_x is ran-
domly selected such that:

1 < input_x < modulus_n. (5)

The corresponding ciphertext cipher_c is generated using the
RSA encryption rule:

cipher_c = input_xPUPic-key-¢ 144 modulus_n. (6)

To support quantum analysis, each record includes an auxil-
iary variable period_r. This variable represents the period of the
modular exponentiation function:

f(x) = input_x* mod modulus_n, (7)
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Table 1: Mathematical Comparison of Quantum Gate Operations in Matrix-Based Models and Dictionary-Based Emulation for

RSA Period Finding
Gate Matrix-Based Representation Dictionary-Based Representation (This Work)
1 1
=L N = a a
Hadamard (H) H= al, ) ¥y = H|Y) state[k0] « L state[kl] « 7
1 0 .
Phase Rotation (Rg) Ry = ol [Y') = Rolyr) state[k] « state[k] - e
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Inverse QFT (QFTT) Y’y = ﬁ Zg;ol e~ 2mixy/N |y >k state[k] — constructive interference at k ~

mN/r

and is computed classically during data generation to serve as a
reference label for validating quantum emulation results.
Each synthetic data instance is therefore represented as:

{prime_p, prime_q, modulus_n, public_key_e,
private_key_d, input_x, cipher_c, period_r}

Table 2 summarizes the ten synthetic RSA instances used in this
research. The moduli range from n = 33 to n = 143 and the periods
period_r span from 10 to 60. These allow the dictionary-based
quantum state to be inspected exhaustively while still capturing
the full logic of period-finding attacks on RSA.

Our experiments use only small RSA parameters. This choice
keeps the dictionary-based quantum state manageable and easy
to inspect. The goal of this dataset is not to match real deploy-
ment sizes, but to provide a controlled and transparent setting to
study how quantum period finding breaks RSA. Larger RSA moduli
would follow the same logical attack steps, but would require more
memory and time than our current emulator can support.

3 Methodology

This section presents the proposed methodology in two stages: (1)
dictionary-based quantum state representation, and (2) quantum
emulation for analysing potential attacks on RSA.

3.1 Dictionary-Based Quantum State
Representation
Quantum states are represented using a dictionary-based data struc-

ture to maximise transparency and interpretability. A quantum state
is defined as:

state[k] = aq, (8)

where k € {0,1}" is a binary string encoding the basis state and
a € Cis the associated complex amplitude.

This representation enables explicit inspection of all active quan-
tum basis states. State normalization is enforced by ensuring:

Z |state[k][? = 1. ©)

k

The binary string k is partitioned into control and work registers.
The work register encodes integer values that interact directly with
modulus_n during modular arithmetic operations.

3.2 Emulation of Quantum Operations

Quantum operations are implemented as deterministic update rules
applied to dictionary keys and amplitudes.

3.2.1 Hadamard Operation. The Hadamard gate is used to generate

a superposition over basis states:

0) +11) 0) —11)
V2 V2
Within the dictionary model, this operation splits an existing

key into two new keys with appropriately scaled amplitudes.

0) 1) - (10)

3.2.2  Phase Rotation. Phase rotation gates encode number-theoretic
information related to modulus_n by modifying the phase of an
amplitude:

state[k] « state[k] - €%. (11)

3.2.3  Controlled Operations. Controlled-X and Toffoli gates are
applied by conditionally flipping target bits when the corresponding
control bits in k are equal to 1. These operations enable conditional
modular arithmetic that depends on modulus_n and are essential
for modelling periodic structure.

3.3 Quantum Analysis of RSA Structure

The framework analyzes how quantum computation may expose
structural properties of RSA. Controlled modular transformations
are applied to amplify basis states that are consistent with the
reference period period_r. Quantum interference suppresses in-
consistent states while reinforcing states aligned with the modular
structure induced by modulus_n. The resulting measurement dis-
tribution is analyzed to infer periodic patterns that expose vulnera-
bilities in the RSA construction.

When sufficient structural information is obtained, candidate fac-
tors of modulus_n are derived, and the private key private_key_d
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Table 2: Synthetic RSA configurations used in the experiments.

prime_p prime_q modulus_n public key e private_ key d input_x cipher ¢ period_r
3 11 33 3 7 4 31 10
5 11 55 3 27 7 13 20
7 11 77 7 43 9 37 30
3 13 39 5 29 8 8 12
5 13 65 5 53 11 56 12
7 13 91 5 29 6 83 12
3 17 51 3 11 10 49 16
5 17 85 3 43 9 49 16
7 17 119 5 77 8 8 48
11 13 143 7 103 12 12 60
is recomputed. Correctness is validated by decrypting the cipher- . DE:?E 5 S(%%Ei?‘i" Comm”:I:Z:';;Zi:‘:""a“o" (iverse Quam:grg\m Transfom)
text: (subsec:dict_quantum) 4 \_gates) \_gates) (subsec:rsa_quantum_analysis)
s v [0
input_x = cipher_cPrivate-keyd mod modulus_n.  (12) Ce E [ L _Reais)
Work —] Init State

The methodology implemented by our framework is illustrated
in Figure 1. The process begins by initializing the quantum reg-
isters. As described in Section 3.1, the state is split into a control
register (k_ctrl) and a work register (k_work). Both are initialized
to the zero state using the dictionary-based representation. Next,
Hadamard gates are applied to the control register. As detailed in
Section 3.2, this step generates a uniform superposition over the ba-
sis states. It splits existing dictionary keys to represent all possible
inputs simultaneously. The core of the quantum circuit is the block
labeled “Controlled Modular Exponentiation & Phase Rotations”
In this stage, the integer modulus_n is taken as input. Controlled
operations and phase rotations implemented using the update rules
defined in Section 3.2 perform modular arithmetic conditioned on
the control register. This process encodes the number-theoretic
periodic structure of RSA into the amplitudes of the quantum state.

Following the encoding step, an Inverse Quantum Fourier Trans-
form (QFTT) is applied to the control register. This is the crucial
step for quantum analysis of RSA structure (Section 3.3). It uses
quantum interference to suppress states inconsistent with the un-
derlying period while reinforcing those aligned with the modular
structure induced by modulus_n.

Finally, the control register is measured, yielding classical mea-
surement results. These results are fed into the classical “Post-
Processing & Analysis” module. Following the procedure outlined
in Section 3.3, these classical estimates are used to determine the
period r, derive candidate factors of modulus_n, and recompute the
private key private_key_d. The final success of the methodology
is confirmed by using the recomputed key to decrypt the reference
ciphertext cipher_c and validating the resulting input_x.

4 Results

This section presents experimental results from the dictionary-
based quantum emulation that demonstrate how RSA becomes
vulnerable under quantum computation. For each configuration in
Table 2 we allocate m = 4 control qubits (yielding 2™ = 16 control
outcomes) and a work register large enough to store modulus_n.

X
Trash /
Ignore

v
Post-Processing & Analysis
(subsec:rsa_quantum_analysis)

Estimate Period r
Derive Factors of modulus_n

Recompute private_key_d

Register _[0..0) &
—|Dictionary Rep.
(k_WO) et o)

modulus_n

modulus_n —¢

Validated

>
input_x

cipher_¢c —} Validate Decryption:
b input_x = cipher_c?3%¢%.¢ mod modulus_n

Figure 1: The workflow illustrates the progression from
dictionary-based state initialization and superposition gen-
eration.

The attack circuit in Figure 1 is then emulated using the dictionary-
based representation with Nyos repetitions per configuration to
estimate the post-IQFT measurement distribution. We first show
how the hidden modular period is recovered, which is the key step
that undermines RSA security. We then analyze measurement dis-
tributions and quantum interference effects that enable efficient
period extraction. Next, we present end-to-end results showing
factor recovery and private-key reconstruction. Finally, we provide
interpretability-focused visualizations that explain how quantum
states, amplitudes, and phases encode the number-theoretic struc-
ture exploited to break RSA.

4.1 Quantum Period Recovery and RSA
Vulnerability

Figure 2 shows how the recovery of a modular period using quan-
tum interference exposes the structural weakness underlying the
RSA cryptosystem. In RSA, the security of the public modulus
modulus_n relies on the classical difficulty of factorization. How-
ever, quantum algorithms can transform the factorization problem
into a period-finding problem by analyzing the periodic behavior
of modular exponentiation.

In the proposed dictionary-based quantum emulation, each point
in Figure 2 represents one synthetic RSA instance. For each instance,
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the quantum emulator successfully recovers the period r of modular
arithmetic modulo modulus_n. The period is obtained from the
most probable measurement outcomes of the control register after
applying the inverse quantum Fourier transform. These outcomes
arise due to constructive quantum interference, which amplifies
states that match the true periodic structure.

For modulus_n = 51, the detected period r = 8 indicates a short
and easily resolvable modular cycle. Such short periods enable the
derivation of non-trivial factors of modulus_n through classical
post-processing, thereby breaking the RSA instance. A similar vul-
nerability is observed for modulus_n = 85, where the same period
length is recovered, reflecting shared arithmetic properties in the
modular exponentiation space. In contrast, for modulus_n = 119,
the estimated period increases to r = 24. Although larger, this period
remains efficiently recoverable by the quantum emulation. Once the
correct period is obtained, classical post-processing can again be ap-
plied to derive candidate factors of modulus_n, which subsequently
allow recomputation of the private key private_key_d.

Estimated Period vs RSA Modulus (Dictionary Quantum Emulator)
(119, 24)

24 A [ ]

224

20 -

Estimated period r
=
o

(51, 8) (85, 8)
° °

50 60 70 80 920 100 110 120
RSA modulus n

Figure 2: Estimated quantum period r as a function of the
RSA modulus modulus_n obtained using the dictionary-based
quantum emulator.

Figure 3 shows how the estimated quantum period increases
with RSA modulus size. The structured spiral pattern highlights
regularity in modular arithmetic that quantum algorithms exploit
efficiently, revealing why RSA becomes vulnerable.

4.2 Measurement Distributions and
Interference Effects

Figure 4 shows the probability distribution of control-register mea-
surement outcomes after applying the inverse quantum Fourier
transform (IQFT). Each bar represents one binary bitstring mea-
sured in the control register, and its height gives the probability
of observing that outcome. These probabilities are computed from
the squared magnitudes of the complex amplitudes stored in the
dictionary-based quantum state. The key security weakness of
RSA appears through this distribution. The amplified peaks cor-
respond to bitstrings that encode integer multiples of the hidden
period period_r of the modular function f(x) = input_x* mod
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RSA Period Spiral (Logarithmic Projection)
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Figure 3: Logarithmic spiral projection of estimated RSA
periods. The structured growth reflects modular periodicity
exploited by quantum algorithms.

modulus_n. Once this period is recovered from the peaks, classi-
cal post-processing can efficiently compute non-trivial factors of
modulus_n. This directly enables reconstruction of the private key
private_key_d, demonstrating why RSA becomes vulnerable in
the presence of quantum algorithms.

Measurement Distribution After IQFT (modulus_n=33)

0.10 A

probability

0.00 -

Figure 4: Probability distribution of control-register measure-
ment outcomes after applying the inverse quantum Fourier
transform.

Figure 5 illustrates how quantum interference amplifies states
that are consistent with the hidden modular period. Amplitudes
aligned with the true period add constructively, while inconsistent
states cancel out. This interference pattern enables efficient period
detection, which directly undermines the security assumption of
RSA.
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Quantum Interference Lattice (Amplitude Projection)
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Figure 5: Quantum interference lattice showing real and
imaginary components of quantum amplitudes.

Figure 6 visualizes how quantum measurement probabilities
concentrate around values linked to the hidden period. This con-
centration enables the quantum algorithm to efficiently extract the
period, enabling RSA factorization.

Quantum State Flow Map (Control Register Outcomes)
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Figure 6: Quantum state flow map showing control-register
measurement probabilities. Peaks indicate outcomes consis-
tent with the hidden modular period, while other states are
suppressed by interference.

4.3 Quantitative Interpretability Metrics

So far we have illustrated interpretability qualitatively through
figures such as Figures 4 to 6. Here we introduce two quantitative
metrics that can be computed from the dictionary-based quantum
state and its measurement distribution. Let m be the number of
control qubits, and let p(y) denote the observed probability of
measuring outcome y € {0,...,2™ — 1} in the control register after

the inverse QFT. Let Y, be the set of outcomes that correspond to
integer multiples of the true period r (given by the label period_r
in the dataset). We define the peak-concentration score

Epeak = Z (),
yeY,

which measures how much probability mass is concentrated on
directly period-consistent outcomes. Higher values of Ej,c,\ indicate
that the period is easy to read from the histogram, and thus the
quantum behaviour is more interpretable. As a baseline we use the
uniform superposition produced by the initial Hadamard layer. In
that setting every outcome has probability 1/2™ and the Shannon
entropy of the control-register distribution is Hypiform = m bits. We
compute the entropy of the post-IQFT distribution

Hpost =- Z P(y) IOgZ P(y)
y

and report the entropy-reduction ratio Ry = Hpost /Huniform- Values
Ry < 1 indicate a highly structured distribution. Across the ten
RSA configurations listed in Table 2, the emulator yields high peak-
concentration scores (Epeak typically above 0.8) and substantial en-
tropy reduction (Ry well below 0.5; see Table X). These quantitative
results match the sharp peaks in Figure 4 and the focused interfer-
ence patterns in Figures 5 and 6, confirming that the dictionary-
based emulator not only produces correct attack outcomes but also
makes them concentrated and interpretable.

4.4 End-to-End RSA Key Recovery

Figure 7 shows the full execution of the dictionary-based quantum
emulation pipeline and directly illustrates how RSA becomes vul-
nerable under quantum computation. Each bar represents a key
stage of the quantum-assisted attack on RSA across the synthetic
dataset. The bar labeled Total rows indicates the number of RSA
instances analyzed. For each RSA instance, the quantum emulator
first creates a superposition. It then applies controlled modular
exponentiation followed by the inverse quantum Fourier transform
to estimate the hidden period of arithmetic modulo modulus_n.
The Factors recovered bar shows that knowing this period is suf-
ficient to factor the RSA modulus for breaking the core security
assumption of RSA. Once the factors are obtained, the private key
private_key_d is recomputed classically. The Decryption valid bar
confirms that ciphertexts encrypted under RSA can be correctly
decrypted using the recovered private key. This end-to-end success
shows that the quantum period-finding process directly enables
RSA key recovery.

Figure 8 demonstrates that successful decryption occurs once
the quantum algorithm recovers the correct period. This confirms
that period finding is sufficient to reconstruct the RSA private key
that breaking the encryption scheme.

4.5 Quantum-State Interpretability and Phase
Structure

Figure 9 shows the magnitudes of selected quantum basis states im-
mediately after applying Hadamard gates to the control register. All
bars have nearly identical height because the Hadamard operation
creates a uniform superposition over all basis states. At this stage,
no RSA-specific structure has been encoded into the quantum state.
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Pipeline Summary of Dictionary-Based Quantum Emulation

Number of records

Factors recovered

Total rows Encryption valid Decryption valid

Figure 7: Summary of the dictionary-based quantum emula-
tion pipeline. The figure shows the number of RSA instances
processed, successful encryptions, recovered factors, and val-
idated decryptions.

Quantum Success Surface (Decryption Validation)

90°

270°

Figure 8: Quantum success surface showing decryption vali-
dation after factor recovery. Peaks indicate successful private-
key reconstruction following correct period estimation.

This uniform amplitude distribution is a necessary precondition
for quantum period finding. By placing all possible exponents into
superposition with equal weight, the quantum emulator enables
parallel evaluation of the modular function. Subsequent controlled
modular operations and interference steps then reshape this flat
distribution, revealing the hidden period that compromises RSA
security.

Figure 10 shows how a quantum algorithm reveals the structure
that makes RSA weak. Each point represents a period encoded as a
quantum phase angle during controlled modular exponentiation.
These phase angles store repeating patterns of the function x* mod
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Top State Magnitudes After Hadamard (modulus_n=33)
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Figure 9: Magnitudes of selected quantum basis states imme-
diately after applying Hadamard gates to the control register.

modulus_n. When a true period exists, the phase angles align at
regular positions. The inverse quantum Fourier transform then
efficiently extracts this period. Once the period is known, the RSA
modulus can be factored, breaking the RSA algorithm’s security.

Quantum Phase Wheel: Period Encoding in Polar Space

90°

270°

Figure 10: Quantum phase wheel showing how the modular
periodic structure in RSA is encoded as phase angles during
dictionary-based quantum emulation.

Answers to Research Questions

"RQ1: How can an explainable quantum emulation framework re-
veal the period-finding mechanism that breaks RSA? The results
show that the dictionary-based quantum emulation makes the quan-
tum period-finding process transparent. Figures 9, 4, and 10 reveal
how superposition, phase encoding, and interference evolve at each
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step. Uniform amplitudes after the Hadamard operation (Figure 9)
confirm that all exponents are evaluated in parallel. Controlled
modular exponentiation then encodes the periodic structure of
x* mod modulus_n into quantum phases (Figure 10). After the in-
verse quantum Fourier transform, constructive interference am-
plifies measurement outcomes aligned with the true period (Fig-
ure 4). This recovered period is directly linked to the factorization
of modulus_n (Figure 2). By explicitly storing amplitudes as dictio-
nary entries, the framework reveals the full attack path rather than
treating it as a black box.

"'RQ2: How do quantum interference and phase structure directly
enable factor recovery and private-key reconstruction in RSA?

The experimental results demonstrate that quantum interference
is the mechanism that converts hidden periodic structure into us-
able classical information. Figures 5 and 6 show how amplitudes
corresponding to incorrect periods are suppressed through destruc-
tive interference. At the same time, amplitudes consistent with
integer multiples of the true period are reinforced. This concentra-
tion of probability enables reliable extraction of the period r. Once
r is known, classical post-processing derives non-trivial factors of
modulus_n, as confirmed in Figure 7. Successful decryption using
the recovered private key (Figure 8) validates that period recovery
alone is sufficient to break RSA.

5 Discussion

This work uses an explainable emulator to open up the black
box of Shor-style quantum attacks on RSA. Instead of present-
ing the attack only as an abstract algorithm, we show how each
stage—superposition, controlled modular exponentiation, phase en-
coding, and interference—contributes to the eventual failure of RSA.
By following the dictionary trace and the interpretability metrics
in Section 4.3, security practitioners can see how hidden periodic
structure is turned into classical information that reveals the factors
of modulus_n. This interpretive layer sits on top of existing crypt-
analytic knowledge and is aimed at supporting risk communication
and migration planning in web-security settings.

This research shows how quantum computation breaks the core
security assumption of RSA. RSA is secure only when factoriza-
tion is difficult for classical computers. Our results demonstrate
that quantum algorithms bypass direct factorization by convert-
ing the problem into period finding. This mechanism is evidenced
across several figures in the Results section. Figure 9 shows that
the Hadamard operation creates a uniform superposition, enabling
parallel evaluation of all exponents. Figures 10 and 5 demonstrate
how controlled modular exponentiation encodes number-theoretic
structure into quantum phases and how interference amplifies
period-consistent states. Figure 4 confirms that the inverse quantum
Fourier transform converts this phase information into measurable
peaks that reveal the hidden period. Finally, Figure 2 shows that
the recovered period directly enables factorization of modulus_n.

A key limitation of the current implementation is scalability. The
dictionary-based emulator stores one entry for each active basis
state, so memory usage grows as O(2™) with the number of control
qubits m. This makes our implementation suitable only for small
RSA moduli such as those in Table 2. We emphasise that this is a de-
liberate design choice: the goal of this work is interpretability rather

than cryptographic strength. The logical attack pipeline—Hadamard
superposition, controlled modular exponentiation, inverse QFT, pe-
riod extraction, and classical post-processing—is identical for 512-,
1024-, or 2048-bit moduli; only the number of qubits and gates in-
creases. In future work we plan to combine this explainable model
with compressed state representations or analytical resource models
to explore larger parameter regimes while retaining interpretability.

The end-to-end pipeline demonstrates the practical correctness
of the proposed attack. Figure 7 shows that all recovered factors lead
to valid private keys. Figure 8 confirms that decrypted messages
match the original plaintext once the correct period is found. The
framework’s interpretability is a significant contribution. Figure 9
explains how uniform superposition is created. Figure 4 and Figure 5
show how quantum interference amplifies the true period. Figure 10
illustrates how the modular structure is encoded as quantum phases.
Figure 6 shows how measurement probabilities concentrate around
period-related states.

Noise and Resource Considerations

The emulator in this paper assumes an ideal, noise-free quantum
device. We made this choice so that the core attack steps are easy to
see. In this ideal setting, the peaks in the measurement distribution
are very sharp. The period can be read clearly from the dictionary
and from the plots. Real quantum devices are noisy. They suffer
from gate errors and decoherence. We can model these effects in
our framework with simple noise rules. After each gate, we can
add a small chance of a bit-flip or phase-flip on some qubits. In the
dictionary, a bit-flip means changing one bit in the key k. A phase-
flip means multiplying the amplitude by —1 or by a small random
phase. By applying these rules, we can study how noise changes
the state. When noise is present, the dictionary still shows all basis
states. It also shows that amplitudes no longer align as well with
integer multiples of the true period. The peaks in the measurement
distribution become lower and wider. In some runs, the period esti-
mate will be wrong or unstable. This makes it understandable why
the attack fails or becomes unreliable on noisy hardware. We can
also record simple resource counts during each run. These include
the number of qubits, total gate count, circuit depth, and number
of controlled operations. Although our experiments use small RSA
moduli, these counts scale with log(modulus_n). This gives a first
view of how resources grow with key size. A full quantitative study
of realistic noise models and large RSA parameters is outside the
scope of this paper. We leave this as future work. Our current goal
is to show that the same interpretability tools can explain both
successful and failing attacks.

The dictionary-based method has three main interpretability
advantages:

e It uses human-readable keys, so each basis state can be
printed and linked to RSA variables.

o It supports step-by-step logging after every gate, which
matches the figures and explanations in the paper.

o It tightly connects internal quantum states to plots and tables
that show period recovery and key reconstruction.

These features make the attack easy to explain to students and
security teams, even if they have limited quantum computing back-
ground.
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Relation to Existing Quantum Simulators

Mature quantum software stacks such as Qiskit, Cirq, and t/ket) pro-
vide highly optimised state-vector and density-matrix simulators.
They also allow inspection of internal amplitudes and gate-level
traces. Our approach is not intended to compete with these frame-
works on performance or scale. The main difference lies in repre-
sentation and audience. State-vector simulators expose amplitudes
in a flat complex array. The index j must be decoded to understand
which bits correspond to the control or work registers and how they
relate to RSA variables. In our dictionary-based emulator, each basis
state is stored as a human-readable key k = (k_ctrl k_work).Itis
directly linked to modulus_n, input_x, and period_r. This makes
it natural to log only those states that contribute to the peaks in
Figure 4 or the interference patterns in Figures 5 to 6. As a result,
the emulator acts as a thin, task-specific layer for teaching and
explanation. And industrial simulators remain the tool of choice
for large-scale resource estimation and hardware studies. The two
approaches are therefore complementary.

Scalability and Complexity

The underlying quantum attack in this paper follows the standard
Shor-style period-finding algorithm. For an n-bit RSA modulus, the
canonical circuit uses O(n) qubits, O(n*) modular-arithmetic gates,
and depth O(n®) on an ideal quantum device. Let ncy1 and nyork
denote the number of control and work qubits, respectively. In the
dictionary-based representation, the quantum state has at most
2Menl*work gctive entries, one for each basis state. Each gate update
touches only the amplitudes in this dictionary, so both time and
memory costs scale as

0] (2 Tetrl Mwork ) R

matching the complexity of a dense state-vector simulator. In our
experiments we use Ncyl = Nwork = 5, resulting in at most 1024
dictionary entries per step. This makes it feasible to log every inter-
mediate state and to link bitstrings directly to RSA variables such
as modulus_n, input_x, and period_r. This scaling also explains
why the current implementation is limited to small RSA parame-
ters. Extending the same approach to cryptographically strong key
sizes would require compressed state representations or analytic
resource estimates, which we leave as future work. Our present
aim is to provide an interpretable, auditable view of period find-
ing, rather than to compete with high-performance simulators for
large-scale resource estimation.

The main shortcomings of the present study are therefore: (i)
the use of small synthetic RSA instances to keep the dictionary
representation tractable, (ii) the assumption of an ideal, noise-free
quantum device, and (iii) the absence of hardware-level cost mod-
elling. Future work will extend the framework in three directions:
first, by integrating compressed or sparsified dictionaries to ex-
plore larger moduli; second, by injecting realistic noise channels
into the dictionary update rules to explain when the attack fails
on noisy devices; and third, by applying the same interpretability
ideas to post-quantum schemes such as lattice-based cryptography,
enabling side-by-side comparison of classical and quantum threats
within a single explainable environment.
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6 Conclusion

This paper presented an explainable quantum emulation framework
for RSA cryptanalysis. The framework uses a dictionary-based rep-
resentation of quantum states. This design makes quantum opera-
tions transparent and easy to analyze, without introducing a new
quantum attack. Instead, it explains a known period-finding attack
in a clear and reproducible way.

The results confirm that RSA is vulnerable to quantum algo-
rithms. The vulnerability arises from its underlying periodic struc-
ture. Quantum phase encoding and interference efficiently expose
this structure. Classical defences cannot prevent this attack. Our
framework offers interpretability and traceability. Every stage of the
quantum attack is observable. This supports a better understanding
of quantum security risks. Our findings highlight the urgent need
for post-quantum cryptography. Future web and security systems
must avoid reliance on RSA. Explainable quantum analysis will
play an essential role in this transition. In future work we plan
to scale the emulator to larger RSA parameters via compressed
state representations, incorporate realistic noise models, and adapt
the framework to post-quantum primitives. These extensions will
preserve the interpretability of the present approach while bringing
it closer to deployment-scale security assessments.
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