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Foundation models for time series forecasting and policy evaluation
in infectious disease epidemics: a modelling study
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Abstract
Epidemic forecasting and public health policy rely
on mathematical models, but traditionally strug-
gle in data-limited settings. We evaluated whether
transformer-based foundation models can serve as
a new epidemic modeling framework. We tested
five models across diseases and locations, includ-
ing influenza, respiratory syncytial virus (RSV),
chickenpox, dengue. Foundation models demon-
strated strong accuracy in short-term forecasts
and predicted multiple epidemic waves. They
outperformed established models on limited and
irregular data. We showed foundation models can
generate scenarios for policy evaluation, estimat-
ing the effect of tighter restrictions on COVID-19
cases during the Alpha variant surge in Italy in
2021. We also used them to estimate the effective-
ness of the 2023 RSV immunization campaign in
Paris, France. Our findings suggest foundation
models can complement existing modeling ap-
proaches. Their ability to generate forecasts and
counterfactual analyses with minimal data high-
lights their potential for public health, particularly
in emergent and resource-constrained settings.

1. Introduction
Epidemic models have found applications across diseases,
transmission routes and locations. Major public health agen-
cies routinely coordinate forecasting efforts for seasonal
acute respiratory illness (Biggerstaff et al., 2016; Fiandrino
et al., 2025) and extend to vector-borne endemic diseases,
such as dengue (Chen et al., 2024) and West Nile Virus (Hol-
comb et al., 2023). During COVID-19, models helped evalu-
ate and design non-pharmaceutical interventions (Ruktanon-
chai et al., 2020) and vaccination campaigns (Watson et al.,
2022).Despite their active development and widespread use,
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epidemic models have limitations in their performance and
applicability. (Buckee et al., 2021; De Angelis et al., 2015).
These data-heavy models often struggle to generalize across
contexts, creating ever-growing data demands. As a result,
communities with strong data infrastructures and safeguards
benefit, while others may lag behind or face higher risks of
personal data misuse.(Oliver et al., 2020)

To overcome these limitations, we took a different approach
of modeling epidemics using transformer-based foundation
models, which have recently demonstrated strong perfor-
mance on tabular and time series data (Hollmann et al.,
2025a). We investigated whether existing foundation mod-
els for time series can form the basis of a new architectural
framework for epidemic modeling. We evaluated five mod-
els - TimesFM (Das et al., 2024), Lag-Llama (based on
LLaMA) (Touvron et al., 2023; Rasul et al., 2024), Ama-
zon’s Chronos Small (Ansari et al., 2024; Raffel et al.,
2020), TimeGPT (Garza et al., 2024) - and TabPFN (Holl-
mann et al., 2025b; Hoo et al., 2025; Hollmann et al., 2023).
More specifically, we focus on predicting the incidence —ra-
tio of infected individuals every 100,000 infected —across
different diseases and pathogens.

The models were assessed on multiple epidemic tasks. No-
tably, none of these models were originally designed or
trained for epidemic modeling or public health applications.
Nevertheless, we tested their performance on epidemic pre-
diction tasks with minimal retraining, (outperforming tra-
ditional models to good effect) exploiting the power of
transformer-based models to generalize across knowledge
domains.

2. Related Works
Historically, forecasting of infectious diseases largely used
deterministic mathematical models (e.g : SIR) (Yang et al.,
2015; Osthus et al., 2017) combining them with proba-
bilistic approaches for uncertainty quantification. Other
approaches included the use of generalized linear models,
time series models, agent-based models and metapopula-
tion models (Shaman et al., 2013; Chretien et al., 2014;
Nsoesie et al., 2014). However, with advances in the avail-
ability of digital tools and technologies, diverse sources of
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data became accessible to researchers. This enabled the
development of novel approaches to forecast infectious dis-
eases (Ali & Cowling, 2021; Dugas et al., 2013; Kandula
et al., 2017; Achrekar et al., 2011; Shaghaghi et al., 2020)
harnessing multiple data streams to improve the predictive
power/accuracy of the model outcomes. This further led
to the use of ensemble forecasting approaches aimed at en-
hancing the quality of forecasts and systematically account
for the uncertainties (Wu & Levinson, 2021; Sherratt et al.,
2023; McGowan et al., 2019; Mathis et al., 2024; Biggerstaff
et al., 2018).

In the recent times, neural network driven approaches
showed promising results in epidemic forecasting and have
been quite useful in enhancing public health decision mak-
ing(Panagopoulos et al., 2021; Chen & Moraga, 2025; Liu
et al., 2024; Wang et al., 2022). However, tradtional (sta-
tistical & mechanistic) models and deep learning models
currently struggle at long term forecasting within an epi-
demiological context (Ray & Reich, 2021), signaling that
there is scope for newer methodologies to contribute to this
problem.

Recent advances in Foundation Models have shown great
promise in their ability to serve a broad range of time series
tasks. These models have been shown to be important, es-
pecially in showcasing their abilities in a zero-shot learning
framework(Yeh et al., 2023; Liang et al., 2024). So far,
these models have not been used in epidemic contexts. We
present this work as a case study to show the utility of these
models in forecasting epidemics.

3. Foundation Models for Epidemic
Forecasting

We selected some of the major pre-trained foundation time-
series models available, namely TabPFN-TS (time series ver-
sion), Chronos, Lag-Llama, TimesFM, and TimeGPT. They
have been trained using similar strategies but vary in size and
architectures. TabPFN-TS frames time series forecasting
a tabular regression problem to predict future time events.
Unlike auto-regressive models, it is able to make multi-step
ahead predictions solely using past data. TimeGPT, based
on self-attention mechanism, uses an encoder-decoder archi-
tecture and is primarily trained on time-series datasets, uses
rolling historical values to generate forecasts. Chronos is
based on the T5 architecture, uses a tokenization approach to
convert time series information into tokens. At inference, it
auto-regressively samples tokens from the model and maps
it back to the numerical values. TimesFM is a decoder only
transformer model which tokenizes time series data into
discrete patches and uses auto-regressive decoding during
inference. Lag-Llama is also a deocoder only model built
on Llama architecture, whose tokenization process involves
using lagged features and uses Rotary Positional Encoding

(RoPE) in its attention layers. It also uses an auto-regressive
decoding approach during inference.

Importantly, these models can be utilized “off-the-shelf”
in a zero-shot fashion, in the scope of this paper, to learn
the incidence curve of infectious disease epidemics. To
maximize performance of each model, we also adjusted
the hyperparameters following a grid search approach and
selecting the best model.

3.1. Epidemic Forecasting

We tested performance of foundation time-series models
in forecasting case incidence across different diseases and
pathogens - Influenza-Like-Illness (ILI), chickenpox, respi-
ratory syncytial virus (RSV) and dengue - spanning different
geographical locations and transmission routes. The mod-
els were assessed on multiple tasks, including long-term
multi-season predictions (3 seasons ahead), short-term in-
cidence forecasting (4 weeks ahead), and epidemic peak
timing estimation.

3.2. Policy Evaluation

For COVID-19, we focused on the Latium region in
Italy, where increasing SARS-CoV-2 incidence in February-
March 2021 led to a delayed tightening of restriction mea-
sures on March 14. Using data up to February 22, 2021,
we fine-tuned TabPFN-TS and estimated the impact of an
earlier adoption of stricter restrictions (orange tier) by com-
paring the predicted incidence under this scenario with the
observed trajectory, using past data from Italian regions
and including the tier (yellow, orange, red) as additional
covariate. The difference between the observed and coun-
terfactual incidence provided an estimate of the number of
cases that could have been averted had stricter measures
been implemented earlier.

For RSV immunization, we evaluated the effect of nirse-
vimab introduction on bronchiolitis-related emergency room
(ER) admissions among infants aged 0-12 months, strati-
fied in three age classes: 0-3 months, 4-6 months, 7-12
months. We fine-tuned TabPFN-TS on four historical pre-
immunization bronchiolitis data between 2017 and 2023 and
generated age-stratified forecasts for the 2023-2024 season
under an alternative scenario in which immunization had
not been introduced. We measured averted ER admissions
as a difference between the model prediction and the data,
and estimated the age-stratified effectiveness in reducing all-
cause bronchiolitis ER admission as the relative reduction in
observed admissions relative to model-predicted admissions,
divided by the expected nirsevimab coverage among infants
in that age class.

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Foundation models for time series forecasting and policy evaluation in infectious disease epidemics: a modelling study

4. Experimental Results
We evaluated the each model, namely the foundation models
and the epidemiological baselines, on five datasets (ILI in
France, influenza in France, RSV in France, chickenpox in
France, dengue in Brazil) and across three forecasting tasks:
long-term multi-season incidence forecasting, short-term
incidence forecasting and peak timing forecasting. Forecast-
ing scenarios spanned three seasons, from 2016 to 2019. For
each scenario, all available data before the start of the fore-
casting window were used for model fitting or fine-tuning.
This resulted in different epidemics having very different
sizes of the training data set. For each scenario and model,
we forecast the median and the 1st and 9th deciles.

4.1. Data

For the forecasting exercise, we tested the models in five dis-
eases/datasets - Influenza-like illness (ILI), RSV, Influenza
and Chickenpox in France (Flahault et al., 2006) ; Dengue
incidence data from Brazil (Clarke et al., 2024). For policy
evaluation, we used COVID-19 incidence and tier restric-
tion data from Italy (Badr et al., 2023; Manica et al., 2021).
Bronchiolitis admissions to the ER in children less than 1
year-old came from seven pediatric hospitals in the region
of Paris, France, over 5 seasons (October-February; years
2017-2019, 2022-2023).

4.2. Benchmark Models

Our baseline is composed of four canonical models:: two sta-
tistical models , one mechanistic model and one deep learn-
ing model. The first statistical model is Seasonal Autore-
gressive Integrated Moving Average (SARIMA) (Spaeder
et al., 2012) as implemented in the R package (Hyndman
& Khandakar, 2008). For each scenario, the model was
trained on the available data up to the last point of the train-
ing data set. The hyperparameters were calibrated using
the auto.arima function. The second statistical model is
Prophet developed by Meta (Taylor & Letham, 2017). The
mechanistic model was a Susceptible-Infected-Recovered
(SIR) modeled with seasonal dynamics to fit the data and
generate forecasts and is similar to what was used in (An-
dronico et al., 2024; Osthus et al., 2017; Birrell et al., 2011).
The deep learning model we used was the LSTM forecasting
model from Nixtla (Olivares et al., 2022; Sak et al., 2014;
Elman, 1990).

4.3. Metrics

We evaluated incidence forecasts using Mean Absolute Er-
ror (MAE) divided by the dataset mean value, Mean Ab-
solute Percentage Error (MAPE), Weighted Interval Score
(WIS) (Bracher et al., 2021) and peak timing forecasts (date
at which the disease incidence peaked) using Absolute Error

Figure 1. Long-term forecasting. Each plot compares the three epi-
demic seasons between 2016 and 2019 with model forecasts. Each
row is a different dataset (disease) and each column is a different
model. Benchmarks are in blue, foundation models are in red. The
solid line is the median prediction, the shaded area encompasses
the range between the 1st and the 9th decile. Forecasts start in
October for ILI, Influenza, RSV and dengue, and in September for
Chickenpox.

(AE). We then defined improvement with MAE and MAPE
as the relative drop in a model’s error with respect to the
mechanistic model. Using the prediction interval cover-
age, we also assessed the calibration of the models. We
considered an 80% coverage to measure calibration of the
models.

4.4. Long Term Forecasting

First, we tested the performance of foundation models to
forecast case incidence several seasons into the future, from
October 1, 2016 to August 31, 2019, except for the mecha-
nistic model and Chronos. This is a task where traditional
modeling approaches struggle, unless periodic patterns are
stable and past data are available for training over long
periods. Benchmark models had a poor performance on
long-term forecasts. Among them, Prophet was fairly ac-
curate on the time series which had the longest training
data - ILI and Chickenpox (see Figure 1). Its forecast, how-
ever, had a wide uncertainty. Lag-Llama was not able to
perform long-term forecasts, Chronos only on chickenpox
and ILI, with the limitation of being restricted to only one
season. The picture was completely different for TimesFM,
TimeGPT and TabPFN-TS. They showed remarkable per-
formance on ILI, influenza and chickenpox where forecasts
were both accurate and precise up to three seasons into the
future, despite a small bias in the timing of the peak for ILI
and influenza. For RSV and dengue, TimesFM and TabPFN-
TS could forecast the timing and shape of the season, but
not the peak incidence. TimeGPT could do it for dengue,
not for RSV.
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Figure 2. Model performances on short-term (4 week ahead) fore-
casts, across datasets. Benchmarks are in blue, foundational mod-
els are in red. (a) reports MAE divided over the dataset mean. Box-
plots indicate the 2.5%, 25%, 50%, 97.5% percentiles. (b) shows
the same for MAPE. (c) shows the standardized rank of WIS. WIS
is a standard metric that combines accuracy and sharpness of pre-
dictive intervals. Ranks range from 0 (worst) to 1 (best), with
models ranked relative to each other within each forecasting sce-
nario.

4.5. Short Term Forecasting

We then tested the performance on shorter-term forecasts,
namely predicting case incidence four weeks into the fu-
ture. Each model produced nine predictions for each disease
and in each of the three seasons from 2016 to 2019. Estab-
lished models routinely generate short-term forecasts for
both emergency response and for seasonal epidemic moni-
toring, but foundation models emerged here as a promising
new framework to increase accuracy and reliability of those
forecasts. Despite testing them on a demanding task such as
predicting incidence one month into the future, foundation
models showed error profiles that are comparable to, and
sometimes better than, established models when long and
regular training data are available. They, instead, clearly
outperformed traditional approaches when data are small
in size and irregular, as the example of dengue shows (see
Figure 2). There, foundation models achieved very small
errors averaging 10% in relative terms, corresponding to as
few as weekly 2,000 cases for epidemics reaching peaks of
100,000.

4.6. Comparing TabPFN-TS with the US COVID-19
Forecast Hub

Launched in April 2020, the Forecast Hub provided real-
time and retrospective forecasts of reported COVID-19
cases, COVID-19-related hospitalizations and COVID-19-
related deaths at multiple spatial scales (county, state, na-
tional) from over 110 unique models. TabPFN-TS per-
formed comparably, and in some cases better. The fact

that a relatively small model with minimal computational
requirements could match the performance of a state-of-the-
art ensemble forecast is notable and supports incorporating
foundation models.

4.7. Policy Evaluation

Our study showed that TabPFN-TS can generate counter-
factual scenarios that can be used to estimate the impact
of interventions - or the absence thereof - on epidemic in-
dicators such as the incidence of cases or severe disease.
The application to the tiered COVID-19 restrictions in force
in Italy in 2021 illustrated this capability: focusing on a
period when cases were rising in central Italy concomitantly
to the spread of the Alpha variant, but restrictions were
minimal, TabPFN-TS could estimate the number of COVID-
19 cases that an earlier enforcement of tighter restrictions
could have averted a median value of 36 detected cases (1st
decile: -110, 9th decile: 182) every 100,000 inhabitants.
Similarly, our evaluation of the impact of nirsevimab im-
munization on reducing bronchiolitis-related admissions to
the ER demonstrated the potential of foundation models
to rapidly evaluate the effectiveness of immunization cam-
paigns. TabPFN-TS could predict an entire season of ER
admissions while trained on limited data and provide an
estimate of age-stratified effectiveness of the immunization
campaign which were compatible with the results from an
epidemiological study (Carbajal et al., 2024).

5. Conclusion
We provided a broad-spectrum performance evaluation of
foundation models for time-series in epidemic forecasting,
showing that it has remarkable potential across different
epidemic settings. Specific studies will be required to eval-
uate foundation models in specific public health settings
to strengthen trust toward these methods. Moreover, this
study includes a limited number of benchmarks, even though
many models have been developed for specific epidemic
contexts. Nevertheless, this study represents a starting point
for a new perspective on epidemic modeling. Most impor-
tantly, integrating foundation models as a tool for public
health decision-making represent a promising endeavor. In-
deed, foundation models are good candidates to outperform
traditional models in specific tasks, notably for long-term
forecasts and for scenario analysis when limited data are
available. A future research direction that merits explor-
ing is to build foundation models specifically for epidemic
tasks.
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Table 1. Data description. Summary features of the different datasets used.

DATASET FIRST DATE LAST DATE POINTS SEASONS MEAN MEDIAN MAX FREQ.

ILI 1984-10 2025-01 2092 41 60356 17426 1001824 WEEKLY
INFLUENZA 2013-12 2024-01 527 6 3275 30 73442 WEEKLY
RSV 2014-10 2024-01 370 5 2435 373 27912 WEEKLY
CHICKENPOX 1990-12 2025-01 1771 35 12101 12034 36298 WEEKLY
DENGUE 2015-01 2022-12 413 7 28574 13716 151784 WEEKLY
COVID-19 2020-11 2021-05 178 1 26 23 51 DAILY
BRONCHIOL. 2017-10 2024-02 200 5 157 112 559 FORTN.

A. Data
Réseau Sentinelles is a network of general practitioners distributed across the country who report the number of ILI cases
observed in consultations on a weekly basis1. ILI cases are defined as a sudden onset of fever exceeding 39°C, with myalgia
or respiratory symptoms. Each week, a subset of these cases undergo virological testing for various respiratory viruses. Test
results were then used in combination with ILI data to estimate the incidence of influenza and respiratory syncytial virus
(RSV) since 2013 as done in (Osthus et al., 2017). Chickenpox incidence data were also obtained from the same system.
A chickenpox case was defined as presenting the characteristic rash (erythematous-vesicular eruption lasting 3-to-4 days,
pruritic, followed by a drying phase) with a sudden onset of mild fever (between 37.5 and 38 °C).

In Italy during COVID-19, the tier classification was determined automatically based on a set of epidemiological indicators,
including the weekly incidence rate per 100,000 inhabitants, ICU occupancy rates, and the reproduction number (Rt), with
stricter measures triggered as thresholds were exceeded(Manica et al., 2021). Yellow tier enforced light restrictions, with
limited curfews and indoor dining allowed, while orange imposed stricter measures, including travel restrictions between
municipalities and the closure of bars and restaurants. The red tier had the most severe restrictions, including stay-at-home
orders, school closures, and the shutdown of non-essential businesses.

In France, the bronchiolitis 2022-2023 season saw the wide scale introduction of nirsevimab, a monoclonal antibody
providing passive immunization against bronchiolitis caused by RSV. Immunization was rolled out in September 2023
among children who were less than 6 months-old at this date, then at birth from October 2023 to December 2023. Coverage
was assessed among children visiting the ER for conditions other than bronchiolitis(Carbajal et al., 2024).
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