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Abstract
Bayesian stacking is a procedure adapted from machine learning that allows researchers to combine
multiple unique models and optimize overall predictions, with the added benefit of not relying on strong
assumptions necessary for Bayesian model averaging (BMA). For individual models, Bayesian regularization
methods via sparsity-inducing priors elicit stronger predictive accuracy than unregularized modeling
approaches. While model stacking is not intended to serve as a method for performing variable selection,
we are unaware of any systematic investigation examining how sparsity-inducing priors applied to member
models in a stack could conceivably lead to more accurate predictions. The present work investigates
whether the addition of Bayesian regularization via sparsity-inducing priors of individual member models
can be a worthwhile practice when using Bayesian stacking procedures. Against our expectations, we find
that inducing sparsity in stacking member models does not improve predictive performance. Other results
and limitations of this work are also discussed.
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To optimize predictive performance for a given outcome, there are many approaches researchers
can take. Bayesian stacking, a model ensembling procedure adopted from machine learning, optimizes
predictions by combining multiple unique models (Breiman, 1996; Clyde & Iversen, 2013; Wolpert,
1992; Yao et al., 2018). Bayesian stacking forms a weighted mixture of predictive distributions from
an ensemble of individual models. This Bayesian model ensembling method is an improvement over
the more classical approach of Bayesian model averaging (BMA) (Draper, 1995; Hoeting et al., 1999;
Madigan & Raftery, 1994) in that Bayesian stacking does not assume that the true data generating
model is in the space of models being averaged, and is theoretically expected to yield stronger
predictive performance than that of any single model chosen for predictive purposes.

Another approach known to boost predictive performance is Bayesian regularization. Otherwise
known as sparsity-inducing priors, these methods have demonstrated improved model accuracy and
predictive performance under many modeling methods as compared to unregularized approaches,
particularly with small samples (Harra & Kaplan, 2023; Jacobucci & Grimm, 2018; van Erp et al., 2019).
Sparsity-inducing priors, or shrinkage priors, such as the lasso (Tibshirani, 1996) and horseshoe
priors (Carvalho et al., 2009, 2010; Piironen & Vehtari, 2017) can perform variable selection and
introduce model simplicity without sacrificing model performance. Although these methods have
been well studied for individual model performance, it remains unclear whether these methods could
also benefit modeling ensembling methods such as Bayesian stacking.

While incorporating sparsity through Bayesian regularization has been hypothesized to improve
prediction accuracy (Breiman, 1996; Vehtari & Gabry, 2023; Yao et al., 2018), this remains an open
question, particularly with the use of newer priors such as the regularized horseshoe prior (Piironen
& Vehtari, 2017). Our present work seeks to investigate the potential benefits, if any, of incorporating
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sparsity into member models within Bayesian stacking procedures for improving predictive accuracy.
The following sections will provide the necessary context for this work, and then we will explore
this via a full simulation study comprised of a stack of Bayesian linear regression models.

1. Bayesian Stacking
Model stacking is essentially a weighted combination of predictions from a set of specified K models
(k = 1, 2, ..., K). Model predictions are combined (stacked) to yield a weighted combination of
predictive distributions (Kaplan et al., 2025). This method of model ensembling was originally
developed in the machine learning literature by (Wolpert, 1992) and (Breiman, 1996) and brought
into the Bayesian framework by Clyde and Iversen (2013).

We can define a set of weights on a simplex as

WK
1 =

{
w ∈ [0, 1]K :

K∑
k=1

wk = 1

}
. (1)

To approximate the full predictive distribution, p(ỹi|yi, Mk), we use the leave-one-out (LOO)
predictive distribution where (Yao et al., 2018)

p̂k,–1(yi) =
∫

p(yi|θk, Mk)p(θk|y–i, Mk)dθk. (2)

The stacking weights using the log score are the solution to

max
w∈WK

1

1
n

n∑
i=1

log
K∑

k=1

wkp̂(yi|y–i, Mk). (3)

Various weighting methods are available. ELPDloo weighting is based on the ELPD (expected log
point-wise predictive density) of a model, which is our primary focus for this paper. Other weighting
methods include Pseudo-BMA (PBMA) and Pseudo-BMA+ (PBMA+) (Yao et al., 2018). However,
preliminary analyses for this work demonstrated no noteworthy differences in performance between
weighting strategies, so the remainder of this work will implement ELPDloo weighting.

2. Overview of Bayesian Regularization
Bayesian regularization penalizes small regression coefficients by attaching a prior distribution to
model parameters (Jacobucci & Grimm, 2018). Many regularization priors are available, beginning
with the ridge prior (Hsiang, 1975) that seeks to shrink parameters close to zero and minimize
collinearity. The Bayesian lasso (Park & Casella, 2008) improves upon the ridge prior as it enables
shrinkage of coefficients to zero, allowing for variable selection.

The Bayesian ridge and lasso priors, described below, are extensions of frequentist methods to
the Bayesian context. Strictly Bayesian approaches include the horseshoe prior (Carvalho et al.,
2009, 2010), which allows for greater shrinkage than the ridge and the lasso while maintaining
unregularized large coefficients. The regularized horseshoe (Piironen & Vehtari, 2017) prevents
large coefficients from escaping shrinkage, allows further flexibility than the original horseshoe
prior, and has been shown to further improve model predictive performance (Harra & Kaplan, 2023;
Piironen & Vehtari, 2017).

Previous research has shown that Bayesian regularization can perform as well as, if not better
than, classical methods of regularization in linear regression (van Erp et al., 2019). This finding has
not been extended to ensemble modeling methods such as Bayesian stacking, particularly with a focus
on optimizing out-of-sample predictive performance. Thus, this paper focuses on the performance of
three Bayesian regularization priors, particularly the regularized horseshoe, in the context of Bayesian
stacking procedures for linear regression. We investigate this via a simulation study comparing
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several regularized model stacks to unregularized model stacks in terms of the amount of shrinkage
induced and out-of-sample predictive performance.

2.1 Priors to be investigated
Figure 1 shows the density plots for the three regularization priors that we will be studying in this
paper.

Figure 1. Regularization priors used in this paper. From left to right: Ridge normal prior N(0,1), Lasso Laplace prior with

location = 0, scale = 4, and the regularized horseshoe prior with βj |λj,τ, c ∼ N(0,τ2λ̃2
j ), where λ̃2

j =
c2λ2

j
c2+τ2λ2

j
, and λj ∼

C+(0, 1).

2.1.1 The Ridge Prior
Frequentist ridge regression (A. Hoerl & Kennard, 1970; R. Hoerl, 1985) aims to yield a parsimonious
regularized regression model in the presence of highly correlated variables. The Bayesian specification
of ridge regression was suggested by Hsiang (1975), who showed that if the ridge estimator, β, has a
mean of zero and covariance matrix Σ = (σ2/λ)I, and if ϵ ∼ N(0,σ2

ϵI), then the posterior mean of β
is (x′x + λI)–1x′y, which is an alternative specification of the ridge estimator. The penalty term (λ) is
captured through normally distributed independent priors placed on the regression slope parameters.
These normal priors have mean hyperparameter values fixed at zero in order to control shrinkage
toward zero. The variance hyperparameter is typically rescaled to be in standard deviation form and
is set to define the degree of spread that the distribution exhibits. Note that we specify a half-Cauchy
prior distribution, denoted as C+(0,1), for the residual standard deviation, but other conjugate priors
could be specified as well. A representation of the ridge prior is given in the left of Figure 1.

2.1.2 The Lasso Prior
A drawback of ridge regression is that it does not improve parsimony in that all of the variables
still remain in the model after penalization (Zou & Hastie, 2005). A method that appears similar to
ridge regression but can yield a parsimonious model is the least absolute shrinkage and selection operator
(Tibshirani, 1996).

The Bayesian lasso (Park & Casella, 2008) uses a double exponential or Laplace prior where

p(βj) =
1
2τ

exp

(
–

|βj |
τ

)
, (4)

where τ = 1/λ.
The middle of Figure 1 shows the double exponential distribution. We see that this distribution

is ideal because it peaks at zero, shrinking small coefficients toward zero. However, the double
exponential can be set to have thick tails, allowing larger coefficients to remain large. Given that
the distribution is centered at zero to control shrinkage toward zero, the mean hyperparameter
setting is fixed to zero. The scale, or dispersion, of the double exponential distribution configurable
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hyperparameter when implementing the lasso. This defines the amount of spread and the thickness
of the tails, which controls the degree of shrinkage in coefficients. Again, a C+(0,1) prior can be
specified on the standard deviation of the residuals, if desired.

2.1.3 The Regularized Horseshoe Prior
The regularized horseshoe is a variant of the original horseshoe prior (Carvalho et al., 2009, 2010).
The original horseshoe prior can be characterized as a scale mixture of normals with half-Cauchy
tails offering unique features in enacting shrinkage that distinguish it other regularization priors.
More specifically, the tails of its C+ distribution permit large parameters to remain unregularized,
while the global shrinkage parameter τ severely shrinks parameters that are small.

A limitation of the original horseshoe prior relates to cases where large coefficients can transcend
the global scale set by τ0 with the impact being that the posteriors of these large coefficients can
become quite diffused, particularly in the case of weakly-identified coefficients (Betancourt, 2018;
Kaplan, 2023; Piironen & Vehtari, 2017). To remedy this issue, Piironen and Vehtari (2017) proposed
a regularized version of the horseshoe prior. Following the notation used in Betancourt (2018) the
regularized horseshoe prior takes the form of the following:

For j = 1, ..., p, where p are the number of predictors,

βj ∼ N (0, τ2λ̃2
j ), (5a)

λ̃j =
cλj√

c2 + τ2λ2
j

, (5b)

λj ∼ C+(0, 1), (5c)

c2 ∼ IG
(ν

2
,
ν

2
s2
)

, (5d)

τ ∼ C+(0, τ0), (5e)

where c > 0 and s2 is the variance for each of the p predictor variables. Those variables that have large
variances would be considered more relevant a priori, and while it is possible to provide predictor-
specific values for s2, generally we scale the variables ahead of time so that s2 = 1. Finally, c2 is the
slab width, which controls the size of the large regression coefficients (Piironen & Vehtari, 2017).
The density plot for the regularized horseshoe is given on the right of Figure 1.

3. Present Study
A Monte Carlo simulation was conducted to evaluate shrinkage and out-of-sample predictive perfor-
mance across 6 prior distributions and 4 sample size conditions (n = 50, 100, 500, 1000). For each
iteration, a population of 10,000 observations was generated with 40 normal predictors grouped
into 5 Bayesian linear regression models and an intercept-only model. Each model had half the
coefficients set as small (ranging from 0 to 1), and half large (ranging from 10 to 20) with coefficient
values varying across models. The outcome variable, y, was generated using these coefficients and
the full population data, from which a standardized random sample of size n was drawn for model
fitting and analyses. The same sample data were used for all prior conditions.

Hyperparameters for the regularized prior conditions were selected based on previous literature
recommendations to control shrinkage toward zero, as detailed in previous sections (Hsiang, 1975;
Park & Casella, 2008; Piironen & Vehtari, 2017). Each of the 24 study conditions was run for 500
iterations.
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Prior Condition Specification for βj

Non-Informative N (0, 100)

rstanarm Default N (0, 2.5)

Informative N (x̄j , 1)

Ridge N (0, 1)

Lasso 1
2τ exp

(
–

|βj |
τ

)
Reg. Horseshoe N (0,τ2λ̃2

j )

3.1 Evaluating Predictive Performance
For this paper, we use Bayesian leave-one-out cross-validation (LOO-CV) to evaluate model out-of-
sample predictive performance (Vehtari et al., 2017). Bayesian LOO-CV is a special case of k-fold
cross-validation, in which the data set is divided into k folds. The model of interest is fit with the
training set and then compared to the ith observation in the test set to measure predictive performance.
LOO-CV is a k-fold cross-validation procedure where k = n.

The LOO-CV is uniquely suited to the question of out-of-sample predictive performance (Allen,
1974; Stone, 1974). The LOO-CV is quite similar to the widely applicable information criterion (WAIC)
as a fully Bayesian counterpart to the AIC (Watanabe, 2010).

The expected log point-wise predictive density (ELPD) for LOO-CV, the ELPDloo, is defined as:

ELPDloo =
n∑

i=1
log p(yi | y–i), (6)

where
p(yi | y–i) =

∫
p(yi | θ)p(θ | y–i)dθ (7)

is the LOO predictive density given the data with the ith data point left out (Vehtari et al., 2017). The
log sum of these predictive densities in Equation (6) is the LOO-CV estimate of the ELPD (Gelman
et al., 2014; Gronau & Wagenmakers, 2019; Vehtari et al., 2017).

An information criterion based on LOO, referred to as the LOO-IC, can be derived as

LOO-IC = –2 ̂ELPDloo (8)

which places the LOO-IC on the deviance scale. Among a set of competing models, the one with
the smallest LOO-IC is considered the best from an out-of-sample point-wise predictive point of
view. We use the LOO-IC for the comparison of our regularization priors in our simulation study.

4. Results
For this study, we aimed to examine differences in member model-induced shrinkage and model
stack predictive performance across simulation conditions.

Induced shrinkage for the linear member models were compared by prior and sample size
conditions, seen in Figure 2, which depicts the sum of coefficient estimates for each linear model
across conditions. We observe that for small samples in particular, the lasso and regularized horseshoe
induced the greatest amount of shrinkage for the linear member models compared to the other prior
conditions. This expected finding demonstrates that prior distribution selection is influential in the
amount of sparsity introduced into the stack member models, particularly for small samples where
priors are more influential.
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Figure 2. Mean total coefficient estimates for each linear member model across prior and sample size conditions, demonstrating
induced shrinkage via regularized priors. Note: Model 1 is omitted as it is an intercept model with no regularized coefficients
or variation across conditions.
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Figure 3. Comparison of mean LOO-IC estimates for individual models and model stacks across prior distribution and sample
size conditions. The black line represents the stack’s mean LOO-IC. Note: Model 1 is omitted as it is an intercept model with
no regularized coefficients or variation across conditions.

Lastly, we compared the out-of-sample predictive performance of each linear member model to
the stacked prediction across conditions, visualized in Figure 3. We find that for the linear member
models, the lasso and regularized horseshoe demonstrated a boost in predictive performance in the
form of the LOO-IC, particularly when samples are small. We also observed with small samples
especially that the stacked predictions outperform all the member models. However, we saw no
improvement in predictive performance from regularization via the lasso and regularized horseshoe
prior for the model stack. Prior selection did not impact LOO-IC estimates for the model stack
despite benefiting the linear member models.
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5. Discussion
In this work, we found that inducing sparsity in Bayesian stacking member models boosts individual
model out-of-sample predictive performance, especially when n is small, as expected (Harra & Kaplan,
2023). However, there appears to be no meaningful boost in predictive performance for the stacked
models. In line with previous work on this topic, we observed that stacked predictions have stronger
predictive accuracy than any individual member model (Kaplan et al., 2025; Yao et al., 2018). We
also found that introducing regularization priors to the linear member models introduced sparsity
and improved the predictive performance of the individual member models.

Our work here aligns with previous research demonstrating that stacked models dominate in
predictive performance over any individual model (Breiman, 1996; Kaplan et al., 2025; Yao et al.,
2018). As we expected, particularly with small samples, the model stack demonstrated improved
out-of-sample predictive performance over the member models. This finding, and similar previous
findings, demonstrate the effectiveness of Bayesian stacking.

While introducing sparsity can help with variable selection for individual models, there is
insufficient evidence that sparsity can also help improve stacked predictions. It is possible that the
stacking procedures negate gains in predictive performance that regularization introduces. Or, that
the stacked models outperform any individual model to the extent that regularization via priors like
the regularized horseshoe do not further that improvement in performance.

Our findings are limited to this particular simulation study. It’s possible that other model
ensemble scenarios, such as those with highly correlated variables, variables with vastly different
effect sizes, or others, may find benefits in incorporating sparsity-inducing priors into Bayesian
stacking. Alternatively, situations where the number of predictors p outnumber observations n may
be worth investigating, as cases where p > n has been shown to be when regularization is particularly
useful (van Erp et al., 2019). Future research may aim to focus on what scenarios, if any, introducing
Bayesian regularization into Bayesian stacking may prove useful. However, given the findings of
this paper, we still recommend that researchers explore a variety of priors and weighting methods to
optimize prediction for their models.
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