
Under review as a conference paper at ICLR 2023

THE MINIMAL FEATURE REMOVAL PROBLEM
IN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present the minimal feature removal problem for neural networks, a combi-
natorial problem which has interesting potential applications for improving inter-
pretability and robustness of neural network predictions. For a given input to a
trained neural network, our aim is to compute a smallest set of input features so
that the model prediction changes when these features are disregarded by setting
them to a given uninformative baseline value. We show that computing such min-
imal subsets of features is computationally intractable for fully-connected neural
networks with ReLU nonlinearities. We show, however, that the problem becomes
solvable in polynomial time by a greedy algorithm for monotonic networks. We
then show that our tractability result extends seamlessly to more advanced neu-
ral network architectures such as convolutional and graph neural networks under
suitable monotonicity assumptions.

1 INTRODUCTION

Deep Neural Networks have experienced unprecedented success in areas such as image analysis,
natural language processing, speech recognition, and data science, with systems outperforming hu-
mans in a wide range of tasks Krizhevsky et al. (2012); Hannun et al. (2014); LeCun et al. (2015);
Schmidhuber (2015); Silver et al. (2016). As the use of neural models becomes widespread in com-
plex applications, however, task performance is no longer the only driver of system design, and
criteria such as safety, fairness, and robustness have gained significant prominence in recent years
Kazim & Koshiyama (2021).

Improving model interpretability is an important step towards fulfilling these criteria: if models
can explain their predictions, it becomes easier to ensure that predictions based on them are safe and
fair. This is, however, notoriously challenging, as neural models are ‘black boxes’ where predictions
rely on numeric calculations in high-dimension embedding spaces. A wealth of different explana-
tion approaches have been proposed in recent years: rule-based methods generate explanations in
the form of logic rules, which are inherently interpretable Cucala et al. (2022); Dhurandhar et al.
(2018); attribution-based methods assign a score to input features quantifying their contribution to
the prediction relative to a baseline Sundararajan et al. (2017); Sundararajan & Najmi (2020); An-
cona et al. (2018); example-based methods explain predictions by retrieving training examples that
are most similar to the given input Koh & Liang (2017); Li et al. (2018); and perturbation-based
methods generate corrections to an input causing the model to change its output Zhang et al. (2018);
Goyal et al. (2019); Lucic et al. (2022); Bajaj et al. (2021). Evaluating and improving the robust-
ness of neural predictions is also an important and challenging problem Carlini & Wagner (2017);
Hendrycks & Dietterich (2019). Indeed, neural networks are highly sensitive to a wide range of
adversarial attacks, which creates significant vulnerabilities and safety risks when these models are
applied in mission-critical applications Szegedy et al. (2014); Katz et al. (2017). Explainability and
robustness properties often go hand-in-hand; for instance, attribution-based explanation methods are
vulnerable to adversarial attacks since small changes in the input can lead to significant changes on
the assigned attribution scores Ghorbani et al. (2019); Dombrowski et al. (2019); Yeh et al. (2019).

In this paper we introduce the minimal feature removal problem: a combinatorial problem with
interesting potential applications for improving the interpretability and robustness of neural model
predictions. Given an (application dependent) baseline representing absence of information and an
input feature vector to a trained network, our aim is to compute a smallest set S of input features so

1

Under review as a conference paper at ICLR 2023

that the prediction changes when these features are set to their corresponding baseline value. The
minimality requirement ensures that S can be interpreted as a form of explanation which captures
the ‘essence’ of the corresponding prediction by identifying genuinely irrelevant features that can
be disregarded without an observable effect. Furthermore, the number of features in S provides an
intuitive measure for the robustness of the prediction since our definition formally guarantees that
disregarding any smaller number of input features cannot change the prediction. Finally, S may also
be interpreted as a form of adversarial attack and, in particular, a type of ℓ0-perturbation Kotyan &
Vargas (2022), where the goal is to change the prediction by identifying changes to a discrete set
of input features; indeed, as discussed in Li et al. (2022); Hosseini et al. (2019), ℓ0-perturbations
cannot be seen as a continuous optimisation problem and require a combinatorial approach.

Our approach effectively combines ideas from attribution-based and perturbation-based methods.
As in attribution-based explanation methods, we introduce an uninformative baseline as reference
and, similarly to perturbation-based methods for explanation and adversarial attack, our identified
set of features constitutes a minimal input correction with an observable effect. Our notion of feature
removal is, however, rather different from related perturbation-based approaches Zhang et al. (2018);
Lucic et al. (2022); Bajaj et al. (2021); Fong & Vedaldi (2017); Goyal et al. (2019) in that the aim is
to ‘toggle off’ features using the baseline rather than identifying arbitrary value changes.

Our contributions are as follows. After introducing the notion of minimal feature removal, we focus
on fully-connected networks as a starting point and show that computing minimal feature removal
sets is an intractable problem, even with ReLU activations. If, however, the matrix weights in the
network are non-negative and the non-linear activations of the network are continuous, differen-
tiable almost everywhere and monotonic (as is the case with standard activations) we can show
that minimal feature removal sets are computable in polynomial time by a greedy algorithm. To
show correctness of our greedy algorithm, we exploit the theoretical properties of the integrated
gradients method Sundararajan et al. (2017), thus establishing an interesting connection between
our approach and the theory of attribution methods; our algorithm, however, does not rely on the
application of any such attribution method, and only requires the ability to run the neural network
as a black box. We then further generalise our results to more advanced neural architectures such
as convolutional neural networks (CNNs) Goodfellow et al. (2016); Krizhevsky et al. (2012) and
graph neural networks (GNNs) Gori et al. (2005); Kipf & Welling (2017) and show that the problem
remains tractable under suitable generalisations of the monotonicity requirement.

Although our intractability result is applicable to a many network architectures used in practice in
applications such as image analysis, our greedy algorithm can still be exploited for a wide range
of learning tasks where the underpinning function is monotonic Marques-Silva et al. (2021); Cano
et al. (2019); Cucala et al. (2022).

When efficiently computable, minimal feature removal sets may provide interesting insights on the
interpretability and the robustness of predictions. Thus, our algorithm can become a valuable tool
for both designers and users of neural networks.

2 PRELIMINARIES

Notation. We let bold-face lowercase letters denote real-valued vectors, and typically use x for
input feature vectors and x′ for baselines. Given vector x, we use xi to denote its i-th component.
Given vectors x,x′ ∈ Rn and a subset S ⊆ {1, ..., n} of their components, we denote with xS|x′

the vector obtained from x by setting each component xi with i ∈ S to x′
i. We use bold-face capital

letters to denote real-valued matrices and, given matrix M, we denote its (i, j) component as Mi,j .
Finally, given a function f : Rn 7→ R, we denote with (∇f)i the i-th component of its gradient.

Fully-Connected Neural Networks. A fully-connected neural network (FCN) with L ≥ 1 layers
and input dimension n is a tuple N = ⟨{Wℓ}1≤ℓ≤L, {bℓ}1≤ℓ≤L, {σℓ}1≤ℓ≤L}⟩. For each layer
ℓ ∈ {1, . . . , L}, the integer dℓ ∈ N is the width of layer ℓ and we require dL = 1 and define d0 = n;
matrix Wℓ ∈ Rdℓ×dℓ−1 is a weight matrix; vector bℓ ∈ Rdℓ is a bias vector; and σℓ : R 7→ R is a
polytime-computable activation function applied component-wise to vectors.

The application of network N to an input feature vector x ∈ Rn generates a sequence x1, . . . ,xL

of vectors defined as xℓ = σℓ(hℓ), where x0 = x and hℓ = Wℓ · xℓ−1 + bℓ. The result N (x) of
applying N to x is the scalar xL. Thus, the neural network realises a function N : Rn 7→ R.

2

Under review as a conference paper at ICLR 2023

When for each ℓ ∈ {1, . . . , L}, σℓ is the rectified linear unit (ReLU), i.e. σℓ(x) = max(0, x), we
say that N is a ReLU FCN.

We consider the application of neural networks to classification problems. To avoid trivialities, we
focus on classifying an input in two classes based on a numeric threshold t ∈ R. In this setting, the
prediction of a network N on input x is given by the result of comparing N (x) to the threshold t.

3 BACKGROUND ON ATTRIBUTION-BASED METHODS

Attribution methods Sundararajan et al. (2017); Sundararajan & Najmi (2020); Shapley (1953) are a
family of explanation techniques which, given as input function f : Rn 7→ R, a vector x ∈ Rn and a
baseline vector x′ ∈ Rn, assign a numerical score or contribution Cf

i (x,x
′) to each component i ∈

{1, ..., n}. Attribution methods are often designed to fulfil some (or all) of the following axioms for
all functions Rn 7→ R and vectors x,x′ ∈ Rn, components 1 ≤ i ≤ n and coefficients λ1, λ2 ∈ R.

• Completeness: f(x)− f(x′) =
∑n

j=1 C
f
j (x,x

′).

• Zero-contribution: Cf
i (x,x

′) = 0 whenever f(y) = f(y1, ..., yi−1, z, yi+1, ...yn) for each
y ∈ Rn and each z ∈ R.

• Symmetry: Cf
i (x,x

′) = Cf
j (x,x

′) if xi = xj , x′
i = x′

j and f(y1, ..., yi, ..., yj , ...yn) =

f(y1, ..., yj , ..., yi, ...yn) for each y ∈ Rn.

• Linearity: Cλ1f1+λ2f2
i (x,x′) = λ1C

f1
i (x,x′) + λ2C

f2
i (x,x′).

Completeness ensures that contributions add up to the change in value of the function. Zero-
contribution ensures that arguments not influencing the value of the function are assigned 0 as
contribution. Symmetry ensures that arguments playing a symmetric role are assigned the same
contribution. Finally, linearity ensures that contributions for a function expressed as a linear combi-
nation of other functions can be computed as a linear combination of their contributions.

A wide range of attribution-based methods have been proposed. The Shapley values method Shapley
(1953) is one of the most popular thanks to its nice properties. Calculating Shapley values is, how-
ever, intractable, which has motivated research on approximation techniques Ancona et al. (2019).
Other popular attribution methods have been designed specifically for neural networks; these in-
clude Layer-wise Relevance Propagation Bach et al. (2015), DeepLIFT Shrikumar et al. (2017),
Deep Taylor decompositions Montavon et al. (2017), and Saliency Maps Simonyan et al. (2014);
Adebayo et al. (2018); Dabkowski & Gal (2017); Chang et al. (2017).

We will exploit the properties of Integrated Gradients Sundararajan et al. (2017); Aumann & Shap-
ley (1974), which is an attribution method applicable to continuous functions that are differentiable
almost everywhere. The contribution of each argument i of a such function f for input vector x and
baseline vector x′ is defined as follows:

Cf
i (x,x

′) := (xi − x′
i)

∫ 1

0

(∇f)i (x′ + τ(x− x′)) dτ. (1)

Integrated gradients is the only path-based attribution method satisfying all of the aforementioned
axioms Friedman (2004). Furthermore, it is well-suited for functions realised by neural networks,
which typically satisfy its continuity and differentiability requirements.

4 MINIMAL FEATURE REMOVAL SETS

In this section, we first present our notion of a feature removal set and then show that computing a
minimal such set is an intractable problem for fully-connected neural networks.

Given a trained FCN N providing a prediction on an input feature vector x, we aim at identifying
a smallest set of ‘most relevant’ features for the prediction. Similarly to attribution-based methods,
we consider an uninformative baseline x′ for comparison where the use of a suitable baseline can
be exploited to ‘toggle off’ or disregard certain features; however, while attribution-based methods
determine feature relevance by assigning a numeric value to each component of the input x, our

3

Under review as a conference paper at ICLR 2023

approach is based in the intuition that the most relevant features are those that result in a change of
prediction when set to the baseline value.

Definition 1. Let N be a FCN with L layers and input dimension n, let t be a numeric threshold,
let x ∈ Rn be such that N (x) > t, and let x′ ∈ Rn be a baseline vector. A feature removal set for
N (x) > t relative to x′ is a subset S ⊆ {1, . . . , n} satisfying N (xS|x′

) ≤ t. The size |S| of S is
the number of elements it contains. Furthermore, we say S is minimal if no S′ ⊂ {1, . . . , n} such
that |S′| < |S| is a feature removal set for N (x) > t relative to x′.

Note that this definition implies that a feature removal set S cannot be the empty set.

Although different baselines may lead to different feature removal sets for the same prediction, a
natural baseline independent from the input can often be identified Sundararajan et al. (2017).

We next show that the decision version of our problem, even restricted to ReLU FCNs, is NP-
complete. Thus, to identify a minimal feature removal set, one may need to consider exponentially-
many combinations of input features.

Theorem 1. The following problem is NP-complete: given as input vectors x,x′ ∈ Rn, a ReLU
FCN N of input dimension n, a numeric threshold t such that N (x) > t, and 1 ≤ k ≤ n, decide
whether there exists a feature removal set for N (x) > t relative to x′ of size at most k.

Proof. We show NP-hardness using a reduction from SUBSET-SUM, which is the problem of
checking, given as input integers a1, ..., am and ξ, whether there exists S ⊆ {1, . . . ,m} such that∑

i∈S ai = ξ. In the context of this proof, let us denote with 0m the m-dimensional column null
vector and with 1m the m-dimensional column vector with all components equal to 1.

We map an instance a1, ..., am, ξ of SUBSET-SUM to an instance of our problem by setting k = m,
t = 0, x = 1m+1, x′ = 0m+1 and N the 2-layer ReLU network defined as given next. In the first
layer, W1 is a (3×m+1) matrix with values a1, . . . , am, 0 in the first row,−a1, . . . ,−am, 0 in the
second row, and having 1m+1 in the third row; furthermore, b1

1 = −
∑m

i=1 ai−ξ, b1
2 =

∑m
i=1 ai+ξ

and b1
3 = −m. In the second layer, W2 = 13, b2 = 0. With input x = 1m+1, we have that

h1
1 = −ξ, h1

2 = ξ, and h1
3 = 1 which yields that h2 ≥ 1. By construction, we thus have N (x) > 0,

so each valid input to SUBSET-SUM is mapped to a valid input of our problem.

Assume there is a feature removal set S for N (x) > 0 relative to x′ of size at most k = m. By
definition,N (xS|x′

) ≤ 0. We claim that, by construction ofN , S is a solution to the corresponding
subset sum instance. Indeed, we must have h2 ≤ 0 by property of the ReLU and by construction,
h2 ≥ 0 (as a sum of ReLU activations), thus we must have h2 = 0. This enforces that h1

1 ≤ 0 and
h1
2 ≤ 0 by property of the ReLU (we also have h1

3 = 0 since S ̸= ∅). Since h1
1 = −h1

2, this yields
h1
1 = h1

2 = 0. By construction, with input xS|x′
, we have h1

1 =
∑

i∈{1,...,m}−S ai−
∑m

i=1 ai− ξ =

−(ξ−
∑

i∈S ai). It follows that S is a solution to
∑

i∈S ai = ξ. For the converse, let S be a solution
to SUBSET-SUM. We claim that S is also a solution to our problem. Indeed, S ̸= ∅, thus with input
xS|x′

, we have h1
3 = 0. Furthermore,

∑
i∈S ai = ξ thus h1

1 = h1
2 = 0 which yields h2 = 0 and

therefore N (xS|x′
) ≤ 0.

Membership in NP follows since a set S ⊆ {1, . . . ,m} of size at most k provides a certificate. In
particular, S is a feature removal set if N (xS|x′

) ≤ t, which is verifiable in polynomial time.

The proof of the theorem shows that intractability depends on the dimension of the feature and base-
line vectors, but not on their concrete values. Neural networks, however, can have a large number
of input features, which makes the computation of minimal feature removal sets problematic. Thus,
our focus in the remainder of this paper will be on identifying additional requirements on the trained
neural model ensuring that minimal feature removal sets can be computed in polynomial time.

5 MONOTONIC NEURAL NETWORKS

A key observation in the proof of Theorem 1 is that the weights in the network have to take both
positive and negative values to reduce to SUBSET-SUM. This observation suggests the following
definition of a monotonic FCN.

4

Under review as a conference paper at ICLR 2023

Definition 2. A fully-connected neural network N = ⟨{Wℓ}1≤ℓ≤L, {bℓ}1≤ℓ≤L, {σℓ}1≤ℓ≤L}⟩ is
monotonic if, for each 1 ≤ ℓ ≤ L, weights Wℓ are non-negative and function σℓ is continuous
everywhere, differentiable almost everywhere, and monotonic.

In the remainder of this section we present our main result, which establishes that minimal fea-
ture removal sets can be computed in polynomial time for monotonic FCNS by means of a greedy
algorithm. Thus, our intractability result in Theorem 1 may not apply to all FCNs used in practice.

5.1 PROPERTIES OF MONOTONIC NEURAL NETWORKS

Consider a trained FCN N where the weights and activation functions satisfy the requirements in
Definition 2. The continuity and differentiability requirements ensure that the gradient of N can be
computed for each input vector x. In turn, as we show next, the monotonicity requirement ensures
that each component of the gradient of N at x can be expressed as a sum where (1) the number
of elements in the sum is fixed for N (i.e., it does not depend on x) and it is the same for all
components; and (2) each element of the sum consists of a product involving a value that depends
on x but which is always non-negative, and two coefficients that do not depend on x.

This key property of the gradient in monotonic FCNs allows us to exploit the theoretical properties of
the integrated gradients attribution method. In particular, we can show that, by setting a component
of the input vector x to the baseline, we are not altering the relative order of the integrated gradient
attributions (computed as in equation 1) associated with the remaining components.

These properties, which are established by the following technical lemma, constitute the basis of our
greedy algorithm for computing minimal feature removal sets.

Lemma 1. For each monotonic FCNN with input dimension n, there exists a non-negative integer
M , positive coefficients {Am}1≤m≤M , real coefficients {Bi}1≤i≤n, and functions {gm}1≤m≤M

from Rn to R≥0, such that the following identities are satisfied for each x,x′ ∈ Rn and each
i, j ∈ {1, ..., n}:

(∇N)i(x) = Bi

M∑
m=1

Am gm(x), and (2)

N (x{i}|x′
)−N (x{j}|x′

) = (Bi(x
′
i − xi)−Bj(x

′
j − xj)

M∑
m=1

Am

∫ 1

0

gm(pij(τ))dτ (3)

where pij(τ) = x{j}|x′
+ τ(x{i}|x′ − x{j}|x′

).

Proof. We show equation 2 by induction on the number L of layers in N . If L = 1, then N =
⟨W, b, σ⟩ with W an n-dimensional vector, b a scalar and σ : R 7→ R. Using the chain rule, we
have (∇N)i(x) = Wi · (Dσ)(W · x+ b), where Dσ is the derivative of σ in Euler’s notation. This
expression is of the form equation 2 with M = 1, A1 = 1 ≥ 0, Bi = Wi if σ is monotonically
increasing (dually, Bi = −Wi if σ is monotonically decreasing), and g1(x) = (Dσ)(W · x+ b) if
σ is monotonically increasing (dually, g1 = −(Dσ)(W · x + b) if σ is monotonically decreasing).
In both cases, monotonicity of σ ensures that g1(x) ≥ 0 for any x.

For the inductive case, assume that equation 2 holds for every network with L− 1 layers. The appli-
cation ofN = ⟨{Wℓ}1≤ℓ≤L, {bℓ}1≤ℓ≤L, {σℓ}1≤ℓ≤L}⟩with L layers to x is defined as σL(hL(x)).
Thus, we can apply the chain rule and the definition of hL to obtain the following identity:

(∇N)i(x) = (∇hL)i(x) · (DσL)(hL(x)) =

dL−1∑
j=1

WL
j · (∇N j)i(x) · (DσL)(hL(x)). (4)

Here, N j is specified by ⟨{Wℓ}1≤ℓ≤L−2,W
L−1
j , {bℓ}1≤ℓ≤L−2, b

L−1
j , {σℓ}1≤ℓ≤L−1}⟩, where

WL−1
j and bL−1

j are the j-th row of WL−1 and the j-th element of bL−1, respectively.

We apply the inductive hypothesis to obtain the value of the gradient for each 1 ≤ j ≤ dL − 1,
which is given by (∇N j)i(x) = Bj

i

∑Mj

mj=1 A
j
mj

gjmj
(x). But now, we can replace the value

5

Under review as a conference paper at ICLR 2023

Algorithm 1
Input: monotonic FCN N , vectors x,x′ ∈ Rn and threshold t ∈ R such that N (x) > t.
for 1 ≤ j ≤ n do

cj ← N (x{j}|x′
)

end for
I ← list of indices obtained from sorting {cj}1≤j≤n in ascending order (ties broken arbitrarily).
S ← ∅
for 1 ≤ j ≤ n do

S ← S ∪ I[j]

if N (xS|x′
) ≤ t then return S

end for

of the gradients in the sum of equation 4 with these values and show the statement of the lemma
by instantiating equation 2 with M =

∑dL−1

j=1 Mj , Am = WL
j Aj

mj
, Bi = ± Bj

i and gm(x) =

± gjmj
(x) · (DσL)(hL(x)), where the sign in ± is determined by whether σ is monotonically

increasing or decreasing. Again, by inductive hypothesis, it follows that Am ≥ 0 and gm(x) ≥ 0
for each m and x.

We now show equation 3. Let us consider the attribution for N defined in equation 1. Assume
i ̸= j (otherwise the equation holds trivially). By replacing the value of the gradient in equation 1
with equation 2, we obtain CN

i (x,x′) = Bi(xi − x′
i)

∑M
m=1 Am

∫ 1

0
gm(x′ + τ(x − x′))dτ.

Since integrated gradients satisfy the completeness and zero contribution axioms, we can com-
pute the difference N (x{i}|x′

) − N (x{j}|x′
) as the sum of contributions CN

i (x{i}|x′
,x{j}|x′

) and
CN

j (x{i}|x′
,x{j}|x′

) to obtain (x′
i−xi)

∫ 1

0
(∇N)i

(
pij(τ)

)
dτ − (x′

j −xj)
∫ 1

0
(∇N)j

(
pij(τ)

)
dτ.

equation 2 provides the values for the gradients (∇N)i(p
ij(τ)) and (∇N)j(p

ij(τ)), which we can
replace in the previous expression to finally derive equation 3.

5.2 A GREEDY ALGORITHM FOR COMPUTING MINIMAL FEATURE REMOVAL SETS

In this section, we propose a greedy algorithm for computing a minimal feature removal set for a
given prediction of a monotonic FCN.

Algorithm 1 proceeds as detailed next. In each iteration of the first loop, the algorithm sets each
individual input feature to the baseline value (while leaving the remaining components unchanged)
and applies the input FCN to the resulting vector. The values obtained by each of these applications
of the FCN are then sorted in ascending order. In the second loop, the algorithm successively
assigns the components of x to the baseline in the order established in the previous step until the
prediction no longer holds. The algorithm then returns S consisting of all features that were set
to the baseline. Our algorithm is quadratic in the number of input features: both loops require
linearly many applications of the FCN, and each application is feasible in linear time in the number
of features Goodfellow et al. (2016). The algorithm’s correctness relies on equation 3 in Lemma 1,
which ensures that, when set to the baseline, each of the features selected by the algorithm in the
second loop yields the largest change (amongst all other possible feature choices) in the evaluation
of the network, thus bringing the network’s output as close as possible to the prediction threshold.
As a result, the output feature removal set S is guaranteed to contain a smallest number of features.

Theorem 2. Algorithm 1 computes a minimal feature removal set for N (x) > t relative to x′.

Proof. It suffices to show that, for each j ∈ {1, ..., n}, the choice of I[j] in the second loop yields
the largest change in the evaluation of N . That is, for each 1 ≤ j ≤ n and j ≤ k ≤ n we have
N (xS|x′

)−N (x(S∪I[j])|x′
) ≥ N (xS|x′

)−N (x(S∪I[k])|x′
). By construction of list I , the inequality

N (xI[j]|x′
) − N (xI[k]|x′

) ≤ 0 holds for each 1 ≤ j ≤ k ≤ n. We apply equation 3 in Lemma 1
together with the fact that Am ≥ 0 and gm(x) ≥ 0 for each m and x (and hence

∫ 1

0
gm(pij(τ))dτ ≥

0) to obtain (BI[j](x
′
I[j] − xI[j]) − BI[k](x

′
I[k] − xI[k])) ≤ 0. Since {I[j], I[k]} ⊆ {1, ..., n} − S,

6

Under review as a conference paper at ICLR 2023

we have
(
xS|x′

)
I[j]

= xI[j] and
(
xS|x′

)
I[k]

= xI[k]. By applying equation 3 and the previous

inequality, we finally obtain N (x(S∪I[j])|x′
) ≤ N (x(S∪I[k])|x′

).

Note that, although the correctness of our algorithm relies on the properties of integrated gradients,
the algorithm itself only relies on the ability to apply the input network as a ‘black box’ and hence
does not involve the computation of any attribution values.

6 GENERALISATION TO CONVOLUTIONAL AND GRAPH NEURAL NETWORKS

In this section, we generalise our approach to more advanced neural architectures. Our main result is
that, under monotonicity assumptions, Algorithm 1 continues to work verbatim if the input network
N is a standard Convolutional (or Graph) Neural Network. In particular, we require that the weights
are non-negative and that the non-linearities in N can be equivalently expressed as vector fields
that are continuous, differentiable almost everywhere and with a Jacobian that is either at least 0
everywhere or at most 0 everywhere; the latter is the natural generalisation of the monotonicity
requirement to vector fields, and it is satisfied by the standard non-linearities included in practical
neural architectures.

To establish this result, we start by introducing as a theoretical tool the notion of a generalised FCN,
where activation functions are defined as vector fields (and hence are no longer restricted to scalar
functions applied component-wise to vectors). As discussed later on, this will give us the flexibility
needed to mathematically capture the application of CNNs as well as certain variants of GNNs.
Definition 3. A generalised FCN (GFCN) with L ≥ 1 layers and input dimension n ∈ N is a tuple
N = ⟨{Wℓ}1≤ℓ≤L, {bℓ}1≤ℓ≤L, {σℓ}1≤ℓ≤L}⟩. For each ℓ ∈ {1, . . . , L}, integers dℓ ∈ N and
Dℓ ∈ N represent the width and the pre-activation width of layer ℓ, respectively; we require dL = 1
and define d0 = n; matrix Wℓ ∈ RDℓ×dℓ−1 is a real-valued weight matrix; vector bℓ ∈ RDℓ is the
bias vector; and the activation function σℓ : RDℓ 7→ Rdℓ is a polytime-computable vector field.

The application of a GFCNN to a vector x ∈ Rn is defined as given in the preliminaries for FCNs.

The monotonicity requirement for FCNs can be seamlessly lifted to GFCNs, by establishing the
natural requirements on the Jacobian of the each activation function in the network. In particular,
we require the values of the Jacobian to be either non-negative everywhere or at most 0 everywhere.
Definition 4. A GFCNN = ⟨{Wℓ}1≤ℓ≤L, {bℓ}1≤ℓ≤L, {σℓ}1≤ℓ≤L}⟩ is monotonic if for each layer
1 ≤ ℓ ≤ L, the weights Wℓ are non-negative and the Jacobian Jℓ of σℓ : RDℓ 7→ Rdℓ satisfies one
of the following properties:

• (Jℓ(y))ij ≥ 0 for each 1 ≤ i ≤ dℓ, each 1 ≤ j ≤ Dℓ, and each vector y ∈ RDℓ , OR

• (Jℓ(y))ij ≤ 0 for each 1 ≤ i ≤ dℓ, each 1 ≤ j ≤ Dℓ, and each vector y ∈ RDℓ .

We next show that Algorithm 1 remains correct if the input network is a monotonic GCFN. This
is so because the generalised monotonicity requirement in Definition 4 ensures that equation 2 in
Lemma 1 remains true if N is a monotonic GFCN.
Theorem 3. Algorithm 1 computes a minimal feature removal set forN (x) > t relative to x′ when
applied to a monotonic GFCN N , vectors x,x′ ∈ Rn and threshold t ∈ R such that N (x) > t.

Proof. It suffices to show that the statement in Lemma 1 also holds if N is a GFCN and, in
particular, that equation 2 remains true. To this end, we set up a similar induction on the num-
ber L of layers in N as we did in the proof of Lemma 1. If N has a single layer (L = 1),
then N = ⟨W, b, σ⟩, with W an (D1 × n)-matrix, b an D1-dimensional vector and σ a scalar
field σ : RD1 7→ R. By the chain rule, each component of the gradient of N is given by
(∇N)i (x) =

∑D1

j=1 W
1
i,j

(
J1

(
W1 · x+ b1

))
1,j

, where J1 is the Jacobian of σ1 which, in this case,
is a row vector. This expression is of the form equation 2 with M = D1, Am = 1, Bi = ± W 1

i,j

and gm(x) = ±
(
JL

(
σL

(
W1 · x+ b1

)))
1,j

where the sign ± is chosen depending on the type
of monotonicity of the Jacobian (c.f. Definition 4). Observe that gm(x) ≥ 0 by the monotonicity
assumption from Definition 4.

7

Under review as a conference paper at ICLR 2023

For the inductive case, assume equation 2 holds for each GFCN with L− 1 layers. The application
of N with L layers to x is given by N (x) = σL

(
hL (x)

)
; thus, by the chain rule, each component

of the gradient (∇N)i is now given as the sum
∑DL

j=1

∑dL−1

k=1 WL
k,j(∇N k)i(x)

(
JL

(
hL (x)

))
1,j

.

Here, N k = {Wℓ}1≤ℓ≤L−1, {bℓ}1≤ℓ≤L−1, {σℓ}1≤ℓ≤L−2}, σ
L−1
k ⟩, where σL−1

k : RDL−1 7→ R is
the k-th component of the vector field σL−1 : RDL−1 7→ RdL−1 .

Following the proof of Lemma 1, the application of the inductive hypothesis to GFCN N k yields(
∇N k

)
i
(x) = Bk

i

∑Mk

mk=1 A
k
mk

gkmk
(x). As a result, (∇N)i can be put into form equation 2 by

taking M =
∑DL

j=1

∑dL−1

k=1 Mk, Am = Ak
mk

WL
k ≥ 0, Bi = ± Bk

i , and gm(x) = ± gkmk
(x) ·(

JL
(
hL (x)

))
1,j

. The latter is again non-negative by assumption on the Jacobian.

We finally argue that GFCNs are powerful enough to capture CNNs with non-negative weights (and
certain variants of monotonic GNNs with non-negative weights) in a way that ensures correctness
of Algorithm 1 when applied directly to such neural architectures, provided that their non-linearities
satisfy our monotonicity requirements.

Consider a CNN C and a fixed dimension of input images. We argue that there is a GFCN N simu-
lating the application of C to any image with the given dimensions. Thus, correctness of Algorithm
1 applied to C is implied by the correctness of the algorithm applied to N stated in Theorem 3.
To see this, first note that the application of convolutional filters within a layer can be simulated
by matrix multiplication Goodfellow et al. (2016). In turn, pooling operations can be seen as non-
linearities returning a vector of smaller dimension, hence the definition of σℓ as a vector field. Batch
normalisation in inference mode can be seen as a linear transformation. Finally, pooling operations
composed with standard non-linear activation functions can be simulated by first applying pooling,
then multiplying by the identity matrix, and finally applying the standard activation function.

Similarly, GFCNs can also capture basic graph neural networks for which the feature update func-
tion is defined as hℓ

u = σ
(∑

v∈N (u)∪{u} W
ℓhℓ−1

v

)
, where hℓ

u denotes the vector of features of
node u at layer ℓ, and N (u) denotes the neighbours of node u in the input graph. We argue that,
given such GNN G and a fixed topology of input graphs (i.e., a fixed set of nodes, edges, and fixed
dimensions of the feature vector associated to each node), there exists a GFCN N simulating the
application of G to any graph with the given topology. To see this, note that one can flatten the
input so that each component of the input space corresponds to a feature of a particular node. The
aggregation over neighbourhoods can be captured by matrix multiplication where the matrix has
zeros where the corresponding nodes are not in the same neighbourhood, and the matrix has the
corresponding weight values where the nodes are in the same neighbourhood. The non-linear ac-
tivation function is then applied component-wise to each node feature, so it can be reproduced by
applying the activation function component-wise to each component of the transformed input. This
correspondence also generalises to Graph Convolutional Networks (GCNs) Kipf & Welling (2017).
We note, however, that GFCNs cannot adequately capture arbitrary message-passing GNNs since
there exists aggregatation functions which cannot be simulated by matrix multiplication followed by
the application of a non-linear map.

We can conclude that our greedy algorithm can be directly applied to CNNs and GNNs with non-
negative weights used in practice by using the networks as a ‘black box’ (and hence without the
need of explicitly constructing the corresponding GFCN). In particular, the non-linearities used in
practice (max-pooling, average-pooling, ReLu, sigmoid, tanh) satisfy our requirements.

7 CONCLUSION AND FUTURE WORK

We have proposed to study a combinatorial problem, the minimal feature removal problem, inspired
by ideas from attribution-based and perturbation-based explanation methods.

Our intractability result constitutes a theoretical limitation of what can be achieved by neural net-
work explanations.

Our minimal feature removal sets can be efficiently computed for certain neural architectures, and
could be used to probe the reliability of the predictions on certain tasks. Furthermore, minimal

8

Under review as a conference paper at ICLR 2023

feature removal set sizes can be used as a measure of robustness of predictions. In line with existing
work Alvarez Melis & Jaakkola (2018); Erion et al. (2021); Ismail et al. (2021), our approach could
also be incorporated in the training process to improve network’s robustness by generating additional
training examples.

Scalability remains a potential issue in our approach since since our greedy algorithm is quadratic
in the number of features; we expect, however, that parallelising predictions can help in that regard.

We hope that our work can motivate further theoretical analysis of neural network explainability.

REFERENCES

J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim. Sanity
checks for saliency maps. In Advances in Neural Information Processing Systems, vol-
ume 31, 2018. URL https://proceedings.neurips.cc/paper/2018/file/
294a8ed24b1ad22ec2e7efea049b8737-Paper.pdf.

D. Alvarez Melis and T. Jaakkola. Towards robust interpretability with self-explaining neural net-
works. In Advances in Neural Information Processing Systems, volume 31, 2018.

M. Ancona, E. Ceolini, C. Oztireli, and M. Gross. Towards better understanding of gradient-based
attribution methods for deep neural networks. In International Conference on Learning Repre-
sentations, 2018. URL https://openreview.net/forum?id=Sy21R9JAW.

M. Ancona, C. Oztireli, and M. Gross. Explaining deep neural networks with a polynomial time
algorithm for shapley values approximation. In Proceedings of the 36th International Conference
on Machine Learning, volume 72, 2019.

R. J. Aumann and L.S. Shapley. Values of Non-Atomic Games. Princeton University Press, 1974.

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE,
10, 2015.

M. Bajaj, L. Chu, Z. Y. Xue, J. Pei, L. Wang, P. Cho-Ho Lam, and Y. Zhang. Robust counterfactual
explanations on graph neural networks. In Advances in Neural Information Processing Systems,
volume 34, 2021.

José Ramón Cano, Pedro Antonio Gutiérrez, Bartosz Krawczyk, Michal Wozniak, and Salvador
Garcı́a. Monotonic classification: An overview on algorithms, performance measures and data
sets. Neurocomputing, 341:168–182, 2019. doi: 10.1016/j.neucom.2019.02.024. URL https:
//doi.org/10.1016/j.neucom.2019.02.024.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy (SP), pp. 39–57, 2017. doi: 10.1109/SP.2017.49.

C.-H. Chang, E. Creager, A. Goldenberg, and D. Duvenaud. Interpreting neural network classifi-
cations with variational dropout saliency maps. In Advances in Neural Information Processing
Systems, volume 30, 2017.

D. J. T. Cucala, Bernardo Cuenca Grau, Egor V. Kostylev, and Boris Motik. Explainable GNN-based
models over knowledge graphs. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=CrCvGNHAIrz.

P. Dabkowski and Y. Gal. Real time image saliency for black box classifiers. In Advances in Neural
Information Processing Systems, volume 30, 2017.

A. Dhurandhar, P.-Y. Chen, R. Luss, C.-C. Tu, P. Ting, K. Shanmugam, and P. Das. Explanations
based on the missing: Towards contrastive ex- planations with pertinent negatives. Advances in
Neural Information Processing Systems, 32, 2018.

A.-K. Dombrowski, M. Alber, C. J. Anders, M. Ackermann, K.-R. Muller, and P. Kessel. Explana-
tions can be manipulated and geometry is to blame. Advances in Neural Information Processing
Systems, 33, 2019.

9

https://proceedings.neurips.cc/paper/2018/file/294a8ed24b1ad22ec2e7efea049b8737-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/294a8ed24b1ad22ec2e7efea049b8737-Paper.pdf
https://openreview.net/forum?id=Sy21R9JAW
https://doi.org/10.1016/j.neucom.2019.02.024
https://doi.org/10.1016/j.neucom.2019.02.024
https://openreview.net/forum?id=CrCvGNHAIrz

Under review as a conference paper at ICLR 2023

G. Erion, J.D. Janizek, P. Sturmfels, S. M. Lundberg, and S. I. Lee. Improving performance of
deep learning models with axiomatic attribution priors and expected gradients. Nature Machine
Intelligence, 3:620–631, 2021.

R. C. Fong and A. Vedaldi. Interpretable explanations of black boxes by meaningful perturbation.
In Proceedings of the IEEE International Conference on Computer Vision, 2017.

E. Friedman. Paths and consistency in additive cost sharing. Internation Journal of Game Theory,
32:501–518, 2004.

A. Ghorbani, A. Abid, and J. Zou. Interpretation of neural networks is fragile. Thirty-Third AAAI
Conference on Artificial Intelligence, 2019.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In Pro-
ceedings of 2005 IEEE International Joint Conference on Neural Networks, volume 2, 2005. doi:
10.1109/IJCNN.2005.1555942.

Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh, and S. Lee. Counterfactual visual explanations. In
Proceedings of the 36th International Conference on Machine Learning, volume 97, pp. 2376–
2384, 2019.

A. Hannun, C. Case, J. Casper, G. Diamos B. Catanzaro, E. Elsen, R. Prenger, S. Satheesh, S. Sen-
gupta, A. Coates, and A. Y. Ng. Deep speech: Scaling up end-to-end speech recognition. arXiv
preprint arXiv:1412.5567, 2014.

D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HJz6tiCqYm.

H. Hosseini, S. Kannan, and R. Poovendran. Dropping pixels for adversarial robustness. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.
91–97, 2019. doi: 10.1109/CVPRW.2019.00017.

A. A. Ismail, H. Corrada Bravo, and S. Feizi. Improving deep learning interpretability by saliency
guided training. In Advances in Neural Information Processing Systems, volume 34, 2021.

G. Katz, C. Barrett, D.L. Dill, K. Julian, and M.J. Kochenderfer. Reluplex: An efficient smt solver
for verifying deep neural networks. In Computer Aided Verification, pp. 97–117. Springer Inter-
national Publishing, 2017.

E. Kazim and A. S. Koshiyama. A high-level overview of ai ethics. Patterns, 2, 2021. doi: 10.1016/
j.patter.2021.100314.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In-
ternational Conference on Learning Representations, 2017.

P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In Proceedings
of the 34th International Conference on Machine Learning, volume 70, 2017.

S. Kotyan and D.V. Vargas. Adversarial robustness assessment: Why in evaluation both l0 and l
infinity attacks are necessary. PLOS ONE, 17(4):1–22, 2022. doi: 10.1371/journal.pone.0265723.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deepconvolutional neural
networks. Advances in Neural Information Processing Systems, 25, 2012.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

J. Li, X. Liu, J. Zhao, and F. Shen. Autoadversary: A pixel pruning method for sparse adversarial
attack. 2022. doi: 10.48550/ARXIV.2203.09756.

10

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://openreview.net/forum?id=HJz6tiCqYm

Under review as a conference paper at ICLR 2023

O. Li, H. Liu, C. Chen, and C. Rudin. Deep learning for case-based reasoning through prototypes:
A neural network that explains its predictions. Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

A. Lucic, M. A. Ter Hoeve, G. Tolomei, M. De Rijke, and F. Silvestri. Cf-gnnexplainer: Counterfac-
tual explanations for graph neural networks. In Proceedings of The 25th International Conference
on Artificial Intelligence and Statistics, volume 151, pp. 4499–4511, 2022.

João Marques-Silva, Thomas Gerspacher, Martin C. Cooper, Alexey Ignatiev, and Nina Narodytska.
Explanations for monotonic classifiers. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pp. 7469–7479. PMLR, 2021.
URL http://proceedings.mlr.press/v139/marques-silva21a.html.

G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller. Explaining nonlinear classi-
fication decisions with deep taylor decomposition. Pattern Recognition, 65:211–222, 2017. doi:
https://doi.org/10.1016/j.patcog.2016.11.008.

J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015.

L. Shapley. Contributions to the Theory of Games II. Princeton University Press, 1953. doi:
10.1515/9781400881970-018.

A. Shrikumar, P. Greenside, and P. Kundaje. Learning important features through propagating ac-
tivation differences. In Proceedings of the 34th International Conference on Machine Learning,
volume 70, pp. 3145–3153. PMLR, 2017.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, I. Antonoglou
J. Schrittwieser, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbren-
ner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering
the game of go with deep neural networks and tree search. Nature, 529, 2016.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. In International Conference on Learning Representa-
tions, 2014.

M. Sundararajan and A. Najmi. The many shapley values for model explanation. In Proceedings
of the 37th International Conference on Machine Learning, volume 119, pp. 9269–9278. PMLR,
2020. URL https://proceedings.mlr.press/v119/sundararajan20b.html.

M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In Proceedings
of the 34th International Conference on Machine Learning, volume 70, pp. 3319–3328. PMLR,
2017. URL https://proceedings.mlr.press/v70/sundararajan17a.html.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. In International Conference on Learning Representations, 2014.

C.-K. Yeh, C.-Y. Hsieh, A. Suggala, D. I. Inouye, and P. K. Ravikumar. On the (in)fidelity and
sensitivity of explanations. In Advances in Neural Information Processing Systems, volume 32,
2019.

X. Zhang, A. Solar-Lezama, and R. Singh. Interpreting neural network judgments via minimal, sta-
ble, and symbolic corrections. In Advances in Neural Information Processing Systems, volume 31,
2018.

11

http://proceedings.mlr.press/v139/marques-silva21a.html
https://proceedings.mlr.press/v119/sundararajan20b.html
https://proceedings.mlr.press/v70/sundararajan17a.html

	Introduction
	Preliminaries
	Background on Attribution-based Methods
	Minimal Feature Removal Sets
	Monotonic Neural Networks
	Properties of Monotonic Neural Networks
	A Greedy Algorithm for Computing Minimal Feature Removal Sets

	Generalisation to Convolutional and Graph Neural Networks
	Conclusion and Future Work

