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Abstract

We consider the problem of learning the dynamics in the topology of time-evolving
point clouds, the prevalent spatiotemporal model for systems exhibiting collective
behavior, such as swarms of insects and birds or particles in physics. In such
systems, patterns emerge from (local) interactions among self-propelled entities.
While several well-understood governing equations for motion and interaction exist,
they are notoriously difficult to fit to data, as most prior work requires knowledge
about individual motion trajectories, i.e., a requirement that is challenging to satisfy
with an increasing number of entities. To evade such confounding factors, we
investigate collective behavior from a fopological perspective, but instead of sum-
marizing entire observation sequences (as done previously), we propose learning
a latent dynamical model from topological features per time point. The latter is
then used to formulate a downstream regression task to predict the parametrization
of some a priori specified governing equation. We implement this idea based on a
latent ODE learned from vectorized (static) persistence diagrams and show that a
combination of recent stability results for persistent homology justifies this mod-
eling choice. Various (ablation) experiments not only demonstrate the relevance
of each model component but provide compelling empirical evidence that our
proposed model — Neural Persistence Dynamics — substantially outperforms the
state-of-the-art across a diverse set of parameter regression tasks.

1 Introduction

Understanding emerging behavioral patterns of a collective through the interaction of individual
entities is key to elucidate many phenomena in nature on a macroscopic and microscopic scale.
Prominent examples are coherently moving flocks of birds, the swarming behavior of insects and fish
or the development of cancerous cells, all understood as 2D/3D point clouds that evolve over time.
Importantly, several widely-accepted governing equations for collective behavior exist [18, 40, 56]
which, when appropriately parameterized, can reproduce different incarnations of typically observed
patterns. Even more importantly, these equations are tied to physically interpretable parameters and
can provide detailed insights into the intrinsic mechanisms that control various behavioral regimes.
However, while it is fairly straightforward to simulate collective behavior from governing equations
(see [21]), the inverse problem, i.e., identifying the model parameters from the data, turns out to be
inherently difficult. Confounding factors include the often large number of observed entities and the
difficulty of reliably identifying individual trajectories across point clouds at possibly non-equidistant
observation times.

However, as several works [4, 23, 52] have recently demonstrated, it may not be necessary to rely on
individual trajectories for parameter identification. In fact, collective behavior is characterized by
global patterns that emerge from local interactions, and we observe the emergence of these patterns
through changes to the “shape” of point clouds over time. For instance, birds may form a flock, split
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into groups, and then merge again. This perspective has prompted the idea of summarizing such topo-
logical events over time and then phrasing model identification as a downstream prediction/regression
task. The key challenge here lies in the transition from topological summaries of point clouds at
specific observation times, typically obtained via persistent homology (PH) [3, 9, 22], to the dynamic
regime where the temporal dimension plays a crucial role.

Yet, despite the often remarkable perfor- uple 1: PointNet++ [45] vs. persistent homology (PH)
mance of topological approaches in terms of  representations; 1 means higher and | means lower is better.
parameter identification for models of col-
lective behavior, it remains unclear in which @ VE 1 © SMAPE |
situations they are preferable over more tra-

ditional (learning) methods that can handle
point cloud data’ as, e.g., used in Computer Ours (PointNet++, V2) 0.274+0.085 0.199+£0.014
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vision problems [24, 46]. In the spirit of Ours (PH, v1) 0.5794+0.034  0.146+0.006

[53], we highlight this point by previewing dorsogna-1k

gsnaErShIOt of one al‘blat%%‘i ei‘pe“mem fr?ﬁ“ Ours (PointNet++, v2) 0.816+0.031  0.13240.018
cc. =. In particular, 1bl. 1 compares the o, ¢ (ppy 1) 0.8512-0.008  0.096-0.004

parameter regression performance of our
proposed approach, using PH, to a variant
where we instead use PointNet++ [45] representations. Referring to Fig. 1, this means that the v, are
computed by a PointNet++ model. As can be seen in Tbl. 1, relying on representations computed via
PH works well on both datasets, while PointNet++ representations fail on one dataset (vicsek-10k),
but indeed perform reasonably well on the other (dorsogna-1k).

In light of this observation, it is worth emphasizing that there is a clear distinction in terms of the
source of point cloud dynamics when comparing collective behavior to problems in computer vision
where moving objects are of primary interest and PointNet variants (see [24]) have shown stellar
performance: in particular, point clouds in vision primarily evolve due to a change in pose or camera
motion, whereas collective behavior is driven by (local) intrinsic point interactions. The latter induces
changes to the “shape” of the point clouds, i.e., a phenomenon that is typically not observed in vision.

Contribution(s). Our key idea is to learn a generative model that can reproduce topological sum-
maries at each point in time. This contrasts prior work, which primarily aims to extract one summary
representation of the entire timeline. In detail, we advocate for modeling the dynamics of vectorized
persistence diagrams via a continuous latent variable model (e.g., a latent ODE), see Fig. |, and to use
the resulting latent paths as input to a downstream parameter regression task. Recent stability results
for vectorizations of persistence diagrams — relating distances among the latter to the Wasserstein
distance between point clouds — justify this modeling choice. Aside from state-of-the-art performance
on various parameter identification tasks for established models of collective behavior, our approach
scales favorably with the number of observed sequences, accounts for non-equidistant observation
times, and is easily combinable with other sources of information.

o Hj
|

dgmg (Rips (Pr))

Figure 1: Conceptual overview of Neural Persistence Dynamics. Given is a sequence of observed point clouds
Pro, -+, Pry. First, we summarize each P-, via (Vietoris-Rips) persistent homology into persistence diagrams
(zero-, one- and two-dimensional; only the zero-dimensional diagrams are shown) which are then vectorized into
v, via existing techniques. Second, we model the dynamics in the sequence v, ..., V., Via a continuous
latent variable model (in our case, a latent ODE) and then use a summary of the latent path to predict the
parameters of specific governing equation(s) of collective behavior. Precomputed steps are highlighted in red.



2 Related work

Our work is partially related to the literature on learning with dynamic point clouds in vision problems,
but primarily connects to work on summarizing topological features over time and inferring interaction
laws of collective behavior from data.

Summarizing topological features over time. A common denominator in the literature on encoding
topological changes in dynamic point clouds is the use of persistent homology, extended to accom-
modate the temporal dimension in various ways. One of the early works along this direction are
persistence vineyards [16], introduced as a means to study folding trajectories of proteins. Based on
the idea of tracking points in persistence diagrams over time, vineyards come with stability properties
similar to persistent homology [41], but are expensive to compute and compare on a large scale. In
cases where one would know the “right” scale at which to compute homology, one may also use
zigzag persistence [8], as done in [17, 54], to track homological changes over time. Nevertheless, for
problems with a large number of observation sequences, scale selection per sequence is nontrivial
and highly impractical.

Alternatively, instead of thinking about the evolution of individual points in persistence diagrams
over time, one may discard the matching between points and instead focus on sequences of summary
representations of said diagrams. In [25], for instance, the authors work directly with persistence
diagrams (per time point) to identify changes in the topology of time-varying graphs. In terms of
temporal summary representations, [52] introduce crocker plots to encode the evolution of topological
features by stacking discretized Betti curves over time. Crocker stacks [57], an extension of this
concept, adds a smoothing step that gradually reduces the impact of points of low persistence and,
upon discretization, yields a third dimension to crocker plots. In our context, both crocker plots &
stacks have been successfully used as input to regression methods to estimate the parametrization
of models of collective behavior [4]. By drawing on prior work on kernels for sequentially ordered
data [33], [23] follow a conceptually similar strategy as [52, 57], introducing a path signature kernel
(PSK) for sequences of summary representations of persistence diagrams.

Along a different line of research, [28, 29] propose formigrams as summaries of dynamic metric
data, encoding the evolution of connected components. In subsequent work, [30] construct mul-
tidimensional (i.e., spatiotemporal) persistent homology modules from dynamic metric data and
compare invariants of these modules. While these works provide important theoretical stability
results for zero-dimensional homological features, i.e., connected components, it is unclear how their
construction extends to homological features of higher dimension in a tractable manner. However, it
is worth pointing out that recent progress along the lines of vectorizations of multiparameter persis-
tent homology [36] in combination with [30] (who essentially construct multiparameter persistence
modules) might, in the future, constitute a tractable approach to study dynamically changing point
clouds with learning methods.

Notably, computational challenges also arise in the context of crocker plots/stacks and PSKs. Despite
their remarkable performance in distinguishing different configurations of models for collective
behavior, both approaches suffer scalability issues: either (i) in terms of unfavorable scalability with
respect to the dimensionality of vectorized persistence diagrams (as with the PSK approach of [23]),
or (ii) in terms of unfavorable scalability with the number of observation sequences (as is the case for
crocker plots/stacks, due to the need for extensive cross-validation of the discretization parameters).
As we show in Sec. 4, our method not only outperforms these techniques by a large margin, but also
scales to large amounts of training sequences and requires little hyperparameter tuning.

In addition to the closely related works discussed above, we highlight that there is a large body
of literature on the topological analysis of time-varying signals, such as studying fMRI data via
cubical persistence [47], or the persistent homology of delay embeddings [43, 44] of time series.
In our context, however, these works are only partially related/relevant, as they do assume precise
knowledge about individual trajectories over time (e.g., voxel IDs in fMRI data), which is unrealistic
when seeking to infer parametrizations of models for collective behavior from data.

Inferring interaction laws for models of collective behavior. In the context of studying character-
istics of collective behavior, there is a second line of closely related work on inferring interaction
laws (see, e.g., [2, 5, 6, 27, 39, 61]), ranging from metric-distance-based models and topological
interaction models to non-parametric estimators of interaction kernels. While a thorough survey
of this literature is beyond the scope of this paper, we highlight that one common denominator in



these works is their reliance on correspondences between points across time, e.g., to infer individual
point velocities or trajectories. To give an example, in recent work [39, 61], the authors derive
non-parametric estimators for interaction kernels (certain functions of pairwise distances) between
observed points which crucially hinges on the traceability of each particle over time. While such
approaches are conceptually appealing and even allow for reconstructing or extrapolating trajectories,
they operate in the observation space. Even under a moderate number of points m, computing these
estimators becomes prohibitively expensive (as, e.g., in 3D, the state space is R>™). In contrast,
our approach only requires positional information and can handle larger point clouds. Furthermore,
although we only present results on predicting parameters for a class of a priori specified governing
equations, by formulating an auxiliary regression task, our underlying model may also be used to
predict other quantities of interest.

Finally, taking a slightly broader perspective on prior art, we want to highlight recent progress on
learning-based approaches that study inverse problems in the context of classic partial differential
equations (PDEs). It might be possible to apply such approaches [37, 55, 60] to specific models
of collective behavior such as volume exclusion [40], for which the asymptotics of infinitely many
particles are solutions to parametric PDEs [42]. However, for other models, the number of particles
strongly influences the dynamics. For instance, in the D’Orsogna model [18], particle distances can
collapse to zero as the number of particles tends to infinity.

3 Method

Below, we present our method with a focus on its application to modeling collective behavior in point
clouds. Importantly, the latter represents only one of many conceivable use cases. In fact, the core
ideas can be applied in exactly the same way whenever one can extract topological features from
time-dependent data (e.g., graphs or images).

Notation. In the following, P = {x1,...,x3} C R? denotes a point cloud with M points and
d(x,y) = ||x — y|| denotes the Euclidean metric. Point clouds may be indexed by t; (or 7;) to
highlight the dependence on time ¢;. If necessary, we clearly distinguish between 7; as a time point
with an available observation, and ¢; as a general placeholder for time.

Problem statement. Given a sequence of point clouds P,,, ..., P.,, observed at possibly non-
equidistant time points 7;, we (1) seek to model their topological evolution over time and then (2)
use this model to predict the parametrization of an a priori defined governing equation of collective
behavior. The latter is typically specified by a small number of parameters (31, ..., Sp that control
the motions dx; /d¢ of individual points x; and specify (local) interactions among neighboring points.

As preparation for our model description, we first briefly establish how one may extract topological
features from a point cloud P, using persistent homology [3, 9, 22] — the arguably most prominent
and computationally most feasible approach.

Persistent homology of point clouds. Persistent homology seeks to uncover and concisely summarize
topological features of P. To this end, one constructs a topological space from P in the form of a
simplicial complex, and studies its homology across multiple scales. The most relevant construction
for our purposes is the Vietoris-Rips complex Rips(P)s, with vertex set P. This complex includes an
m-simplex [Xo, ..., X, | iff d(x;,x;) < 6 forall 0 < 4,j < m at a given threshold ¢. The “shape”
of this complex can then be studied using homology, a tool from algebraic topology, with zero-
dimensional homology (Hj) encoding information about connected components, one-dimensional
homology (H;) encoding information about loops and two-dimensional homology (Hs) encoding
information about voids; we refer to this information as homological/topological features. Importantly,
if & < 44, then Rips(P)s, C Rips(P)s,, inducing a sequence of inclusions when varying ¢, called a
filtration. The latter in turn induces a sequence of vector spaces Hy (Rips(P)s,) — Hg(Rips(P)s,)
at the homology level. Throughout this sequence, homological features (corresponding to basis
vectors of the different vector spaces) may appear and disappear; we say they are born at some d
and die at §; > 6. For instance, a one-dimensional hole might appear at a particular value of J;
and disappear at a later d4; in other words, the hole persists from d;, to d4, hence the name persistent
homology. As different features may be born and die at the same time, the collection of (birth, death)
tuples is a multiset of points, often represented in the form of a persistence diagram, which we denote
as dgm,, (Rips(P)). Here, the notation Rips(P) refers to the full filtration and dgm,, indicates that
we have tracked k-dimensional homological features throughout this filtration.



Clearly this construction does not account for any temporal changes to a point cloud, but reveals
features that are present at a specific time point. Furthermore, due to the inconvenient multiset
structure of persistence diagrams for learning problems, one typically resorts to appropriate vec-
torizations (see, e.g., [1, 7, 10, 26]), all accounting for the fact that points close to the diagonal
A = {(z,z) : * € R} contribute less (0 at A) to the vectorization. The latter is important to preserve
stability (see paragraph below) with respect to perturbations of points in the diagram. In the following,
we refer to a vectorized persistence diagram of a point cloud P, as

vy, 1 := vec(dgm, (Rips(Py,))) €))

where vy, i, € R? and d is controlled by hyperparameter(s) of the chosen vectorization technique.
For brevity, we omit the subscript k£ when referring to vectorizations unless necessary.

Remark 1. As our goal is to model the dynamics of vectorized persistence diagrams using a
continuous latent variable model, it is important to discuss the dependence of the vectorizations
on the input data. In particular, for our modeling choice to be sound, vectorizations should vary
(Lipschitz) continuously with changes in the point clouds over time. We discuss this aspect next.

Stability/Continuity aspects. First, we point out that persistence diagrams can be equipped with
different notions of distance, most prominently the bottleneck distance and Wasserstein distances,
both based upon the cost of an optimal matching between two diagrams, allowing for matches to the
diagonal A. We refer the reader to [12, 51] for a detailed review. Stability in the context of persistent
homology is understood as persistence diagrams varying (Lipschitz) continuously with the input data.
While seminal stability results exist for the Wasserstein distances [15] and the bottleneck distance
[12, 14], most results from the literature focus on the latter.

In the case of vectorization techniques for persistence diagrams (e.g., [1, 26]), it turns out that, most
of the time, vectorizations are only Lipschitz continuous with respect to Wasserstein distances, and
existing results are typically of the form

d(vec(F),vec(G)) < KWy (F,G) , )

where W denotes the (1, 2)-Wasserstein distance as defined in [51, Def. 2.7], F, G are two persis-
tence diagrams and K > 0 is a Lipschitz constant. In the context of Rem. I, one may be tempted
to combine Eq. (2) with the seminal Wasserstein stability theorem from [15] to infer stability of
vectorizations with respect to the input data. Yet, the conditions imposed in [15] actually eliminate
a direct application of this result in most practical cases, as discussed in [51]. However, the latter
work also provides an alternative: in our particular case of Vietoris-Rips persistent homology, one
can upper bound W1 in terms of the standard point set Wasserstein distance VV;. Specifically, upon
relying on a stable vectorization technique, we obtain the inequality chain

[26, Thm. 12]
d(vec(Fy), vec(Gy)) < K Wi (Fy,Gy)

[51, Thm. 5.9] M -1

3

where F), = dgm, (Rips(P)), G = dgm, (Rips(Q)) denote the k-dimensional persistence dia-
grams of point clouds P and Q of equal cardinality M. In particular, we realize vec via the approach
outlined in [26, Def. 10] using exponential structure elements [26, Def. 19].

Overall, the continuity property in Eq. (3) guarantees that small changes in dynamic point clouds
over time only induce small changes in their vectorized persistence diagrams, and therefore provides
a solid justification for the model discussed next.

Latent variable model for persistence diagram vectorizations. As we presume that the dynamic
point clouds under consideration are produced (or can be described sufficiently well) by equations of
motions with only a few parameters, cf. Fig. 3, it is reasonable to assume that the dynamics of the
(vectorized) persistence diagrams are equally governed by a somewhat simpler unobserved/latent
dynamic process in R* with z < d. We model this latent dynamic process via a neural ODE [13,
49], learned in a variational Bayes regime' [32]. In this setting, one chooses a recognition/encoder
network (Encg) to parametrize an approximate variational posterior qg(z,|{v+, }:), an ODE solver

'Other choices, e.g., a latent SDE as in [35, 58] are possible, but we did not explore this here.
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Figure 2: Schematic illustration of different model variants. The first three variants (left to right) explicitly model
latent dynamics (later denoted as w/ dynamics), the baseline variants do not (later denoted as w/o dynamics), but
still incorporate the attention mechanism of the encoder from [50], which we use throughout.

to yield latent states {z,, }; at observed time points 7; € [0, 7] and a suitable generative/decoder
network (Dec~) to implement the likelihood p~ (v, |z-,). Upon choosing a suitable prior p(zy, ), one
can then train the model via ELBO maximization, i.e.,

zr.)| = Dxu(ge(ze [{vr )il p(21,)) - 4

0,y = arg Igéyx Ez, ~aqo [Zl log p~ (v,

Different to [49], we do not implement the recognition/encoder network via another neural ODE,
but rather choose an attention-based approach (mTAN) [50] which can even be used in a standalone
manner as a strong baseline (see Sec. 4). In our implementation, the recognition network yields the
parametrization (s, 33) of a multivariate Gaussian in R? with diagonal covariance, and the prior is a
standard Gaussian AV (0, I,). Furthermore, the ODE solver (e.g., Euler) can yield z,, at any desired
t;, however, we can only evaluate the ELBO at observed time points 7;.

Regression objective. To realize our downstream regression task, i.e., predicting parameters
B1,...,0p of an underlying governing equation for collective behavior (see Fig. 3) from a given
observation sequence, we have multiple choices. By our assumption of a latent dynamic process that
carries information about the dynamic nature of the topological changes, it is reasonable to tie the
simulation parameter estimates /31, . .., Op to the latent path {z:, }; via a regression network Reg,,
that accepts {2z, }; as input. In particular, we re-use the attention-based encoder architecture Encg
to allow attending to different parts of this path. However, different to Encg, which parametrizes
the approximate posterior from observations at time points 7;, the regression network Reg,, (with
its own set of parameters «) receives latent states z;, at equidistant t; € [0, 7], then summarizes
this sequence into a vector and linearly maps the latter to 31,..., 8p, cf. Fig. 2. As in [49], for
training, we extend the ELBO objective of Eq. (4) by an additive auxiliary regression loss, such as the
mean-squared error (MSE), between the predictions (3, and the ground truth /3, implicitly making a
Gaussian noise assumption.

A schematic overview of our Neural Persistence Dynamics approach is shown in Fig. 1. Additional
details, including different model variants, are illustrated in Fig. 2.

Remark 2. Clearly, our presented framework allows for many architectural choices. While some
components affect downstream (regression) performance only marginally, others have a more pro-
found impact, and we have already identified some recommended choices above (based on our
experiments in Sec. 4). This includes (1) our choice of a stable persistent homology vectorization vec,
where we rely on [26] due to consistently reliable performance without much hyperparameter tuning,
and (2) our choice of recognition network, where we choose an attention-based approach (mnTAN)
[50] which has proven to be very effective in practice [58]. In Sec. 4.2, we will provide additional
configuration details for our experimental study.

4 Experiments

4.1 Datasets

Similar to previous work [4, 23, 52, 57], we evaluate and compare our approach on simulation
data that is generated from parametric models of collective behavior. Specifically, we consider
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Figure 3: Models of collective behavior. Parameters that are varied to obtain different behavior are highlighted
in red; the range of each parameter is listed in Appendix A. In the Vicsek model, B; denotes Brownian motion.

three different models in R®: D’Orsogna [18], Vicsek [20] and volume exclusion [40], using the
publicly-available implementations in the SiSyPHE library [21]°. The corresponding equations of
motion (and interaction laws) are summarized in Fig. 3. The parameters that are varied to generate the
datasets, i.e., the response variables of the regression tasks, are highlighted in red. We sample these
parameters, as specified in Appendix A, to cover a wide range of macroscopic behavioral regimes.
For each sampled parameter configuration, we simulate one sequence of point clouds, to a total of
10,000 sequences per model. All simulations are run for 1,000 time steps (with step size 0.01, starting
at t = 0) on point clouds of size M = 200. We take every 10th time step as an observation, yielding
observation sequences of length 100. At ¢ = 0, points are drawn independently and uniformly in
[—0.5,0.5]3, and initial velocities are uniformly distributed on the unit sphere. For direct comparison
to [23], we also simulated their parameter configuration of the D’Orsogna model. This setup yields
four datasets: dorsogna-1k (from [23]), dorsogna-10k, vicsek-10k and volex-10k.

4.2 Implementation, training & evaluation metrics

Implementation. The model variants from Fig. 2 can be realized in many ways. Below, we specify
the configuration that was used to run the experiments. For the encoder Encg, as well as the regression
network Reg,,, we use the attention-based mTAN architecture [50]. As decoder network Dec.,, we
choose a two-layer MLP with ReLU activations, and as ODE solver, we select the Euler method.
Each model is trained for 150 epochs using ADAM [31] (with a weight decay of 0.001), starting
at a learning rate of 0.001 (decaying according to a cosine annealing schedule) and MSE as a
reconstruction (i.e., to evaluate the first term in Eq. (4)) and regression loss. In case a model uses
topological features, we use Ripser++ [59] to compute (prior to training) persistent homology of
dimension up to two, i.e., Hy, Hy, and Hs. Vectorizations of each persistence diagram are then
obtained using exponential structure elements from [26, Def. 19]. In particular, we use 20 structure
elements per diagram, which yields a d = 3-20 dimensional representation per point cloud and
time point. The location of each structure element is set to one of 20 k-means++ cluster centers,
obtained by running the latter on a random subset of 50,000 points (per dimension) selected from
all persistence diagrams available during training; the scale parameter of each structure element
is set according to [48, Eq. (2)]. To model the dynamics, we fix the latent space dimensionality
to z = 20 and scale the ODE integration time to [0,1]. While other settings are undoubtedly
possible, we did not observe any noticeable benefits from increasing the dimensionality of the
vectorizations or the latent space. Our publicly available reference implementation can be found at
https://github.com/plus-rkwitt/neural_persistence_dynamics.

Evaluation metrics. We randomly partition each dataset into five training/testing splits of size
80/20. To obtain a robust performance estimate for different regimes of missing and unevenly spaced
observations, we train three models (per split) using only a fraction (i.e., 20%, 50%, and 80%) of
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randomly chosen time points per sequence. Similarly, all testing splits undergo the same sampling
procedure. All scores (see below) are reported as an average (&£ one standard deviation) over the five
splits and the three time point sampling percentages. Specifically, we report the variance explained
(VE) [34] (in [0, 1]; higher is better 1) and the symmetric mean absolute percentage error (SMAPE)
(in [0, 1]; lower is better ). For each testing sequence in each split, the scores are computed from the
true simulation parameters (see variables marked red in Fig. 3) and the corresponding predictions
(denoted by 3; in Fig. 2). Finally, when reporting results on a dataset, we mark the best score in bold,
as well as all other scores that do not show a statistically significant difference in mean (assessed via
a Mann-Whitney test at 5% significance and correcting for multiple comparisons).

4.3 Ablation

In our ablation study, we assess (1) the relevance of different point cloud representations (PH vs.
PointNet++), (2) any potential benefits of modeling latent dynamics and (3) the impact of varying the
observation timeframe. Additional ablation experiments can be found in Appendix B.3.

Are representations complementary? We first investigate the impact of different point cloud
representations (from PH and PointNet++, resp.), by comparing variants v1,v2 and v3 from Fig. 2.

Tbl. 2 shows an extension of Tbl. I, listing re-  aple 2: Ablation study on the relevance of different point
sults for the vicsek-10k and dorsogna-1k cloud representations.

data. While using PointNet++ representa-
tions on vicsek-10k yields rather poor per-  Source @VE?® @ SMAPE |
formance, combining them with representa-

. . . vicsek-10k

tions computed from PH is at least nor detri- '

mental. On the other hand, on dorsogna-1k,  PointNet++ (v2) 0.274+0.085  0.199+0.014
where PointNet++ yields decent SMAPE and ~ PH (V1) 0.579+£0.034  0.146-:0.006
VE scores, the combination of both sources ~ PH+PoIniNet++(v3)  0.576=0.030  0.144::0.006
substantially outperforms each single source dorsogna-1k

in isolation. Although, the complementary i, et (v2) 0.81640.031  0.13240.018
nature of a topological perspective on data  py (v1) 0.85140.008  0.09740.005

has been pointed out many times in the lit-  pH4+PointNet++ (v3)  0.9314+0.004  0.067-£0.002
erature, it is rarely as pronounced as in this

particular experiment. Hence, we will stick to the combination of PH+ PointNet++ representations
(i.e., v3in Fig. 2) in any subsequent experiments.

Are explicit latent dynamics beneficial? To assess the impact of explicitly modeling the dynamics of
persistence diagram vectorizations, we ablate the latent ODE part of our model. In detail, we compare
v3 from Fig. 2 against using Reg,, operating directly on concatenated point cloud representations
from PH and PointNet++ (i.e., a combination of variants v4 & v5 from Fig. 2). The latter approach
constitutes an already strong baseline (cf. [58]) as Reg,, incorporates an attention mechanism that
allows attending to relevant parts of each sequence. For a fair comparison, we increase the size of
Reg,, to approximately match the number of parameters to our latent dynamic model.

As in Tbl. 2, we list results for the vicsek-10k and  Table 3: Results on the relevance of latent dynamics.
dorsogna-1k data in Tbl. 3. First, we see that ex-
plicitly modeling the latent dynamics is beneficial, @VE?T @ SMAPE |,
with considerable improvements in the reported vicsek-10k

scores across both datasets. While differences are
quite prominent on the dorsogna-1k data, they are ~ W/ dynamics  0.576+0.030  0.144-:0.006
less pronounced in the SMAPE score on vicsek- ~ W/0 dynamics  0.512:£0.020  0.1550.004
10k, but still statistically significant. Second, it is dorsogna-1k

important to point out that even without any explicit w/dynamics  0.931£0.004  0.067-£0.002

latent dynamics, the regression performance (see dynamics  0.850+0.006  0.098-0.004
Tbl. 4) is already above the current state-of-the-art

(i.e., compared to PSK [23]), highlighting the necessity for strong baselines.

Impact of the observation timeframe. So far, we have presented results (as in prior work) where
observation sequences are extracted from the beginning of a simulation (i.e., starting from ¢y = 0),
which corresponds to observing the emergence of patterns out of a random yet qualitatively similar,
initial configuration of points. In the following experiment, we investigate the impact of extracting
observation sequences with starting points randomly spread across a much longer simulation time.



This is relevant as it is unlikely to observe uniform initial positions in any data obtained from real-
world experiments. To this end, we create variations of the dorsogna-10k data by progressively
increasing the simulation time 7" from 1,000 to 20,000 and then randomly extracting sub-sequences
of length 1,000 (again, as before, taking each 10th step as an observation). The extension of the
simulation timeframe has the effect that the difficulty of the learning task considerably increases
with T'. We argue that this is due to the increased variation across the observed sequences while the
amount of training data remains the same. For comparison, we also list results for the PSK approach
of [23], however, only for the optimal case of observing all time points within a sequence (due to the
massive PSK computation time; > 3 days). As the PSK relies on persistent homology only, we limit
our model to the v1 variant from Fig. 2. As seen from Fig. 4, we observe an increase/drop in SMAPE
and VE, resp., for both approaches, yet our approach degrades much slower with 7.

0.6 B _ 0.14 - B
—
(= E 0.13 - o
o
2051 : < 012 :
—e— Ours, v1 E —e— Ours, v1
—=— PSK [23] 0.11 —=— PSK [23] [
4 = T I | | | | | | I
2,000 5,000 10,000 20,000 2,000 5,000 10,000 20,000
Simulation time 7' Simulation time 7'

Figure 4: Impact of the maximal simulation time 7" for extracting training/testing sequences starting at
70 € [0, — 1000], assessed on the dorsogna-10k dataset.

4.4 Comparison to the state-of-the-art

Finally, we present parameter regression results on the full battery of datasets and compare against
two of the most common approaches from the literature: the path signature kernel (PSK) of [23]
and the crocker stacks approach from [57]. For both competitors, we report results when all time
points are observed to establish a baseline of what could be achieved in the best case. Note that we
evaluate the PSK approach [23] on exactly the same vectorizations as our approach, and we replicate
their experimental setting of choosing the best hyperparameters via cross-validation. Similarly, for
crocker stacks, we cross-validate the discretization parameters, see Appendices B.1 and B.2. Tbl. 4
lists the corresponding results. Aside from the observation that our approach largely outperforms the
state-of-the-art across all parameter regression tasks, we also highlight that our model is trained with
exactly the same hyperparameters on all datasets.

Remark 3. A closer look at the volex-10k dataset, in particular its governing equations in Fig. 3,
shows that the cardinality of the point clouds may change over time due to cell division or death.
While this is no practical limitation for our approach, our stability arguments from Eq. (3) no longer
apply. We conjecture that one may be able to extend the result of [51] to account for such cases, but
this might require a case-by-case analysis and possibly include additional assumptions.

5 Discussion

We introduced a framework to capture the dynamics observed in topological summary representations
over time and presented one incarnation using a latent ODE on top of vectorized Vietoris-Rips
persistence diagrams, addressing the problem of predicting parametrizations for models of collective
behavior. Conceptually, Neural Persistence Dynamics embodies the idea of learning the dynamics in
a temporal sequence of vectorized topological summaries instead of, e.g., trying to track individual
homology classes over time (as with persistence vineyards, see Sec. 2). Our approach successfully
scales to a large number of observation sequences, requires little to no parameter tuning, and vastly
outperforms the current state-of-the-art, as demonstrated by several experiments on dynamic point
cloud datasets with varying characteristics. Finally, we emphasize that the fundamental ideas of
Neural Persistence Dynamics may also be applied to other types of time-varying data (e.g., graphs or
images) and downstream objectives simply by adjusting the filtration choice. We hope that our work
will stimulate further research in this direction.



Table 4: Comparison to the state-of-the-art across four diverse datasets of collective behavior. Ours (joint)
refers to the variant v3 of Fig. 2, Ours (PH-only) refers to variant v1. The latter setting is directly comparable to
the PSK and crocker stacks approach. Best results are marked bold. Multiple bold entries indicate that there
is no significant difference in mean. Note that dorsogna-1k is simulated exactly as in [23] varying only two
parameters, whereas for dorsogna-10k we vary four parameters (as with vicsek-10k and volex-10k).

oVE?T ©SMAPE |

Ours (joint, v3) 0.931+0.004  0.067+0.002

dorsogna-1k Ours (PH-only, v1)  0.851£0.008  0.097+0.005
g PSK [23] 0.828+0.016  0.096+0.006
Crocker Stacks [57]  0.746+0.023  0.150+0.005

Ours (joint, v3) 0.689+0.021  0.088+0.004

dorsogna-10k Ours (PH-only, v1)  0.680+£0.025  0.090+0.005
J PSK [23] 0.647+0.005 0.100+0.003
Crocker Stacks [57] 0.343+0.016  0.145+0.001

Ours (joint, v3) 0.576+£0.030  0.144+-0.006

vicsek-10k Ours (PH-only, v1)  0.579+0.034  0.146+0.006
PSK [23] 0.466+0.009  0.173£0.003

Crocker Stacks [57]  0.3454+0.005  0.190+0.001

Ours (joint, v3) 0.871+£0.019  0.081+0.006

volex-10k Ours (PH-only, v1)  0.869+£0.018  0.082+0.007
PSK [23] 0.509+0.003  0.190+0.003

Crocker Stacks [57]  0.076+0.019  0.29240.004

Limitation(s). One obvious limitation in the presented implementation is the reliance on Vietoris-
Rips persistent homology of point clouds. In fact, the underlying simplicial complex will become
prohibitively large (especially for Hy) once we scale up the number of points by, e.g., an order of
magnitude. Using an Alpha [22] or a Witness complex [19] might be a viable alternative to mitigate
this issue. Similarly, one may explore subsampling strategies for persistent homology, as in [11], and
learn a latent ODE from a combination of estimates.

Societal impact. The present work mainly deals with an approach to capture the dynamics observed
in data representing collective behavior. We assume that this has no direct societal impact, but
point out that any application of such a model (aside from synthetic data), e.g., in the context of
behavioral studies on living beings or health sciences (e.g., to study the development of cancer cells),
should be carefully reviewed. This is especially advisable when drawing conclusions from missing
measurements, as these are based on imputations and may be biased.
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A Simulation settings

As mentioned in Sec. 4.1, we create datasets of dynamic point clouds from simulations. All simula-
tions are run with 200 points for 1,000 steps with a step size of 0.01, and every 10th step is taken
as an observation. Only for the final ablation experiment of Sec. 4.3 (i.e., Impact of the observation
timeframe), we simulate 20,000 time steps (of the D’Orsogna model) and extract training/testing
sequences from this extended timeframe. The model parameters for these simulations are randomly
sampled as specified below, and for each sampled parameter tuple, we create one simulation.

To create the dorsogna-10k dataset, we vary the following model parameters (see Fig. 3): overall, we
have four parameters that need to be predicted. As macroscopic regimes mainly depend on the ratios
C,/Cqandl,/l,, cf. [18, Fig. 1], we fix Cy, = I, = 1 and sample C,. = 2t¢, [, = 2! with uniformly
distributed tc ~ U[_1 1) and &} ~ U|_1 5,0.5. Similarly, we sample o = 2t with t,, ~ U39 and
m = 2t with t,,, ~ U[_3,2). The model from the SiSyPHE library used to implement this simulation
is AttractionRepulsion. Note, that the SiSyPHE library implements the mass m in terms of the
interaction radius parameter R, i.e., m = R3 (as we simulate point clouds in 3D).

Remark 4. For comparability (and interpretability of the parameters) to the original D’Orsogna
model from [18], we adjusted the AttractionRepulsion implementation of SiSyPHE to directly
match [18, Egs. (2) & (3)].

The dorsogna-1k dataset is created by re-running the simulation provided as part of the public
(Julia) implementation® of [23]. This dataset has two parameters to predict. Note that in [23], the
authors simulated 500 sequences. For our work, we simulated 1,000 to have a larger dataset, but still
one magnitude smaller than dorsogna-10k, vicsek-10k and volex-10k. For this dataset, particle
masses are m = 1, propulsion is « = 1, C, = I, = 1 and C,, [,- vary uniformly in [0.1, 2], and are
selected if the generated point clouds satisfy a certain scale condition, leading to the parameter pairs
illustrated in [23, Fig. 6].

For the vicsek-10k dataset, we sample R, c, v uniformly from Uy 5 5 and D from Ujg o). Overall,
this gives four parameters that need to be predicted.

Finally, for the volex-10k dataset, we sample four parameters as follows: a ~ L{[O,g] , interaction
radii R ~ Ujp 2 and birth/death rates Ay, A\g ~ Ujg 1). However, for the latter two parameters, we
discard settings where Ay > ) as, in this case, death rates are almost impossible to distinguish; also,
we discard settings where A, > A4 as the resulting point cloud cardinalities exceed 2000 points
during the simulation. The resulting (A, Aq) combinations are illustrated in Fig. 5.

3ht‘cps ://github.com/ldarrick/paths-of-persistence-diagrams
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Figure 5: Birth rates A, and death rates A4 used for generating the volex-10k dataset.

For reproducibility, we will release the simulation data publicly.

B Comparison(s) to prior work & Additional ablation experiments

B.1 Path Signature Kernel (PSK) [23]

For the PSK, we rely on the publicly available implementation in sktime®* [38]. We compute the PSK
(truncated at signature depth 3) using our vectorized persistence diagrams per time point as input.
For concatenated zero-, one- and two-dimensional persistence diagrams, we use 20-dimensional
vectorizations (as specified in Sec. 4.2), yielding 60-dimensional input vectors per time point. The
computed kernel is then input to a kernel support vector regressor (kernel-SVR).

Following the experimental protocol in [23, Sec. 7.3], we cross-validate the sliding window em-
bedding (across lags [1, 2, 3]) and kernel-SVR hyperparameters on a 20% validation portion of the
training data, with hyperparameters selected based on the average MSE (per governing equation
parameter 3; to be predicted) across 5-folds. Due to the excessive runtime (approx. 8.3 hours per lag
on the system specified in Appendix C), we only report results when all time points per observation
sequence are considered. Hence, no subsampling of time points (as is done when evaluating our
approach) is performed, and the reported performance can be considered an optimistic estimate of
what can be achieved with the PSK.

B.2 Crocker stacks [57]

As mentioned in Sec. 4.4, we compare against crocker stacks, introduced in [57], as one of the
state-of-the-art approaches. Crocker stacks are an extension to crocker plots [52] and constitute a
topological summary for time-varying persistence diagrams. For the crocker stacks, we adapted the
publicly available implementation of the crocker plots in the teaspoon” library.

The crocker plot is computed as follows: for each time step, the persistence diagrams are computed
up to a scale parameter €. In discretized steps of the scale parameter, the Betti numbers are computed
from the persistence diagrams, which results in a 2D representation (i.e., € vs. Betti number) for each
homology dimension.

The extension to crocker stacks is achieved by adding a third dimension k, induced by the smoothing
factor a. For given steps of «, a smoothing operation is applied, i.e., values within a specified
distance (smoothing factor) from the diagonal of the persistence diagram are ignored. Hence, for each
homology dimension, a crocker stack is a tensor in R3, with axes corresponding to discretizations of
the (1) scale parameter € € [0, 00), the (2) time ¢ € [0, T'], and the (3) smoothing factor « € [0, 00).

We note that in [57], the authors set the scale parameter to § = 0.35, as they use data normalized to the
range of 0 to 1. We did not scale the data, however, we adjusted the scale parameter correspondingly:

4ht‘cps ://github.com/sktime/sktime
5ht‘cps ://teaspoontda.github.io/teaspoon
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for all experiments, we set the scale parameter to 6 = 1/3 - maxPers(dgm,, (Rips(P))), where P
denotes the point cloud, and maxPers(dgm,, (Rips(P))) is the maximum persistence obtained from
all point clouds in an observed sequence.

Hyperparameter choices. We made the following hyperparameter choices: (1) the Vietoris-Rips
filtration is considered up to § (see above), where the computations are discretized with 25 equally
spaced values in [0, ¢]; (2) the smoothing values are discretized with 18 steps equally spaced in
[0,0.5 - maxPers].

Eventually, the crocker stacks per homology dimension are vectorized (i.e., the tensor is flattened)
and concatenated into a single vector per observation sequence. These vectorizations are then input
to a linear support vector regressor (SVR). For each of the (varied) parameters in the governing
equation of Fig. 3, a separate SVR is trained and evaluated. Hyperparameters of the SVR and the
usage of preprocessing steps (feature scaling) are tuned using Bayesian optimization. Each parameter
configuration is evaluated using a 5-fold cross-validation, and the best configuration is then used to
train the final model on the full dataset.

B.3 Additional ablation experiments

To assess whether homology dimensions > 0 are beneficial to the downstream regression task, we
experimented on dorsogna-1k. We find that when using our approach with Hy-features only, the
regression quality drops. When additionally including H,-features (i.e., Hy, H; and Hs), the situation
is less clear, as the results are not noticeably different. Quantitative results can be found in Tbl. 5
below.

Table 5: Quantitative assessment of the impact of including higher-dimensional homology features on down-
stream regression performance, evaluated on dorsogna-1k.

o VE? © SMAPE |
Ours (PH-only, v1; Ho) 0.819 £0.015 0.101 £ 0.003
Ours (PH-only, v1; Ho, H1) 0.844 £+ 0.021  0.098 £ 0.007

Ours (PH-only, v1; Ho, H1,H2)  0.846 +£0.011  0.097 &£ 0.005

C Computational resources

All experiments were run on an Ubuntu Linux system (22.04), running kernel 5.15.0-100-generic,
with 34 Intel® Core™ i9-10980XE CPU @ 3.00GHz cores, 128 GB of main memory, and two
NVIDIA GeForce RTX 3090 GPUs.

D Runtime analysis

In the following, we present a runtime breakdown of the pre-processing steps (i.e., Vietoris-Rips
persistent homology (PH) computation, and the vectorization of persistence diagrams), as well as a
runtime comparison to prior work (PSK and crocker stacks) and our baseline approach. Runtime is
measured on the system listed above, using our publicly-available reference implementation.

At this point, it is also worth highlighting that our pre-processing step, i.e., PH computation &
vectorization, is trivially parallelizable and can easily be distributed across multiple CPUs/GPUs if
needed.

Vietoris-Rips PH computation. In Tbl. 6, we list wall clock time measurements (using Ripser++
[59] on one GPU) per point cloud. In particular, the table lists runtime for computing PH of dimension
zero and one (i.e., Hyp and H;), as well as PH of dimension zero, one and two (i.e., Hyp, H; and Hy).
All point clouds in this experiment are of size 200 in R3.

Persistence diagram vectorization. Persistence diagram (PD) vectorization can essentially be broken
down into two steps: (1) parameter fitting for the structure elements of [26] and (2) mapping PDs to
vector representations using those structure elements. Tbl. 7 lists the runtime for both steps on the
dorsogna-1k data when vectorizing zero-, and one-dimensional persistence diagrams. Throughout
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Table 6: Runtime comparison for PH computation for different homology dimensions. Reported is the average
runtime per point cloud (in seconds), and the overall runtime (in seconds) estimated from this average by
multiplying by the number of processed point clouds on dorsogna-1k.

© Time per point cloud Overall

PH computation (Ho, H) 0.018 s 1800 s
PH computation (Ho, H1, H2) 0.330 s 33000 s

all of our experiments, parameter fitting for the structure elements is done by first collecting all
persistence diagrams for each homology dimension and then running k-means++ clustering on 50,000
points uniformly sampled points from those diagrams.

Table 7: Runtime breakdown of PD vectorization (per diagram and overall for Hp and H; on dorsogna-1k),
split into (Step 1) time spent for fitting the parameters of the exponential structure elements from [26], and (Step
2) actually mapping PDs to vector representations.

© Time per diagram  Overall

Step 1: Parameter fitting n/a 17s
Step 2: Mapping PDs to vectors 9.4e-05 18 s

Comparison to prior work. Next, we compare the runtime of our approach (here, variant v1 from
Fig. 2) to prior work that uses persistence diagrams as input. In particular, we compare against the
PSK method from [23] and crocker stacks [57].

In Tbl. 8, we list the overall training time (on Table 8: Training time comparison to prior work
dorsonga-1k), where runtime for pre-processing (on dorsogna-1k).
(see above) is excluded from these measurements.

Also, PSK and crocker stacks timings do include Training time
hyperparameter optimization, as suggested in the Crocker Stacks 24600 s
corresponding references. Importantly, this is not PSK 646 s
optional but required to obtain decent performance Ours (PH-only, v1) 190 s

with respect to EV and SMAPE. Notably, for the
PSK approach, kernel computation scales quadrati-
cally with the number of sequences, and kernel-SVR training takes time somewhere between quadratic
and cubic. Hence, scaling up the number of training sequences quickly becomes computationally pro-
hibitive, especially in light of the required hyperparameter tuning. Finding suitable hyperparameters
is also the main bottleneck for crocker stacks (which rely on a linear SVR).

Comparison to baseline model. Finally, in Tbl. 9, we present a training time comparison to our
baseline model which does not explicitly model any dynamics via a latent ODE (denoted as w/o
dynamics). In this experiment, the training protocol remains unchanged, and we vary the type of
input data, i.e., from using vectorized persistence diagrams only (Hp and H; ) to using a combination
of PointNet++ features and vectorized persistence diagrams. Importantly, as remarked in the main
part of the manuscript, the baseline models (PH-only, v1) and (PH+PointNet++, v3) already yields
strong performance across all parameter prediction problems.

Table 9: Training time comparison (on dorsogna-1k) of our approach vs. the baseline model (w/o dynamics),
using the same input data.

Training time

Ours (PH-only, v1) 190 s
Ours (PointNet++, v2) 3780 s
Ours (PH+PointNet++, v3) 4100 s
Baseline (w/o dynamics; PH-only, v1) 50s
Baseline (w/o dynamics; PointNet++, v2) 525s
Baseline (w/o dynamics; PH+PointNet++, v3) 600 s
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claims made in the abstract are backed up by ablation experiments and
comparisons to prior work & baselines.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Sec. 5 of the manuscript specifically addresses limitations of the proposed
approach.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Our justification for the modeling choice relies on two previous stability
results for persistent homology. When discussing the stability claim in Sec. 3, we list exact
references to theorems in the literature that lead to this result.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all experimental details in the main part of the paper and the
appendix. Furthermore, source code (and data) is publicly-available at https://github.
com/plus-rkwitt/neural_persistence_dynamics.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide source code with this submission and full details about the (sim-
ulated) experimental data we use throughout. The code is released publicly and access
to the already simulated data is provided to the community (via the code repository, see
checklist item 4). Moreover, the data can easily be reproduced, as it is generated from
publicly available simulation libraries, i.e., https://github.com/antoinediez/Sisyphe
and https://github.com/ldarrick/paths-of-persistence-diagrams.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sec. 4 lists all relevant hyperparameters for training. Exact architecture
specifications are provided as part of the submitted source code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All reported results include error bars (+ 1 standard deviation); Sec. 4.2
clearly states how these were computed. Furthermore, we assessed the statistical significance
of any results in the listed Tables against the strongest obtained result in the respective Table
using a Mann-Whitney test (correcting for multiple comparisons).
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computational resources and memory/compute requirements are listed in the
appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the guidelines as specified.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: Sec. 5 of the manuscript specifically addresses possible negative societal
impact of the proposed approach. However, in view of the demonstrated improvements over
the current state of the art it seems reasonable to expect a positive (societal) impact in
related research areas.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Datasets that are part of our experimental studies and that we release af-
ter publication for reasons of reproducibility come exclusively from publicly accessible
repositories as described in Section 4. Pretrained models will not be part of the submission.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The use of existing assets (i.e., code packages) was exclusively carried out
with indication of the source in the manuscript.
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Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All newly introduced assets have been carefully documented, i.e. details of
the model have been described in Sec. 3 and limitations have been described in Sec. 5
of the manuscript. Furthermore, source code is attached to the submission and will be
released publicly in case of acceptance (including datasets used in this work as well as a
documentation).

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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