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Abstract001

Large vision-language models (LVLMs)002
achieve impressive performance on multimodal003
tasks but often suffer from hallucination, and004
confidently describe objects or attributes not005
present in the image. Current inference-time006
interventions, while training-free, struggle007
to maintain accuracy in open-ended and008
long-form generation scenarios. We introduce009
the Confidence-Aware Attention Calibration010
(CAAC) framework to address this challenge011
by targeting two key biases: spatial perception012
bias, which distributes attention dispropor-013
tionately across image tokens, and modality014
bias, which shifts focus from visual to textual015
inputs over time. CAAC employs a two-step016
approach: Visual-Token Calibration (VTC)017
to balance attention across visual tokens,018
and Adaptive Attention Re-Scaling (AAR)019
to reinforce visual grounding based on the020
model’s confidence. This confidence-driven021
adjustment ensures consistent visual alignment022
during generation. Experiments on CHAIR,023
AMBER, and POPE benchmarks demonstrate024
that CAAC outperforms baselines, particularly025
in long-form generations, effectively reducing026
hallucination. Data and code are available027
at https://anonymous.4open.science/r/028
CAAC-5D7F/.029

1 Introduction030

Large vision-language models (LVLMs) (Bai et al.,031

2023; Chen et al., 2023; Liu et al., 2023; Chen et al.,032

2024; Dai et al., 2023; Ye et al., 2024) integrate033

visual and textual data using a pre-trained visual034

encoder, a cross-modal alignment module, and a035

powerful autoregressive decoder, enabling state-of-036

the-art performance in tasks such as image cap-037

tioning, visual question answering, and visual rea-038

soning. This multimodal capability has positioned039

LVLMs as key drivers in fields like content creation040

and human-computer interaction. However, a criti-041

cal challenge is hallucination–generating content042

Figure 1: Comparison of the long-form generation (Max
Generated Tokens: 512) of the baseline methods and
our proposed CAAC framework. Hallucinations are
highlighted in yellow.

ungrounded in the visual input, such as describ- 043

ing absent objects or misinterpreting scenes (Bai 044

et al., 2025; Liu et al., 2024b; Li et al., 2023). This 045

undermines the reliability of LVLMs, posing signif- 046

icant barriers to their deployment in safety-critical 047

domains like medical diagnosis and autonomous 048

navigation. 049

Efforts to mitigate hallucination in LVLMs have 050

spawned a rich body of research, with strate- 051

gies broadly classified into three categories: fine- 052

tuning (Kim et al., 2023; Jiang et al., 2024; Gun- 053

jal et al., 2024), post-hoc rectification (Yin et al., 054

2023; Zhou et al., 2024), and inference-time inter- 055

ventions (Leng et al.; Huang et al.). Among them, 056

inference-time interventions, due to their easy de- 057

ployment and training-free nature, gained special 058

momentum in the research community. Despite 059

strong performance on discriminative tasks and 060

short-form generation, existing methods struggle 061

to maintain effectiveness in long-form generation. 062

Figure 1 showcases an example of the failure of pro- 063

posed hallucination mitigation methods under Max 064

New Tokens of 512. This limitation stems from two 065

fundamental mechanisms of LVLMs. First, spatial 066

1

https://anonymous.4open.science/r/CAAC-5D7F/
https://anonymous.4open.science/r/CAAC-5D7F/
https://anonymous.4open.science/r/CAAC-5D7F/


perception bias results in disproportionate atten-067

tion to specific image regions, causing the model068

to overlook relevant visual cues. Second, modal-069

ity bias causes the model to increasingly allocate070

more attention to textual information over visual071

input as generation progresses, leading to content072

that is poorly grounded in the image. Both biases073

significantly amplify the risk of hallucination in074

long-form generations.075

To tackle these issues, we propose Confidence-076

Aware Attention Calibration (CAAC), a unified077

inference-time approach to mitigate hallucinations078

by dynamically recalibrating the LVLM’s atten-079

tion. CAAC uses the model’s token-level confi-080

dence to adaptively adjust the attention distribution.081

Specifically, it counteracts both spatial perception082

bias and modality bias in a two-step process: an083

initial calibration smooths the attention maps of084

the decoder to prevent over-concentration on any085

single image region, and a subsequent confidence-086

guided reweighting increases the influence of the087

visual input whenever the chance of hallucination is088

high. By continuously reinforcing visual informa-089

tion when the model is uncertain, CAAC preserves090

visual grounding throughout the generation. As a091

result, CAAC effectively curbs hallucinations, even092

in challenging open-ended and long-form genera-093

tion tasks, without sacrificing the fluency or detail094

of the generated text.095

Our main contributions are summarized: (1) Hal-096

lucination Analysis: We present a novel analysis097

of hallucination in LVLMs using relevancy maps,098

which reveals two root causes of ungrounded gener-099

ation. (2) Mitigation Method: We propose CAAC,100

an inference-time attention calibration framework,101

that adaptively calibrates the model’s attention to102

promote visual grounding. (3) Performance Im-103

provement: We demonstrate that CAAC signifi-104

cantly reduces hallucinations on multiple bench-105

marks for open-ended image captioning. In partic-106

ular, our method outperforms state-of-the-art base-107

lines, achieving an average 4% and 1.8% reduction108

in the hallucination rate compared with the best109

baseline on the CHAIR and AMBER benchmarks,110

respectively. Code and data are available at https:111

//anonymous.4open.science/r/CAAC-5D7F/.112

2 Related Work113

A more detailed discussion of the related works is114

provided in Appendix C.115

Large vision-language models (LVLMs) com-116

Figure 2: Distribution of image-token relevancy scores
for InstructBLIP given a black canvas and the query
"Please describe the image.". A pronounced skew to-
ward a few image tokens can be witnessed.

bine visual encoders like CLIP (Radford et al., 117

2021) and ViT (Fang et al., 2023), cross-modal 118

alignment modules such as linear projections (Liu 119

et al., 2023) or Q-formers (Dai et al., 2023; 120

Zhu et al., 2023), and language decoders like 121

LLaMA (Touvron et al., 2023) or Vicuna (Zheng 122

et al., 2023) to facilitate multimodal understanding 123

and generation. State-of-the-art models, including 124

mPLUG-Owl2 (Ye et al., 2024), InternVL (Chen 125

et al., 2024), and QwenVL (Bai et al., 2023), uti- 126

lize optimized architectures and diverse datasets 127

to achieve strong performance in tasks like image 128

captioning and visual reasoning (Xu et al., 2025). 129

Hallucination in LVLMs occurs when generated 130

outputs do not accurately reflect visual inputs, pos- 131

ing challenges to their reliability (Guan et al., 2024; 132

Liu et al., 2024b; Bai et al., 2025). Proposed mitiga- 133

tion strategies include fine-tuning techniques (Kim 134

et al., 2023; Jiang et al., 2024; Liu et al., 2024a; 135

Gunjal et al., 2024), post-hoc rectification meth- 136

ods (Yin et al., 2023; Zhou et al., 2024), and 137

inference-time interventions (Leng et al.; Huang 138

et al.; Woo et al., 2024; Suo et al., 2025; Favero 139

et al.). Attention calibration, a training-free ap- 140

proach, has emerged as a promising solution to re- 141

duce hallucinations (Zhu et al., 2025; Zhang et al., 142

2024; Liu et al., 2024c; Gong et al., 2024; Woo 143

et al., 2024). Our method builds on the insights 144

derived from the previous works but introduces an 145

adaptive intervention based on the model’s confi- 146

dence in predicting the next token. 147

3 Proposed Method 148

What causes LVLMs to describe objects or scenes 149

absent from an image confidently? Our analysis 150

identifies two primary culprits: spatial perception 151

bias (Zhu et al., 2025), a skewed attention distri- 152

bution favoring specific image tokens regardless 153

of content, and modality bias, an increasing re- 154

liance on language priors over visual inputs as 155
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generation progresses. To tackle these challenges,156

we propose the Confidence-Aware Attention Cali-157

bration (CAAC) framework, which integrates two158

steps: an initial Visual-Token Calibration (VTC)159

to mitigate spatial perception bias by smooth-160

ing attention spikes across image tokens, and a161

confidence-driven Adaptive Attention Re-Scaling162

(AAR) to counteract modality bias by enhancing163

visual grounding throughout generation. Next, we164

detail the inference process in LVLMs (Sec. 3.1),165

present our novel analysis using relevancy maps to166

uncover these biases (Sec. 3.2, 3.3), and introduce167

CAAC’s components (Sec. 3.4), highlighting their168

synergistic design to improve reliability.169

3.1 Inference in LVLMs170

Large vision–language models generate text con-171

ditioned on both an input image and a text prompt.172

An image is first encoded into visual tokens via a173

pre-trained vision encoder. The visual tokens are174

then mapped into the language embedding space us-175

ing a linear projection or a more complex alignment176

module to extract textual information from the177

image, yielding image tokens I = {i1, . . . , iNi}.178

Concurrently, the text query is also tokenized into179

Nq tokens Q = {q1, . . . , qNq}. Then, the LLM180

decoder parameterized by θ receives concatenated181

embeddings (I,Q) and auto-regressively generates182

a sequence of Ng tokens G = {y1, . . . , yNg}. For-183

mally, at t’th generation round, the next token is184

drawn from the following probability distribution:185

yt ∼ pθ(yt|I,Q, y<t) (1)186

where y<t = {y1, . . . , yt−1} is the sequence187

of previously generated tokens. Various sampling188

strategies have been developed for efficient and189

controllable sampling from the probability distri-190

bution (Shi et al., 2024). The generation process191

continues until the End-of-Sequence (EOS) token192

is selected or the maximum allowed number of193

tokens is reached.194

3.2 Analysis: Disproportionate attention to195

image tokens196

Previous studies have shown that LVLM decoders197

tend to concentrate attention on a small subset of198

visual tokens—termed attention sinks(Zhang et al.,199

2024), summary tokens(Huang et al.), or blind to-200

kens(Woo et al., 2024)—regardless of image con-201

tent, including blank inputs. This phenomenon,202

also known as spatial perception bias(Zhu et al.,203

2025), has been linked to downstream hallucina- 204

tion errors (Huang et al.; Zhang et al., 2024). While 205

our analysis is motivated by similar concerns, we 206

identify a key methodological limitation in prior 207

work: their conclusions are based on raw atten- 208

tion weights from individual layers, which do not 209

reliably reflect token importance. Indeed, token em- 210

beddings are progressively contextualized across 211

layers, meaning that accurate attribution requires 212

tracing the influence of each input token through 213

the entire network. 214

To address this limitation, we leverage relevancy 215

maps (Chefer et al., 2021), which propagate token- 216

level contributions layer by layer, ultimately quan- 217

tifying the influence of each input token on the 218

generation of each output token. By adopting this 219

more principled analysis, our work revisits and rein- 220

terprets previous findings, offering new insights. 221

We observe that given a black canvas image and a 222

standard query, less than 10% of image tokens ac- 223

cumulate more than 50% of relevancy scores, while 224

the vast majority of image tokens contribute mini- 225

mally (Figure 2). This distribution remains consis- 226

tent across various meaningless inputs and queries 227

(see Appendix B), underscoring a robust bias pat- 228

tern: The decoder assigns disproportionate at- 229

tention to image tokens, leading to the model’s 230

over-reliance on a few image tokens, thereby 231

increasing the likelihood of hallucination. 232

3.3 Analysis: Decaying attention to image 233

tokens 234

Another significant contributor to LVLM halluci- 235

nation is the model’s increasing reliance on its text 236

history at the expense of visual inputs, particu- 237

larly in open-ended tasks like image captioning. 238

Prior work has shown that when the model is uncer- 239

tain, language priors often dominate the generation 240

process (Zhou et al., 2024). To quantify this, we 241

leverage AMBER’s generative pipeline, prompting 242

InstructBLIP (Dai et al., 2023) to describe each 243

image in detail. Then, we extract truthful and hallu- 244

cinatory tokens using predefined hallucinatory and 245

truthful object sets from AMBER. We compute 246

the relative image relevancy by the relevancy map 247

framework to quantify the aggregate contribution 248

of all image tokens to the generation of each output 249

token. For an input comprising I image tokens and 250

T text tokens (total N = I+T ), the relative image 251
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(a) (b) (c)

Figure 3: (a) Normalized histogram of relative image relevancy scores for truthful (blue) and hallucinatory (orange)
tokens, showing higher image relevancy for truthful tokens. (b) Scatter plot of relative image relevancy versus
absolute position in the generated sequence. Every point represents one generated token (truthful or hallucinatory),
and the lines indicate the density of token positions. (c) Normalized histogram of logit probabilities for truthful vs.
hallucinatory tokens, showing lower probabilities for hallucinatory tokens. Best viewed in color.

relevancy at generation step t is defined as:252

RrelN =

∑I
i=1R

iN∑N
j=1R

jN
(2)253

where Rij represents the influence of i’th token on254

j’th token. Figure 3a shows the distribution of rela-255

tive image relevancy for truthful and hallucinatory256

tokens. There is a statistically significant differ-257

ence between the two distributions, suggesting that258

hallucinatory tokens have markedly lower relative259

image relevancy. Moreover, relative image rele-260

vancy declines as the generated sequence lengthens261

(Figure 3b). This decay confirms that extended gen-262

eration increases the model’s tendency to overlook263

visual inputs, a phenomenon we term modality bias,264

reflecting a preference for textual over visual in-265

formation. The other takeaway from Figure 3b is266

that the hallucinatory tokens appear later in the gen-267

erated sequence, underscoring the importance of268

mitigating hallucinations in long-form generations.269

We also examine the generation confidence by270

inspecting token logit probabilities (Figure 3c). We271

find that truthful tokens are heavily skewed toward272

high probabilities, whereas hallucinatory tokens273

are skewed toward the low-probability regime. It274

suggests a distinct generation dynamic between275

truthful and hallucinatory tokens: the model hallu-276

cinates when its confidence is low and its atten-277

tion to the image has diminished.278

3.4 CAAC Framework279

Our CAAC framework addresses two distinct bi-280

ases operating in different dimensions within the281

LLM decoder. Spatial perception bias is a universal,282

query-agnostic distortion in attention distribution283

across image tokens. In contrast, modality bias284

operates at the token level, increasingly skewing285

attention toward textual inputs as generation length 286

extends. CAAC tackles these challenges through 287

a unified attention calibration strategy, featuring 288

two components: Visual-Token Calibration (VTC), 289

which corrects the universal spatial perception bias 290

by adjusting attention weights, and Image Atten- 291

tion Upscaling (IAU), which mitigates modality 292

bias by adaptively amplifying visual information 293

during the generation. This integrated approach en- 294

sures a balanced multimodal processing, enhancing 295

LVLM reliability. 296

3.4.1 Visual-Token Calibration (VTC) 297

The VTC module aims to mitigate spatial percep- 298

tion biases in LVLMs by adjusting the attention 299

distribution over image tokens within the decoder’s 300

attention heads. By targeting the attention from 301

the final query token to image tokens and apply- 302

ing a calibration derived from a reference input, 303

we achieve a more balanced attention distribution 304

while preserving essential visual information. 305

In LVLMs, the attention mechanism of the de- 306

coder plays a pivotal role in integrating visual and 307

textual information. Specifically, the attention from 308

the last query token to image tokens directly in- 309

forms the prediction of the subsequent token, mak- 310

ing it a critical point of intervention. Given an input 311

comprising visual tokens I = {i1, i2, . . . , iNi} and 312

query tokens Q = {q1, q2, . . . , qNq} (N = I +Q), 313

the attention map for a given head h in layer l is de- 314

noted Ah,l ∈ R(Ni+Nq)×(Ni+Nq). We focus on the 315

submatrix corresponding to the last query token’s 316

attention to image tokens, i.e., the last row’s first 317

Ni columns, defined as V h,l = [Ah,l
N,j ]j∈I ∈ RNi . 318

Calibration Vector Construction: To establish 319

a baseline for calibration, we use a reference input 320

consisting of a meaningless image and a generic 321
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Figure 4: Overview of the CAAC Framework. The CAAC framework comprises two key components: VTC, which
adjusts skewed attention to image tokens to reduce spatial perception bias, and AAR, which adaptively augments
attention to image tokens to address modality bias. Both components are applied to the multi-head self-attention
(MSA) module within the decoder.

query (e.g., "What is this?"). Choosing a meaning-322

less image ensures that attention patterns reflect the323

model’s baseline behavior rather than meaningful324

content, and empirical tests show that the choice of325

the meaningless image has no meaningful impact326

on the resulting calibration (Appendix B). For each327

attention head h in layer l, we extract V h,l from the328

reference input’s attention map. Alternatively, to329

enhance robustness, V h,l may be computed as the330

average of the last few rows’ image-token columns.331

Therefore, given the vector V h,l ∈ RNi , where332

V h,l = [v1, v2, . . . , vNi ] and vi ̸= 0 for all i, the333

initial inverse is computed as:334

V h,l
cal,0 = [1/v1, 1/v2, . . . , 1/vNi ] (3)335

To ensure the sum of entries remains consistent336

with the original vector, we scale V h,l
cal,0 by the ratio337

of the sum of V h,l to the sum of V h,l
cal,0. The final338

calibration vector is thus:339

V h,l
cal =

∑Ni
i=1 vi∑Ni

i=1(1/vi)
· V h,l

cal,0, (4)340

where
∑Ni

i=1 vi is the sum of the original atten-341

tion weights, and
∑Ni

i=1(1/vi) is the sum of the342

initial inverted weights. Note that the product of343

V h,l and V h,l
cal results is a uniform vector with the344

same sum as V h,l. This inversion counteracts the345

skew attention pattern of the image tokens.346

Application of Calibration: For a specific input347

image and query pair, let V ∈ RNi represent the348

attention from the last query token to image tokens349

in the attention map Ah,l. We flatten this by com-350

puting the element-wise product Vu = V ⊙ V h,l
cal ,351

where ⊙ denotes the Hadamard product. Vu ap-352

proximates a uniform attention distribution across353

image tokens. However, enforcing strict unifor-354

mity can distort visual information, as positional355

embeddings naturally differentiate image token rep- 356

resentations, even for identical patches. This dif- 357

ferentiation is naturally reflected in the attention 358

scores received by different image tokens. 359

Smoothing with Parameter β: To balance bias 360

correction and information preservation, we intro- 361

duce a smoothing parameter β ∈ [0, 1] to control 362

smoothing. The smoothed attention vector Vs is 363

computed as a weighted average of the original and 364

calibrated vectors: 365

Vs = (1− β)V + βVu (5) 366

When β = 0, the original attention V is retained 367

and when β = 1, the fully calibrated Vu is applied, 368

yielding a near-uniform distribution. Intermedi- 369

ate values of β allow for promoting more balanced 370

attention distribution without over-correcting the at- 371

tention distribution. This flexibility ensures that the 372

calibration enhances model reliability and is what 373

makes the VTC module different than UAC (Zhu 374

et al., 2025). 375

3.4.2 Adaptive Attention Re-Scaling (AAR) 376

The Adaptive Attention Re-Scaling (AAR) module 377

is designed to mitigate modality bias, where atten- 378

tion to image tokens diminishes over time during 379

autoregressive generation. AAR counteracts this 380

by dynamically increasing the attention from the 381

last query token to image tokens, reinforcing visual 382

grounding throughout the generation sequence, par- 383

ticularly when the model’s predictions falter. AAR 384

focuses on the same segment of the attention map 385

as the VTC module, specifically the attention vec- 386

tor V h,l = [Ah,l
N,j ]j∈I ∈ RNi to steer model’s atten- 387

tion toward visual information by scaling up the 388

attention weights of visual tokens. 389

Confidence-Aware Scaling: AAR operates au- 390

toregressively, adjusting attention in every genera- 391
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tion round to maintain visual relevance across the392

entire sequence. A key question is: what is the393

appropriate scaling factor, as token dependency394

on visual input varies? Tokens essential for text395

cohesion (e.g., conjunctions) require minimal in-396

tervention, whereas image-dependent tokens (e.g.,397

nouns and adjectives describing visual content) de-398

mand stronger visual grounding. Our analysis re-399

vealed that hallucinatory tokens often emerge when400

the model lacks confidence (Figure 3c). This in-401

sight drives AAR’s adaptive strategy: scaling is402

triggered by the model’s uncertainty.403

In generation round t, a forward pass computes404

the maximum logit probability pt for the predicted405

token.406

pt = max
y

pθ
(
y | I,Q, y<t

)
. (6)407

If pt falls below a preset threshold pthr, AAR cal-408

culates a scaling factor λ as a probability-weighted409

average of set minimum and maximum scale factor:410

λt = λmin · p+ λmax · (1− p) (7)411

With λmin = 1 we ensure no scaling is applied412

when the model is fully confident (p = 1), while413

λmax sets the upper bound for scaling when con-414

fidence is minimal (p = 0). As p decreases, λ415

increases, amplifying attention to image tokens416

precisely when hallucination risk is highest.417

Application of AAR: As AAR is bound to418

change the sum of the row it is applied to, we need419

to apply it to the attention weights before softmax.420

After the intervention, softmax is applied normally421

to ensure all rows sum to 1. When p < pthr, the422

attention vector before softmax V h,l is scaled:423

V h,l
t, scaled = λt · V h,l

t (8)424

This scaled vector replaces the original vector in425

the decoder’s attention mechanism, shifting focus426

toward visual inputs. If p ≥ pthr, no scaling occurs,427

preserving the model’s natural behavior.428

4 Experimental Results429

4.1 Setup430

Models. We evaluate our method on two widely431

adopted open-source LVLMs: InstructBLIP and432

LLaVA-1.5, both configured with 7 billion parame-433

ters. We particularly select these models for direct434

comparison with existing baselines (Leng et al.;435

Huang et al.; Favero et al.); however, our CAAC436

framework is model-agnostic and can seamlessly437

integrate with any LVLM.438

Benchmarks To evaluate the effectiveness of 439

CAAC in reducing hallucinations in long-form gen- 440

erations, we prioritize generative benchmarks that 441

support open-ended outputs. We adopt CHAIR 442

(Rohrbach et al., 2019) and AMBER (Wang et al., 443

2024) as our generative benchmarks, alongside 444

POPE MSCOCO (Li et al., 2023) as the discrimi- 445

native benchmark to provide a comprehensive eval- 446

uation of CAAC. 447

Metrics. We prioritize metrics that directly mea- 448

sure hallucination rates, such as CHAIRi and 449

CHAIRs for the CHAIR benchmark, and CHAIR 450

and HAL for the AMBER benchmark, due to their 451

critical role in assessing the model’s factual align- 452

ment with visual input. While we report Recall 453

scores for CHAIR and COVER scores for AM- 454

BER, which evaluate the informativeness and ex- 455

haustiveness of generated responses, these metrics 456

are less relevant to our primary objective. High 457

Recall or COVER scores paired with elevated hal- 458

lucination rates can lead to misleading outputs, as 459

the model may generate exhaustive but factually 460

incorrect descriptions, undermining reliability. For 461

the POPE benchmark, we report Accuracy and F1 462

scores to complement our evaluation. 463

Baselines. We compare against four 464

inference-time mitigation methods that require no 465

additional training. Contrastive decoding methods 466

include VCD (Leng et al.), AvisC (Woo et al., 467

2024), and M3ID (Favero et al.), which mitigate 468

hallucinations via a contrastive decoding tech- 469

nique, and OPERA (Huang et al.), a beam-search 470

modification that penalizes over-trusted tokens to 471

promote visual grounding. 472

Implementation Details. For the baselines, we 473

adopt the hyperparameter settings reported in their 474

respective papers to ensure consistency. For CAAC, 475

we set the smoothing parameter β = 0.7 for 476

LLaVA and β = 0.5 for InstructBLIP. The maxi- 477

mum scaling factor for AAR is set to λmax = 1.5 478

for both tasks, with λmin = 1.0 and pthr = 0.25. 479

More experimental details are presented in Ap- 480

pendix A. 481

4.2 Comparison to Baselines 482

CHAIR. The CHAIR benchmark (Rohrbach 483

et al., 2019) evaluates object hallucination in image 484

captioning by measuring, for a given input image 485

and a corresponding caption, the fraction of hal- 486

lucinated objects, CHAIRi, and the the fraction 487

6



Table 1: Performance on CHAIR Benchmark

Model CHAIRs CHAIRi Recall Len

LLaVA 55.2 17.6 73.8 103.9
+ OPERA 44.6 12.8 79.2
+ VCD 57.8 16.3 78.3 103.4
+ AvisC 60.4 17.2 78 104
+ M3ID 56.2 16.4 81.1 93.7
+ CAAC 40.8 13 75.5 85.9

InstructBLIP 55.6 16.6 71.1 111.2
+ OPERA 46.4 14.2 72.9 92.6
+ VCD 60.8 17.9 73.7 107.1
+ AvisC 71 20.1 71.4 98.9
+ M3ID 72.8 21.1 71.7 103.1
+ CAAC 37.4 10.8 72.6 88.4

of hallucinated sentences, CHAIRs. We used the488

same evaluation setting as OPERA. We also used489

the same subset of 500 images from the validation490

set of the COCO 2014 dataset (Lin et al., 2015),491

paired them with the prompt "Please describe this492

image in detail.", and collected the responses from493

LVLM. We set Max Tokens to 512 to avoid pre-494

maturely truncating generation sequences. Table 1495

summarizes the results of the CAAC framework496

and the baselines on the CHAIR benchmark. As497

shown, CAAC effectively reduces the hallucina-498

tion rates in both CHAIRi and CHAIRs while499

maintaining a comparable recall score with most500

baseline methods.501

AMBER. The AMBER benchmark (Wang et al.,502

2024) assesses hallucinations in LVLMs through503

generative and discriminative tasks, focusing on ob-504

ject existence, attributes, and relationships. We con-505

centrate on the generative task, conducting experi-506

ments under two settings: Max Tokens 64, aligning507

with baseline configurations, and Max Tokens 512,508

to evaluate performance with longer sequences.509

AMBER employs several metrics to evaluate the510

generated text, including CHAIR, Hal (the propor-511

tion of responses with hallucinations), Cover (the512

proportion of image objects mentioned in the text),513

and Cog (the proportion of hallucinations aligned514

with human cognition/expectation).515

Our CAAC framework excels on the AMBER516

benchmark, delivering the lowest hallucination517

rates in CHAIR and HAL metrics for the Max To-518

kens 512 setting (Table 2). For the Max Tokens519

64 setting with LLaVA, OPERA performs simi-520

larly on hallucination metrics, with slightly higher521

CHAIR and lower HAL and COG values. Con-522

trastive decoding techniques, however, show signif-523

icant degradation in managing hallucinations dur-524

ing long generations, underscoring their limitations. 525

CAAC effectively reduces hallucinations across 526

both short and long sequences, achieving cover- 527

age scores on par with baselines, notably matching 528

OPERA—the closest competitor in hallucination 529

metrics, while surpassing the base model’s recall, 530

thus improving the accuracy and informativeness. 531

POPE. The Polling-based Object Probing Evalu- 532

ation (POPE) benchmark (Li et al., 2023) provides 533

a streamlined approach to assess object hallucina- 534

tion in Large Vision-Language Models by query- 535

ing whether specific objects exist in a given image. 536

POPE employs three sampling settings for negative 537

samples—random, popular, and adversarial—each 538

designed to challenge the model’s discriminative 539

capabilities differently. Although our CAAC frame- 540

work is primarily designed for generative tasks, it 541

exhibits robust performance in this discriminative 542

setting, as shown in Table 3. CAAC achieves com- 543

petitive Accuracy and F1 scores across all settings 544

and for both LLaVA and InstructBLIP. These re- 545

sults highlight CAAC’s effectiveness in mitigat- 546

ing hallucinations beyond its generative focus, out- 547

performing or matching baseline methods, thus 548

demonstrating its versatility and robustness. 549

4.3 Ablation Study 550

To measure the influence of each module within 551

the CAAC framework, we conducted ablation ex- 552

periments using the InstructBLIP-7B model on the 553

AMBER and CHAIR benchmarks. We evaluated 554

four configurations: the baseline model, VTC-only, 555

AAR-only, and the full CAAC framework incor- 556

porating both modules. These experiments were 557

performed under the same settings as those used 558

for the generative tasks, as outlined in Section 4.1. 559

The results are presented in Figure 6, which in- 560

cludes the results for the CHAIR benchmark and 561

the AMBER benchmark. As shown, both modules 562

individually contribute to lowering hallucination 563

rates, as measured by CHAIR and Hal metrics, 564

while also increasing recall. Also, the full CAAC 565

framework achieves the most significant improve- 566

ments across all metrics, guiding the model toward 567

more informative and accurate generations. 568

4.4 Hyperparameter Analysis 569

We optimized the CAAC framework by tuning its 570

key parameters, focusing on the Adaptive Attention 571

Re-Scaling (AAR) and Visual-Token Calibration 572

(VTC) modules to balance hallucination reduction 573

7



Table 2: Performance on AMBER Benchmark Across Different MaxTokens Settings

MaxTokens 64 MaxTokens 512
Model CHAIR↓ HAL↓ COG↓ COVER↑ CHAIR↓ HAL↓ COG↓ COVER↑

LLaVA 7.95 31.0 2.2 44.5 11.3 48.1 4.3 50.4
+ OPERA 5.10 19.1 1.5 45.00 7.3 29.5 3.1 47.5
+ VCD 6.70 27.8 1.95 46.50 8.2 37.3 3.9 51.9
+ M3ID 6.00 26.0 1.5 48.90 7.2 41.4 3.1 57.3
+ AvisC 6.25 25.6 2 46.55 11.0 48.0 5 52.5
+ CAAC (Ours) 4.90 19.7 1.9 45.40 6.0 24.8 2.5 47.6

InstructBLIP 9.6 36 2.3 46.5 12.8 53.5 5.2 52.7
+ OPERA 6.60 24.7 2.5 46.40 9.7 40.5 4.5 51.2
+ VCD 7.60 29.9 2.3 47.65 10.8 46.6 4.9 53.4
+ M3ID 6.90 27.5 2.2 47.20 10.4 47.3 4.5 51.7
+ AvisC 6.70 28.0 2.5 46.65 10.1 46.8 4.5 51.2
+ CAAC (Ours) 4.8 20.3 2 46 5.6 25.8 2.6 47.8

Table 3: Performance on POPE MSCOCO Benchmark Across Different Sampling Settings

Model Random Popular Adversarial
Accuracy F1 Accuracy F1 Accuracy F1

LLaVA 83.77 81.94 82.57 80.86 79.77 78.47
+ OPERA 88.49 88.48 83.40 86.4 81.20 82.24
+ VCD 85.43 83.99 83.17 81.94 80.27 79.49
+ M3ID 86.13 81.85 82.07 80.77 79.5 78.15
+ AvisC 84.67 82.21 83.67 81.27 81.83 79.55
+ CAAC (Ours) 88.47 87.8 85.93 85.5 81.03 81.37

InstructBLIP 81.53 81.19 78.47 78.75 77.43 78
+ OPERA 89.18 88.68 83.97 83.69 81.83 81.91
+ VCD 82.03 81.56 79.13 79.2 77.23 77.72
+ M3ID 82.33 81.53 80.9 80.42 78.53 78.49
+ AvisC 86.03 84.41 84.27 82.77 81.83 80.67
+ CAAC (Ours) 87.67 87.05 83.47 83.38 81.17 81.53

while preserving response quality. For AAR, we set574

the confidence threshold pthr = 0.25, λmax = 1.5,575

and applied it to all decoding layers, achieving con-576

sistent and coherent outputs. For VTC, applying it577

to the first 10 layers (out of 32) minimized halluci-578

nation rates effectively, avoiding the incoherence579

or truncated sequences observed with full-layer ap-580

plication. The smoothing parameter β was found581

to be very impactful. Large values of β (≥ 0.9)582

often resulted in impaired generation sequences.583

However, intermediate values for β, 0.3 ∼ 0.7, re-584

sulted in coherent and high-quality responses. A585

comprehensive analysis of the models’ settings is586

provided in Appendix D.587

4.5 Qualitative Evaluation588

To assess the qualitative performance of our CAAC589

framework, we compare its outputs with those of590

baseline methods on the AMBER dataset. For in-591

stance, Figure 1 shows the captions generated via592

InstructBILP and those of the baselines for a given593

image. The hallucinations are highlighted. De-594

spite the baseline methods, CAAC accurately sup-595

presses the word frisbee, which is not present in 596

the image. Additional examples are provided in the 597

Appendix E. 598

5 Conclusion 599

We introduced the Confidence-Aware Attention 600

Calibration (CAAC), a training-free, inference- 601

time framework that mitigates hallucination in 602

LVLMs by addressing spatial and modality biases 603

through Visual-Token Calibration and Adaptive 604

Attention Re-Scaling, ensuring consistent visual 605

grounding across diverse generation tasks. Ex- 606

periments on benchmarks like CHAIR, AMBER, 607

and POPE MSCOCO demonstrate CAAC’s effec- 608

tiveness in reducing hallucination rates, surpass- 609

ing baselines like OPERA, particularly in long 610

sequences, despite a trade-off with metrics like 611

COVER and Recall. This prioritization of factual 612

accuracy over exhaustive detail makes CAAC a 613

practical solution for enhancing LVLM reliability 614

in safety-critical applications. 615
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6 Limitations616

Extra Inference Time. One limitation of our617

CAAC framework is the potential increase in infer-618

ence time due to the need for two forward passes for619

certain tokens. The Adaptive Attention Re-Scaling620

(AAR) module requires an initial forward pass to621

compute logit probabilities, and if the maximum622

logit probability falls below the preset threshold623

(e.g., 0.25), a second pass is needed with adjusted624

attention weights. Our experiments on the CHAIR625

benchmark, generating detailed descriptions for626

500 MS COCO images with 512 max new tokens627

and a probability threshold of 0.25, revealed that628

only 14% of tokens required a second pass, indicat-629

ing a modest impact on inference time. This trade-630

off is acceptable in factually critical domains like631

healthcare, where the reduction in hallucinations632

outweighs the slight latency, and the variability (de-633

pendent on threshold, sequence length, and input)634

is a reasonable scope limitation given our focus on635

accuracy over speed.636

Suboptimal recall scores. Another limitation is637

that CAAC may compromise recall scores while638

mitigating hallucinations, as it steers the model’s639

attention toward visual information during long640

generations, preventing deviations from the input641

image and lowering the generation length by a few642

percent (Table 1). This intentional focus could643

lessen the model’s ability to generate exhaustive644

descriptions. In our experiments, recall sometimes645

dipped relative to the strongest hallucination base-646

lines, though it still exceeded that of the base model.647

This trade-off aligns with our goal of enhancing648

reliability in safety-critical applications, where fac-649

tual correctness is paramount.650

Model-specific hyper-parameter tuning. A651

third limitation is the need to tune parameters652

such as β, λmax, and the number of decoder lay-653

ers for VTC intervention independently for each654

LVLM, adding an overhead step before deploy-655

ment. Yet, this approach remains computation-656

ally efficient compared to methods requiring train-657

ing post-hoc hallucination correction modules or658

fine-tuning the entire model, a common practice659

in baseline approaches. Given that our work fo-660

cuses on inference-time intervention rather than661

training, this tuning requirement is a reasonable662

trade-off and does not detract from the effective-663

ness of CAAC as a practical solution for hallucina-664

tion mitigation.665

Ethical Considerations 666

Our research complies with ethical standards, using 667

publicly available datasets like MS COCO, AM- 668

BER, and CHAIR, sourced responsibly under their 669

licenses. The content of these datasets does not re- 670

flect the authors’ views, and no personally identifi- 671

able information was involved. We ensure transpar- 672

ent reporting to support fairness and reproducibil- 673

ity. 674
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A Further Experimental Details873

Baselines. We compare CAAC with four train-874

ing–free, inference-time approaches:875

• VCD (Visual Contrastive Decoding) (Leng876

et al.): each token is decoded twice—once877

with the original image and once with a per-878

turbed copy—and words whose likelihood col-879

lapses under perturbation are down-weighted.880

• AvisC (Woo et al., 2024): first performs 881

attentional vision calibration by masking 882

high-attention outlier tokens, then applies 883

contrastive decoding to suppress visually un- 884

grounded candidates. 885

• M3ID (Favero et al.): re-scores candidate to- 886

kens with a lightweight image-guided gradi- 887

ent signal, promoting those whose gradients 888

align with visual features and filtering halluci- 889

nations. 890

• OPERA (Huang et al.): augments beam 891

search with an over-trust penalty and a ret- 892

rospection–allocation term, penalising tokens 893

that receive insufficient cumulative attention 894

from the image. 895

Implementation Details. 896

Hardware and runtime. All experiments were 897

run on a single server equipped with 4×H100 40 898

GB GPUs and 512 GB of system RAM. We eval- 899

uate models in 16-bit floating-point precision us- 900

ing HuggingFace transformers 4.47. A com- 901

plete AMBER run (512 max-token setting) requires 902

∼12 hours for InstructBLIP and ∼10 hours for 903

LLaVA-1.5. 904

CAAC hyper-parameters. We use the following 905

values, selected via the grid search: β = 0.7 for 906

LLaVA-1.5 and β = 0.5 for InstructBLIP; λmax = 907

1.5, λmin = 1.0; confidence threshold pthr = 0.25; 908

VTC applied to the first 10 decoder layers (out of 909

32). For discriminative task (POPE) with Instruct- 910

BLIP, we set λmin = 0, lambdamax = 1.8, and 911

applied VTC on the first five layers of the decoder. 912

This setting optimized the performance of Instruct- 913

BLIP for discriminative tasks while ensuring that 914

the scale factor is greater than 1 when p < Pthr. 915

Baseline implementations and settings. 916

• OPERA (Huang et al.): official code1 with 917

beam_size=5, num_cands=5, scale factor 50, 918

α = 1, β = 5, r = 15. 919

• Contrastive decoding baselines. We adopt 920

the official AvisC repository2 for all three CD 921

variants and keep the authors’ recommended 922

hyper-parameters: 923

– VCD (Leng et al.): α = 1, β = 0.1, 924

γ = 0.1. 925

1https://github.com/shikiw/OPERA
2https://github.com/sangminwoo/AvisC
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– AvisC (Woo et al., 2024): γ = 0.5,926

λ = 1, α = 2.5 (LLaVA) / 3.0 (Instruct-927

BLIP).928

– M3ID (Favero et al.): λ = 0.2 (default).929

For all baselines, we retain the original decoding930

parameters (temperature, top-p, etc.) reported in931

their papers to ensure fair comparison with our932

CAAC framework.933

B Image Attention Skew934

Visual-Token Calibration (VTC) relies on a single935

“reference” image to derive its calibration vector.936

A natural concern is whether the choice of that937

reference—white canvas, black canvas, or random938

noise—affects the resulting adjustment. To test939

this, we feed each meaningless image to the LVLM940

together with the fixed query “Please describe the941

image.” and compute the relative image-relevancy942

for all query tokens. Figure 5 shows the results for943

InstructBLIP and LLaVA. As one can see from the944

relative image relevancy plots, the choice of the945

reference image for calibration has no meaningful946

impact on the calibration vectors.947

C Related Work948

C.1 Large Vision-Language Models949

Large vision–language models (LVLMs) bring to-950

gether powerful visual backbones and large lan-951

guage models to enable rich multimodal under-952

standing and generation. At their core, LVLMs953

consist of three components: a pretrained visual en-954

coder (e.g., CLIP (Radford et al., 2021), ViT (Fang955

et al., 2023)) that extracts image embeddings; a956

lightweight cross-modal alignment module, rang-957

ing from a simple linear projection (Liu et al.,958

2023) to more sophisticated “Q-former” architec-959

tures (Dai et al., 2023; Zhu et al., 2023), that960

maps these visual features into the LLM’s embed-961

ding space; and a large autoregressive language962

decoder (e.g., LLaMA (Touvron et al., 2023), Vi-963

cuna (Zheng et al., 2023)) that generates fluent964

text. Increasingly advanced LVLM families, such965

as mPLUG-Owl2 (Ye et al., 2024), InternVL (Chen966

et al., 2024), and QwenVL (Bai et al., 2023),967

have also been proposed, driven by diverse data,968

optimized architectures, and training paradigms.969

LVLMs, thanks to their unified pipeline, acheived970

state-of-the-art results on tasks such as open-ended971

image captioning, visual question answering, vi-972

sual reasoning, etc. (Xu et al., 2025)973

C.2 Hallucination in LVLMs 974

Hallucination in Large Vision-Language Models 975

(LVLMs) refers to the generation of responses that 976

are not factually aligned with the visual input, such 977

as describing objects absent from the image or mis- 978

interpreting visual content (Guan et al., 2024; Liu 979

et al., 2024b; Bai et al., 2025). This phenomenon 980

poses a significant challenge to the reliability and 981

practical deployment of LVLMs in real-world ap- 982

plications. To address this issue, the literature pro- 983

poses several mitigation strategies, broadly catego- 984

rized into fine-tuning approaches (Kim et al., 2023; 985

Jiang et al., 2024; Liu et al., 2024a; Gunjal et al., 986

2024), post-hoc rectification techniques (Yin et al., 987

2023; Zhou et al., 2024), and inference-time in- 988

terventions (Leng et al.; Huang et al.; Woo et al., 989

2024; Suo et al., 2025; Favero et al.). A promising 990

direction within inference-time interventions is cali- 991

brating attention mechanisms within LVLMs. (Zhu 992

et al., 2025) Introduces uniform and dynamic at- 993

tention calibration to remove spatial perception 994

bias present in LVLMs. (Zhang et al., 2024) miti- 995

gates hallucination by strengthening the influence 996

of dense attention sinks in the early layers of the 997

decoder. (Liu et al., 2024c) uses visual contrastive 998

decoding while increasing the weight of the atten- 999

tion to image tokens in the self-attention heads 1000

of the decoder. (Gong et al., 2024) uses the CLS 1001

token from the vision encoder to filter out high- 1002

attention outlier tokens via a contrastive decoding 1003

strategy. (Woo et al., 2024) constructs the modi- 1004

fied visual input by zeroing out the attention to all 1005

tokens except blind tokens and uses a contrastive 1006

decoding scheme to reduce hallucination. 1007

D Hyperparameter Analysis 1008

In this subsection, we evaluate the impact of key 1009

parameters in the CAAC framework on its perfor- 1010

mance, focusing on the most influential ones due 1011

to limited computational resources. For the Adap- 1012

tive Attention Re-Scaling (AAR) module, we set 1013

the confidence threshold pthr = 0.25, as halluci- 1014

natory token frequency increases noticeably when 1015

the logit probability drops below this value (3c). 1016

We also selected λmax = 1.5, since values above 1017

2 impair response fluency and coherence. Further- 1018

more, applying AAR to all decoding layers proved 1019

optimal, yielding consistent and coherent outputs 1020

based on experimental results. 1021

For the Visual-Token Calibration (VTC) module, 1022

applying it to all layers often produced incoherent 1023
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(a) Black image (InstructBLIP) (b) White image (InstructBLIP) (c) Noise image (InstructBLIP)

(d) Black image (LLaVA) (e) White image (LLaVA) (f) Noise image (LLaVA)

Figure 5: Distribution of relative image relevancy scores from InstructBLIP and LLaVA given plain (a-c) black,
(d-f) white, and (g-i) noise images with the query “Please describe the image.” The distributions of relevancy scores
are nearly identical regardless of the reference input image, supporting the robustness of the VTC module.

(a) (b)

Figure 6: Ablation study results for InstructBLIP on
the (a) CHAIR and (b) AMBER benchmarks. The plots
show the performance of the baseline, VTC-only, AAR-
only, and full CAAC (VTC + AAR) settings in terms of
hallucination rates and recall metrics.

or truncated sequences, likely due to significant1024

changes in attention distribution causing informa-1025

tion loss in later layers. We thus examined the1026

effect of varying the number of layers, from the1027

first 2 to all 32 decoder layers. The best perfor-1028

mance, with minimal hallucination rates, was ob-1029

served when VTC was applied to the first 10 layers,1030

as shown in Figure 7b.1031

We also assessed the smoothing parameter β,1032

testing values from 0 to 0.7. A value of β = 11033

mirrored the issues seen with all-layers VTC ap-1034

plication and was excluded. Intermediate values1035

(0.3 to 0.7) reduced hallucination rates most effec-1036

tively, with β = 0.5 and β = 0.7 yielding the best1037

results for InstructBLIP and LLaVA, respectively1038

(Figure 7a). These observations suggest that mod-1039

est early-to-mid-layer calibration can encourage1040

(a)

(b)

Figure 7: Distribution of image-token relevancy scores
at the decoder’s last layer given a black canvas and
the query "Please describe the image.". A pronounced
skew toward a few image tokens for (a) LLaVA and (b)
InstructBLIP can be witnessed.
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a balanced attention to the image while allowing1041

the later layers to promote semantically relevant1042

tokens.1043

E Qualitative Evaluation1044

Additional examples of CAAC’s performance com-1045

pared to baselines (e.g., LLaVA, OPERA) on1046

the AMBER dataset are presented in Figure ??.1047

These cases further illustrate CAAC’s ability to re-1048

duce hallucinations across varied image-instruction1049

pairs, with hallucinated content marked in red.1050

article [utf8]inputenc graphicx subcaption1051
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(a) InstructBLIP: Case 1

(b) InstructBLIP: Case 2

(c) InstructBLIP: Case 3

Figure 8: Comparison of CAAC outputs with base-
line methods for the InstructBLIP model. Hallucina-
tions are highlighted.

(a) LLaVA: Case 1

(b) LLaVA: Case 2

(c) LLaVA: Case 3

Figure 9: Comparison of CAAC outputs with base-
line methods for the LLaVA model. Hallucinations
are highlighted.
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