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ABSTRACT

Small Vision-Language Models (VLMs) provide a computationally efficient alterna-
tive to larger models, at the cost of weaker generalization abilities and downstream
task performance. These shortcomings could be addressed by test-time scaling
techniques, but existing methods are typically computationally demanding, con-
tradicting the resource-efficient design goals of small models. To address these
limitations, we propose two novel and efficient test-time scaling strategies that
leverage the model-internal features rather than external supervision: (i) Test-Time
Augmentation (TTAug), which generates multiple augmented inputs and aggre-
gates outputs at the token level without parameter updates, and (ii) Test-Time
Adaptation (TTAdapt), which adapts model parameters during inference using
consensus-based pseudolabels from TTAug. Through extensive experiments across
nine benchmarks, we demonstrate consistent performance improvements while
maintaining computational efficiency suitable for resource-constrained environ-
ments. The generality of our approach is demonstrated both within models at
different scales and across different VLMs without additional tuning.

1 INTRODUCTION

Small Vision-Language Models (VLMs) offer computational efficiency and accessibility, yet their
performance frequently degrades under domain shift due to inherent biases and limited generalization
capabilities (Marafioti et al., 2025; Lu et al., 2025). While test-time scaling methods can, in principle,
improve their performance, there are several critical limitations that undermine their practicality for
small models in resource-constrained settings.

First, many test-time scaling methods rely on external verification models or computationally intensive
reranking strategies, making them unsuitable for deployment on resource-constrained consumer
GPUs (Zhang et al., 2024; Singh et al., 2025). This contradicts the resource-efficient design goals of
small VLMs. Second, existing approaches that avoid external verifiers, such as sampling multiple
candidate responses and aggregating them into a final prediction using the model’s internal signals
(Wang et al., 2023b; Adiwardana et al., 2020; Chen et al., 2024a), remain unsatisfactory because they
typically operate only at the answer level, ignoring local signals for aggregation. Global measures
like average confidence obscure token-level fluctuations that signal response quality, and averaging
across entire sequences masks reasoning breakdowns at intermediate steps. Moreover, these methods
require complete response generation before evaluation, preventing early termination and wasting
computation. Finally, many existing methods are restricted to tasks with extractable final answers
(e.g., multiple-choice or numerical reasoning), limiting their applicability to open-ended tasks such
as visual question answering and captioning (Zhang et al., 2025a; Chen et al., 2024a).

In this paper, we leverage model-internal representations to overcome these limitations. Our goal is to
improve the robustness and accuracy of small VLMs at inference time through efficient, lightweight,
and practical test-time scaling strategies that require no external models or additional training data. We
introduce two methods in a unified framework: Test-Time Augmentation and Test-Time Adaptation.
Test-Time Augmentation generates multiple responses by applying input-level augmentations to
both images and text. Crucially, it aggregates outputs at the token-level rather than the answer-level,
which allows the model to quickly detect low-quality responses, and allows for more fine-grained
exploitation of the model-internal signals. This method requires no parameter updates, making it both
simple and efficient. Our second method, Test-Time Adaptation, extends this idea by adapting model
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Figure 1: Our framework consists of two main pipelines: (1) Test-Time Augmentation: Given an
input image and text prompt, we apply various transformations to create multiple augmented versions.
VLM processes each augmented input to produce next token probability distributions, which are then
aggregated at the token level to generate the final response. (2) Test-Time Adaptation: We create
pseudolabels through test-time augmentation and fine-tune the VLM parameters, then repeat the
process. Both methods demonstrate effectiveness across nine diverse benchmarks as shown in (b).

parameters during inference. It leverages consensus signals from TTAug as pseudolabels, which
guide lightweight fine-tuning on test samples without any labeled data. This enables the model to
dynamically adjust to domain-specific characteristics while retaining computational efficiency.

Our approach consistently outperforms existing test-time scaling methods, such as self-
consistency (Wang et al., 2023b), sample-and-rank (Adiwardana et al., 2020), self-selector (Chen
et al., 2024a; Parmar et al., 2025), and self-synthesizer (Li et al., 2025d; Jiang et al., 2023; Wang
et al., 2025a; Li et al., 2025b). Furthermore, these improvements do not come with a heavy computa-
tional cost, allowing our approach to be used in resource-constrained settings. Beyond performance
gains, our study reveals two important general insights for test-time scaling: (1) generating multiple
candidate answers through input augmentations with greedy decoding is more effective than the
commonly-used temperature sampling strategy, and (2) token-level aggregation provides stronger
signals than aggregating only at the final-answer level. These findings highlight practical principles
for scaling VLMs efficiently at inference. Our experiments across nine diverse benchmarks and
multiple VLM architectures confirm that these insights translate into consistent improvements and
broad generalization, underscoring the effectiveness and generality of our framework.

Our contributions are threefold: (1) We present two efficient test-time scaling methods for small
VLMs deployable on consumer GPUs. (2) We provide the first comprehensive analysis of Test-
Time Augmentation for VLMs, investigating augmentation strategies, aggregation methods, and
optimal aggregation layers. Despite being a simple and easily integrable technique, its application
to multimodal settings remains surprisingly underexplored. (3) We introduce the first Test-Time
Adaptation method for multimodal language models, whereas prior work on VLM test-time adaptation
has focused primarily on CLIP-based models (Liang et al., 2025; Dong et al., 2025; Ji et al., 2025).

2 RELATED WORK

Test-time scaling is a paradigm in which current large language models increasingly achieve superior
performance by allocating substantial computational resources during inference (Zhang et al., 2025a;
Ji et al., 2025). A popular test-time scaling strategy is parallel sampling, which generates multiple
outputs simultaneously and aggregates them. However, existing parallel sampling methods face
several critical limitations that make them impractical for resource-constrained deployments. Most
approaches rely on external verifier models or compute-heavy strategies, making them incompatible
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with the small model paradigm (Zhang et al., 2024; Singh et al., 2025). We address these limitations
by proposing two lightweight but effective methods via test-time augmentation.

Test-time augmentation (TTAug) improves model robustness and generalization by averaging
predictions across augmented views (Shorten & Khoshgoftaar, 2019). Recent work extends TTAug
through learnable policies (Lyzhov et al., 2020; Kim et al., 2020; Shanmugam et al., 2021) by
optimizing augmentation selection and weighting. However, these active methods typically require
labeled datasets to learn optimal policies, limiting their practical applicability. Prior TTAug research
for (multimodal) language models (Mashrur et al., 2022; Kamoda et al., 2023) mainly addresses
hallucination detection and robustness, not accuracy improvement, and does not treat TTAug as
a systematic test-time scaling method. Our work closes this gap by extending both non-learnable
and learnable TTAug strategies to Vision-Language Models (VLMs), systematically evaluating
how augmentation design, aggregation, and scaling affect performance across tasks, and leveraging
self-supervised objectives from test-time adaptation literature to avoid reliance on labeled data.

Test-time adaptation (TTAdapt) is an emerging paradigm for adapting pretrained models to new
data batches during inference by updating model weights or inputs to maximize prediction accuracy
without ground-truth labels (Xiao & Snoek, 2024). The choice of optimization target and objective is
crucial for adaptation effectiveness. In multimodal learning, most prior TTAdapt work focuses on
CLIP-based VLMs (Liang et al., 2025; Dong et al., 2025; Ji et al., 2025), with entropy minimization as
the optimization strategy (Shu et al., 2022) and widespread use of self-training with pseudolabels. In
language models, TTAdapt is less explored (Dong et al., 2025; Ji et al., 2025). Hübotter et al. (2025)
require training datasets and is not source-free, while Huang et al. (2025) extend an existing test-time
scaling method called self-consistency (Wang et al., 2023b) for better confidence calibration but
suffers from the same limitations of applicability and generalization. Akyürek et al. (2025) explore
test-time training with methods similar to ours (i.e., aggregated predictions via hierarchical voting
and per-instance adaptation); however, their method is specifically designed for the ARC benchmark
and lacks broader applicability. Our universal and source-free TTAdapt method overcomes these
limitations by leveraging consensus-based pseudolabeling from our TTAug method.

3 METHODS

We propose a comprehensive framework for test-time scaling of small Vision-Language Models
(VLMs) through two complementary approaches: test-time augmentation (TTAug) and test-time
adaptation (TTAdapt). Fig. 1a illustrates our framework, which addresses the fundamental chal-
lenge of improving model performance and robustness without requiring additional training data or
substantial computational overhead.

3.1 TEST-TIME AUGMENTATION (TTAUG)

Our approach leverages input diversity to improve model robustness through systematic aggregation
of predictions from semantically equivalent inputs. Given an input consisting of an image I and text
prompt t, we generate a set of N augmented versions {(Ii, ti)}Ni=1 through semantic-preserving trans-
formations (Sec. 4.4). Each transformation preserves the semantic content essential for multimodal
understanding while introducing controlled textual and visual diversity (Sec. 4.5 and 4.6).

Our token generation process follows an autoregressive approach where aggregation occurs at each
step during generation. Starting with an empty sequence y = {}, we iteratively generate tokens. At
generation step j, for each augmented input (Ii, ti), the VLM computes the probability distribution
over the vocabulary V conditioned on the current shared context:

pi,j(v) = p(v|Ii, ti,y<j) = softmax(fθ(Ii, ti,y<j)) (1)
where fθ represents the VLM with parameters θ, and y<j = {y1, . . . , yj−1} denotes the shared
sequence of previously generated tokens. We then aggregate the probability distributions across all
augmented inputs through token-level averaging:

p̄j(v) =
1

N

∑
pi,j(v) (2)

The next token is selected greedily from this aggregated distribution:
yj = argmax

v∈V
p̄j(v) (3)

3
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This selected token yj is then appended to the shared context y = y ∪ {yj}, and the process repeats
for the next step. This autoregressive aggregation ensures that each token decision leverages the
collective confidence from all augmented views while maintaining a single coherent output sequence.

This token-level aggregation strategy enables the model to leverage local confidence signals from
multiple augmented views at each generation step, combining the strengths of different input repre-
sentations (Sec. 4.3). Moreover, semantic-preserving input perturbations with greedy decoding yield
superior diversity than temperature sampling used in prior test-time scaling methods (Sec. 4.2).

3.2 TEST-TIME ADAPTATION (TTADAPT)

We also introduce a learnable variant that adapts model parameters during inference through iterative
pseudolabel generation and fine-tuning. Our TTAdapt method operates without requiring labeled data
by leveraging the consensus from TTAug as a supervision signal.

The TTAdapt process optimizes the entire VLM parameter set θ through consensus-driven supervision
in an iterative three-stage loop: (1) generate high-confidence pseudolabels using the current model
state with TTAug consensus, (2) fine-tune model parameters using these pseudolabels as supervision
through efficient training with gradient checkpointing or parameter-efficient methods, and (3) reset to
initial weights before processing each new question to prevent catastrophic forgetting. This iterative
process allows the model to progressively adapt to the test distribution while maintaining stability
through consensus-based pseudolabeling. See Appendix I.7 for implementation details.

Formally, given an input image-text pair (I, t), initial model parameters θ0, and number of adaptation
iterations K, the TTAdapt process proceeds as outlined in Algorithm 1.

Algorithm 1 Test-Time Adaptation (TTAdapt)

Require: Input image I, text prompt t, initial parameters θ0, iterations K
1: θ ← θ0 ▷ Initialize with original weights
2: for k = 1 to K do
3: y(k) ← TTAug(I, t; θ) ▷ Generate pseudolabel via TTAug
4: θ ← argminθ

(
− log p(y(k)|I, t; θ)

)
▷ Update parameters

5: end for
6: y∗ ← TTAug(I, t; θ) ▷ Generate final adapted response
7: θ ← θ0 ▷ Reset to initial weights for next question
8: return y∗

The TTAug method generates multiple predictions for each test input and aggregates them using
token-level averaging to create high-confidence pseudolabels. These pseudolabels represent the
collective wisdom of the augmented predictions and serve as training targets for model adaptation.
By iteratively refining predictions through TTAug consensus and parameter updates, we enable the
model to adapt to test-time distribution shifts while preserving its core capabilities. Through this
iterative process, we adapt the model parameters to achieve locally-optimal performance for the
specific question type encountered during inference (Sec. 4.7).

Our unified framework provides flexibility for different deployment scenarios: TTAug offers immedi-
ate improvements without parameter updates, while TTAdapt enables more substantial gains when
brief optimization is feasible. We systematically evaluate both approaches across diverse benchmarks
and models to understand their effectiveness and computational trade-offs (Sec. 4.8).

4 EXPERIMENTS

We conduct comprehensive experiments to validate the test-time scaling framework presented in
the previous section. Each major design decision is explored here, e.g. how can we generate high-
quality diverse answers, or should we perform aggregation at the level of the final answer or at
the token-level, using the SmolVLM2-2.2B (Marafioti et al., 2025) model as the baseline. Our
experiments encompass 9 benchmarks covering various task types: visual question answering (VQA)
including ChartQA (Masry et al., 2022), OCRBench (Liu et al., 2024), OCRVQA (Mishra et al., 2019),
GQA (Hudson & Manning, 2019), and TextVQA (Singh et al., 2019); multiple-choice questions
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(MCQ) with AI2D (Kembhavi et al., 2016) and MME-RealWorld (Zhang et al., 2025b); yes/no
questions using AMBER (Wang et al., 2023a); and image captioning with COCO Captions (Lin
et al., 2014). We utilize the evaluation protocols provided by VLMEvalKit (Duan et al., 2024) to
ensure standardized and reproducible results. For computational efficiency and fair comparison across
all methods, we sample 1000 samples from each benchmark using uniform intervals to maintain
representative coverage of the original data distribution while enabling extensive ablation studies.
The evaluation metric is accuracy for most benchmarks, with ROUGE-L used specifically for COCO
Captions. For a comprehensive description of the evaluation metrics, refer to Appendix J. Standard
errors for all tables in this section are provided in Appendix K.

4.1 COMPARISON WITH OTHER TEST-TIME SCALING METHODS

We compare our TTAug approach against four representative test-time scaling methods from the
existing literature that can potentially operate without external model dependencies.

1 Self-Consistency aggregates candidate answers via majority voting across multiple sampled
outputs (Wang et al., 2023b). While effective for tasks where final answers can be parsed, it struggles
in creative or open-ended settings where the final answer is not easy to parse.

2 Self-Selector uses the VLM itself as a verifier to select one response among the candidates (Chen
et al., 2024a; Parmar et al., 2025). This approach extends applicability beyond tasks suited to majority
voting. See Appendix I.1 for implementation details.

3 Sample-and-Rank. Self-Consistency ignores the model’s internal signals for selection; majority
voting treats all reasoning traces equally, ignoring quality variations (Wang et al., 2025b). Sample-
and-Rank (Adiwardana et al., 2020), leverages next-token distribution statistics to assess response
quality by selecting the response with the highest log probability, argmax log p(y).

4 Self-Synthesizer. The selection of only one answer, as in previous strategies, ignores information
from other responses. To combine potentially correct parts from different responses, we use the tested
VLM to aggregate responses into one coherent final answer (Li et al., 2025d; Jiang et al., 2023; Wang
et al., 2025a; Li et al., 2025b). See Appendix I.2 for implementation details.

5 TTAug (Ours). Our Token-level aggregation with simple averaging approach aggregates the
predictions at each step using a token-level aggregation of the final logits, as defined in Eq. 2.

In this experiment, for our TTAug method, we augment the inputs N = 8 times. For all other
compared methods, we similarly generate 8 candidate answers before aggregation.

Table 1: Comparison of our TTAug method
against existing test-time scaling methods. Our
method outperforms all others across accuracy
and efficiency metrics.

B
as

el
in

e Others Ours

1 2 3 4 5

A
cc

ur
ac

y
↑

ChartQA 74.2 74.4 73.4 72.5 71.7 75.6
OCRBench 72.9 72.6 71.9 70.2 71.9 73.4
OCRVQA 0.0 0.0 0.0 0.0 0.2 11.8
GQA 0.0 0.0 0.0 0.0 0.0 5.8
TextVQA 73.2 72.6 71.6 69.5 72.0 72.8
AI2D 68.5 3.1 69.2 69.1 67.4 68.8
MME-RW 27.8 26.2 26.4 27.6 27.6 31.1
AMBER 68.7 70.4 64.5 53.5 67.8 75.4
COCO 9.1 8.2 8.4 6.2 16.7 15.9

Mean 43.8 36.4 42.8 41.0 43.9 47.9

E
ff

.↓ Runtime (s) 1.43 3.73 4.18 3.74 4.46 2.99
# Tokens 8.7 74.5 77.4 74.5 82.3 70.3

Tab. 1 demonstrates the superiority of our TTAug
method over the existing methods. Interestingly,
most existing methods fail to consistently outper-
form the baseline model across all benchmarks. In
contrast, our TTAug method achieves a +4.1% abso-
lute improvement over the baseline model. Also, our
method is more efficient in terms of both runtime
and number of output tokens generated. This consis-
tent advantage can be attributed to two key factors.
First, by leveraging input perturbations with greedy
decoding for diversity inducement, our method gen-
erates higher-quality candidate responses than tem-
perature sampling, which is what all other methods
rely on. Second, token-level aggregation preserves
local confidence signals during generation, enabling
more nuanced error correction compared to global
answer-level methods that discard such information.
In the following two sections, we separately validate
these two critical components of our method.

Takeaway: Our TTAug method consistently out-
performs existing test-time scaling methods while
being significantly more efficient.
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4.2 DIVERSITY-INDUCEMENT METHODS

Generating diverse, high-quality candidate answers is critical for test-time scaling. We compare two
approaches for inducing diversity: Temperature Sampling, and Input Perturbations combined
with greedy decoding. Temperature Sampling introduces randomness into the process by sampling
from a softened probability distribution, while Input Perturbations applies classic semantic-preserving
augmentations to inputs (Sec. 4.5 and 4.6), and then decodes greedily.

Table 2: Comparison of diversity-inducement
methods compared to the Baseline. Input Per-
turbation outperforms Temperature Sampling.

B
as

el
in

e Temperature
Sampling

Input
Perturbation

1 2 1 2

ChartQA 74.2 74.4 73.4 74.8 70.9
OCRBench 72.9 72.6 71.9 72.7 73.1
OCRVQA 0.0 0.0 0.0 12.0 4.5
GQA 0.0 0.0 0.0 7.6 3.7
TextVQA 73.2 72.6 71.6 72.3 72.9
AI2D 68.5 3.1 69.2 3.6 66.6
MME-RW 27.8 26.2 26.4 30.8 29.6
AMBER 68.7 70.4 64.5 72.7 67.0
COCO 9.1 8.2 8.4 21.2 13.0

Mean 43.8 36.4 42.8 40.9 44.6

Tab. 2 shows that Input Perturbations with Greedy
Decoding outperform Temperature Sampling for
generating high-quality candidate responses under
both the 1 Self-Consistency and 2 Self-Selector
strategies. This approach achieves the largest gains
on OCRVQA and GQA, where temperature sam-
pling fails. The theoretical analysis in Appendix A
shows that greedy decoding with input perturbations
maintains a higher correlation and better alignment
with the model training objective, making it more
effective for test-time scaling.

Takeaway: Input Perturbations with greedy decod-
ing ultimately performs better than the Baseline or
Temperature Sampling. This fundamental insight
forms the basis of our method throughout the re-
mainder of the paper.

4.3 AGGREGATION LEVELS

We now compare different aggregation levels for test-time scaling: Answer-level versus Token-level
aggregation. Existing test-time scaling methods predominantly employ answer-level aggregation
with temperature sampling for diversity inducement (Zhang et al., 2025a). However, given that input
perturbations with greedy decoding provide superior diversity inducement, we evaluate answer-level
versus token-level aggregation using this improved diversity-inducement method for comparison.

Nevertheless, all of these answer-level aggregation methods have critical limitations. First, global
measures like confidence obscure confidence fluctuations at local reasoning steps, which can provide
valuable signals for estimating response quality. Averaging across entire sequences masks critical
reasoning breakdowns that occur at intermediate steps. Additionally, global measures require generat-
ing complete responses before calculation, preventing early stopping of low-quality generations and
resulting in computational inefficiency. They generate a constant number of responses per question
rather than adaptively distributing computational budget based on response agreement. Moreover,
small VLMs also often lack sufficient synthesis capabilities for reliable response combination.

Table 3: Comparison of Answer-level versus
Token-level aggregation methods. Token-level
aggregation outperforms all other approaches.

B
as

el
in

e Answer-level Token

1 2 3 4 5

ChartQA 74.2 74.8 70.9 61.1 72.8 75.6
OCRBench 72.9 72.7 73.1 60.9 71.1 73.4
OCRVQA 0.0 12.0 4.5 0.2 3.3 11.8
GQA 0.0 7.6 3.7 0.0 0.0 5.8
TextVQA 73.2 72.3 72.9 61.6 71.6 72.8
AI2D 68.5 3.6 66.6 69.9 68.0 68.8
MME-RW 27.8 30.8 29.6 29.0 29.2 31.1
AMBER 68.7 72.7 67.0 58.9 75.8 75.4
COCO 9.1 21.2 13.0 8.6 29.5 15.9

Mean 43.8 40.9 44.6 38.9 46.8 47.9

Tab. 3 demonstrates the effectiveness of Token-level
aggregation compared to the Answer-level methods.
This consistent advantage validates our hypothesis
that token-level aggregation preserves valuable lo-
cal confidence information that global answer-level
methods discard. Particularly notable are the im-
provements on OCRVQA, GQA, and COCO, where
the baseline model struggles, indicating that token-
level aggregation effectively leverages augmentation
diversity to recover from initial prediction failures.
The method’s ability to outperform answer-level ap-
proaches, such as Self-Synthesizer, despite their ac-
cess to the full model’s reasoning capabilities, un-
derscores the fundamental advantage of preserving
local confidence signals during generation rather
than attempting post-hoc response combination. Ap-
pendix B provides a mathematical analysis of this
phenomenon. Appendix C presents experiments us-
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ing different Token-level aggregation methods, including entropy-weighted averaging, majority
voting, and most confident token. Finally, Appendix D shows that aggregation of earlier layer outputs
can produce better results for some tasks.

Takeaway: Token-level aggregation consistently outperforms Answer-level aggregation. This
validates our test-time augmentation method as a more practical alternative to existing test-time
scaling approaches that rely on Answer-level approaches based on Selection or Synthesis. We use
Token-level aggregation with simple averaging at the final logits for all subsequent experiments.

4.4 NUMBER OF AUGMENTATIONS
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Figure 2: Performance scaling as a function
of the number of augmentations. Performance
gains generally plateau after 16 augmentations.

We study how performance scales with the num-
ber of augmented inputs to understand the optimal
balance between computational cost and accuracy.
Augmentation counts range from 1 (baseline) to 64
with simple averaging aggregation. This analysis
clarifies diminishing returns in test-time scaling and
provides practical guidance for deployment scenar-
ios with varying computational budgets.

Fig. 2 reveals diverse scaling behaviors across
benchmarks, reflecting task-specific characteristics.
Benchmarks showing monotonic improvement with
saturation (OCRVQA, AMBER, MME-RealWorld)
follow established test-time scaling patterns (Snell
et al., 2025; Brown et al., 2025; Wu et al., 2024),
with performance increasing steadily before plateau-
ing. In contrast, several benchmarks exhibit non-monotonic curves (ChartQA, COCO, GQA) where
performance peaks at intermediate augmentation counts before declining due to the consistency-
diversity tradeoff (Geiping et al., 2023). This decline probably occurs because excessive augmentation
introduces outlier predictions and semantic drift that degrade aggregated signal quality, as simple
token-level averaging assumes equal validity across augmented predictions. Mixed behaviors (OCR-
Bench, TextVQA, AI2D) show irregular patterns with task-specific characteristics.

Takeaway: The average performance curve (dashed line) indicates peak performance at 16 augmen-
tations, which we adopt for subsequent experiments. This translates to a peak GPU memory usage of
8.75 GB (1.9× increase from 4.60 GB baseline) and an inference time of 4.77 s per query (3.33×
increase from 1.43 s baseline), when using parallel batch inference on an NVIDIA A100 GPU. For
detailed computational overhead analysis across different augmentation counts, refer to Appendix E.

4.5 TEXT AUGMENTATION METHODS

We now compare different text augmentation strategies to understand the trade-offs between quality,
practicality, and computational overhead in our resource-constrained setting.

0 Image-only uses classical image augmentations (Sec. 4.6) without text augmentation, serving as
a control. 1 – 4 apply the same image augmentations along with their respective text strategies.

1 AugGPT uses ChatGPT (Achiam et al., 2023) to generate high-quality paraphrases, to evaluate
the ability of high-capacity finetuned paraphraser models distilled for our scenario (Dai et al., 2025).
This high-quality paraphrasing augmentation using state-of-the-art external models, but it is not
practical as it requires external models in resource-constrained deployment scenarios.

2 Self-paraphrasing uses the LLM of the VLM to paraphrase the input prompt. Since small VLMs
cannot reliably do this in one shot, we split the prompt into sentences and paraphrase each with
structured generation to obtain a fixed number of variants. The final paraphrased prompt is the
concatenation of these outputs. This approach maintains consistency with the target model’s internal
linguistic patterns while remaining self-contained. See Appendix I.3 for implementation details.

3 Classical augmentation uses simple and fast semantic-preserving augmentations sequentially and
randomly with minimal cost (Ma, 2019; Aepli & Sennrich, 2022). Keyboard errors simulate common
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typing mistakes by replacing characters with nearby keys leveraging one-key distance to generate
realistic character substitutions. Word splitting introduces spacing variations within compound words.
Word deletion removes individual words. Sentence reordering swaps adjacent sentences.

Consistency enforcement is applied by appending the original prompt after each augmented version,
structured as "In other words," followed by the original prompt, mirroring the alpha blending
technique in AugMix (Hendrycks et al., 2020). We report ablation study results without consistency
enforcement using the classical augmentation method in the 4 column of Tab. 4; all other columns
( 1 , 2 , 3 ) employ consistency enforcement technique.

Table 4: Comparison of text augmentation
strategies. Self-Paraphrasing 2 and Classical
Augmentations 3 consistently perform best.

B
as

el
in

e

0 1 2 3 4

ChartQA 74.2 74.7 76.9 76.6 76.1 71.4
OCRBench 72.9 73.3 73.5 72.8 73.7 70.6
OCRVQA 0.0 0.0 2.6 0.0 12.6 0.0
GQA 0.0 0.0 0.0 0.0 5.5 31.2
TextVQA 73.2 74.2 73.5 74.0 72.4 63.9
AI2D 68.5 69.8 69.9 68.4 69.6 63.9
MME-RW 27.8 26.6 30.0 25.9 31.9 32.1
AMBER 68.7 64.7 68.8 72.9 75.9 60.0
COCO 9.1 8.4 20.6 46.2 16.9 13.2

Mean 43.8 43.5 46.2 48.5 48.3 45.1

Tab. 4 shows that self-paraphrasing achieves su-
perior performance by leveraging model-aligned
augmentations, as the model’s own weights influ-
ence how prompts are generated, resulting in aug-
mentations that exhibit superior alignment with the
model’s internal representations. This approach
creates linguistic patterns within the training man-
ifold, leading to better-calibrated confidence es-
timates during token-level aggregation. Consis-
tency enforcement proves critical for semantic co-
herence, with large drops observed in the ablation
study, though notable exceptions occur in GQA and
MME-RealWorld where diversity outweighs con-
sistency. Classical augmentations remain compet-
itive with minimal computational overhead, mak-
ing them the most practical choice for resource-
constrained deployment. Their similar performance
to self-paraphrasing suggests simple perturbations
provide sufficient diversity for our purposes.

Takeaway: Self-paraphrasing ≻ Classical ≻ AugGPT. Consistency enforcement is critical for
reliable performance. For the remaining experiments, we use classical augmentation with consistency
enforcement to balance accuracy and efficiency.

4.6 IMAGE AUGMENTATION METHODS

We evaluate three different image augmentation strategies to understand their effectiveness for multi-
modal test-time scaling: classical transformations, established methods, and generative approaches.

0 Text-only uses classical text augmentation (Sec. 4.5) without image augmentation, serving as a
control. 1 – 3 apply the same text augmentation along with their respective image strategies.

1 Classical augmentations apply traditional computer vision transformations including bright-
ness/contrast adjustments, rotation, blurring, noise injection, and geometric distortions, shown useful
in other vision-language tasks (Vendrov et al., 2016). We test three augmentation intensity lev-
els: L Low (conservative), M Medium (moderate), and H High (aggressive) to explore the
diversity-consistency trade-off. See Appendix I.4 for detailed implementation specifications.

2 AugMix (Hendrycks et al., 2020) employs a mixing strategy that combines multiple augmentation
chains with convex combinations, originally designed for robustness in image classification tasks.

3 Generative augmentations use FLUX.1-dev (Labs et al., 2025) to create semantically similar
but visually distinct image variants. However, this approach excludes text-containing images to
prevent OCR corruption. Also, it requires external diffusion models, making it impractical for
resource-constrained deployments. See Appendix I.5 for detailed implementation specifications.

Tab. 5 reveals several key insights about image augmentation strategies. Classical augmentations with
high and low strengths marginally outperform medium strength augmentations. This non-monotonic
relationship reflects the fundamental diversity-consistency trade-off: low strength preserves semantic
coherence but provides limited diversity; high strength introduces beneficial variance without exces-
sive semantic drift (Geiping et al., 2023); while medium strength falls into a suboptimal region where
augmentations disrupt model confidence without compensating diversity benefits.
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Table 5: Comparison across different image
augmentation strategies. Classical Augmenta-
tions L , H perform the best.

B
as

el
in

e

0 L M H 2 3

ChartQA 74.2 75.8 77.0 76.4 76.1 74.1 75.7
OCRBench 72.9 73.1 73.7 73.3 73.7 72.4 65.3
OCRVQA 0.0 13.5 12.1 10.6 12.6 12.9 12.0
GQA 0.0 2.0 4.1 3.7 5.5 3.1 2.5
TextVQA 73.2 73.0 72.6 73.3 72.4 72.4 71.6
AI2D 68.5 68.1 69.1 69.0 69.6 68.9 67.0
MME-RW 27.8 31.6 31.8 32.5 31.9 32.1 31.1
AMBER 68.7 77.3 77.0 75.9 75.9 77.3 76.2
COCO 9.1 19.0 17.8 17.1 16.9 17.8 18.0

Mean 43.8 48.2 48.3 48.0 48.3 47.9 46.6

AugMix performs competitively but falls short of
classical methods, suggesting that the principled
mixing strategy designed for unimodal classifica-
tion may not align with the token-level aggregation
in VLMs. Generative augmentations underperform
despite their semantic richness, primarily because
text-containing images must be excluded, reducing
the effective augmentation coverage.

For a modality-wise decomposition of TTAug per-
formance gains, see Appendix F; for representative
samples of augmented inputs with classical methods
and corresponding outputs, see Appendix L.

Takeaway: Classical high/low strength augmen-
tations outperform AugMix and generative ap-
proaches; with medium strength falling into a subop-
timal diversity-consistency trade-off. Thus, we use
high-strength classical augmentations for all subse-
quent experiments.

4.7 TEST-TIME ADAPTATION METHODS

While TTAug provides improvements, test-time adaptation (TTAdapt) extends this framework by op-
timizing learnable components during inference. Unlike conventional test-time scaling that generates
and selects among multiple candidate responses, our approach directly optimizes model behavior
using self- or semi-supervised objectives. We investigate two different adaptation strategies targeting
distinct components of the aggregation pipeline, each with unique optimization objectives.

1 Aggregation weights optimization learns adaptive token-wise weights wi,j to replace the
uniform averaging scheme in Eq. 2. At each generation step j, we initialize learnable parameters as
wj ∈ RN and optimize them through gradient descent to minimize the marginal entropy H(p̄j) =
−
∑

v∈V p̄j(v) log p̄j(v) of the weighted aggregated distribution by performing multiple micro-steps
per token to achieve convergence. This approach requires minimal computational overhead with
a compact computational graph, making it suitable for real-time deployment. Marginal entropy
minimization represents the dominant optimization paradigm in test-time adaptation for CLIP-based
models (Shu et al., 2022; Liang et al., 2025). We include this method as an ablation study and as a
computationally efficient alternative to our main adaptation approach. See Appendix I.6 for details.

2 Model parameter adaptation implements the iterative pseudolabel generation and fine-tuning
framework detailed in Sec. 3.2.

Table 6: Performance comparison of test-time
adaptation strategies. Model parameter adapta-
tion 2 yields the best performance.

Baseline TTAug 1 2

ChartQA 74.2 76.1 76.1 76.7
OCRBench 72.9 73.7 73.0 70.5
OCRVQA 0.0 12.6 11.9 13.8
GQA 0.0 5.5 5.2 13.5
TextVQA 73.2 72.4 74.2 70.5
AI2D 68.5 69.6 69.7 67.4
MME-RW 27.8 31.9 30.9 31.4
AMBER 68.7 75.9 76.9 72.8
COCO 9.1 16.9 16.4 35.9

Mean 43.8 48.3 48.3 50.3

Tab. 6 shows clear performance differences
among adaptation methods with distinct efficiency-
performance trade-offs. Aggregation weights opti-
mization performs on par with TTAug, mainly im-
proving benchmarks that require precise confidence
calibration (e.g., AMBER, TextVQA), where adap-
tive weighting highlights high-quality predictions.
This supports findings that TTAdapt via marginal
entropy minimization is not more effective than
TTAug for CLIP-based VLMs (Farina et al., 2024).
Its average performance matches TTAug, but it no-
tably fixes simple averaging’s underperformance on
TextVQA, outperforming the baseline model on all
benchmarks. Model parameter adaptation delivers
the strongest overall gains, particularly excelling on
COCO. Given its superior performance, we refer to
model parameter adaptation as TTAdapt throughout
this paper. However, performance occasionally degrades on specialized benchmarks with strong
baseline capabilities, indicating that aggressive parameter adaptation can disrupt carefully calibrated
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domain-specific knowledge. This pattern suggests that adaptation intensity should be task-dependent,
conservative for well-calibrated domains where the base model already performs well, and more ag-
gressive for challenging distributions where consensus-based supervision provides reliable guidance.

Takeaway: Model adaptation achieves superior gains through consensus-based learning. Aggregation
weight optimization provides an efficient middle ground with minimal computational overhead.

4.8 CROSS-MODEL GENERALIZATION

Finally, we test our method’s generalization to other VLMs by applying the SmolVLM2-2.2B config-
uration (greedy decoding, 16 classical augmentations, token-level averaging) to diverse architectures
and parameter scales. See Appendix H for more details.
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Figure 3: Improvements across different mod-
els, demonstrating cross-model generalization.

Fig. 3 shows TTAug gains across model families
and parameter scales. The best performance gains
are found for SmolVLM2-2.2B, but we find consis-
tent improvements across different architectures and
scales. The consistent improvements we observe
with suboptimal hyperparameters validate our core
contribution: TTAug and TTAdapt reliably improve
performance across diverse models. TTAug prevents
error propagation through token-level aggregation,
which provides fundamental advantages regardless
of architecture specifics. Key findings include: (1)
Although optimal hyperparameters vary across mod-
els due to differences in training data, architecture,
and training augmentations, our framework gener-
alizes well and provides improvements. The results
reveal that no universal set of hyperparameters ex-
ists that optimally serves all models; hyperparameter transferability is inherently limited due to
model-specific characteristics including training data biases, architectural differences, and training
augmentation strategies. Despite suboptimal hyperparameters for non-target models, our methods
provide meaningful improvements, demonstrating the robustness of our approach. (2) Contrary to
expectations, TTAug effectiveness does not simply correlate with model size, but rather with model
family and architectural similarity. This challenges our initial expectation that TTAug would primarily
benefit smaller models by mitigating biases (with larger models being more robust). Instead, improve-
ments appear more dependent on model family and architectural similarity to our hyperparameter
optimization target. Transfer is stronger within model families and among models with similar pa-
rameter counts, indicating that both architecture and capacity matter. Hyperparameter transferability
is stronger within model families sharing similar architectures and training procedures, as hyperpa-
rameters depend on dataset biases, training-time augmentation strategies, and architectural inductive
biases. Models with similar parameter counts exhibit better hyperparameter transfer, suggesting that
model capacity influences optimal augmentation strategies. Even with suboptimal hyperparameters,
our methods yield robust improvements, though dedicated tuning is recommended for best results.
For maximum performance gains on other models, dedicated hyperparameter optimization following
our ablation methodology is recommended. See Appendix G for more detailed results.

Takeaway: Despite hyperparameters being optimized for SmolVLM2-2.2B, our methods provide
consistent improvements across diverse models, though transferability varies by family and size.

5 CONCLUSION

We propose two efficient test-time scaling methods, Test-Time Augmentation and Test-Time Adap-
tation. Our comprehensive experiments demonstrate that both methods consistently improve per-
formance by outperforming existing test-time scaling approaches with minimal overhead, making
them suitable for resource-constrained environments. Our work provides a systematic way to tune
hyperparameters for a given model, though optimal strategies remain task- and model-dependent.
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REPRODUCIBILITY STATEMENT

To ensure the replicability of our findings, we will release our code upon publication, allowing the re-
search community to reproduce our results and build upon our contributions. Our experimental setup
exclusively employs publicly accessible models, ensuring that all resources are readily obtainable by
other researchers. We provide comprehensive details regarding all prompts and hyperparameters uti-
lized across our experiments in Appendix I. Additionally, Appendix J contains thorough descriptions
of the benchmarks and evaluation metrics employed in our study. All evaluation benchmarks utilized
in this work are established and widely-used standards within the field. We include references to
these resources to facilitate easy access for interested researchers. Our commitment to transparency
extends beyond code release, as we meticulously detail every aspect of our experimental methodology
to enable faithful reproduction of our work.

AUTHOR STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

During the preparation of this paper, large language models were used solely for minor grammar and
language polishing. They were not used for research ideation, experiment design, analysis, or writing
of scientific content. All research contributions are the sole responsibility of the authors.
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A THEORETICAL ANALYSIS OF DIVERSITY-INDUCEMENT METHODS

Formally, let each candidate response y have a latent quality Q(y). The model also assigns an internal
signal, such that the confidence score, S(y), which is used for candidate selection. In practice, since
the true quality Q(y) is unknown at test time, the practical selector chooses the candidate

y∗ = argmax
y∈Y

S(y).

We can approximate the joint distribution of (Q,S) as a bivariate distribution. This distribution has
means µQ and µS , variances σ2

Q and σ2
S , and correlation ρ = Corr(Q,S). The expected quality of

the selected candidate can then be expressed as:

E[Q(y∗)] ≈ µQ + ρσQkN ,

where kN =
∫∞
−∞ Nz φ(z) Φ(z)N−1 dz is the expected maximum of N standard normal variables.

Here, φ(z) is the standard normal probability density function, and Φ(z) is the standard normal
cumulative distribution function. Notably, kN grows slowly as the candidate pool size N increases.

Temperature sampling generates candidates with high variance in quality, σQ. However, these samples
are often drawn from low-likelihood regions, where the model’s internal confidence S(y) is poorly
aligned with the true quality Q(y). As a result, the correlation ρ between Q and S is small, which
leads to weak scaling as more candidates are added.

In contrast, input perturbations combined with greedy decoding produce candidates with lower
variance but higher mean quality µQ. More importantly, the correlation ρ is stronger, because these
responses remain on the likelihood manifold where the model was trained to assign high confidence.
This difference arises from the training objective of language models: next-token prediction under
maximum likelihood estimation. During training, the model is optimized for greedy decoding, and
temperature sampling is not simulated (e.g., there is no Gumbel-softmax trick in training), making
temperature sampling less natural for the model.

Furthermore, language models are often miscalibrated, especially after post-training (Achiam et al.,
2023). This miscalibration further reduces the correlation ρ for candidates from temperature sampling.

Under confidence-based selection, the product ρσQ is provably larger for greedy decoding with input
perturbations than for temperature sampling. This establishes greedy decoding with augmented inputs
as a superior mechanism for generating diverse candidates in test-time scaling.

B THEORETICAL ANALYSIS OF TOKEN-LEVEL AGGREGATION VS.
ANSWER-LEVEL AGGREGATION

Consider generating a response of length T tokens. Let pt denote the probability of the base model
generating the correct token at step t given the correct prefix, with 0 < pmin ≤ pt ≤ pmax < 1.

Token-level selection. At each step t, N ≥ 2 candidate tokens are generated. A selector with
accuracy st (probability of selecting the correct token if available) yields correctness probability
qt = st

[
1− (1− pt)

N
]
. Thus, the overall correctness probability is

Ptoken =

T∏
t=1

qt.

Answer-level selection. N independent responses are generated. A selector with accuracy s
(probability of selecting the fully correct response if available) yields a correctness probability given
by

Panswer = s

1−(1− T∏
t=1

pt

)N
 .

Theorem. Assume there exists δ > 0 such that qt ≥ (1 + δ)pt for all t. Then for sufficiently large T ,
token-level selection achieves a higher expected correctness probability, Ptoken > Panswer.
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Proof. From the assumption qt ≥ (1 + δ)pt:

Ptoken ≥ (1 + δ)T
T∏

t=1

pt = (1 + δ)TPcorrect

where Pcorrect =
∏T

t=1 pt. For answer-level selection:

Panswer ≤ s ·N · Pcorrect

since 1− (1− x)N ≤ Nx for x ∈ [0, 1]. Comparing the two:

Ptoken

Panswer
≥ (1 + δ)TPcorrect

sNPcorrect
=

(1 + δ)T

sN
.

Since δ > 0, (1 + δ)T grows exponentially with T , while sN is constant. Therefore, for sufficiently
large T :

(1 + δ)T

sN
> 1 =⇒ Ptoken > Panswer.

Feasibility of qt ≥ (1 + δ)pt. The condition holds if:

st ≥ (1 + δ)
pt

1− (1− pt)N

Since 1− (1− pt)
N > pt for N ≥ 2 and pt < 1, the right-hand side < 1. Thus, there exists st < 1

satisfying the inequality. For typical pt ∈ (0.5, 0.99) and N ≥ 2, reasonable st (≈ 0.7 − 0.95)
suffice.

Conclusion. Token-level selection achieves superior performance because it corrects errors imme-
diately at each generation step, preventing error propagation through the sequence. The per-token
improvement factor (1 + δ) compounds multiplicatively across steps. In contrast, answer-level selec-
tion suffers from exponential decay in correctness probability (

∏
pt) and provides only constant-factor

improvement (sN ) through response selection.

This exponential scaling with sequence length means that token-level aggregation provides a rapidly
growing advantage as responses become longer, making it especially effective for reasoning tasks
such as chain-of-thought and thinking models. In these settings, each token represents a step in the
reasoning process, so the ability to correct errors at every step prevents error accumulation and leads
to much higher overall correctness compared to answer-level selection, whose benefits do not scale
with sequence length.

Also, the superiority of increased granularity aligns with empirical observations that process reward
models outperform outcome reward models (Lightman et al., 2023), and reasoning step-wise ap-
proaches like step-level self-evaluation (Xie et al., 2023) and REBASE (Wu et al., 2024) surpass
answer-level methods. However, these reasoning step-wise strategies remain limited to problems
where reasoning steps can be clearly defined and still fall short of token-level granularity. But, they
exemplify a general trend: increased granularity yields better performance in test-time scaling.

For autoregressive generation with imperfect selectors, token-level selection achieves higher expected
correctness than answer-level selection when the token selectors provide consistent multiplicative
improvement over base probabilities and the response length is sufficiently large. The critical
advantage comes from per-step error correction that mitigates compounding errors.

C AGGREGATION METHODS

We compare different token-level aggregation methods for test-time augmentation.

Simple averaging uniformly weights all augmented predictions by computing the arithmetic mean
of probability distributions across all augmented inputs, as in Eq. 2, p̄j(v) = 1

N

∑N
i=1 pi,j(v).

Entropy-weighted averaging assigns higher weights to more confident predictions by computing
the entropy Hi,j = −

∑
v∈V pi,j(v) ln pi,j(v) for each augmented input i at step j, deriving weights
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wi,j = e−Hi,j/
∑N

k=1 e
−Hk,j through softmax over negative entropy, and aggregating as p̄j(v) =∑N

i=1 wi,jpi,j(v) (Chun et al., 2022).

Majority voting aggregates predictions by selecting the token that receives the most votes across
augmented inputs. For each vocabulary token v at step j, we compute the vote count cj(v) =∑N

i=1 I[argmaxu∈V pi,j(u) = v], where I[·] is the indicator function. The final token is selected
as yj = argmaxv∈V cj(v), choosing the vocabulary token with the highest vote count across all
augmented predictions (Farina et al., 2024).

Most confident token method selects the token with the highest predicted probability across all
augmented inputs, yj = argmaxi,v pi,j(v). Since the predicted probability offers a noisy proxy for
confidence as shown by Guo et al. (2017), this approach effectively chooses the most confident token
across all augmentations (Hendrycks & Gimpel, 2017).

Table 7: Comparison of token-level aggregation
methods for test-time augmentation.

No
TTA

Most
Conf.

Maj.
Vote

EW
Av.

Simple
Av.

ChartQA 74.2 73.6 74.8 76.6 75.6
OCRBench 72.9 72.0 72.2 73.4 73.4
OCRVQA 0.0 3.5 9.0 11.4 11.8
GQA 0.0 6.1 3.4 4.3 5.8
TextVQA 73.2 70.5 71.5 73.3 72.8
AI2D 68.5 68.7 68.7 68.8 68.8
MME-RW 27.8 29.5 30.4 31.0 31.1
AMBER 68.7 72.3 71.4 74.6 75.4
COCO 9.1 14.2 18.4 14.6 15.9

Mean 43.8 45.6 46.6 47.6 47.9

The experimental results in Tab. 7 reveal that
averaging-based methods consistently outper-
form discrete voting approaches, challenging
the widespread adoption of majority voting
in established test-time scaling methods like
self-consistency (Wang et al., 2023b). This
performance hierarchy reflects fundamental
differences in handling prediction uncertainty
and model calibration: averaging-based ap-
proaches leverage continuous probability dis-
tributions from all augmented inputs, preserv-
ing valuable confidence information that dis-
crete methods discard, while the majority vot-
ing and the most confident selection rely on dis-
crete decisions from poorly calibrated predic-
tions (Achiam et al., 2023). Simple averaging
demonstrates superior robustness compared to
entropy-weighted averaging, suggesting that equal weighting provides better stability than confidence-
based weighting given the miscalibration issues in language models. But, confidence-based weighting
can be beneficial when the model’s internal confidence aligns well with true prediction quality.

Takeaway: Averaging-based aggregation outperforms discrete selection methods, with simple
averaging achieving the best overall performance. Continuous probability aggregation preserves
valuable uncertainty information that discrete voting methods discard.

D AGGREGATION IN EARLY LAYERS

To understand the optimal point for feature aggregation within the model architecture, we systemati-
cally evaluate aggregation at different transformer layers rather than exclusively at the final output
logits. Instead of averaging probability distributions from the final layer, we aggregate hidden repre-
sentations from intermediate layers and continue forward propagation through the remaining layers
using the aggregated features.

Formally, for aggregation at layer ℓ, we compute the averaged hidden states h̄ℓ,j =
1
N

∑N
i=1 hi,ℓ,j

across all N augmented inputs at generation step j, then feed this aggregated representation through
layers ℓ+ 1 to L to produce the final token probabilities. This approach investigates whether early
semantic representations or late linguistic features provide superior aggregation targets for multimodal
understanding.
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Figure 4: Performance across aggregation layers. Each subplot shows accuracy as a function of the
transformer layer where feature aggregation occurs. Different benchmarks exhibit distinct optimal
aggregation points: later layers favor language-heavy tasks (ChartQA, TextVQA), while earlier layers
benefit visual reasoning tasks (OCRVQA, GQA).

The experimental results in Fig. 4 reveal task-dependent variations in optimal aggregation layers,
exposing fundamental differences in how VLMs process multimodal information across different
reasoning types. Three distinct patterns emerge that reflect the hierarchical nature of multimodal
understanding in transformer architectures.

Late-layer preference for linguistic reasoning. Language-heavy benchmarks, including ChartQA,
OCRBench, and TextVQA, consistently achieve optimal performance when aggregating at later
layers (layers 18-24), with monotonic improvement as aggregation approaches the final output. This
pattern aligns with established findings from logit lens analysis (Nostalgebraist, 2020), where later
layers increasingly specialize in linguistic refinement and task-specific formatting. Recent work
by Chuang et al. (2024) demonstrates that factual knowledge progressively accumulates in higher
transformer layers, with later layers exhibiting stronger factual representations than earlier ones when
contrasted through layer-wise decoding strategies. This hierarchical knowledge encoding suggests
that deeper layers contain more refined and task-specific information essential for accurate linguistic
reasoning. For tasks requiring precise text extraction and numerical reasoning, the specialized
linguistic representations in deeper layers provide more reliable aggregation targets than earlier
semantic features.

Early-layer advantage for visual reasoning. Conversely, visually-intensive benchmarks like
OCRVQA and GQA demonstrate superior performance when aggregating at earlier layers (layers
6-12), with performance degrading as aggregation moves toward final layers. This counterintuitive
finding reflects the model’s information processing hierarchy: early layers capture rich multimodal
semantic representations before aggressive compression into linguistic tokens. Recent work on visual
information steering by Li et al. (2025c) reveals that visual information gradually attenuates through
transformer layers, with genuine visual tokens losing prominence as language priors dominate in
deeper layers. This gradual visual information loss phenomenon explains why early aggregation
preserves critical visual details that become diluted in later layers optimized for autoregressive text
generation. The early excitation pattern observed in multimodal models (Li et al., 2025c) further
supports this finding, showing that semantically meaningful visual tokens achieve peak activation in
penultimate or earlier layers rather than the final output layer. For tasks requiring complex visual
understanding and spatial reasoning, these early semantic representations retain critical visual details
that are progressively lost in later transformer layers.

Task-specific optimal points. Benchmarks like AI2D, AMBER, and COCO Captions exhibit
intermediate optimal points around layers 10-16, suggesting these tasks benefit from balanced
multimodal-linguistic representations. This intermediate optimum reflects the complex interplay
between visual understanding and linguistic expression required for these tasks. The non-monotonic
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patterns observed in several benchmarks indicate that aggregation timing must carefully balance
semantic richness against linguistic specificity. This finding resonates with the token ranking dy-
namics identified by Li et al. (2025c), who demonstrate that different token types (genuine visual vs.
hallucinated linguistic) achieve peak confidence at different layer depths, suggesting that optimal
aggregation strategies should account for the hierarchical emergence of multimodal information
processing patterns.

The observed layer preferences can be attributed to fundamental architectural properties of VLMs and
align with recent discoveries about information flow in transformer-based multimodal models. Early
layers primarily encode multimodal semantic relationships and spatial structures, while later layers
increasingly focus on autoregressive text generation and task-specific output formatting (Tenney et al.,
2019). This hierarchical specialization creates a trade-off: early aggregation preserves rich semantic
diversity, but may introduce inconsistencies in linguistic expression, while late aggregation ensures
coherent text generation, but may lose crucial semantic nuances. The dynamic contrastive decoding
work of Chuang et al. (2024) provides additional theoretical support for our findings, demonstrating
that factual knowledge evolves systematically across transformer layers, with different types of
information reaching peak reliability at distinct layer depths. Our layer-dependent aggregation results
extend these insights to the multimodal domain, revealing that visual and linguistic information
follow distinct developmental trajectories through the network architecture.

From a theoretical perspective, these findings suggest that optimal aggregation requires matching the
representational granularity to the task demands. Visual reasoning tasks benefit from the semantic
spaces of early layers, where diverse augmented views can provide complementary visual interpreta-
tions. Conversely, linguistic tasks require the refined representations of later layers, where augmented
inputs converge toward consistent textual expressions.

The practical implications are significant for deployment optimization. Rather than universally aggre-
gating at final layers, practitioners can achieve substantial improvements by selecting task-appropriate
aggregation points. This layer-aware aggregation strategy could be implemented adaptively, with the
aggregation layer selected based on task classification or learned through validation performance.
However, the computational overhead of this approach remains modest, as early aggregation actually
reduces computation by bypassing later layers for individual augmented inputs.

Notably, the average performance trend shows late-layer aggregation as generally superior, but
this global pattern obscures important task-specific exceptions where early aggregation provides
substantial benefits. This finding challenges the common assumption that final-layer representations
are universally optimal for test-time scaling and suggests that hierarchical aggregation strategies
could unlock further improvements in multimodal understanding.

Takeaway: Optimal aggregation layers depend critically on task type: language-heavy tasks benefit
from late-layer aggregation that preserves linguistic refinement, while visual reasoning tasks achieve
superior performance through early-layer aggregation that retains semantic richness. Task-adaptive
layer selection can provide substantial improvements over universal late-layer aggregation.

E COMPUTATIONAL OVERHEAD OF TTAUG

A critical consideration for deploying TTAug on resource-constrained devices is the computational
overhead introduced by processing multiple augmented inputs. We analyze two implementation strate-
gies that offer different trade-offs between memory usage and inference latency, enabling practitioners
to select the most suitable approach based on their hardware constraints and requirements.

Parallel implementation. In the parallel strategy, all N augmented inputs are processed simul-
taneously within a single forward pass by concatenating them into a larger batch. This approach
maximizes GPU utilization and minimizes wall-clock time by leveraging parallel computation capa-
bilities. The memory overhead scales linearly with the number of augmentations, as the model must
store activations for all inputs concurrently. Peak memory consumption increases substantially due
to the need to maintain intermediate representations for the entire augmented batch during forward
propagation.

Sequential implementation. The sequential approach processes each augmented input indepen-
dently in separate forward passes, accumulating token-level probability distributions for subsequent
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aggregation. While this strategy significantly reduces peak memory requirements by processing only
one augmentation at a time, it incurs higher latency due to the sequential nature of computation. The
modest memory increase observed in sequential processing primarily stems from the accumulation of
key-value cache states across multiple forward passes, which must be retained for faster generation.
Note that without such a key-value caching mechanism, the sequential implementation can run on
any platform capable of supporting the baseline small model, ensuring broad accessibility.
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Figure 5: Overhead in peak GPU memory usage and runtime for different numbers of augmentations,
comparing parallel and sequential implementation strategies.

The experimental results in Fig. 5 demonstrate distinct scaling behaviors for the two strategies,
measured on an NVIDIA A100 GPU. Parallel implementation exhibits substantial memory overhead
that grows approximately linearly with the number of augmentations, while sequential implementation
maintains relatively constant memory usage with only minor increases due to key-value cache
accumulation. Conversely, runtime overhead follows the opposite pattern: parallel processing
achieves near-constant inference time regardless of augmentation count, while sequential processing
incurs linear time penalties proportional to the number of augmentations.

These complementary trade-offs enable flexible deployment across diverse hardware configurations.
For applications with abundant GPU memory but strict latency constraints, parallel implementation
provides optimal performance. Conversely, memory-constrained environments benefit from sequential
processing, which maintains feasible memory footprints at the cost of increased inference time.
Practitioners can select the appropriate strategy based on their specific resource limitations and
performance requirements, with both approaches representing practical extremes of the memory-
latency trade-off spectrum.

While our computational overhead analysis was conducted exclusively on NVIDIA A100 GPUs,
the observed patterns are highly transferable across different hardware platforms. Peak memory
requirements remain platform-agnostic, determined by model architecture and batch size rather
than specific hardware. Similarly, the scaling behaviors and relative trade-offs between parallel and
sequential strategies exhibit consistent patterns across diverse configurations, confirming that the
provided analysis is sufficient for practitioners’ reference when deploying on different platforms.

Takeaway: Parallel implementation minimizes latency but requires substantial memory, while
sequential implementation conserves memory at the cost of increased runtime. The choice between
strategies depends on hardware constraints and application priorities.

F MULTIMODAL AUGMENTATION DECOMPOSITION

To understand the individual contributions of different modality-specific augmentations to our TTAug
framework, we conduct an ablation study that isolates the effects of text-only, image-only, and
combined multimodal augmentations. This analysis addresses a fundamental question in multimodal
test-time scaling: whether the benefits of joint augmentation can be decomposed into additive
components from individual modalities, or whether multimodal synergies introduce non-linear
interactions that exceed the sum of single-modal improvements.
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We design three experimental conditions to systematically evaluate modality-specific contributions.
In the text-only condition, we apply classical textual augmentations while keeping the input image
identical across all augmented samples. Conversely, the image-only condition applies classical visual
transformations while maintaining identical text prompts. The both condition applies augmentations
to both modalities simultaneously, representing our full TTAug framework. This decomposition
enables us to quantify the relative importance of each modality and assess whether multimodal
interactions produce emergent benefits beyond simple additive effects.
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Figure 6: Performance comparison across different augmentation strategies showing the relative
contributions of text-only, image-only, and combined multimodal augmentations. Each benchmark
demonstrates different sensitivity patterns to modality-specific augmentations, with text augmenta-
tions consistently providing larger improvements than image augmentations across most tasks.

The experimental results in Fig. 6 reveal several critical insights about multimodal augmentation
dynamics. First, combined multimodal augmentation consistently outperforms both single-modality
approaches across all benchmarks, demonstrating the value of joint augmentation strategies. However,
the magnitude of improvement varies substantially across different task types, suggesting that
multimodal synergies are task-dependent rather than universally additive.

Second, text-only augmentation emerges as the dominant contributor to performance gains, sub-
stantially outperforming image-only augmentation across most benchmarks. This asymmetry is
particularly pronounced on language-heavy benchmarks, where textual diversity appears more critical
for robust understanding than visual transformations.

Third, our analysis reveals that the combined effect exhibits non-linear characteristics that cannot be
predicted by simply summing the individual contributions of text-only and image-only augmentations.
On several benchmarks, the joint augmentation achieves improvements that exceed the arithmetic
sum of single-modality gains, indicating positive synergistic interactions between visual and textual
diversity. This non-linearity suggests that multimodal augmentation creates richer semantic spaces
that enhance the model’s ability to extract consistent signals across diverse input representations.

The observed modality asymmetry can be attributed to several fundamental architectural and rep-
resentational factors inherent to multimodal language models. First, multimodal language models
typically employ heavily compressed visual representations to maintain computational efficiency,
often reducing high-resolution images to low-dimensional feature vectors through aggressive pooling
or patch-based tokenization (Marafioti et al., 2025). These compression operations inherently filter
out fine-grained visual details that our image augmentations target, rendering subtle transformations
like brightness adjustments or minor rotations largely imperceptible to the model’s internal represen-
tations. Consequently, visual augmentations operate in a severely constrained semantic space where
meaningful diversity is difficult to achieve.

Second, our findings align with recent interpretability research demonstrating that when one modality
dominates the reasoning process, variations in the subordinate modality become largely irrelevant to
model outputs (Ben Melech Stan et al., 2024). In many of our benchmarks, the textual component
carries the primary semantic load, specifying the question type, reasoning requirements, and output
format, while the visual component provides supplementary information. This inherent task structure
naturally amplifies the impact of textual diversity while diminishing the influence of visual variations.

Third, the token-level architecture of multimodal language models creates an additional bias toward
textual processing. Since both visual and textual inputs are eventually projected into a shared token
space for text generation, the model’s training predominantly optimizes for linguistic coherence and
next-token prediction accuracy. This architectural choice inherently favors modalities that directly
influence the language generation process, explaining why textual augmentations, which directly
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modify the prompt structure and linguistic context, yield more substantial improvements than visual
transformations that must traverse multiple encoding layers before affecting token-level decisions.

The observed modality asymmetry has important implications for practical deployment. Since text
augmentation provides disproportionate benefits while requiring minimal computational overhead
compared to image processing, resource-constrained applications might prioritize textual diversity
generation over complex visual transformations. However, the non-additive nature of multimodal
interactions suggests that completely eliminating visual augmentation would sacrifice valuable
synergistic effects, supporting our unified approach that leverages both modalities while emphasizing
textual diversity. Future work might explore augmentation strategies that operate directly in the
compressed visual feature space or develop modality-aware weighting schemes that account for
task-specific dominance patterns.

Takeaway: Combined multimodal augmentation outperforms single-modality approaches through
non-linear synergistic effects. Text augmentations contribute more substantially than image augmen-
tations, but their combination produces emergent benefits that exceed simple additive predictions.

G DETAILED RESULTS FOR DIFFERENT MODELS

Table 8: Performance comparison across SmolVLM2 family models (256M, 500M, 2.2B parameters)
with no TTA, TTAug, and TTAdapt approaches.

SmolVLM2-256M SmolVLM2-500M SmolVLM2-2.2B

No
TTA

TT
Aug

TT
Adapt

No
TTA

TT
Aug

TT
Adapt

No
TTA

TT
Aug

TT
Adapt

ChartQA 65.1 59.4 55.1 64.1 64.8 65.5 74.2 76.1 76.7
OCRBench 56.7 53.3 50.3 61.0 60.0 57.6 72.9 73.7 70.5
OCRVQA 0.2 0.4 0.3 0.0 4.6 5.2 0.0 12.6 13.8
GQA 0.1 5.8 18.4 0.0 0.0 0.9 0.0 5.5 13.5
TextVQA 47.8 45.1 40.1 59.9 58.0 57.7 73.2 72.4 70.5
AI2D 37.0 35.4 34.0 56.6 55.3 52.1 68.5 69.6 67.4
MME-RW 21.0 21.4 20.7 27.6 27.6 27.2 27.8 31.9 31.4
AMBER 29.5 53.3 43.0 55.3 56.1 52.8 68.7 75.9 72.8
COCO 29.0 40.6 38.5 6.2 9.2 31.6 9.1 16.9 35.9

Mean 31.8 35.0 33.4 36.7 37.3 38.9 43.8 48.3 50.3

Table 9: TTAug performance across Ovis2 model family (1B, 2B, 4B, 9B) and InternVL2-1B.

Ovis2-1B Ovis2-2B Ovis2-4B Ovis2-9B InternVL2-1B

No
TTA

TT
Aug

No
TTA

TT
Aug

No
TTA

TT
Aug

No
TTA

TT
Aug

No
TTA

TT
Aug

ChartQA 80.4 81.6 86.6 85.9 87.6 87.8 87.4 87.9 72.1 72.1
OCRBench 88.8 84.9 87.3 86.0 91.2 89.2 89.2 87.2 75.7 75.1
OCRVQA 74.3 70.5 76.7 73.1 80.2 76.9 79.3 78.7 43.3 42.0
GQA 30.0 54.3 34.5 58.7 40.5 55.7 59.4 64.2 52.0 51.3
TextVQA 79.2 77.2 78.8 79.5 83.5 83.9 83.1 84.0 69.6 67.6
AI2D 76.5 73.3 81.9 82.2 84.9 84.5 87.1 87.2 52.8 52.6
MME-RW 35.5 35.6 38.6 40.5 45.7 44.1 45.7 46.5 13.5 13.3
AMBER 76.1 73.8 84.9 85.9 87.4 87.4 87.3 89.8 72.6 75.7
COCO 22.7 13.7 17.3 13.1 14.0 12.5 13.8 13.3 17.2 24.6

Mean 62.6 62.8 65.2 67.2 68.3 69.1 70.3 71.0 52.1 52.7

Note that TTAdapt method is not implemented for Ovis2 and InternVL model families due to practical
constraints; the Unsloth library does not currently support those model families yet.
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Table 10: Evaluation on diverse baseline models for ref-
erence. These models are evaluated without our meth-
ods just to establish performance baselines across differ-
ent architectures. Baseline results are shown in Fig. 7.

Pali
Gemma

xGen
-MM

LLaVA
-OV

Molmo
-D

Idefics
2

Janus
-Pro

ChartQA 40.7 65.0 72.3 85.8 31.6 31.0
OCRBench 61.4 55.5 61.2 66.3 63.4 58.9
OCRVQA 61.2 70.7 69.5 44.9 0.0 2.5
GQA 61.5 60.2 62.5 55.1 0.0 13.7
TextVQA 70.7 72.8 60.8 81.5 72.6 55.0
AI2D 67.9 73.5 78.2 80.7 72.2 67.5
MME-RW 25.4 35.1 31.1 36.8 34.3 23.4
AMBER 84.9 82.1 84.4 85.0 85.4 74.8
COCO 45.9 15.7 13.9 12.1 24.4 18.0

Mean 57.7 59.0 59.3 60.9 42.7 38.3
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Figure 7: Performance improvements
across different models. Each point repre-
sents a different model-strategy pair; x-axis
shows model parameter size (B) using asinh
scaling, and y-axis shows accuracy (%).

H SMALL VISION-LANGUAGE MODELS

The Transformer architecture (Vaswani et al., 2017) revolutionized language modeling, enabling
models like BERT (Devlin et al., 2019) through bidirectional pretraining and GPT (Radford et al.,
2019; Brown et al., 2020) via autoregressive generation. These foundational advances led to large-
scale models such as GPT-3 (Brown et al., 2020) with human-like text generation abilities. More
recent developments have emphasized efficiency, with LLaMA (Touvron et al., 2023) demonstrating
that smaller, well-trained models can outperform earlier, larger counterparts. Open-source families
including Qwen (Bai et al., 2023), InternLM (Team, 2023), and Gemma (Team, 2024) further
expanded access to capable language models. In the multimodal domain, CLIP (Radford et al., 2021)
introduced contrastive vision-language pretraining, facilitating strong zero-shot visual understanding.
This inspired the integration of vision encoders with LLMs to produce multimodal large language
models, such as GPT-4V (Achiam et al., 2023), LLaVA (Liu et al., 2023), Qwen-VL (Bai et al., 2023),
and InternVL (Chen et al., 2024b). Notably, Molmo (Deitke et al., 2025) provides transparency by
releasing full training data and evaluation protocols. Recently, the emergence of small vision-language
models or multimodal small language models, models under 10B parameters, has shifted attention
toward efficient, accessible architectures suitable for edge deployment. Examples include Ovis2 (Lu
et al., 2025), InternVL2 (Chen et al., 2024b), Janus-Pro (Chen et al., 2025), Idefics2 (Laurençon
et al., 2024), LLaVA-OneVision (Li et al., 2025a), Molmo (Deitke et al., 2025), XGen-MM (Xue
et al., 2024), PaliGemma (Beyer et al., 2024), and the SmolVLM family (Marafioti et al., 2025), with
models as small as 256M parameters. These compact models achieve competitive performance on
vision-language benchmarks while significantly reducing computational cost, making them attractive
for real-world, resource-constrained applications. They offer compelling advantages for practical
deployment: they enable inference on consumer GPUs and edge devices, support privacy-preserving
local processing, and demonstrate superior cost-performance ratios for specialized tasks (Belcak
et al., 2025). But, their limited parameter capacity makes them particularly vulnerable to domain
shifts, various biases, and distribution mismatches at inference time.

I IMPLEMENTATION DETAILS

I.1 SELF-SELECTOR

Self-selector uses the tested VLM itself as a verifier to select one response among the candidates
(Chen et al., 2024a; Parmar et al., 2025). We enforce the VLM to choose between available indices
ranging from 0 to the number of augmentations. Since small VLMs are not capable of reliably
following this constrained output behavior through prompt engineering alone, we employ structured
generation techniques to guarantee valid responses. We use the Outlines library (Willard & Louf,
2023) for structured generation. We use the prompt given below:
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Prompt

"{input_question}"
Different people answered this question in different ways. Select the best response from these
candidate answers:
{responses}
Just return the index of the best response. Return an integer between 0 and {n_aug}.

I.2 SELF-SYNTHESIZER

Self-synthesizer method uses the tested VLM to aggregate responses into one coherent final answer
(Li et al., 2025d; Jiang et al., 2023; Wang et al., 2025a; Li et al., 2025b). We use the prompt given
below:

Prompt

"{input_question}"
Different people answered this question in different ways. Combine these responses into a single,
coherent and accurate answer:
{responses}
Just return the final answer.

I.3 SELF-PARAPHRASING

Self-paraphrasing uses the text backbone of the tested VLM to paraphrase the input prompt. Since
the model is not good enough to do this in one shot, we split the prompt into sentences and feed each
sentence to the model to paraphrase using structured generation to get a fixed number of paraphrases.
After that, we concatenate all paraphrased sentences to get the final paraphrased prompt. This
approach maintains consistency with the target model’s internal linguistic patterns while remaining
self-contained. We use the prompt given below:

Prompt

You are an expert paraphraser.
Your task is to paraphrase input text without changing its meaning. Keep the details and core
content. Generate {n_aug} paraphrased versions.
Return your output as a JSON object with the key "paraphrases", mapped to a list of {n_aug}
unique paraphrased versions.
Now, paraphrase the following text:

Since small VLMs are not capable of paraphrasing complex long prompts reliably in one shot, we first
split the input text into individual sentences using spaCy (Honnibal et al., 2020) for sentence splitting.
We then paraphrase each sentence independently. Also, since small VLMs are not capable of reliably
following a constrained output behavior, outputting the exact number of paraphrases, through prompt
engineering alone, we employ structured generation techniques to guarantee valid responses. We use
a JSON schema that enforces an output with exactly desired number of paraphrases.

After obtaining paraphrases for each sentence independently, we compute the Cartesian product
across all sentence-level paraphrase sets to generate diverse combinations of the complete prompt.
This approach produces final paraphrased prompts by systematically combining different paraphrased
versions of each sentence, ensuring both local sentence-level diversity and global prompt-level
variation while maintaining semantic consistency.
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I.4 CLASSICAL IMAGE AUGMENTATIONS

We implement classical image augmentations using the Albumentations library (Buslaev et al.,
2020). For each input image, we randomly select three transformations from our predefined set
and apply them sequentially through a composed transformation pipeline. This random selection
approach ensures diverse augmentation combinations while maintaining computational efficiency.
The predefined sets for different augmentation strengths are given below.

High

A.RandomBrightnessContrast(p=0.6),
A.SafeRotate(limit=20, p=0.6, border_mode=cv2.BORDER_CONSTANT,

fill=144),↪→
A.GaussianBlur(blur_limit=(3, 7), p=0.6),
A.CLAHE(p=0.5),
A.RandomGamma(p=0.6),
A.HueSaturationValue(p=0.6),
A.RandomScale(scale_limit=0.1, p=0.6),
A.RGBShift(p=0.6),
A.MedianBlur(blur_limit=3, p=0.6),
A.ImageCompression(quality_range=(85, 95), p=0.45),
A.Sharpen(p=0.6),
A.PlanckianJitter(),
A.RandomFog(alpha_coef=0.15),
A.RandomToneCurve(),
A.Emboss(),
A.GridDistortion(),
A.Perspective(scale=0.05, fit_output=True),
A.GridDropout(ratio=0.25, random_offset=True, fill=144, p=0.66),
A.CoarseDropout(fill=144, p=0.7),

Medium

A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
A.SafeRotate(limit=15, border_mode=cv2.BORDER_CONSTANT, fill=144),
A.GaussianBlur(blur_limit=(3, 7), p=0.5),
A.CLAHE(clip_limit=3.0, p=0.4),
A.RandomGamma(gamma_limit=(80, 120), p=0.5),
A.HueSaturationValue(hue_shift_limit=15, sat_shift_limit=15,

val_shift_limit=15, p=0.5),↪→
A.RandomScale(scale_limit=0.08, p=0.5),
A.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15),
A.MedianBlur(blur_limit=3, p=0.5),
A.ImageCompression(quality_range=(85, 95), p=0.35),
A.Sharpen(alpha=(0.2, 0.5), lightness=(0.6, 1.0), p=0.5),
A.PlanckianJitter(p=0.5),
A.RandomFog(alpha_coef=0.1, p=0.3),
A.RandomToneCurve(scale=0.2, p=0.5),
A.Emboss(alpha=(0.2, 0.5), strength=(0.5, 0.7), p=0.5),
A.GridDistortion(num_steps=5, distort_limit=0.2, p=0.5),
A.Perspective(scale=0.03, fit_output=True, p=0.5),
A.GridDropout(ratio=0.25, random_offset=True, fill=144, p=0.6),
A.CoarseDropout(fill=144, p=0.5),
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Low

A.RandomBrightnessContrast(brightness_limit=0.1, contrast_limit=0.1,
p=0.3),↪→

A.SafeRotate(limit=10, p=0.3, border_mode=cv2.BORDER_CONSTANT,
fill=144),↪→

A.GaussianBlur(blur_limit=(3, 5), p=0.3),
A.CLAHE(clip_limit=2.0, p=0.3),
A.RandomGamma(gamma_limit=(90, 110), p=0.3),
A.HueSaturationValue(hue_shift_limit=10, sat_shift_limit=10,

val_shift_limit=10, p=0.3),↪→
A.RandomScale(scale_limit=0.05, p=0.3),
A.RGBShift(r_shift_limit=10, g_shift_limit=10, b_shift_limit=10,

p=0.3),↪→
A.MedianBlur(blur_limit=3, p=0.3),
A.ImageCompression(quality_range=(85, 95), p=0.25),
A.Sharpen(alpha=(0.1, 0.3), lightness=(0.7, 1.0), p=0.3),
A.PlanckianJitter(p=0.3),
A.RandomFog(alpha_coef=0.05, p=0.2),
A.RandomToneCurve(scale=0.1, p=0.3),
A.Emboss(alpha=(0.1, 0.3), strength=(0.3, 0.5), p=0.3),
A.GridDistortion(num_steps=5, distort_limit=0.1, p=0.3),
A.Perspective(scale=0.02, fit_output=True, p=0.3),

I.5 GENERATIVE IMAGE AUGMENTATIONS

Generative augmentations use FLUX.1-dev (Labs et al., 2025) to create semantically similar but
visually distinct image variants. We employ an image-to-image pipeline that, unlike traditional flow
matching which starts from random noise, begins denoising from a fixed intermediate timestep with a
noisy version of the input image. This approach preserves semantic similarity to the original while
introducing visual diversity through the prompt "realistic image."

However, even recent generative models struggle with creating images containing textual ele-
ments (Bosheah & Bilicki, 2025). Therefore, our approach excludes text-containing images to
prevent OCR corruption, using Tesseract for text detection (Smith, 2007). Two key hyperparameters
control the generation process: strength (chosen as 0.25) determines the initial denoising timestep,
lower values preserve more of the original image structure, and guidance scale (chosen as 3.0)
controls the classifier-free guidance parameter.

While this method produces diverse and consistent image variations, it requires external diffusion
models and significant computation budget. It is not practical for resource-constrained deployments.

I.6 AGGREGATION WEIGHTS OPTIMIZATION

Aggregation weights optimization learns adaptive token-wise weights wi,j to replace the uni-
form averaging scheme in Eq. 2. At each generation step j, we initialize learnable parameters
as wj ∈ RN and optimize them through gradient descent to minimize the marginal entropy
H(p̄j) = −

∑
v∈V p̄j(v) log p̄j(v) of the weighted aggregated distribution. The optimization em-

ploys AdamW with adaptive learning rates and gradient clipping for stability, performing multiple
micro-steps per token to achieve convergence. This approach requires minimal computational
overhead with a compact computational graph, making it suitable for real-time deployment.

Optimization Parameters. We use the AdamW optimizer with an initial learning rate of 1× 10−2

and weight decay of 1× 10−4. The aggregation weights wj are initialized uniformly as wi,j = 1/N
where N is the number of augmentations. We perform 20 optimization micro-steps per token
generation step to ensure convergence of the entropy minimization objective. We reinitialize the
aggregation weights before processing each new question to ensure independent optimization across
different inputs.

Gradient Clipping. To maintain training stability, we apply gradient clipping with a maximum norm
of 1.0. This prevents gradient explosion during the iterative optimization process.
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Numerical Stability. We add a small epsilon value of 1× 10−12 to the logarithm computation in
the entropy calculation to prevent numerical instabilities when probabilities approach zero. The
softmax temperature is kept at the default value of 1.0. At each optimization step, we apply softmax
normalization to the raw learnable parameters to ensure the weights sum to 1: wi,j =

exp(θi,j)∑N
k=1 exp(θk,j)

where θi,j are the raw learnable parameters.

Computational Efficiency. The optimization process uses detached probability distributions from
the forward pass to prevent gradients from flowing back through the entire model, maintaining the
compact computational graph.

I.7 MODEL PARAMETER ADAPTATION

Model parameter adaptation (TTAdapt) performs iterative fine-tuning during inference using pseu-
dolabels generated from TTAug consensus. The method employs full parameter fine-tuning with
gradient checkpointing for memory efficiency and implements a three-stage iterative loop: pseudola-
bel generation, parameter updates, and weight reset between questions.

Training Configuration. We use the AdamW optimizer in the Unsloth (AI et al., 2025) library. The
learning rate is set to 2× 10−6 with a cosine learning rate scheduler and 5 warmup steps. We apply
weight decay of 0.01 for regularization and perform 6 training steps per pseudolabel iteration with a
batch size of 64 and gradient accumulation steps of 2.

Iterative Adaptation Process. We perform 3 pseudolabel iterations per question. Each iteration
generates pseudolabels using the current model state with TTAug consensus (average aggregation),
then fine-tunes the model parameters using these pseudolabels as supervision. The final iteration
generates the output without additional training to prevent overfitting.

Resetting Weights. A fundamental challenge in continual test-time adaptation is catastrophic
forgetting (Niu et al., 2022; Wang et al., 2022), where models suffer severe performance degradation
on original training samples after adaptation. During sample-by-sample adaptation to test streams,
models can lose important information through unsupervised learning, causing rare domains to
disappear while abundant ones dominate. One solution involves episodic adaptation, which means
restarting from the original model for each sample rather than continual learning. Thus, in our
method, model parameters are reset to their initial state before processing each new question to
prevent catastrophic forgetting.

I.8 IMPLEMENTATION DETAILS FOR TTAUG

TTAug implementation requires careful integration with the model’s generation pipeline to enable
efficient token-level aggregation while preserving KV caching and other optimization features. We
achieve this through dynamic method patching that intercepts the sampling process without disrupting
the underlying generation mechanics.

Monkey patching is critical for KV cache compatibility. We override the model’s _sample method
to inject our aggregation logic while maintaining compatibility with existing optimizations. The
patched method preserves the original sampling interface but intercepts logits before token selection
to perform aggregation across augmented inputs:

The modified sampling method extracts logits from multiple augmented forward passes, applies
the specified aggregation strategy (uniform averaging, learned weights, or entropy optimization),
and returns aggregated token selections. This approach enables seamless integration with existing
generation pipelines, including beam search, nucleus sampling, and temperature scaling.

Our implementation leverages KV caching by processing augmented inputs in batches and sharing
cached key-value pairs across the prefix tokens. The aggregation computation adds minimal overhead
as it operates only on the final logits rather than intermediate representations, maintaining the model’s
inference speed while enabling test-time adaptation.

The patched method maintains full compatibility with the Transformer (Wolf et al., 2020) library’s
generation utilities, preserving advanced sampling techniques such as top-k, top-p, and temperature
scaling. The aggregation occurs at the logit level before these sampling strategies are applied, ensuring
that the enhanced diversity from TTAug benefits from sophisticated decoding procedures.
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J EVALUATION METRICS DETAILS

We provide detailed mathematical formulations for the evaluation metrics used across all benchmarks
in our study. We carefully selected nine benchmarks from VLMEvalKit (Duan et al., 2024) to ensure
representative, reliable, and reproducible evaluation while maintaining computational feasibility for
our extensive ablation studies. Our selection prioritizes benchmarks with objective evaluation metrics
(visual question answering, multiple-choice questions, yes/no questions, and captioning tasks) over
LLM-as-a-judge approaches, which suffer from model bias and lack reproducibility. We exclude
text-dominant benchmarks as well as specialized benchmarks focused on specific domains. The
selected benchmarks represent diverse visual reasoning capabilities.

J.1 EXACT STRING MATCHING (OCRVQA, GQA)

For datasets requiring exact string correspondence, we define the accuracy metric as:

Accuracy =
1

N

N∑
i=1

I[ŷi = yi] (4)

where ŷi is the predicted answer and yi is the ground truth answer.

J.2 VQA SCORE WITH INTER-ANNOTATOR AGREEMENT (TEXTVQA)

Following the standard VQA evaluation protocol that accounts for multiple valid answers and
inter-annotator variability:

VQA Score =
1

N

N∑
i=1

1

|Ai|

|Ai|∑
k=1

min

1,
1

3

|Ai|∑
j=1
j ̸=k

I[ŷi = yi,j ]

 (5)

where Ai is the set of ground truth answers for question i, yi,j represents the j-th ground truth
answer, and k indexes through each ground truth answer to simulate the leave-one-out evaluation
process. For each answer yi,k, we count how many of the remaining annotators (j ̸= k) would
agree with a prediction matching that answer. The factor 1

3 reflects the standard VQA scoring that
considers an answer correct if at least 3 out of |Ai| annotators agree. In order to be consistent with
"human accuracies", machine accuracies are averaged over all

( |Ai|
|Ai|−1

)
sets of human annotators

with leave-one-out evaluation process.

J.3 RELAXED STRING MATCHING (CHARTQA)

For numerical and chart-based questions requiring approximate matching:

Relaxed Accuracy =
1

N

N∑
i=1

max
j∈Ai

R(ŷi, yi,j) (6)

where Ai is the set of acceptable answers for question i, andR(ŷ, y) is defined as:

R(ŷ, y) =

{
I
[
|vŷ−vy|

|vy| ≤ 0.05
]

if both are numeric

I[ŷ = y] otherwise
(7)

where vŷ and vy represent the numerical values extracted from the predicted and ground truth answers,
respectively.

J.4 SUBSTRING CONTAINMENT MATCHING (OCRBENCH)

OCRBench evaluates text recognition performance using substring containment matching:

Accuracy =
1

N

N∑
i=1

max
j∈Ai

I[yi,j ⊆ ŷi] (8)

whereAi represents the set of acceptable answers for question i, and⊆ denotes substring containment.
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J.5 MULTIPLE-CHOICE AND YES/NO EXTRACTION (MME-REALWORLD, AI2D, AMBER)

For multiple-choice and yes/no questions, we extract the choice label from predictions and perform
exact matching:

Accuracy =
1

N

N∑
i=1

I[li = ci] (9)

where ci ∈ {A,B,C,D, ...} or {yes, no} is the correct choice label for question i, and li is the
extracted choice label from the predicted answer ŷi.

J.6 ROUGE-L EVALUATION (COCO CAPTIONS)

We evaluate captioning quality using ROUGE-L, which measures the longest common subsequence
between predicted and reference captions:

ROUGE-L =
2 · PLCS ·RLCS

PLCS +RLCS
(10)

where the precision and recall are defined as:

PLCS =
|LCS(ŷ, y)|
|ŷ|

(11)

RLCS =
|LCS(ŷ, y)|
|y|

(12)

and LCS(ŷ, y) computes the longest common subsequence between the predicted caption ŷ and
reference caption y, with | · | denoting sequence length.

For multiple reference captions, we compute ROUGE-L against each reference and take the maximum
score:

ROUGE-Lmulti = max
j∈Ri

ROUGE-L(ŷi, yi,j) (13)

whereRi is the set of reference captions for image i.

J.7 IMPLEMENTATION NOTES

All text preprocessing follows consistent normalization procedures: (1) converting to lowercase, (2)
stripping leading and trailing whitespace, (3) replacing multiple consecutive spaces with single spaces,
and (4) removing newline characters where appropriate. For mathematical expressions in OCRBench,
additional preprocessing removes all whitespace to handle formatting variations. For ChartQA
relaxed matching, numerical values are extracted by handling percentage symbols (converting "X%"
to X/100) and parsing floating-point numbers. For multiple-choice extraction in MME-RealWorld
and AI2D, choice labels are identified using regular expressions that match single uppercase letters
(A-Z) appearing in isolation or with minimal surrounding punctuation. For detailed implementation
specifics and evaluation protocols, refer to VLMEvalKit (Duan et al., 2024).

K STANDARD ERROR VALUES

This appendix presents the standard error values corresponding to all experimental results reported
in the main text tables. We calculate all reported standard errors using the empirical variance of
the observed per-sample scores s1, . . . , sn. Let s̄ = 1

n

∑
i si denote the sample mean. This average

accuracy is the value reported in the main text tables. Following the Central Limit Theorem, the
corresponding standard error is estimated as

SEC.L.T. =
√
Var(s)/n =

√√√√( 1

n− 1

∑
i

(si − s̄)2

)
/n.
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Table 11: Comparison of our TTAug method against existing test-time scaling methods. Our method
outperforms all others across accuracy and efficiency metrics.

(a) Mean accuracy values

B
as

el
in

e Others Ours

1 2 3 4 5

ChartQA 74.2 74.4 73.4 72.5 71.7 75.6
OCRBench 72.9 72.6 71.9 70.2 71.9 73.4
OCRVQA 0.0 0.0 0.0 0.0 0.2 11.8
GQA 0.0 0.0 0.0 0.0 0.0 5.8
TextVQA 73.2 72.6 71.6 69.5 72.0 72.8
AI2D 68.5 3.1 69.2 69.1 67.4 68.8
MME-RW 27.8 26.2 26.4 27.6 27.6 31.1
AMBER 68.7 70.4 64.5 53.5 67.8 75.4
COCO 9.1 8.2 8.4 6.2 16.7 15.9

Mean 43.8 36.4 42.8 41.0 43.9 47.9

(b) Standard error values

B
as

el
in

e Others Ours

1 2 3 4 5

ChartQA 1.4 1.4 1.4 1.4 1.4 1.4
OCRBench 1.4 1.4 1.4 1.4 1.4 1.4
OCRVQA 0.0 0.0 0.0 0.0 0.1 1.0
GQA 0.0 0.0 0.0 0.0 0.0 0.7
TextVQA 1.3 1.3 1.4 1.4 1.3 1.3
AI2D 1.5 0.5 1.5 1.5 1.5 1.5
MME-RW 1.4 1.4 1.4 1.4 1.4 1.5
AMBER 1.5 1.4 1.5 1.6 1.5 1.4
COCO 0.1 0.1 0.1 0.1 0.4 0.3

Mean 0.4 0.3 0.4 0.4 0.4 0.4

Table 12: Comparison of diversity-inducement methods compared to the Baseline. Input Perturbation
outperforms Temperature Sampling.

(a) Mean accuracy values

B
as

el
in

e Temperature
Sampling

Input
Perturbation

1 2 1 2

ChartQA 74.2 74.4 73.4 74.8 70.9
OCRBench 72.9 72.6 71.9 72.7 73.1
OCRVQA 0.0 0.0 0.0 12.0 4.5
GQA 0.0 0.0 0.0 7.6 3.7
TextVQA 73.2 72.6 71.6 72.3 72.9
AI2D 68.5 3.1 69.2 3.6 66.6
MME-RW 27.8 26.2 26.4 30.8 29.6
AMBER 68.7 70.4 64.5 72.7 67.0
COCO 9.1 8.2 8.4 21.2 13.0

Mean 43.8 36.4 42.8 40.9 44.6

(b) Standard error values

B
as

el
in

e Temperature
Sampling

Input
Perturbation

1 2 1 2

ChartQA 1.4 1.4 1.4 1.4 1.4
OCRBench 1.4 1.4 1.4 1.4 1.4
OCRVQA 0.0 0.0 0.0 1.0 0.7
GQA 0.0 0.0 0.0 0.8 0.6
TextVQA 1.3 1.3 1.4 1.3 1.3
AI2D 1.5 0.5 1.5 0.6 1.5
MME-RW 1.4 1.4 1.4 1.5 1.4
AMBER 1.5 1.4 1.5 1.4 1.5
COCO 0.1 0.1 0.1 0.4 0.3

Mean 0.4 0.3 0.4 0.4 0.4

Table 13: Comparison of Answer-level versus Token-level aggregation methods. Token-level aggre-
gation outperforms all other approaches.

(a) Mean accuracy values

B
as

el
in

e Answer-level Token

1 2 3 4 5

ChartQA 74.2 74.8 70.9 61.1 72.8 75.6
OCRBench 72.9 72.7 73.1 60.9 71.1 73.4
OCRVQA 0.0 12.0 4.5 0.2 3.3 11.8
GQA 0.0 7.6 3.7 0.0 0.0 5.8
TextVQA 73.2 72.3 72.9 61.6 71.6 72.8
AI2D 68.5 3.6 66.6 69.9 68.0 68.8
MME-RW 27.8 30.8 29.6 29.0 29.2 31.1
AMBER 68.7 72.7 67.0 58.9 75.8 75.4
COCO 9.1 21.2 13.0 8.6 29.5 15.9

Mean 43.8 40.9 44.6 38.9 46.8 47.9

(b) Standard error values

B
as

el
in

e Answer-level Token

1 2 3 4 5

ChartQA 1.4 1.4 1.4 1.5 1.4 1.4
OCRBench 1.4 1.4 1.4 1.5 1.4 1.4
OCRVQA 0.0 1.0 0.7 0.1 0.6 1.0
GQA 0.0 0.8 0.6 0.0 0.0 0.7
TextVQA 1.3 1.3 1.3 1.5 1.4 1.3
AI2D 1.5 0.6 1.5 1.5 1.5 1.5
MME-RW 1.4 1.5 1.4 1.4 1.4 1.5
AMBER 1.5 1.4 1.5 1.6 1.4 1.4
COCO 0.1 0.4 0.3 0.1 0.6 0.3

Mean 0.4 0.4 0.4 0.4 0.4 0.4
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Table 14: Comparison of text augmentation strategies. Self-Paraphrasing 2 and Classical Augmen-
tations 3 consistently perform best.

(a) Mean accuracy values

B
as

el
in

e
0 1 2 3 4

ChartQA 74.2 74.7 76.9 76.6 76.1 71.4
OCRBench 72.9 73.3 73.5 72.8 73.7 70.6
OCRVQA 0.0 0.0 2.6 0.0 12.6 0.0
GQA 0.0 0.0 0.0 0.0 5.5 31.2
TextVQA 73.2 74.2 73.5 74.0 72.4 63.9
AI2D 68.5 69.8 69.9 68.4 69.6 63.9
MME-RW 27.8 26.6 30.0 25.9 31.9 32.1
AMBER 68.7 64.7 68.8 72.9 75.9 60.0
COCO 9.1 8.4 20.6 46.2 16.9 13.2

Mean 43.8 43.5 46.2 48.5 48.3 45.1

(b) Standard error values

B
as

el
in

e

0 1 2 3 4

ChartQA 1.4 1.4 1.3 1.3 1.3 1.4
OCRBench 1.4 1.4 1.4 1.4 1.4 1.4
OCRVQA 0.0 0.0 0.5 0.0 1.0 0.0
GQA 0.0 0.0 0.0 0.0 0.7 1.5
TextVQA 1.3 1.3 1.3 1.3 1.3 1.4
AI2D 1.5 1.5 1.5 1.5 1.5 1.5
MME-RW 1.4 1.4 1.4 1.4 1.5 1.5
AMBER 1.5 1.5 1.5 1.4 1.4 1.5
COCO 0.1 0.1 0.4 0.5 0.3 0.2

Mean 0.4 0.4 0.4 0.4 0.4 0.4

Table 15: Comparison across different image augmentation strategies. Classical Augmentations L ,
H perform the best.

(a) Mean accuracy values

B
as

el
in

e

0 L M H 2 3

ChartQA 74.2 75.8 77.0 76.4 76.1 74.1 75.7
OCRBench 72.9 73.1 73.7 73.3 73.7 72.4 65.3
OCRVQA 0.0 13.5 12.1 10.6 12.6 12.9 12.0
GQA 0.0 2.0 4.1 3.7 5.5 3.1 2.5
TextVQA 73.2 73.0 72.6 73.3 72.4 72.4 71.6
AI2D 68.5 68.1 69.1 69.0 69.6 68.9 67.0
MME-RW 27.8 31.6 31.8 32.5 31.9 32.1 31.1
AMBER 68.7 77.3 77.0 75.9 75.9 77.3 76.2
COCO 9.1 19.0 17.8 17.1 16.9 17.8 18.0

Mean 43.8 48.2 48.3 48.0 48.3 47.9 46.6

(b) Standard error values
B

as
el

in
e

0 L M H 2 3

ChartQA 1.4 1.4 1.3 1.3 1.3 1.4 1.4
OCRBench 1.4 1.4 1.4 1.4 1.4 1.4 1.5
OCRVQA 0.0 1.1 1.0 1.0 1.0 1.1 1.0
GQA 0.0 0.4 0.6 0.6 0.7 0.5 0.5
TextVQA 1.3 1.3 1.3 1.3 1.3 1.3 1.4
AI2D 1.5 1.5 1.5 1.5 1.5 1.5 1.5
MME-RW 1.4 1.5 1.5 1.5 1.5 1.5 1.5
AMBER 1.5 1.3 1.3 1.4 1.4 1.3 1.3
COCO 0.1 0.3 0.3 0.3 0.3 0.3 0.3

Mean 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Table 16: Performance comparison of test-time adaptation strategies. Model parameter adaptation 2
yields the best performance.

(a) Mean accuracy values

Baseline TTAug 1 2

ChartQA 74.2 76.1 76.1 76.7
OCRBench 72.9 73.7 73.0 70.5
OCRVQA 0.0 12.6 11.9 13.8
GQA 0.0 5.5 5.2 13.5
TextVQA 73.2 72.4 74.2 70.5
AI2D 68.5 69.6 69.7 67.4
MME-RW 27.8 31.9 30.9 31.4
AMBER 68.7 75.9 76.9 72.8
COCO 9.1 16.9 16.4 35.9

Mean 43.8 48.3 48.3 50.3

(b) Standard error values

Baseline TTAug 1 2

ChartQA 1.4 1.3 1.3 1.3
OCRBench 1.4 1.4 1.4 1.4
OCRVQA 0.0 1.0 1.0 1.1
GQA 0.0 0.7 0.7 1.1
TextVQA 1.3 1.3 1.3 1.4
AI2D 1.5 1.5 1.5 1.5
MME-RW 1.4 1.5 1.5 1.5
AMBER 1.5 1.4 1.3 1.4
COCO 0.1 0.3 0.3 0.4

Mean 0.4 0.4 0.4 0.4
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L QUALITATIVE RESULTS

Both classical text augmentations (Sec. 4.5) and classical image augmentations with high strength
(Sec. 4.6) are applied, with 16 augmentations per sample. Thus, the shown cases correspond to
samples underlying the quantitative results in Sec. 4.7.

ChartQA

Original Inputs Augmented Prompts

Which country had the most visitors to Italy in
2018?

Augmented Input Images

Prompt 0: <|im_start|>User:<image>For the question below, follow the following
instructions:
-The answer should contain as few words as possible.
-Don't paraphrase or reformat the text you see in the image.
-Answer a binary question with Yes or No.
-When asked to give a numerical value, provide a number like 2 instead of Two.
-If the final answer has two or more items, provide it in the list format like
[1, 2].
-When asked to give a ratio, give out the decimal value like 0.25 instead of
1:4.
-When asked to give a percentage, give out the whole value like 17 instead of
decimal like 0.17%.
-Don't include any units in the answer.
-Do not include any full stops at the end of the answer.
-Try to include the full label from the graph when asked about an entity.
Question: Whish countrg had the mo st vi sitors to I ta>y in 2 018? Ans wer the
question using a s ingle w ord or phrase. In other words, Which country had the
most visitors to Italy in 2018?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 1: [... truncated, same as Prompt 0 ...]
Question: Which couJtry had the m ost vis itors to Italy in 2 018? Answ er the
question usi ng a si nble w ord or pbrase. In other words, Which country had
the most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 2: [... truncated, same as Prompt 0 ...]
Question: Which coun try had the mo st v isitors to It aly in 20 18? Ans wer
the quest ion usiMg a s7ngle woTd or phrase. In other words, Which country had
the most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 3: [... truncated, same as Prompt 0 ...]
Question: Whi ch co untry had the mLst visitors to I taly in 2 018? Answer the q
uesyion using a eing le word or phr ase. In other words, Which country had the
most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 4: [... truncated, same as Prompt 0 ...]
Question: Wh ich country had the most visitors to Ita ly in 20 18? Answer the
que ction usinn a s inglW w ord or p hrase. In other words, Which country had
the most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 5: [... truncated, same as Prompt 0 ...]
Question: Wh ich country had the mo st vi siRors to Italy in 2 018? A jswer the
question u sing a eingle word or phr ase. In other words, Which country had the
most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 6: [... truncated, same as Prompt 0 ...]
Question: Wh ich c ountry had the mo st visi tors to Italy in 2 018? Answer the
quesRion usi ng a sing?e Dord or p hrase. In other words, Which country had the
most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 7: [... truncated, same as Prompt 0 ...]
Question: Which country had the mo st v isitors to Ita ly in W018? AnWwer the
quest ion ising a s ingle w ord or phr ase. In other words, Which country had
the most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 8: [... truncated, same as Prompt 0 ...]
Question: Which country had the mo st visitors to I raly in 20 18? Ajsw er the
questi on usinb a sin gle wo rd or phrase. In other words, Which country had
the most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 9: [... truncated, same as Prompt 0 ...]
Question: Wh ich cou ntry had the most visitors to Ita ly in 2018? Answer the
qu estipn us(ng a eing le w ord or p hrase. In other words, Which country had
the most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 10: [... truncated, same as Prompt 0 ...]
Question: Wnich cou ntry had the m ost visitors to Italy in 20 18? An sAer the
question usiBg a si ngle w ord or p hrase. In other words, Which country had
the most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 11: [... truncated, same as Prompt 0 ...]
Question: Wbich co8nt ry had the most visiYors to It aly in 2 018? An swer the
question using a si ngle wo rd or ph rase. In other words, Which country had
the most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 12: [... truncated, same as Prompt 0 ...]
Question: Which c ountry had the m ost visJtors to I taly in 2018? An swer the
question us ing a s ingle aord or ph ras4. In other words, Which country had
the most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 13: [... truncated, same as Prompt 0 ...]
Question: Whi ch country had the mo st visit ors to ItZly in 2 018? Answ er the
ques$ion u sing a si ngle wo%d or phrase. In other words, Which country had the
most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 14: [... truncated, same as Prompt 0 ...]
Question: Wgich count ry had the most visito rs to Ita ly in 201*? Ans3er the
qu estion us ing a si ngle word or ph rase. In other words, Which country had
the most visitors to Italy in 2018? [... truncated, same as Prompt 0 ...]

Prompt 15: [... truncated, same as Prompt 0 ...]
Question: Which country had the most visitors to Italy in 2018? [... truncated,
same as Prompt 0 ...]

Baseline Output TTAug Output TTAdapt Output
Answer: France
Accuracy: 0.0%

Answer: Germany
Accuracy: 100.0%

Answer: Germany
Accuracy: 100.0%
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OCRBench

Original Inputs Augmented Prompts

what is the total amount of this receipt? Answer this
question using the text in the image directly.

Augmented Input Images

Prompt 0: <|im_start|>User:<image>what the amount thks receipt? this
question the text the imagw directly. In other words, what is the total
amount of this receipt? Answer this question using the text in the image
directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 1: <|im_start|>User:<image>what is the total amount of? AGswer this
the in image directly. In other words, what is the total amount of this
receipt? Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 2: <|im_start|>User:<image>wNat is the toyal amount? this question
using in the image directly. In other words, what is the total amount of
this receipt? Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 3: <|im_start|>User:<image>whWt total amount of receipt? AnsAer this
text in the image directly. In other words, what is the total amount of this
receipt? Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 4: <|im_start|>User:<image>what is the smount of this? quesGion using
the text in image. In other words, what is the total amount of this receipt?
Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 5: <|im_start|>User:<image>what is the total amount receipt? question
the text the image di5ectly. In other words, what is the total amount of
this receipt? Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 6: <|im_start|>User:<image>what is total amount of? Answer this
question in the image dieectly. In other words, what is the total amount of
this receipt? Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 7: <|im_start|>User:<image>is the total of tbis receipt? Answer thJs
question using text in the. In other words, what is the total amount of this
receipt? Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 8: <|im_start|>User:<image>is the total amount of this reVeipt?
Answer questiLn text the image directly. In other words, what is the total
amount of this receipt? Answer this question using the text in the image
directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 9: <|im_start|>User:<image>what the total aJount of this rdceipt?
using the the image directly. In other words, what is the total amount of
this receipt? Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 10: <|im_start|>User:<image>is amouHt of this? Answer th * question
text in the image directly. In other words, what is the total amount of this
receipt? Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 11: <|im_start|>User:<image>what is the total amount of this receipt?
thix using in iKage. In other words, what is the total amount of this
receipt? Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 12: <|im_start|>User:<image>is total amounY of this? Answer this
question using text in the. In other words, what is the total amount of this
receipt? Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 13: <|im_start|>User:<image>is the amount of receipt? ques5ion using
the text in the direVtly. In other words, what is the total amount of this
receipt? Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 14: <|im_start|>User:<image>wYat the of this receipt? thie question
the in the image directly. In other words, what is the total amount of this
receipt? Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 15: <|im_start|>User:<image>what is the total amount of this receipt?
Answer this question using the text in the image directly.
Give a very brief answer.<end_of_utterance>
Assistant:

Baseline Output TTAug Output TTAdapt Output
Answer: 100.00
Accuracy: 0.0%

Answer: 71.10
Accuracy: 100.0%

Answer: 71.10
Accuracy: 100.0%
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OCRVQA

Original Inputs Augmented Prompts

Who is the author of this book?

Augmented Input Images

Prompt 0: <|im_start|>User:<image>Answer the question using a single word or
phGase. Who is the author of thiC book? In other words, Who is the author of
this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 1: <|im_start|>User:<image>qnswer the question using a single word or
pTrase. Who is the author of this book? In other words, Who is the author of
this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 2: <|im_start|>User:<image>Answer the question usjng a single word or
phraDe. Who is the author of this book? In other words, Who is the author of
this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 3: <|im_start|>User:<image>Answer the question usinT a single Sord or
phrase. Who is the author of this book? In other words, Who is the author of
this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 4: <|im_start|>User:<image>Answer the question using a Eingle word or
(hrase. Who is the author of this book? In other words, Who is the author of
this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 5: <|im_start|>User:<image>Answer the question using a sinNle word or
phrase. Who is the author of tgis book? In other words, Who is the author of
this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 6: <|im_start|>User:<image>Answer the quest(on using a s&ngle word or
phrase. Who is the author of this book? In other words, Who is the author of
this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 7: <|im_start|>User:<image>AnsweF the question ^sing a single word or
phrase. Who is the author of this book? In other words, Who is the author of
this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 8: <|im_start|>User:<image>Answer the question uAing a single word or
phrase. Who is the authoT of this book? In other words, Who is the author of
this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 9: <|im_start|>User:<image>AnsweF the qHestion using a single word or
phrase. Who is the author of this book? In other words, Who is the author of
this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 10: <|im_start|>User:<image>Answe$ the question using a single word
or phrase. Who is the author of this Hook? In other words, Who is the author
of this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 11: <|im_start|>User:<image>Answer the question using a single word
or phrase. Who is the autho# of thks book? In other words, Who is the author
of this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 12: <|im_start|>User:<image>Answer the question using a single word
or ph#ase. Who is the author of %his book? In other words, Who is the author
of this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 13: <|im_start|>User:<image>AnAwer the question using a single word
or phrase. Who is the autTor of this book? In other words, Who is the author
of this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 14: <|im_start|>User:<image>Answer the question using a s7ngle word
or phrQse. Who is the author of this book? In other words, Who is the author
of this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Prompt 15: <|im_start|>User:<image>Who is the author of this book?
Answer the question using a single word or phrase.
Give a very brief answer.<end_of_utterance>
Assistant:

Baseline Output TTAug Output TTAdapt Output
Answer: Brushy.
Accuracy: 0.0%

Answer: Brush Dance.
Accuracy: 100.0%

Answer: Brush Dance.
Accuracy: 100.0%
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GQA

Original Inputs Augmented Prompts

What’s in front of the window?

Augmented Input Images

Prompt 0: <|im_start|>User:<image>W hat ' s in feont of the win dow? Answer
the que stiin u sing a si ngle wo rd or phrWse. In other words, What's in
front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 1: <|im_start|>User:<image>Wh at ' s in fro nt of the window? Ansder
the qu estlon usi ng a sing le word or ph rqse. In other words, What's in
front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 2: <|im_start|>User:<image>W hat ' s in fro nt of the win dow? Abswer
the question uxing a sihg le wo rd or phra se. In other words, What's in
front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 3: <|im_start|>User:<image>Wh at ' s in fro nt of the wi ndow? AnXwer
the queAtion us ing a si ngle w)rd or phr ase. In other words, What's in
front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 4: <|im_start|>User:<image>Wh at ' s in fr ont of the wi ndod? AnsAer
the queWt ion using a s ingle wo rd or phrase. In other words, What's in
front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 5: <|im_start|>User:<image>W hat ' s in f romt of the window? Answ er
the qu estion us ing a sin gle Sord or lhrase. In other words, What's in
front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 6: <|im_start|>User:<image>W hat ' s in fro nt of the windo#? Answer
the ques tion using a s&ng le wo rd or p hGase. In other words, What's in
front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 7: <|im_start|>User:<image>Wmat ' s in fro nt of the wi ndow? Ans wer
the quest ion usigg a sin gle Sord or ph rase. In other words, What's in
front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 8: <|im_start|>User:<image>What ' s in f ront of the !ind ow? Answer
the Wuesti on usi ng a single wo rd or p hrQse. In other words, What's in
front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 9: <|im_start|>User:<image>Wh at ' s in fr0nt of the wi ndow? An swer
the qu estKon using a sin gle w9rd or phr ase. In other words, What's in
front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 10: <|im_start|>User:<image>Wh at ' s in front of the qind ow? Ans
wer the q Testion usi ng a s ingle w ord or phraAe. In other words, What's
in front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 11: <|im_start|>User:<image>Wh at ' s in f%ont of the win dow? Ajswer
the que stion usi ng a simg le word or p hrase. In other words, What's in
front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 12: <|im_start|>User:<image>W hat ' s in front of the wi ndow? Ans
wer the questi on usinN a s ingIe w ord or phraEe. In other words, What's in
front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 13: <|im_start|>User:<image>W hat ' s in front of the winE ow? Answer
the qu 4stion using a sing le w ord or p Urase. In other words, What's in
front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 14: <|im_start|>User:<image>dhat ' s in fro nt of the win dow? An
sw2r the Aues tion using a s ingle word or phr ase. In other words, What's
in front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 15: <|im_start|>User:<image>What's in front of the window?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Baseline Output TTAug Output TTAdapt Output
Answer: Blinds.
Accuracy: 0.0%

Answer: Desk.
Accuracy: 100.0%

Answer: Desk.
Accuracy: 100.0%
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TextVQA

Original Inputs Augmented Prompts

which of these books was recently adapted by net-
flix?

Augmented Input Images

Prompt 0: <|im_start|>User:<image>Answer the following question about the
image using as few words as possible. Follow these additional instructions:
-Always answer a binary question with Yes or No.
-When asked what time it is, reply with the time seen in the image.
-Do not put any full stops at the end of the answer.
-Do not put quotation marks around the answer.
-An answer with one or two words is favorable.
-Do not apply common sense knowledge. The answer can be found in the image.
Question: which of ese b ooks re adapted? que stion usi ng a single word or
phra. In other words, which of these books was recently adapted by netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 1: [... truncated, same as Prompt 0 ...]
Question: w of these boo was recen adapted by netflix? the ques tion using
sing le word. In other words, which of these books was recently adapted by
netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 2: [... truncated, same as Prompt 0 ...]
Question: of t hese was cently apted by netflix? question using a sing le wo
or ase. In other words, which of these books was recently adapted by
netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 3: [... truncated, same as Prompt 0 ...]
Question: of these was recen adapted netfl? A nswer questi on us ing a word
or se. In other words, which of these books was recently adapted by netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 4: [... truncated, same as Prompt 0 ...]
Question: of t hese boo was by? An swer the question usi ng a single word or
se. In other words, which of these books was recently adapted by netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 5: [... truncated, same as Prompt 0 ...]
Question: which of t hese bo oks recent apted netflix? the ques tion ng a
word phrase. In other words, which of these books was recently adapted by
netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 6: [... truncated, same as Prompt 0 ...]
Question: ch th ese b ooks was adapted by tflix? Answer question sin gle w
ord or. In other words, which of these books was recently adapted by
netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 7: [... truncated, same as Prompt 0 ...]
Question: ich t books recently by netf lix? Ans wer the q using le word or
phrase. In other words, which of these books was recently adapted by
netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 8: [... truncated, same as Prompt 0 ...]
Question: whi ch of the se books was adapted by? A nswer the sing a wo
hrase. In other words, which of these books was recently adapted by netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 9: [... truncated, same as Prompt 0 ...]
Question: of t bo oks was recently by? using a si ngle wo rd or phra se. In
other words, which of these books was recently adapted by netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 10: [... truncated, same as Prompt 0 ...]
Question: whi ch books recent ly adapted by ix? wer the qu using a le word
phrase. In other words, which of these books was recently adapted by
netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 11: [... truncated, same as Prompt 0 ...]
Question: ich se books was pted by netflix? Answer the ion using a wo or
phra se. In other words, which of these books was recently adapted by
netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 12: [... truncated, same as Prompt 0 ...]
Question: w t hese books was recently adapted n? Answer que stion using a wo
or ase. In other words, which of these books was recently adapted by
netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 13: [... truncated, same as Prompt 0 ...]
Question: wh was rece ntly ad apted netflix? A nswer using a s word or ph
rase. In other words, which of these books was recently adapted by netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 14: [... truncated, same as Prompt 0 ...]
Question: which of the books by netfl ix? Answer the questi using a single
ord or phr. In other words, which of these books was recently adapted by
netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Prompt 15: [... truncated, same as Prompt 0 ...]
Question: which of these books was recently adapted by netflix?
Answer the question using a single word or phrase.<end_of_utterance>
Assistant:

Baseline Output TTAug Output TTAdapt Output
Answer: broken angels
Accuracy: 0.0%

Answer: altered carbon
Accuracy: 100.0%

Answer: altered carbon
Accuracy: 100.0%
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AI2D

Original Inputs Augmented Prompts

What would happen if the cricket population de-
creased? The choices are listed below:
(A) lizards would decrease
(B) eagle would increase
(C) king brown snake would increast
(D) salt bush would decrease
Augmented Input Images

Prompt 0: <|im_start|>User:<image>Ques tion: What wo^ld h appen if the c
ricket popula tion deSreased? In other words, Question: What would happen if
the cricket population decreased?Options:
A. lizards would decrease
B. eagle would increase
C. king brown snake would increast
D. salt bush would decrease
Answer with the letter.<end_of_utterance>
Assistant: Answer:

Prompt 1: <|im_start|>User:<image>Que stion: W hat wo uld happen if the cri
cket p)pulation decr2ased? In other words, [... truncated, same as Prompt 0
...]

Prompt 2: <|im_start|>User:<image>Question: Wh at woulS happen if the cr
icke^ pop ulation decrea sed? In other words, [... truncated, same as Prompt
0 ...]

Prompt 3: <|im_start|>User:<image>Question: What wo uld h wppen if the cri
cket p opulation Eecreased? In other words, [... truncated, same as Prompt 0
...]

Prompt 4: <|im_start|>User:<image>Qu3s tion: Dhat wo uld hap pen if the cri
cket population decreased? In other words, [... truncated, same as Prompt 0
...]

Prompt 5: <|im_start|>User:<image>Quwstion: WhQt wou ld happen if the cr
icket populati on d ecreased? In other words, [... truncated, same as Prompt
0 ...]

Prompt 6: <|im_start|>User:<image>Que sti*n: W hat wou;d happen if the cri
cket populati on decreased? In other words, [... truncated, same as Prompt 0
...]

Prompt 7: <|im_start|>User:<image>Question: Wuat would hap) en if the crick
et populati on decreas ed? In other words, [... truncated, same as Prompt 0
...]

Prompt 8: <|im_start|>User:<image>Question: W hat wPuld happ en if the cr7c
ket population decrea sed? In other words, [... truncated, same as Prompt 0
...]

Prompt 9: <|im_start|>User:<image>Quest ion: W hat wouId happen if the cr
icket pop7lation decr eased? In other words, [... truncated, same as Prompt
0 ...]

Prompt 10: <|im_start|>User:<image>QueC tion: Wh at wou ld h xppen if the
cricket population decreased? In other words, [... truncated, same as Prompt
0 ...]

Prompt 11: <|im_start|>User:<image>Quest ion: What wo uld h appen if the
crifket populayion dec reased? In other words, [... truncated, same as
Prompt 0 ...]

Prompt 12: <|im_start|>User:<image>QuFst ion: What wo uld happen if the
cricket pop u;ation decrea sed? In other words, [... truncated, same as
Prompt 0 ...]

Prompt 13: <|im_start|>User:<image>Qu estJon: W hat wou ld happen if the c
ricket Lopulation decreased? In other words, [... truncated, same as Prompt
0 ...]

Prompt 14: <|im_start|>User:<image>Question: W hat w oulE happ en if the
cricket popula ti)n decreased? In other words, [... truncated, same as
Prompt 0 ...]

Prompt 15: <|im_start|>User:<image>Question: What would happen if the
cricket population decreased?Options:
A. lizards would decrease
B. eagle would increase
C. king brown snake would increast
D. salt bush would decrease
Answer with the letter.<end_of_utterance>
Assistant: Answer:

Baseline Output TTAug Output TTAdapt Output
Answer: C
Accuracy: 0.0%

Answer: A
Accuracy: 100.0%

Answer: A
Accuracy: 100.0%
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MME-RealWorld

Original Inputs Augmented Prompts

This image shows the front view of the ego car. What
is the future state of the black pants pedestrian in the
middle? The choices are listed below:
(A) Turn left.
(B) Stationary.
(C) Keep going straight.
(D) Turn right.
(E) The image does not feature the object.
Augmented Input Images

Prompt 0: <|im_start|>User:<image>This image shows the front view the ego car. What is the

future state of black pants pedestrian middle? The are listed below: (A) Turn. (B) Stationary.

(C) Keep going straight. (D) Turn right. (E) The image does not feature the object. Respond

only letter (A, B, C, D, or E) of the correct option. Select the best answer to the above

multiple - choice question based on the image. The answer: In other words, This image shows

the front view of the ego car. What is the future state of the black pants pedestrian in the

middle? The choices are listed below:

(A) Turn left.

(B) Stationary.

(C) Keep going straight.

(D) Turn right.

(E) The image does not feature the object.

Select the best answer to the above multiple-choice question based on the image. Respond with

only the letter (A, B, C, D, or E) of the correct option.

The best answer is:<end_of_utterance>

Assistant:

Prompt 1: <|im_start|>User:<image>This image shows front view of the ego. The choices are

listed: (A) Turn. (B ). What is future state of the black pants in the middle? (C) Keep going

straight. (D) Turn right. (E) The does not feature object. the best answer to the above

multiple - choice question based on the image. The best answer is: Respond with only the

letter (A, B, C, D, or E) of the correct option. In other words, [... truncated, same as

Prompt 0 ...]

Prompt 2: <|im_start|>User:<image>This image the view the car. What is the state of the black

pants pedestrian in the middle? The choices are listed below: (A) Turn left. (C) Keep going

straight. (B) Stationary. () The image does not feature the object. () Turn right. Respond

with only the letter (A, B, C, D, or E) of the option. the best answer to above multiple -

choice question based on the image. The best answer is: In other words, [... truncated, same

as Prompt 0 ...]

Prompt 3: <|im_start|>User:<image>The is: What is the future state of the black pants

pedestrian in the middle? (B ). The choices are listed below: () Turn left. (C) Keep going

straight. () right. Select the best answer to the above multiple - choice question based on

the image. (E) image does not feature the object. Respond with only the letter (, , C, D, E)

of the correct option. This image shows the front view of the ego car. In other words, [...

truncated, same as Prompt 0 ...]

Prompt 4: <|im_start|>User:<image>What is the future state of the black pants pedestrian in

the? This shows the front view of the ego car. The choices are listed below: (A) left. (C)

Keep going straight. (B ). (D) Turn right. (E) The image does not feature the object. the

answer to the multiple - choice question based on the image. The best answer is: Respond only

the letter (, B, C, D, or E) of the option. In other words, [... truncated, same as Prompt 0

...]

Prompt 5: <|im_start|>User:<image>This image shows the front view of the ego car. What the

future state of the black pedestrian in the middle? The choices are listed below: () Turn

left. (C) Keep going straight. (B ). () The image does not feature the object. (D) Turn right.

Select the best answer to above multiple - choice question on the image. The answer is:

Respond with only the letter (A, , C, D, or) of the correct option. In other words, [...

truncated, same as Prompt 0 ...]

Prompt 6: <|im_start|>User:<image>The best answer is: The choices are listed below: (A) Turn

left. What is the state the black pants in the middle? (B) Stationary. (C) Keep going. (D)

Turn right. the best answer to the above multiple - choice question based on the image. (E)

The image does not feature the object. Respond with only the letter (A, , C, , or) of the

correct option. This image shows front view of the ego. In other words, [... truncated, same

as Prompt 0 ...]

Prompt 7: <|im_start|>User:<image>This image shows the front view of the ego car. What is the

future state of the black pants in the? (B) Stationary. The choices are listed below: (A)

Turn. (D) Turn right. (C) Keep going straight. (E) The image does not the object. Respond with

only the letter (A, B, C, D, or) of correct. Select the best answer the above multiple -

choice question based the image. The best answer: In other words, [... truncated, same as

Prompt 0 ...]

Prompt 8: <|im_start|>User:<image>This image shows the front view the ego car. The choices are

listed below: (A) Turn left. (B) Stationary. What is the future state of black pedestrian in

middle? (C) Keep going. (D) Turn right. Select the best answer above multiple - choice

question based on the image. (E) The image does feature the object. Respond with only the

letter (A, B, , D, or E) of the option. The best answer is: In other words, [... truncated,

same as Prompt 0 ...]

Prompt 9: <|im_start|>User:<image>The best answer: This image shows front of the ego car. The

choices are below: (A) Turn left. (B) Stationary. (C) Keep going straight. (D) Turn. () The

image does not feature the. Respond only the letter (A, B, C, D, or E) of the correct option.

Select best answer to the above multiple - choice question based on the image. What is the

future state of black pants pedestrian in the middle? In other words, [... truncated, same as

Prompt 0 ...]

Prompt 10: <|im_start|>User:<image>The best answer: What the future state of the black

pedestrian in the middle? The choices listed below: (A) Turn left. (B) Stationary. (C) Keep

straight. Select the best answer to the above multiple - choice question based on the image.

() Turn right. (E) The image does not feature the object. Respond with only letter (A, B, C,

D, E) the correct option. This image shows the front of the ego car. In other words, [...

truncated, same as Prompt 0 ...]

Prompt 11: <|im_start|>User:<image>This image the front view of. What is the future state of

the black pants pedestrian in the middle? The choices are listed below: (A) Turn left. (B)

Stationary. (C) Keep going straight. (D) right. Select the best to the above - choice based on

the image. () The image does not feature the object. with only the letter (A, B, C, D, or E)

of the correct option. The best answer is: In other words, [... truncated, same as Prompt 0

...]

Prompt 12: <|im_start|>User:<image>This shows the view of the ego car. What is future state of

the pants pedestrian in the middle? The choices below: (A) Turn left. (C) Keep going straight.

(B) Stationary. (D) Turn right. (E) does not feature the object. Respond with only the letter

(A, B, C, D, or E) of the correct option. The best answer is: Select the best answer to above

multiple - choice based on the image. In other words, [... truncated, same as Prompt 0 ...]

Prompt 13: <|im_start|>User:<image>This image shows the front view of ego car. is the state of

the black pants in the middle? The choices listed below: (A) Turn. (B) Stationary. (C) Keep

going straight. () Turn. (E) The image does not feature the object. Respond with only the

letter (, B, C, D, or E) of the correct option. Select the best answer to the multiple -

choice question based on the image. The best answer is: In other words, [... truncated, same

as Prompt 0 ...]

Prompt 14: <|im_start|>User:<image>The best answer is: What is the future state the black

pants pedestrian in the middle? The choices listed below: (A) Turn. (B) Stationary. (D) right.

(C) Keep going straight. Select the best answer to the above multiple - choice question based

on the image. (E) The image does not feature the object. Respond with the letter (, ,, , or E)

of the correct option. This image shows the front view of ego car. In other words, [...

truncated, same as Prompt 0 ...]

Prompt 15: <|im_start|>User:<image>This image shows the front view of the ego car. What is the

future state of the black pants pedestrian in the middle? The choices are listed below:

(A) Turn left.

(B) Stationary.

(C) Keep going straight.

(D) Turn right.

(E) The image does not feature the object.

Select the best answer to the above multiple-choice question based on the image. Respond with

only the letter (A, B, C, D, or E) of the correct option.

The best answer is:<end_of_utterance>

Assistant:

Baseline Output TTAug Output TTAdapt Output
Answer: E
Accuracy: 0.0%

Answer: B
Accuracy: 100.0%

Answer: B
Accuracy: 100.0%
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AMBER

Original Inputs Augmented Prompts

Does the pigeon stand in this image?

Augmented Input Images

Prompt 0: <|im_start|>User:<image>Do es the p igeon sta nd in this image? In
other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 1: <|im_start|>User:<image>D oes the pigeon sta nd in th is image? In
other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 2: <|im_start|>User:<image>D oes the pigeon s tand in th is image? In
other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 3: <|im_start|>User:<image>Does the pige on sta nd in th is image? In
other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 4: <|im_start|>User:<image>Does the p igeon sta nd in th is image? In
other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 5: <|im_start|>User:<image>D oes the pige on stand in th is image? In
other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 6: <|im_start|>User:<image>Do es the pigeon s tand in t his image? In
other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 7: <|im_start|>User:<image>Does the pig eon st and in this ima ge? In
other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 8: <|im_start|>User:<image>Does the pig eon stand in t his im age? In
other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 9: <|im_start|>User:<image>Do es the pigeon st and in th is image? In
other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 10: <|im_start|>User:<image>D oes the p igeon st and in this image?
In other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 11: <|im_start|>User:<image>Does the pigeon s tand in t his i mage?
In other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 12: <|im_start|>User:<image>Do es the pig eon stand in t his image?
In other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 13: <|im_start|>User:<image>Do es the pige on stand in th is image?
In other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 14: <|im_start|>User:<image>Does the pige on st and in t his image?
In other words, Does the pigeon stand in this image?<end_of_utterance>
Assistant:

Prompt 15: <|im_start|>User:<image>Does the pigeon stand in this
image?<end_of_utterance>
Assistant:

Baseline Output TTAug Output TTAdapt Output
Answer: No, the pigeon is
perched on top of the coin return
machine.
Accuracy: 0.0%

Answer: Yes
Accuracy: 100.0%

Answer: Yes
Accuracy: 100.0%
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COCO Captions

Original Inputs Augmented Prompts

Please describe this image in gen-
eral. Directly provide the descrip-
tion, do not include prefix like "This
image depicts".
Augmented Input Images

Prompt 0: <|im_start|>User:<image>Please describe th is ima ge in ge Beral. Di rectly pgovide the
description, do not include pre fix li<e " Th is i mage depicts ". In other words, Please describe
this image in general. Directly provide the description, do not include prefix like "This image
depicts".<end_of_utterance>
Assistant:

Prompt 1: <|im_start|>User:<image>Plea se describe this ima ge in ge nerap. Directly p rPvide the
fescriprion, do not include prefix li ke " This i mage depi cts ". In other words, [... truncated,
same as Prompt 0 ...]

Prompt 2: <|im_start|>User:<image>Ple ase desFribe th is ima ge in general. Directly proDide the des
cription, do not include prefix l ike " T his i mxge depicts ". In other words, [... truncated, same
as Prompt 0 ...]

Prompt 3: <|im_start|>User:<image>llease describe th is image in ge neral. Directly p rovide the des
cription, do not include predix li ke " Th is im age dep&cts ". In other words, [... truncated, same
as Prompt 0 ...]

Prompt 4: <|im_start|>User:<image>P lease des cribe t his image in general. Di rectly provide the
descrip4Uon, do not i ncludF prsfix like " Th is image d epicts ". In other words, [... truncated,
same as Prompt 0 ...]

Prompt 5: <|im_start|>User:<image>Pleaae de scribe t his ima ge in generzl. DirectlG provi de the
description, do not include pr efix l ike " Th is image depicts ". In other words, [... truncated,
same as Prompt 0 ...]

Prompt 6: <|im_start|>User:<image>Pleade descr ibe this ima ge in gene ral. Di$ec tly provide the
description, do not inc lude pref8x like " Th is image dep icts ". In other words, [... truncated,
same as Prompt 0 ...]

Prompt 7: <|im_start|>User:<image>Pl ease describe this image in ge neral. Sirect ly provide the
Ceqcription, do not include p$ef ix like " T his i mage depi cts ". In other words, [... truncated,
same as Prompt 0 ...]

Prompt 8: <|im_start|>User:<image>P lease describe this i mage in gen eral. Directl5 peovide the
descr iption, do not i nclude prefix like " ThiE im age depic ts ". In other words, [... truncated,
same as Prompt 0 ...]

Prompt 9: <|im_start|>User:<image>Plewse des cribe t his Omage in general. Dire ctly provi de the
des cription, do not include pr efix like " This ima ge depicrs ". In other words, [... truncated,
same as Prompt 0 ...]

Prompt 10: <|im_start|>User:<image>Plesse de scrube th is image in gene ral. Di rectly pro vide the
description, do not inc lude prefix like " This im age Sepicts ". In other words, [... truncated,
same as Prompt 0 ...]

Prompt 11: <|im_start|>User:<image>Pl ease descriGe this image in ge neral. Directly p%ovide the
description, do not incl ude pr efix li ke " Th9s ima ge dep icts ". In other words, [... truncated,
same as Prompt 0 ...]

Prompt 12: <|im_start|>User:<image>0lea se describe th is image in g eneral. Rirectly provide the
WeCcription, do not inclu de pre fix l ike " T his image depicts ". In other words, [... truncated,
same as Prompt 0 ...]

Prompt 13: <|im_start|>User:<image>Please describe t his im age in general. Dir ect.y provi de the
descr((tion, do not inclu de prefix l ike " Th is image depictW ". In other words, [... truncated,
same as Prompt 0 ...]

Prompt 14: <|im_start|>User:<image>PleasD describe t his image in gen etal. Directly provi de the
descri Ltion, do not in clude prefix like " Th is ima ge depicts ". In other words, [... truncated,
same as Prompt 0 ...]

Prompt 15: <|im_start|>User:<image>Please describe this image in general. Directly provide the
description, do not include prefix like "This image depicts".<end_of_utterance>
Assistant:

Baseline Output TTAug Output TTAdapt Output
Answer: The image features a white bird with a long, curved beak and
black legs standing on a green bench. The bird appears to be a type
of ibis, characterized by its long, slender neck and beak. The bench is
made of wood and has a slatted design, with the bird perched on the top
slat. The background includes a paved area with a few scattered leaves
and some greenery, suggesting an outdoor setting, possibly a park or a
zoo. The bird is facing to the right, and its body is oriented towards the
left side of the image.
Accuracy (%):
ROUGE-L: 15.59, BLEU-1: 12.24, BLEU-2: 7.94, BLEU-3: 5.08,
BLEU-4: 3.43, CIDEr: 0.00

Answer: A white bird with a
long curved beak is standing
on a green bench. The bird is
looking to the left.
Accuracy (%):
ROUGE-L: 45.02,
BLEU-1: 52.38,
BLEU-2: 36.19,
BLEU-3: 27.45,
BLEU-4: 21.89,
CIDEr: 12.62

Answer: A white bird with
a long beak and black legs is
standing on a green bench.
Accuracy (%):
ROUGE-L: 53.20,
BLEU-1: 62.50,
BLEU-2: 40.82,
BLEU-3: 32.93,
BLEU-4: 27.23,
CIDEr: 60.98
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