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Abstract

Harnessing visual texts represents a burgeoning001
frontier in the evolution of language modeling.002
In this paper, we introduce a novel pre-training003
framework for a suite of pixel-based autoregres-004
sive language models, pre-training on a corpus005
of over 400 million document images. Our006
approach is characterized by a dual-modality007
training regimen, engaging both visual data008
through next patch prediction with a regression009
head and/or textual data via next token predic-010
tion with a classification head. This study is011
particularly focused on investigating the syn-012
ergistic interplay between visual and textual013
modalities of language. Our comprehensive014
evaluation across a diverse array of benchmarks015
reveals that the confluence of visual and tex-016
tual data substantially augments the efficacy017
of pixel-based language models. Notably, our018
findings show that a unidirectional pixel-based019
model, devoid of textual data during training,020
can match the performance levels of advanced021
bidirectional pixel-based models on various lan-022
guage understanding benchmarks. This work023
highlights the considerable untapped potential024
of integrating visual and textual information025
for language modeling purposes. We will re-026
lease our code, data, and checkpoints to inspire027
further research advancement.028

1 Introduction029

The landscape of large language models (LLMs)030

is undergoing a significant transformation, with031

advancements that extend the boundaries of lan-032

guage assistant (Touvron et al., 2023a), code gener-033

ation (Lozhkov et al., 2024; Chai et al., 2023), and034

multimodal comprehension (OpenAI, 2023; Anil035

et al., 2023). These models traditionally tokenize036

input data into discrete elements, treating them as037

sequences of identifiers, thereby enabling diverse038

applications. However, this approach often strug-039

gles with visually enriched textual content, such040

as PDFs, where direct parsing into text incurs sig-041

nificant information loss. Traditional methodolo- 042

gies typically employ pre-trained optical character 043

recognition (OCR) tools for extracting information 044

from such visual texts, but these methods are inher- 045

ently limited by the fidelity of text extraction. 046

In response to these challenges, a novel 047

paradigm of pixel-based language modeling has 048

emerged, offering a direct pathway to learning 049

from text as visual data (images), transcending the 050

constraints of textual modality (Rust et al., 2023; 051

Tschannen et al., 2023). This approach promises 052

to surmount the vocabulary bottleneck issue (Rust 053

et al., 2023)—a trade-off inherent in balancing in- 054

put encoding granularity against the computational 055

feasibility of vocabulary probability estimation in 056

conventional language models. 057

In the previous literature, the development of 058

pixel-based language models has been bifurcated 059

into encoder-based (Rust et al., 2023; Tschan- 060

nen et al., 2023) or encoder-decoder architec- 061

tures (Salesky et al., 2023), encompassing models 062

that either employ bidirectional mechanisms akin 063

to MAE (He et al., 2022) or utilize an encoder- 064

decoder framework, where a pixel-based model 065

serves as the encoder, paired with a unidirectional 066

language decoder. Despite these advancements, 067

the exploration of pixel-based models employing a 068

decoder-centric approach remains in its infancy. 069

Moreover, current research often processes vi- 070

sual text as 8-bit grayscale (Rust et al., 2023) or 2- 071

bit binary images (Tai et al., 2024). This approach 072

restricts the representation of color, critical for ele- 073

ments like emojis and font highlights, and diverges 074

from the natural image format in RGB. Notably, 075

there appears to be a lack of studies pre-training on 076

RGB images, which could more accurately reflect 077

the complexities of visual text. 078

This research aims to fill these gaps by offer- 079

ing a comprehensive examination of the effects of 080

pixel-based versus text-based pre-training within 081

an autoregressive language modeling context. Our 082
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study is steered by three critical research questions:083

RQ1: Feasibility of tokenization-free autogres-084

sive pre-training on visual text images. Can an085

autoregressive language model trained solely on086

raw images of visual texts achieve competitive per-087

formance?088

RQ2: Impact of autoregressive pixel pre-089

training on multilingual tasks. We explore090

whether autoregressive pixel pre-training can over-091

come the vocabulary bottleneck in multilingual092

contexts, assessing its effectiveness in generalizing093

linguistic features across languages.094

RQ3: Synergistic effects of multimodal pre-095

training. How do pixel-based and text-based pre-096

training synergize, and in what ways does this097

multimodal strategy enhance the model’s perfor-098

mance on language understanding tasks and its099

cross-lingual applicability?100

Contributions #1) We empirically demonstrate101

the substantial potential of integrating visual text102

images for enhanced language model training,103

proposing the first tokenization-free autoregressive104

language models on real-valued pixels and indicat-105

ing promising directions for future scaling.106

#2) We systematically explore autoregressive pre-107

training on both visual text images and plain text108

modalities, demonstrating the potential of causal109

language models to effectively learn from visual110

text images and highlighting the interplay between111

different modalities.112

#3) We show that pre-training decoder-only trans-113

formers on visual images can match or slightly114

underperform compared to text-based inputs but115

achieve competitive results with bidirectional116

PIXEL models (Rust et al., 2023). This illustrates117

the potential for scaling trends to eventually surpass118

text-based pre-trained models.119

#4) We construct a comprehensive visual text120

dataset of over 400 million documents for pixel-121

based pre-training, equivalent to roughly 236 bil-122

lion text tokens. We will release the fine-tuning123

datasets for language understanding and multilin-124

gual evaluation, facilitating further research in this125

emerging field.126

2 Related Work127

Pixel Representations for Text Advances in pixel-128

based language modeling have increasingly fo-129

cused on exploiting the orthographic and typo-130

graphic properties of text through visual represen-131

tations. PIXEL (Rust et al., 2023) utilizes masked132

auto-encoders to address the vocabulary bottle- 133

neck by reconstructing pixels in masked text im- 134

ages. Moreover, CLIPPO (Tschannen et al., 2023) 135

demonstrates enhanced language comprehension 136

using a unified encoder for both image and text 137

modalities. Further research by Lotz et al. (2023) 138

evaluates the impact of rendering techniques on 139

the efficacy of pixel-based encoders. These studies 140

primarily utilize bidirectional encoders and process 141

text as grayscale images. 142

In contrast, our approach leverages RGB imag- 143

ing to render text, employing a 24-bit color depth to 144

enrich the visual data interpretation. This enhance- 145

ment allows for handling of elements like emojis 146

and colored text, prevalent in digital communica- 147

tions. Concurrent work by Tai et al. (2024) explores 148

binary image rendering and binary cross-entropy 149

loss in discrete space, whereas we implement a 150

mean square error loss in continuous pixel space 151

for finer reconstruction granularity. Moreover, re- 152

search such as OCR-free visually-rich document 153

understanding (Kim et al., 2022), which focuses 154

on direct learning from visual document images, 155

shares similarities with our approach. However, our 156

work distinctively explores rendered text, expand- 157

ing the potential for comprehensive multimodal 158

text pre-training. 159

Autoregressive Pre-training on Pixels Exist- 160

ing methods in pixel-based autoregressive pre- 161

training divide into vector quantization tech- 162

niques—transforming continuous images into dis- 163

crete tokens—and direct pixel prediction. These 164

approaches include VQ-VAE (Van Den Oord et al., 165

2017) and VQGAN (Esser et al., 2021) followed by 166

next token prediction (Chen et al., 2020; Ramesh 167

et al., 2021), and prefix language modeling that 168

predicts future visual patches from bidirectional 169

pixel contexts (El-Nouby et al., 2024). 170

These models are trained on regular images. Our 171

research diverges by focusing exclusively on visual 172

and rendered texts, thereby extending the capability 173

of autoregressive models to understand and gener- 174

ate language from its visual form. 175

3 Pre-training on Pixels and Texts 176

3.1 Rendering Text as Images 177

Following Rust et al. (2023), we utilize text 178

renderer adept at converting textual data into a 179

visually-rich RGB format. This pivotal component 180

takes input text and transforms it into a detailed 181

RGB image, x ∈ RH×W×C . We define the height 182
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Figure 1: Illustration of pixel-based autoregressive pre-training.

(H) at 16 pixels and the width (W ) at 16,384 pix-183

els, encapsulating the text within a 24-bit color184

depth across three channels (C = 3), thus forming185

a visual text image that represents a grid of 1024186

patches, each 16x16 pixels in size.187

The text renderer supports rendering required188

for a diverse set of textual representations, includ-189

ing multicolored emojis, bidirectional text systems,190

and scripts necessitating the use of ligatures. In191

alignment with models like PIXEL, our text se-192

quences may be single paragraphs or pairs of re-193

lated segments. We use 16x16 black patches as vi-194

sual cues for end-of-sequence (EOS) marker. These195

patches are treated as non-interactive elements by196

our model, where no attention mechanism is en-197

gaged or loss calculated.198

When confronted with sequences that surpass199

the maximum length threshold, our model employs200

strategies of truncation or segmentation into multi-201

ple sequences, ensuring efficient processing while202

preserving contextual integrity. We refer to Ap-203

pendix §A for the rendering details.204

3.2 Input Representation205

The transformer decoder ingests a linear sequence206

of embeddings, each derived from discrete patches207

of image data or textual tokens, for visual or text208

inputs, respectively.209

Image Input Inspired by the Vision Transformer210

(ViT; Dosovitskiy et al., 2020), our method tailors211

the image patch processing paradigm to the sequen-212

tial processing needs of autoregressive transformer213

decoders handling visual text imagery, as shown in214

Figure 1(a). This process commences by rendering215

the textual input as RGB images x ∈ RH×W×C 216

as aforementioned in §3.1, subsequently partition- 217

ing these into uniform patches xp ∈ RN×(P 2·C) 218

illustrated as Figure 8, where (H,W ) defines the 219

original image’s resolution, (P, P ) specifies each 220

patch’s resolution with P = H , and N = W/P 221

denotes the total number of patches. The patches 222

are then flattened, mapped to a D-dimensional 223

space through a learnable linear projection, and 224

finally fed into the transformer’s sequential pro- 225

cessing stream. Unlike ViT, which caters to two- 226

dimensional inputs, our model processes these 227

patches in the sequence order in which the text 228

appears, emulating the linear progression of read- 229

ing. This patch-based segmentation aligns with the 230

sequential nature of language, enabling our model 231

to predictively learn from the visual data. 232

Text Input We leverage the same tokenizer as 233

Llama 2, segmenting input text into discrete tokens 234

with a total vocabulary size of 32k. These tokens 235

are then transformed into dense vector representa- 236

tions through an embedding lookup table. 237

3.3 Pre-training Objectives 238

As illustrated in Figure 2, our training architec- 239

ture features separate heads following the terminal 240

transformer layers for various inputs. 241

Next Patch Prediction Given a sequence of N 242

visual patches xp = (x1p, x
2
p, · · · , xNp ) where each 243

visual patch xtp is a flattened patch embedding. We 244

decompose the image patch sequence into the pro- 245

duction of N conditional probabilities: 246
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Figure 2: Illustration of dual-modality pre-training on paired text-image (DualGPT). Autoregressive pre-training on
pure text and visual text images, apply next patch prediction and next token prediction, respectively.

p(x1p, x
2
p, · · · , xNp ) =

N∏
t=1

p(xtp|x1p, x2p, · · · , xt−1
p )

(1)247

For visual inputs, we employ a next patch predic-248

tion strategy, where a normalized mean squared249

error (MSE) loss quantifies the pixel reconstruction250

accuracy by comparing the normalized target image251

patches with the reconstructed outputs, excluding252

the EOS patches.253

Next Token Prediction For text inputs, we uti-254

lize a conventional next token prediction objective,255

optimizing a cross-entropy loss that evaluates the256

fidelity of predicted token sequences generated via257

teacher-forcing against the ground truth tokens.258

3.4 Model Configuration259

To explore previous research questions, our pre-260

training regimen explores various configurations261

for ablation analysis: (1) TextGPT: Pre-training262

solely on text data. (2) PixelGPT: This involves263

training solely on rendered image data, employing264

a mean squared error (MSE) loss, as visualized265

in Figure 1(a). (3) MonoGPT: Trained on separate266

streams of rendered image and text data without267

any intermodal pairing. (4) DualGPT: Trained on268

unpaired image and text input, and on paired image-269

text data (dual-modality). When handling paired270

data, we concatenate the image data sequence be-271

fore the text sequence and feed them simultane-272

ously to the model, as delineated in Figure 2. We273

refer to Appendix §D for details.274

3.5 Pre-training Details275

Model Architecture Our architecture, illustrated276

in Figure 1(b), is built upon a stack of N = 24 stan-277

dard transformer decoder (Vaswani et al., 2017),278

following Llama 2 (Touvron et al., 2023b). We in- 279

corporate RMSNorm for pre-normalization (Zhang 280

and Sennrich, 2019), SwiGLU activation func- 281

tions (Shazeer, 2020; Chai et al., 2020), rotary po- 282

sition embeddings (Su et al., 2024), and grouped 283

query attention (Ainslie et al., 2023). Comprehen- 284

sive specifications and additional implementation 285

details of our architecture are in Appendix §B. 286

Data For visual image data, we use rendered 287

the corpus of peS2o, English Wikipedia and C4 288

datasets for pre-training; while for text data, we 289

adopt peS2o, English Wikipedia, C4, Common 290

Crawl, and The Stack v1. We refer the readers 291

to Appendix §C for details. 292

4 Experiments 293

4.1 Experimental Setup 294

Fine-tuning Protocols Our evaluation entailed 295

fine-tuning an autoregressive pixel-based pre- 296

trained model for downstream tasks to thoroughly 297

assess its performance. We adapted our pixel-based 298

model to various downstream tasks by substituting 299

the language modeling head with a linear MLP for 300

downstream tasks. Specifically, PixelGPT, initially 301

pre-trained on pixel data, undergoes fine-tuning on 302

similarly rendered pixel data. Conversely, MonoGPT 303

and DualGPT, which benefitted from a joint pre- 304

training regime incorporating both text and pixel 305

data, were fine-tuned across different input modali- 306

ties: pixel, text, and a combination of both. 307

Evaluation Tasks Our assessment of the genera- 308

tive pixel pre-training models encompasses tasks in 309

natural language understanding (NLU) and cross- 310

lingual language understanding. For NLU, we uti- 311

lize the GLUE benchmark, aligning the fine-tuning 312

data rendering approach with the pre-training pro- 313

cess outlined in Appendix A. Sentence pairs from 314

GLUE’s natural language inference tasks are indi- 315
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Model #Param
Input Modality MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI

Avg.
Text Pixel Acc F1 Acc Acc MCC Spear. F1 Acc Acc

BERT 110M ✓ ✗ 84.0/84.2 87.6 91.0 92.6 60.3 88.8 90.2 69.5 51.8 80.0
GPT-2 126M ✓ ✗ 81.0 89.4 87.7 92.5 77.0 74.9 71.5 52.0 54.9 75.6

DONUT 143M ✗ ✓ 64.0 77.8 69.7 82.1 13.9 14.4 81.7 54.9 57.7 57.2
CLIPPO 93M ✗ ✓ 77.7/77.2 85.3 83.1 90.9 28.2 83.4 84.5 59.2 - -
PIXEL 86M ✗ ✓ 78.1/78.9 84.5 87.8 89.6 38.4 81.1 88.2 60.5 53.8 74.1

PixelGPT 317M ✗ ✓ 79.0/78.2 86.0 85.6 90.1 35.3 80.3 84.6 63.9 59.2 74.2

Table 1: Comparative evaluation on the GLUE benchmark. Performance metrics for each model across various
GLUE tasks are presented, along with the aggregate average performance. #Param indicates the model scale.
PixelGPT stands out as the leading model, surpassing other pixel-based counterparts in terms of overall performance.

vidually rendered and subsequently concatenated,316

with a black block serving as the end-of-sentence317

token. The cross-lingual understanding capability318

is evaluated on the XNLI dataset over fifteen dif-319

ferent languages. Following Conneau et al. (2020),320

our evaluation is performed in two distinct sce-321

narios: (1) Translate-Train-All, where the model322

is fine-tuned on a blend of original English and323

machine-translated data from other 14 languages,324

aiming to appraise the model’s multilingual un-325

derstanding; (2) Cross-lingual Transfer settings,326

wherein fine-tuning is conducted solely on En-327

glish data, with multi-language test sets employed328

to evaluate the model’s transferability across lan-329

guages. Comprehensive experimental details are330

provided in the Appendix §E.331

Baselines For a thorough evaluation, we bench-332

mark against models specialized in textual and vi-333

sual representations. In the textual category, BERT334

and GPT-2 (Radford et al., 2019) are chosen. For335

pixel-based models, we contrast our approach with336

DONUT (Kim et al., 2022), CLIPPO (Tschannen337

et al., 2023), and PIXEL (Rust et al., 2023), which338

are trained on pixel-based representation. Detailed339

discussions are provided in Appendix §F.340

4.2 Results341

RQ1: Autoregressive Pixel-based Pre-training342

Rivals PIXEL. Our empirical investigation, de-343

tailed in Table 1, scrutinizes the feasibility of pure344

pixel-based autoregressive pre-training on RGB345

images of visual texts. The proposed PixelGPT346

model, training solely on rich raw visual inputs347

(24-bit RGB images), demonstrates not merely a348

competitive edge but, in several tasks, surpasses349

the performance of models pre-trained on text350

alone. Specifically, PixelGPT exhibits remark-351

able superiority on GLUE benchmarks – evidenced352

by its marked performance increases on the STS-353

B (+5.4), MRPC (+13.1), RTE (+11.9), and354

WNLI (+4.3) assessments compared to GPT-2.355

This demonstrates the viability of pixel-based pre- 356

training in capturing complex linguistic constructs. 357

When compared to PIXEL, which leverages a 358

bidirectional encoder architecture, PixelGPT ex- 359

hibits enhanced performance in QQP (+1.5), RTE 360

(+3.4), and WNLI (+5.4). These results collec- 361

tively affirm the hypothesis that autoregressive 362

pre-training on raw visual images is feasible for 363

language modeling. PixelGPT achieves the opti- 364

mal performance among pixel-based approaches on 365

GLUE, underscoring the transformative impact of 366

integrating rich visual information into pre-training. 367

Refer to §G.5 for detailed discussion. 368

As shown in Figures 3 and 4, PixelGPT demon- 369

strates a scaling trend with increased training data 370

compute, indicating a promising direction for data 371

scaling. This suggests that with more extensive 372

training, PixelGPT has the potential to outperform 373

text-based models, such as GPT-2 and BERT. Due 374

to computational constraints, we will explore this 375

in future work. 376

RQ2: Impact of Autoregressive Pixel Pre- 377

training on Multilingual Tasks. Traditional lan- 378

guage models, exemplified by BERT, typically uti- 379

lize a subword tokenization process such as Word- 380

Piece (Devlin et al., 2019) or BPE (Sennrich et al., 381

2015) that decomposes sentences into a predefined 382

set of text tokens. While effective within the scope 383

of a single language or similar language families, 384

this approach is constrained by a vocabulary bottle- 385

neck (Rust et al., 2023) in multilingual scenarios, 386

limiting its efficacy. Pixel-based representations, 387

however, transcend this limitation by representing 388

text in a modality that inherently supports unified 389

processing—the visual domain of images. 390

In our cross-lingual evaluation, conducted on 391

the XNLI dataset in the translate-train-all config- 392

uration and detailed in Table 2, PixelGPT demon- 393

strates a robust capability for multilingual compre- 394

hension. It not only matches the performance of 395

BERT, but also consistently surpasses the PIXEL 396
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Model #lg #Param
Input Modality

ENG ARA BUL DEU ELL FRA HIN RUS SPA SWA THA TUR URD VIE ZHO Avg.
Text Pixel

Fine-tune model on all training sets (Translate-train-all)

mBERT 104 179M ✓ ✗ 83.3 73.2 77.9 78.1 75.8 78.5 70.1 76.5 79.7 67.2 67.7 73.3 66.1 77.2 77.7 74.8
XLM-R base 100 270M ✓ ✗ 85.4 77.3 81.3 80.3 80.4 81.4 76.1 79.7 82.2 73.1 77.9 78.6 73.0 79.7 80.2 79.1
BERT 1 110M ✓ ✗ 83.7 64.8 69.1 70.4 67.7 72.4 59.2 66.4 72.4 62.2 35.7 66.3 54.5 67.6 46.2 63.9

PIXEL 1 86M ✗ ✓ 77.2 58.9 66.5 68.0 64.9 69.4 57.8 63.4 70.3 60.8 50.2 64.0 54.1 64.8 52.0 62.8

PixelGPT 1 317M ✗ ✓ 77.7 55.4 66.7 69.0 67.4 71.2 59.1 65.6 71.4 61.7 47.0 65.2 54.4 66.1 50.5 63.2

Table 2: Cross-lingual performance evaluation on the XNLI dataset in translate-train-all settings. We report the
accuracy achieved by each model across the multiple languages featured in the XNLI dataset, along with their
average accuracy scores. The number of languages (#lg) incorporated during pre-training and the model size
(#Param) are provided for reference. PixelGPT demonstrates superior performance over PIXEL, showcasing the
efficacy of exclusive pixel-based input modality in cross-lingual contexts.

Model
Input Modality MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI

Avg.
Text Pixel Acc F1 Acc Acc MCC Spear. F1 Acc Acc

TextGPT (text only) ✓ ✗ 79.9/80.0 86.1 86.1 91.5 47.3 85.8 86.3 63.5 56.3 76.3

MonoGPT (text+pixel)
✓ ✗ 80.0/80.5 85.9 87.3 90.1 40.2 83.8 87.0 62.8 56.3 75.4
✗ ✓ 64.7/65.9 78.9 77.3 74.8 11.6 73.2 83.5 59.9 57.7 64.8

DualGPT (text+pixel+pair)
✓ ✗ 80.1/80.4 86.5 86.8 91.6 49.0 85.4 87.6 65.7 56.3 76.9
✗ ✓ 71.5/71.7 82.8 81.6 83.4 17.2 80.2 84.1 66.4 59.2 69.4

Table 3: Ablation results of model performance on the GLUE benchmark.

model in average accuracy across evaluated lan-397

guages. Remarkably, PixelGPT exhibits pro-398

nounced gains over BERT in languages that di-399

verge significantly from English, such as Thai and400

Chinese, with improvements of +11.3 and +4.3,401

respectively. This enhanced performance may be402

attributed to two primary factors: the absence of403

PixelGPT’s reliance on language-specific tokeniza-404

tion, enabling more effective learning from the vi-405

sual forms of text, and the limitations of BERT’s406

English-centric pre-training, which exhibits short-407

comings when faced with linguistically distant fam-408

ilies. Thus, PixelGPT’s proficiency in leverag-409

ing the visual features of text contributes to its410

advanced multilingual understanding, signaling a411

significant stride in overcoming the challenges as-412

sociated with the vocabulary bottleneck.413

RQ3: Synergistic Effects of Multimodal Pre-414

training. In our investigation into the inter-415

play between distinct pre-training data modalities,416

we contrasted the performances of MonoGPT and417

DualGPT—models that integrate different input418

modalities—with that of TextGPT under equiva-419

lent conditions of aligned text token pre-training.420

TextGPT and MonoGPT underwent pre-training on421

40 billion text tokens, with MonoGPT additionally422

exposed to 40 billion image patches. DualGPT, on423

the other hand, was pre-trained on 38.4 billion text424

tokens complemented by 48 billion image patches425

and 9.6 billion tokens of image-text paired data.426

This comparative analysis, spanning both GLUE427

and XNLI datasets (the latter within the translate-428

train-all settings), is shown in Tables 3 and 4. A429

pivotal finding is that the incorporation of dual- 430

modality data during pre-training markedly en- 431

hances average performance across language un- 432

derstanding tasks: DualGPT (76.9) surpasses both 433

TextGPT (76.3) and MonoGPT (75.4). This sug- 434

gests that potential conflicts arising from unimodal 435

training can be significantly alleviated through a 436

multimodal pre-training approach. This inference 437

is corroborated by XNLI outcomes, wherein the 438

addition of pixel-text paired data improved the 439

model’s multilingual interpretative proficiency. 440

Further, with pixel modality input, DualGPT sur- 441

passes TextGPT across various downstream tasks. 442

This result reinforces the proposition that pre- 443

training modality conflicts can be effectively re- 444

solved via the integration of paired dual-modality 445

data, fostering more robust multimodal learning. 446

4.3 Analysis 447

Scaling Training Tokens vs. GLUE Performance 448

In Figure 3, we delineate the correlation between 449

the scale of training data and the ensuing per- 450

formance on the GLUE benchmark. Our analy- 451

sis encompasses a spectrum of total training to- 452

kens/patches from 10 billion (B) to 240B, jux- 453

taposing the trajectories of TextGPT, PixelGPT, 454

MonoGPT, and DualGPT, with BERT and PIXEL 455

serving as benchmarks. The MonoGPT and DualGPT 456

models are evaluated under two different input 457

modalities: text and pixel. From our findings, two 458

primary insights emerge: (1) Pixel-based autore- 459

gressive pretraining models exhibit an increased 460

data demand. With minimal training (e.g., at 10B), 461
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Model
Input Modality

ENG ARA BUL DEU ELL FRA HIN RUS SPA SWA THA TUR URD VIE ZHO Avg.
Text Pixel

Fine-tune model on all training sets (Translate-train-all)

TextGPT (text only) ✓ ✗ 72.4 60.4 62.8 64.8 63.3 65.0 58.5 61.5 65.2 57.7 59.9 61.2 54.9 63.6 63.1 62.3

MonoGPT (text+pixel)
✓ ✗ 72.9 60.8 63.2 63.5 63.5 63.6 57.9 60.7 64.4 58.8 59.4 60.6 55.2 63.2 60.7 61.9
✗ ✓ 66.8 47.1 61.2 61.8 63.4 64.5 56.7 59.2 64.9 56.8 48.7 61.8 52.1 61.0 50.7 58.4

DualGPT (text+pixel+pair)
✓ ✗ 72.7 61.6 63.8 64.7 63.9 65.1 58.8 61.6 65.4 59.0 59.8 62.2 55.8 63.4 62.1 62.7
✗ ✓ 71.7 55.0 67.6 66.5 66.8 68.4 59.0 64.4 68.9 61.3 48.7 64.3 54.7 65.8 54.4 62.5

Table 4: Ablation results of model performance on XNLI under Translate-Train-All settings.

pixel-based models initiate at a lower performance462

threshold in pixel modality (all under 55%), com-463

pared to their text modality counterparts, which464

approximate a performance level of 70%. Never-465

theless, with the increase of training data, a critical466

volume threshold catalyzes a substantial rise in per-467

formance for PixelGPT, MonoGPT, and DualGPT in468

pixel modality. This trajectory reveals a progres-469

sive convergence of PixelGPT towards the text-470

based baseline, culminating in its overtaking of471

PIXEL at around 200B tokens/patches and near-472

ing TextGPT with a less than 5-point performance473

differential, while still on an upward trend. (2)474

The integration of paired dual-modality data475

during pretraining appears to confer significant476

benefits on multimodal learning, particularly for477

pixel-based input. When matched for training data478

volume, DualGPT consistently eclipses MonoGPT479

across comparable benchmarks, with the former480

maintaining a pronounced lead in pixel modality.481

This trend underscores the value of incorporating482

paired text-image data in pretraining to enhance the483

efficacy of multimodal learning.484
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Figure 3: Training tokens/patches versus overall perfor-
mance on GLUE benchmark.

Scaling Training Tokens vs. XNLI (Translate-485

Train-All) Performance We further explored the486

progression of model performance in multilingual487

capability across varying volumes of pre-trained488

tokens/patches. This comparison, delineated in Fig-489

ure 4, focused on the Translate-Train-All setting of490

the XNLI benchmark. (1) Pixel-based autoregres-491
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Figure 4: Training tokens/patches versus overall perfor-
mance on XNLI benchmark.

sive models display a heightened requirement 492

for training data in multilingual tasks, corrob- 493

orating the trend observed on the GLUE bench- 494

mark. Initially, there is a notable performance 495

disparity between pixel and text modalities, with 496

pixel-based models lagging behind when training 497

on a lesser volume of tokens/patches. However, 498

this gap diminishes substantially with the increase 499

in training volume. Remarkably, upon reaching 500

the 200B, PixelGPT not only surpasses PIXEL but 501

also matches the performance of BERT, indicating 502

a continued potential for further enhancement in 503

its multilingual proficiency with additional training 504

data. (2) The injection of dual-modality data at 505

the early stages of training appears to be partic- 506

ularly beneficial for models learning from pixel 507

data. When comparing DualGPT and MonoGPT un- 508

der the pixel modality, DualGPT demonstrates a 509

notable performance advantage at the outset of 510

training (55% vs. 45.8% at the 10B token/patch 511

mark). Although this edge tapers as the train- 512

ing volume expands, it suggests that early-stage 513

multimodal alignment aids the pixel-based models 514

in leveraging the textual data for enhanced mul- 515

tilingual understanding. (3) Our text-based pre- 516

training approach, TextGPT, demonstrates su- 517

perior results over BERT. This is evident when 518

training reaches approximately 100B tokens, where 519

TextGPT outperforms BERT. This improvement 520

may be attributed, in part, to our byte-level BPE 521

tokenization as utilized in Llama 2, which effec- 522
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Figure 5: Analysis of escalating the global batch size.

tively deconstructs unseen languages into their con-523

stituent raw bytes—a capability not afforded by524

BERT. Additionally, the enrichment of our text pre-525

training corpus from diverse sources contributes526

to this. For a detailed breakdown of the text pre-527

training data, we refer readers to Appendix §C.2.528

A Large Batch Size Improves Stable Train-529

ing We observe a distinct preference for larger530

batch sizes when fine-tuning pixel-based modal-531

ities across certain datasets. As in Figure 5, we532

evaluate how different batch sizes—64, 128, 256,533

and 512—affect model performance on selected534

GLUE benchmark tasks, namely QQP, CoLA, and535

STS-B. A clear trend emerges from the data: in-536

creasing the batch size correlates with improved537

model performance. Our analysis suggests that538

pixel modality fine-tuning exhibits greater variance539

than text modality and benefits from the use of540

larger batch sizes. This appears to mitigate the vari-541

ability inherent in different training batches, thus542

enhancing training stability. It prevents premature543

convergence to suboptimal local minima and fos-544

ters higher model accuracy.545

Font Transfer Analysis We extend to ex-546

amining the adaptability of PixelGPT to di-547

verse font styles during fine-tuning. We em-548

ployed three distinct fonts for rendering the data:549

GoNotoCurrent, which was utilized during pre-550

training; NotoSerif-Regular, a font stylistically551

akin to GoNotoCurrent; and JournalDingbats1,552

a font that renders text as distinct image-based553

symbols, markedly divergent from the others. The554

adaptability was tested across five datasets from the555

GLUE benchmark—CoLA, STS-B, MRPC, RTE,556

and WNLI. As depicted in Figure 6, the perfor-557

mance of PixelGPT remained stable across differ-558

ent fonts for all selected datasets barring CoLA.559

Notably, even when fine-tuned with data rendered560

in JournalDingbats1, which bears little resem-561

blance to the pre-training font, the results demon-562

strated a commendable degree of resilience, indicat-563

ing that the pixel pre-training is robust to generalize564

across significantly varied visual representations.565

Impact Analysis of Color Retention Unlike pre-566
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Figure 6: Analysis of fine-tuning on different fonts.

Render Mode Font Acc ∆

Grayscale
Apple Emoji

58.7 -
RGB 61.4 +2.7

Table 5: Comparison performance on HatemojiBuild
dataset with grayscale and RGB rendering.

Prediction: hate Prediciton: non-hate

Prediction: hate Prediciton: non-hate

RGB Rendering Grayscale Rendering

Figure 7: Example cases of HatemojiBuild predictions.
✓ and ✗ indicate the correct and incorrect predictions.
vious that renders text as grayscale or binary im- 567

ages, PixelGPT employs RGB-rendered data, re- 568

taining richer informational content. We evaluated 569

the performance of these rendering approaches on 570

HatemojiBuild dataset (Kirk et al., 2022), designed 571

for detecting online hate speech conveyed through 572

emojis. Table 5 presents our findings, where the 573

RGB-rendered data fine-tuning significantly outper- 574

forms its grayscale counterpart. This performance 575

enhancement can be attributed to the model’s ca- 576

pacity to utilize color cues within emojis, which 577

are critical for inferring the emotional context of 578

sentences. For a more detailed illustration, Figure 7 579

provides specific examples where color retention 580

has improved model interpretability. 581

5 Conclusion and Future Work 582

In this paper, we have investigated the potential 583

of pixel-based autoregressive pre-training using 584

visual text images. Our results demonstrate that 585

incorporating visual orthographic features signifi- 586

cantly enhances language understanding and mul- 587

tilingual capabilities. Additionally, our empirical 588

findings suggest that using pixel-text paired data 589

effectively reduces modality competition during 590

training, thereby improving model performance. 591

Looking forward, scaling this approach to larger 592

model sizes holds considerable promise for advanc- 593

ing the field of multimodal language processing. 594
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Limitations595

Model Scale The current implementation of our596

model utilizes 24 layers of transformer decoders,597

which has been effective for the scope of our ex-598

perimental framework. However, the exploration599

of scaling our model to much larger configurations,600

such as 7B, 13B, 70B, or over 100B parameters,601

remains untested. Expanding the language model’s602

capacity could significantly improve its ability of603

scaling, potentially enhancing both performance604

and generalizability.605

Training Compute Our training was restricted606

by computational resources, limiting us to pre-607

training on only 100 to 200 billion tokens or608

patches. This constraint curtails our capacity to609

exploit the full benefits of extensive data scale train-610

ing. Future work can extend the pre-training to611

more than 1,000 billion tokens or patches could612

yield promising insights into the scalability.613

Extended Evaluation on Text Generation One614

limitation of our approach is related to generation615

tasks. Since the model’s input and output are image616

patches, directly obtaining text outputs requires an617

additional OCR postprocessing step. This intro-618

duces an additional layer of complexity and poten-619

tial error. We plan to address this in future work,620

exploring more integrated solutions for text genera-621

tion tasks.622

Preliminary Nature of Study It is crucial to ac-623

knowledge that this research constitutes a prelim-624

inary foray into the realm of pixel-based autore-625

gressive models for multilingual and multimodal626

language processing. As such, while the results are627

encouraging, they should be viewed as exploratory.628

We invite further research to build upon our ini-629

tial findings, addressing these limitations and fur-630

ther testing the robustness and applicability of the631

model in a wider array of settings.632

Ethical Considerations633

This research into pixel-based autoregressive pre-634

training for visual text images raises several ethical635

considerations that warrant careful attention:636

Data Privacy and Security The utilization of637

visual text images, especially from diverse sources638

such as multilingual datasets, necessitates stringent639

adherence to data privacy and security guidelines.640

It is vital to ensure that all data used for training641

and testing respects the privacy rights of individuals 642

and complies with applicable legal frameworks. 643

Bias and Fairness Machine learning models, par- 644

ticularly those involved in language processing, are 645

susceptible to biases that may be present in the 646

training data. It is imperative to conduct thorough 647

bias audits and fairness assessments to identify and 648

mitigate any discriminatory patterns in model pre- 649

dictions, ensuring that the technology is equitable 650

across different languages and cultural contexts. 651

Environmental Impact The training of large- 652

scale models is resource-intensive and has a signif- 653

icant environmental footprint. We must consider 654

sustainable practices in model training, including 655

optimizing computational efficiency and exploring 656

energy-efficient hardware to reduce the overall car- 657

bon emissions associated with our research. 658

Misuse Potential While our study focuses on the 659

positive applications of enhancing multilingual ca- 660

pabilities and understanding, there is a potential 661

for misuse in various contexts. We advocate for re- 662

sponsible use guidelines and transparency in model 663

deployment to prevent malicious applications of 664

the technology. 665

Continual Monitoring and Evaluation Post- 666

deployment monitoring and ongoing evaluation 667

of the model’s performance and societal impact 668

are crucial. This process helps ensure the model 669

adapts to changes over time and continues to oper- 670

ate within the ethical boundaries set forth by evolv- 671

ing standards and expectations. 672

By addressing these ethical considerations, we 673

aim to promote responsible research and applica- 674

tion of advanced machine learning techniques in 675

language processing, contributing positively to the 676

field and society at large. 677
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A Text Renderer Details975

The renderer transposes one or more segments of976

text onto a virgin RGB canvas structured into 1024977

distinct patches, each delineated into a 16x16 pixel978

matrix. This configuration is shown in Table 6.979

A visual syntax is adopted to distinguish text980

boundaries: a solitary black patch of 16x16 pixels981

operates as both a delimiter and an indicator of the982

sequence’s conclusion (End of Sequence, EOS).983

Subsequent white patches post-EOS are deemed984

padding—they remain inert in the attention mech-985

anism, thus excluding them from the computation986

of attention scores.987

For the rendition of text documents, the renderer988

tackles content on a line-by-line basis. It incor-989

porates a binary search algorithm to intelligently990

gauge the maximum quota of words renderable in991

a single pass, ensuring the text’s width remains992

within the permissible pixel threshold. This dy-993

namic segmentation capability circumvents poten-994

tial truncation issues inherent in rendering exten-995

sive lines of text, allowing for a seamless integra-996

tion of longer passages without compromise to vi-997

sual fidelity or contextual integrity.998

Parameter Value
Background Color White

DPI 120

Font Color black

Font type GoNotoCurrent

Font size 8

Max sequence length 1024

Padding size 3

Pixels per patch 16x16

Table 6: Configuration of text rendering.

B Model Architecture999

Table 8 specifies the comprehensive configuration1000

of our model’s architecture, based on similar trans-1001

former decoder architecture to Llama 2 (Touvron1002

et al., 2023b) with specific adaptations. We employ1003

SwiGLU as the hidden activation function (Shazeer,1004

2020; Chai et al., 2020), noted for its effective non-1005

linear processing capabilities. The initializer range1006

is set to 0.02 to promote optimal weight initial-1007

ization. An intermediate size of 2816 is specified,1008

offering a balance between the model’s representa-1009

tional capacity and computational demands. The1010

hidden size and the maximum number of position1011

embeddings are both set at 1024, facilitating de- 1012

tailed representation of inputs and accommodating 1013

sequences up to 1024 tokens. 1014

The model’s attention architecture utilizes 1015

grouped query attention (Ainslie et al., 2023) with 1016

16 attention heads and 8 key-value heads. We use a 1017

stack of 24 transformer layers, endowing the model 1018

with substantial depth for complex pattern recog- 1019

nition. Also, we use RMSNorm (Zhang and Sen- 1020

nrich, 2019) with epsilon of 1e-05 and rotary em- 1021

beddings (Su et al., 2024). 1022

C Pre-training Data 1023

For the text-based pre-training, we utilized the 1024

expansive Dolma dataset (Soldaini et al., 2024), 1025

which comprises an extensive collection of 3 tril- 1026

lion tokens. This dataset is sourced from a het- 1027

erogenous compilation of materials, including an 1028

array of web-based content, scholarly articles, pro- 1029

gramming code, literary works, and comprehen- 1030

sive encyclopedic entries. For the image-based 1031

pre-training, we transformed the textual content 1032

from the peS2o corpus, English Wikipedia, and the 1033

C4 dataset into visual representations, amounting 1034

to a total of over 400 million document images. 1035

C.1 Pre-training Data for Visual Images 1036

We pretrained on a rendered version of the peS2o, 1037

English Wikipedia and C4.The peS2o dataset, a 1038

curated collection of approximately 40 million cre- 1039

ative open-access academic papers, has been metic- 1040

ulously cleaned, filtered, and formatted to facilitate 1041

the pretraining of language models. Meanwhile, 1042

The C4 dataset represents a substantial refinement 1043

of the Common Crawl corpus. This dataset, derived 1044

from the extensive Common Crawl web scrape, 1045

undergoes rigorous cleaning and preprocessing to 1046

ensure the quality and relevance of the text data. 1047

The C4 dataset is exclusively composed of English 1048

language texts, with a stringent criterion that each 1049

page must have at least a 99% probability of being 1050

in English, as determined by the langdetect tool, 1051

to be included. This selection process ensures that 1052

the dataset primarily contains natural language text, 1053

free from boilerplate or nonsensical content, and is 1054

extensively deduplicated to avoid redundancy. 1055

C.2 Pre-training Data for Text 1056

Common Crawl Common Crawl is a compre- 1057

hensive web corpus that collects data from a va- 1058

riety of web pages. This dataset uses the URL 1059
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Figure 8: Illustration of patchifying rendered visual images into a sequence of patches, with a black patch as
end-of-sequence marker.

Source Type Gzip files (GB) Documents (M) Tokens (B)
CommonCrawl web 4,197 4,600 2,415
C4 web 302 364 175
peS2o academic 150 38.8 57
The Stack code 319 236 430
Project Gutenberg books 6.6 0.052 4.8
Wikipedia encyclopedic 5.8 6.1 3.6

Total 4980.4 5,245 3,084

Table 7: Statistics of pre-training corpus.

Parameter Value

hidden activation SwiGLU
initializer_range 0.02
intermediate_size 2816
hidden_size 1024
max_position_embeddings 1024
num_attention_heads 16
num_hidden_layers 24
num_key_value_heads 8
rms_norm_eps 1e-05
rope_scaling null
rope_theta 10000
tie_word_embeddings false
vocab_size 32,000

Table 8: Model configuration parameters.

of each web page as its identifier, facilitating the1060

exploration of relationships between different doc-1061

uments. Covering data from May 2020 to June1062

2023 across 24 shards, Common Crawl includes1063

about 4,600 million documents and 2,415 billion1064

tokens. It is hosted on Amazon S3 as part of the1065

Amazon Web Services’ Open Data Sponsorship1066

program and can be accessed freely, adhering to1067

the Common Crawl terms of use.1068

C4 (Raffel et al., 2020) The C4 dataset is a1069

cleaned and annotated subset of Common Crawl,1070

specifically extracted from a shard dated April 1071

2019. It includes URLs as metadata, which can 1072

be used to restore the original HTML files and un- 1073

derstand document linkages. The dataset contains 1074

364 million documents, totaling 175 billion tokens, 1075

and is available on the HuggingFace Hub under the 1076

ODC-By 1.0 license, allowing for broad academic 1077

and research usage. 1078

peS2o (Soldaini and Lo, 2023) Derived from the 1079

Semantic Scholar Open Research Corpus (S2ORC), 1080

peS2o uses the Semantic Scholar Corpus ID to 1081

link documents to their corresponding manuscripts, 1082

enabling the recovery of original PDFs through 1083

associated metadata. The dataset encompasses 38.8 1084

million documents and 57 billion tokens, and is 1085

accessible through the Semantic Scholar Public 1086

API under the ODC-By 1.0 license. 1087

The Stack (Kocetkov et al., 2022) This dataset 1088

comprises a variety of computer code sourced from 1089

different GitHub repositories, with metadata that 1090

includes filenames and repository names to facil- 1091

itate the retrieval of original content. The Stack 1092

contains 236 million documents and 430 billion 1093

tokens and is hosted on the HuggingFace Hub. It 1094

features code released under various permissive li- 1095

censes, supporting diverse software development 1096

and research projects. 1097
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Project Gutenberg Project Gutenberg offers a1098

collection of public domain books in the U.S., with1099

each document beginning with the book’s title to1100

ease identification. This dataset provides access1101

to about 52,000 documents and 4.8 billion tokens,1102

and is freely available at gutenberg.org without1103

any copyright restrictions, making it a valuable1104

resource for literary and historical research.1105

Wikipedia and Wikibooks These datasets con-1106

sist of encyclopedic content from Wikipedia and1107

educational materials from Wikibooks, featuring1108

metadata that includes URLs from which content is1109

extracted. This allows users to reconstruct the struc-1110

ture and connections between documents. Together,1111

they contain 6.1 million documents and 3.6 billion1112

tokens. The data is freely available via Wikimedia1113

data dumps and is released under the CC BY-SA1114

4.0 license, promoting widespread educational and1115

informational use.1116

D Pre-training Details1117

We list the pre-training hyperparameters in Ta-1118

ble 9. Pre-training was executed across a suite of 321119

NVIDIA A100 GPUs. For TextGPT and PixelGPT,1120

we adopted a global batch size of 4 million tokens1121

or patches, respectively. In the case of MonoGPT, the1122

global batch size was set at 8 million, maintaining1123

an equal distribution between text and image data.1124

For DualGPT, the global batch size was increased1125

to 10 million, with a ratio of text/image/pair data1126

with 4:4:2.1127

Hyper-parameter Value

patch size P 16
maximum learning rate 5e-4
max seq length 1024
learning rate scheduler linear
warmup steps 200
mixed precision bfloat16
optimizer AdamW
(β1, β2) (0.9, 0.999)

Table 9: Hyperparameters of pre-training settings.

For clarification, we summarize the training1128

tasks in Table 10 for various training configura-1129

tions. TextGPT was trained exclusively on text1130

data. In contrast, PixelGPT was pre-trained solely1131

with image data. MonoGPT represents a hybrid ap-1132

proach, utilizing both text and image data indepen-1133

dently but not in paired form. DualGPT stands as1134

the most integrative model, incorporating text data,1135

image data, and their conjunction in image-text 1136

pairs, underscoring the comprehensive nature of its 1137

pre-training regimen. 1138

Text data Image data Image-text pair

TextGPT ✓ ✗ ✗

PixelGPT ✗ ✓ ✗

MonoGPT ✓ ✓ ✗

DualGPT ✓ ✓ ✓

Table 10: Breakdowns of pre-training tasks for various
model configurations.

E Fine-tuning Details 1139

In this section, we present the details of the fine- 1140

tuning experiments, including (1) the dataset for 1141

the experiments, (2) the fine-tuning setting of the 1142

different pre-trained models (including PixelGPT, 1143

MonoGPT, DualGPT and TextGPT), and (3) how the 1144

different rendering modes were implemented. 1145

E.1 Fine-tuning Dataset 1146

The main experiments of our fine-tuning phase 1147

were conducted on GLUE and XNLI to evaluate 1148

the model’s language and multilingual understand- 1149

ing ability, respectively. HatemojiBuild was used 1150

to analyze the effect of color retention. The details 1151

of the dataset are described below: 1152

GLUE (Wang et al., 2018) A benchmark of nine 1153

sentence- or sentence-pair language understand- 1154

ing tasks, including MNLI(392k), QQP(363k), 1155

QNLI(108k), SST-2(67k), CoLA(8.5k), STS- 1156

B(5.7k), MRPC(3.5k), RTE(2.5k), WNLI(635), 1157

built on established existing datasets and selected to 1158

cover a set of three tasks. In this paper, for MNLI, 1159

QNLI, SST-2, RTE, and WNLI tasks, we report the 1160

Accuracy (Acc); for QQP and MRPC, we report 1161

the F1 score; for CoLA, we report the Matthews 1162

correlation coefficient (MCC); for STS-B we report 1163

Spearman correlation (Spear.). The MNLI dataset 1164

has matched development/test sets with the same 1165

sources as those in the training set, and unmatched 1166

sets that do not closely resemble any of the sets we 1167

saw during training are denoted as MNLI-m/mm. 1168

We conduct experiments on both settings. In addi- 1169

tion, some previous works ignored WNLI because 1170

of its different training and validation/testing set 1171

distribution. We still performed on it and found 1172

that Pixel pre-training leads to a boost at WNLI. 1173
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XNLI (Conneau et al., 2018) The Cross-1174

lingual Natural Language Inference (XNLI) cor-1175

pus is an extension of the Multi-Genre NLI1176

(MultiNLI) (Williams et al., 2018) corpus, designed1177

for cross-lingual natural language inference, con-1178

taining data in 15 languages. The dataset was cre-1179

ated by manually translating the validation and1180

test sets of MultiNLI into each of these 15 lan-1181

guages. For all languages, the English training1182

set was machine-translated. The task is to predict1183

textual entailment, a classification task determin-1184

ing whether sentence A implies, contradicts, or is1185

neutral to sentence B, given two sentences.1186

HatemojiBuild (Kirk et al., 2022) Hatemo-1187

jiBuild is a benchmark for online hate detection1188

involving emojis. The dataset includes 5,912 chal-1189

lenging examples of adversarial perturbations gen-1190

erated through a human-and-model-in-the-loop ap-1191

proach on Dynabench. This allows us to predict1192

hateful emotions expressed with emojis.1193

E.2 Fine-tuning Setting1194

We fine-tune PixelGPT, MonoGPT, DualGPT and1195

TextGPT on downstream tasks. we use NVIDIA1196

Tesla V100 GPUs to fine-tune TextGPT and the1197

NVIDIA A100 GPUs to fine-tune pixel-based pre-1198

training models. The same rendering settings as1199

in pre-training are used to render pixel data for1200

fine-tuning PixelGPT, MonoGPT, and DualGPT, un-1201

less specified. We use the last patch to predict the1202

label when fine-tuning the generative pixel-based1203

pre-training models. In our analysis experiments,1204

MonoGPT and DualGPT are also fine-tuned on dual-1205

modality data obtained by concatenating rendered1206

images with the original text. Specifically, we1207

right-fill the image with white padding blocks for1208

alignment. To avoid the impact of padding patches1209

between the image and the text, we then set the1210

attention mask to mask the padding blocks during1211

fine-tuning.1212

We searched fine-tuning hyperparameters for1213

each dataset in GLUE and two XNLI settings1214

for PixelGPT, MonoGPT, DualGPT and TextGPT, re-1215

spectively. Table 11 shows the searched hyperpa-1216

rameters and values. We present the best searched1217

results for GLUE in Table 12 and Table 13 and for1218

translate-train-all and cross-lingual transfer settings1219

on XNLI in Table 14. During the hyperparameter1220

searching, we found that using a larger batch size1221

to fine-tune the generative pixel-based pre-training1222

model improves training stability and achieves bet-1223

Fine-Tuning Hyperparameters Value

Optimizer AdamW
Adam’s betas (0.9, 0.999)
Adam’s epsilon 1e-8
Weight decay 0
Learning rate {1e-5, 3e-5, 5e-5, 1e-4}
Learning rate schedule {Cosine Annealing, Linear Decay}
Warmup steps {10, 100}
Batch size {32, 64, 128, 256, 512}
Max sequence length {256, 768}
Training steps {250, 500, 2000, 8000, 15000,

30000}
Dropout Probability {0.1, 0}
Early Stopping True
Seed 42

Table 11: Fine-tuning hyperparameters for grid search.

ter results on some datasets. For a detailed analysis, 1224

see § 4.3. 1225

E.3 Implementation for Different Render 1226

Modes 1227

We use RGB render mode for fine-tuning data ren- 1228

dering by default, as described in Appendix A. To 1229

obtain and adapt to grayscale and binary rendered 1230

data, we modify (1) the data preprocessing pro- 1231

cess and (2) the model’s linear projection in the 1232

patch embedding layer. Specifically, we first ren- 1233

der the data uniformly using RGB mode and get 1234

three-channel RGB images. After that, in the pre- 1235

processing stage, to get the grayscale version of 1236

the rendered image, we converted the RGB im- 1237

age to grayscale (with pixel values ranging from 1238

0 to 255) using the convert function of the Image 1239

class in the PIL library and setting the function 1240

parameter model to ’L’ to get the rendered binary 1241

image, we set the pixel threshold (set to 128 in 1242

our experiments) based on the converted grayscale 1243

image and set the pixels below the threshold in 1244

the grayscale image to 0 and the pixels above the 1245

threshold to 255. This way, we transformed the 1246

three-channel RGB-rendered image into a single- 1247

channel grayscale and binary image. Next, since 1248

the patch embeeding layer of the pre-trained model 1249

takes the three-channel image as input by default, 1250

we need to modify the linear projection layer in it 1251

to adapt to the single-channel image. Therefore, 1252

we average the linear layer weights by channel and 1253

use them as initial weights before fine-tuning so 1254

that the model supports the processing of single- 1255

channel images. 1256

F Baselines 1257

F.1 Text-based Baselines 1258

GPT-2 GPT-2 (Radford et al., 2019) is an ex- 1259

tension of the original GPT model, substantially 1260
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Hyperparameters MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI

Max Sequence Length 768
Batch Size 64 64 64 64 32 64 32 64 32
Learning Rate 3e-5 3e-5 5e-5 3e-5 1e-5 5e-5 5e-5 1e-5 3e-5
Learning Rate Schedule Linear Decay
Warmup steps 100 100 100 100 10 10 10 10 10
Dropout Probability 0.0

Table 12: Settings for fine-tuning TextGPT on GLUE.

Hyperparameters MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI

Max Sequence Length 768
Batch Size 64 512 64 64 512 512 32 32 32
Learning Rate 5e-5 1e-4 5e-5 5e-5 5e-6 3e-5 5e-5 3e-5 3e-5
Learning Rate Schedule Linear

Decay
Cosine

Annealing
Linear
Decay

Cosine
Annealing

Cosine
Annealing

Cosine
Annealing

Linear
Decay

Linear
Decay

Linear
Decay

Warmup steps 100 100 100 100 10 10 10 10 10
Dropout Probability 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0
Max Training Steps 15000 1500 8000 8000 2000 2000 2000 2000 250

Table 13: Settings for fine-tuning PixelGPT on the GLUE benchmark.

Hyperpameters TextGPT PixelGPT MonoGPT(pixel) MonoGPT(text) MonoGPT(pair) DualGPT(pixel) DualGPT(text) DualGPT(pair)

Fine-tune model on all training sets (Translate-Train-All)

Max Sequence Length 768 256 256 256 256 256 256 256
Batch Size 64 512 512 64 256 512 64 512
Learning Rate 5e-5 1e-4 1e-4 5e-5 5e-5 1e-4 5e-5 5e-5
Max Training Steps 15000 30000 30000 15000 30000 30000 15000 30000
Learning Rate Schedule Linear Decay
Warmup steps 100
Dropout Probability 0

Fine-tune model on English training set (Cross-lingual Transfer)

Max Sequence Length 768 256 256 768 256 256 768 256
Batch Size 64 256 256 64 256 512 64 512
Learning Rate 5e-5 1e-4 5e-5 5e-5 5e-5 1e-4 5e-5 3e-5
Max Training Steps 15000 15000 30000 15000 30000 15000 15000 30000
Learning Rate Schedule Linear Decay
Warmup steps 100
Dropout Probability 0

Table 14: Fine-tuning settings for XNLI. We report the best hyperparameters for all models on Translate-Train-All
and Cross-lingual Transfer, respectively.

increases the parameter count to 1.5 billion, which1261

enhances its ability to generate more coherent and1262

contextually relevant text across a wide array of1263

domains without task-specific training. With a1264

transformer-based architecture, GPT-2 operates on1265

unsupervised learning, using only a large corpus1266

of text data scraped from the internet (WebText)1267

to learn various language patterns and tasks. This1268

model exemplifies a significant shift towards more1269

robust and generalized language models, thereby1270

supporting the development of AI systems capable1271

of understanding and generating human-like text1272

with minimal task-specific data.1273

BERT BERT (Bidirectional Encoder Represen-1274

tations from Transformers) is a groundbreaking1275

model in natural language processing introduced1276

by Devlin et al. (2019) at Google AI Language.1277

It utilizes the bidirectional Transformer, an atten-1278

tion mechanism that learns contextual relations be-1279

tween words in a text. Unlike previous models that1280

only consider text in a single direction (left-to-right1281

or right-to-left), BERT processes words simulta- 1282

neously in both directions. This bi-directionality 1283

allows the model to capture a richer understand- 1284

ing of context. Pre-trained on a large corpus of 1285

unlabeled text, BERT is fine-tuned with additional 1286

output layers to perform a wide array of language 1287

processing tasks. 1288

F.2 Image-based Baselines 1289

DONUT This OCR-free visual document under- 1290

standing model (Kim et al., 2022) is fundamentally 1291

designed to interpret and extract structured infor- 1292

mation directly from document images, bypass- 1293

ing traditional optical character recognition (OCR) 1294

techniques. DONUT leverages a transformer ar- 1295

chitecture to encode document images into embed- 1296

dings and decode these embeddings into structured 1297

outputs like JSON formats without preliminary text 1298

detection and recognition stages. Pre-trained us- 1299

ing a combination of real and synthetically gener- 1300

ated document images, DONUT achieves impres- 1301
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sive benchmarks on several visual document under-1302

standing tasks, outperforming state-of-the-art OCR-1303

dependent models in terms of both accuracy and1304

processing speed. A synthetic data generator fur-1305

ther enhances The model’s pre-training, enabling1306

it to readily adapt to different languages and doc-1307

ument formats, thereby extending its applicability1308

to global and diverse application scenarios.1309

CLIPPO CLIPPO (Tschannen et al., 2023) inte-1310

grates a single vision transformer that processes all1311

input types—images and text—equally, using the1312

same model parameters. By adopting a contrastive1313

learning framework, this unified model learns to1314

align the representations of text and images into1315

a cohesive latent space. This approach simplifies1316

the architecture by removing the necessity for sepa-1317

rate text and image towers and enhances efficiency1318

by halving the parameter count compared to dual-1319

tower systems. The key innovation of CLIPPO1320

lies in its ability to perform complex multimodal1321

tasks, including zero-shot classification and natural1322

language understanding, with competitive perfor-1323

mance while relying solely on pixel data.1324

PIXEL The PIXEL (Rust et al., 2023) (Pixel-1325

based Encoder of Language) model reimagines1326

language modeling by rendering text as images,1327

effectively bypassing the vocabulary bottleneck of1328

language models. This pre-trained model converts1329

text into fixed-sized image patches, which are then1330

processed by a Vision Transformer (ViT) encoder.1331

Unlike conventional models that predict a distribu-1332

tion over a vocabulary of tokens, PIXEL focuses on1333

reconstructing the pixels of masked image patches.1334

This approach allows PIXEL to support many lan-1335

guages and scripts, leveraging orthographic similar-1336

ities. The model performs better in handling scripts1337

not present in its training data and is robust against1338

orthographic attacks and linguistic code-switching.1339

F.3 Comparison with Previous Work1340

We summarize the comparison of our PixelGPT1341

with pixel-based baselines, including PIXEL,1342

PIXAR (Tai et al., 2024), in Table 15. Please note1343

that our work is different from PIXAR, which uses1344

different training strategies and data rendering ap-1345

proaches from PIXEL and ours. Instead, our model1346

can be seen as an autoregressive GPT version of1347

the PIXEL models.1348

Models PIXEL PIXAR PixelGPT (Ours)

Image format Grayscale (0-1) Binary (0/1) RGB (0-255)
Modeling Bidirectional Autoregressive Autoregressive
Training Objective Regression Classification Regression
Modeling Space Continuous Discrete Continuous
Loss function Mean Squared Error Binary Cross Entropy Mean Squared Error

Table 15: Detailed comparison with pixel-based base-
lines.

G Detailed Results & Analysis 1349

G.1 Performance on Cross-lingual Transfer 1350

In this section, We analyze the cross-lingual trans- 1351

fer ability of pixel-based autoregressive models on 1352

XNLI under the Cross-lingual Transfer setting. As 1353

shown in Table 16, we compared three different 1354

models: PixelGPT, MonoGPT, and DualGPT. Our 1355

findings indicate that incorporating additional text 1356

modality data in the pre-training phase enhances 1357

the cross-lingual transfer capabilities of these mod- 1358

els. Nevertheless, a notable performance disparity 1359

remains when benchmarked against the multilin- 1360

gual prowess of the XLM-R base, a model pre- 1361

trained extensively across 100 languages. 1362

G.2 Probing Dual-Modality Fine-Tuning 1363

We delved into the synergistic potential between 1364

text and pixel modalities during the fine-tuning 1365

phase. A comparative experimental design was im- 1366

plemented to fine-tune pixel pre-trained models in 1367

two distinct manners: (1) exclusively on text data, 1368

and (2) on an amalgamation of rendered image data 1369

and original text. We assessed the performance im- 1370

pact of these fine-tuning approaches with MonoGPT 1371

and DualGPT models on XNLI. As delineated in 1372

Table 17, the models fine-tuned with dual-modality 1373

data consistently outperformed those fine-tuned on 1374

text data alone, with clear gains in multilingual un- 1375

derstanding tasks. This evidence suggests that the 1376

inherent strengths of pixel-based representations 1377

in capturing multilingual nuances are amplified 1378

when combined with textual information during 1379

fine-tuning. 1380

G.3 RGB vs. Grayscale vs. Binary Rendering 1381

Rendering modes offer trade-offs between the rich- 1382

ness of information and processing efficiency, with 1383

RGB providing a three-channel image dense with 1384

information, whereas grayscale and binary modes 1385

are optimized for speed. To assess the impact of 1386

these rendering choices, we explored the robustness 1387

of our model, pre-trained using RGB visual text, 1388

across different rendering modes within the down- 1389
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Model #lg #Param Input Modality ENG ARA BUL DEU ELL FRA HIN RUS SPA SWA THA TUR URD VIE ZHO Avg.
Text Pixel

Fine-tune model on English training set (Cross-lingual Transfer)

XLM-R base 100 270M ✓ ✗ 85.8 73.8 79.6 78.7 77.5 79.7 72.4 78.1 80.7 66.5 74.6 74.2 68.3 76.2 76.7 76.2
PixelGPT (pixel only) 1

317M
✗ ✓ 75.1 35.1 36.9 37.3 37.0 42.2 35.6 34.9 43.1 37.4 35.9 38.1 33.8 38.4 35.5 39.8

MonoGPT (text+pixel) 1 ✗ ✓ 67.1 34.6 40.6 41.7 44.2 47.5 36.4 40.8 51.4 41.7 37.0 41.1 34.4 38.8 34.1 42.1
DualGPT (text+pixel+pair) 1 ✗ ✓ 71.0 36.9 40.3 39.7 39.6 47.2 36.3 38.9 48.2 38.7 38.0 40.1 37.0 41.3 36.8 42.0

Table 16: Comparison of pixel-based pre-training models on XNLI dataset in Cross-lingual Transfer setting.

Model
Input Modality

ENG ARA BUL DEU ELL FRA HIN RUS SPA SWA THA TUR URD VIE ZHO Avg.
Text Pixel

Fine-tune model on all training sets (Translate-train-all)

MonoGPT (text+pixel) ✓ ✗ 74.0 60.9 62.7 63.4 63.4 64.2 58.2 59.9 64.3 58.6 59.3 61.0 55.0 63.6 61.3 62.0
✓ ✓ 75.4 61.9 65.0 65.2 66.8 66.7 59.3 63.3 67.7 61.1 59.9 63.6 54.9 66.2 62.9 64.0

DualGPT (text+pixel+pair) ✓ ✗ 72.7 61.6 63.8 64.7 63.9 65.1 58.8 61.6 65.4 59.0 59.8 62.2 55.8 63.4 62.1 62.7
✓ ✓ 75.8 64.4 66.5 66.3 67.7 68.0 61.4 65.1 69.0 61.1 60.4 64.4 57.5 67.7 64.0 65.3

Fine-tune model on English training set (Cross-lingual Transfer)

MonoGPT (text+pixel) ✓ ✗ 79.9 34.4 35.3 37.6 34.3 38.9 34.4 35.4 44.4 39.3 34.2 39.2 33.3 35.0 37.4 39.5
✓ ✓ 77.5 35.6 37.7 40.4 37.0 43.7 34.9 38.1 46.6 41.0 35.0 41.0 33.8 37.1 37.4 41.1

DualGPT (text+pixel+pair) ✓ ✗ 79.1 35.5 36.0 40.8 35.1 41.3 35.4 36.6 44.6 38.2 35.2 38.2 34.6 36.4 37.4 40.3
✓ ✓ 75.2 38.5 36.0 42.3 36.9 40.3 34.9 36.9 45.4 39.2 34.8 42.8 36.3 37.8 35.8 40.9

Table 17: Comparison of using dual-modalitiy and text-only modality for fine-tuning on XNLI. Adding pixel data for
fine-tuning boosts the model’s multilingual ability in the settings of Translate-Train-All and Cross-lingual Transfer.

Render Mode ENG ARA BUL DEU ELL FRA HIN RUS SPA SWA THA TUR URD VIE ZHO Avg.

Fine-tune model on all training sets (Translate-train-all)

RGB 77.7 55.4 66.7 69.0 67.4 71.2 59.1 65.6 71.4 61.7 47.0 65.2 54.4 66.1 50.5 63.2
Binary 78.2 55.8 67.0 68.4 66.8 70.6 58.1 63.9 70.7 61.7 47.5 64.1 53.3 65.9 52.9 63.0
Grayscale 77.0 55.0 65.2 67.6 66.3 69.8 57.1 62.4 70.8 61.2 46.3 63.9 52.1 63.7 51.9 62.0

Fine-tune model on English training set (Cross-lingual Transfer)

RGB 77.3 35.9 38.0 39.7 38.0 44.7 36.3 37.5 46.4 39.6 35.8 40.9 35.3 41.8 35.0 41.5
Binary 76.3 37.8 37.9 37.2 38.9 42.1 37.8 39.0 43.2 37.8 37.9 38.8 36.9 40.7 36.7 41.3
Grayscale 77.3 34.2 37.3 40.7 36.6 46.0 35.6 38.4 46.4 39.6 36.3 41.4 33.7 40.6 34.3 41.2

Table 18: Comparison of using three different render modes to fine-tune PixelGPT on XNLI. RGB rendering yields
the best results.

stream context of the XNLI task. As shown in Fig-1390

ure 9, our experiments reveal that the performance1391

when fine-tuning in grayscale and binary modes1392

closely parallels that of RGB. This equivalence1393

underscores the robustness of the pixel-based pre-1394

training, indicating that its cross-linguistic transfer1395

capability transcends the specific rendering mode1396

employed in downstream tasks. Detailed experi-1397

mental results are in the Table 18.1398
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Figure 9: Performance of using three render modes to
fine-tune PixelGPT on XNLI. PixelGPT shows strong
robustness to fine-tuning render mode
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Figure 10: Comparison of our PixelGPT to PIXEL and
BERT baselines in the translate-train-all settings.
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G.4 Comparison on XNLI under1399

Translate-Train-All Settings1400

We evaluate the efficacy of PixelGPT against the1401

PIXEL and BERT baselines across fifteen diverse1402

languages within the XNLI dataset’s Translate-1403

Train-All configuration. The comparative per-1404

formance, visualized in Figure 10, demonstrates1405

that PixelGPT outstrips PIXEL in twelve of the1406

fifteen assessed languages. Notably, PixelGPT1407

achieves performance parity with BERT in all but1408

English and Arabic. Particularly, PixelGPT reg-1409

isters marked improvements over BERT in Thai1410

and Chinese languages. These results suggest that1411

the tokenizer-independent, pixel-based autoregres-1412

sive design of PixelGPT offers a potent solution1413

to the vocabulary bottleneck issue commonly en-1414

countered in language models, thus enhancing its1415

applicability to multilingual tasks.1416

G.5 Benefits of Pixel-based Models1417

Our pixel-based method offers significant advan-1418

tages:1419

1. Tokenization-Free: Eliminates the need for1420

tokenization, thereby removing the vocabu-1421

lary bottleneck problem, which is critical for1422

handling diverse linguistic constructs and scal-1423

ing effectively to multilingual contexts.1424

2. Rich Visual Representation: Leverages the1425

rich information content of real-valued RGB1426

images, capturing nuances that text-based tok-1427

enization may miss.1428

3. Modality Interplay: Demonstrates the po-1429

tential for effective integration of visual and1430

textual data, enhancing the overall model per-1431

formance in language understanding tasks.1432

While all language models with pixel-based1433

modalities currently match or slightly underper-1434

form compared to text modality models, the po-1435

tential for scaling and the removal of tokenization1436

challenges present a compelling case for further1437

development and research in this area.1438
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