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ABSTRACT

Physics-informed machine learning provides an approach to combining data and govern-
ing physics laws for solving complex partial differential equations (PDEs). However,
efficiently solving PDEs with varying parameters and changing initial conditions and
boundary conditions (ICBCs) remains an open challenge. We propose a hybrid frame-
work that uses a neural network to learn B-spline control points to approximate solu-
tions to PDEs with varying system and ICBC parameters. The proposed network can be
trained efficiently as one can directly specify ICBCs without imposing losses, calculate
physics-informed loss functions through analytical formulas, and requires only learning
the weights of B-spline functions as opposed to both weights and basis as in traditional
neural operator learning methods. We show theoretical guarantees that the proposed B-
spline networks are universal approximators of arbitrary dimensional PDEs under certain
conditions. We also demonstrate in experiments that the proposed B-spline network can
solve problems with discontinuous ICBCs and outperforms existing methods, and is able
to learn solutions of 3D heat equations with diverse initial conditions.

1 INTRODUCTION

Recent advances in scientific machine learning have boosted the development for solving complex partial
differential equations (PDEs). Physics-informed neural networks (PINNs) are proposed to combine infor-
mation of available data and the governing physics model to learn the solutions of PDEs (Raissi et al., 2019;
Han et al., 2018). However, in the real world the parameters for the PDE and for the initial and boundary
conditions can be changing, and solving PDEs for all possible parameters can be important but demanding.
For example in a safety-critical control scenario, the system dynamics and the safe region can vary over time,
resulting in changing parameters for the PDE that characterizes the probability of safety. On the other hand,
solving such PDEs is important for safe control but can be hard to achieve in real time with limited online
computation. In general, to account for parameterized PDEs and varying initial conditions and boundary
conditions (ICBCs) in PINNs is challenging, as the solution space becomes much larger (Karniadakis et al.,
2021). To tackle this challenge, parameterized PINNs are proposed (Cho et al., 2024). Plus, a new line of
research on neural operators is conducted to learn operations of functions instead of the value of one spe-
cific function (Kovachki et al., 2023; Li et al., 2020; Lu et al., 2019). Nevertheless, such methods can not
efficiently handle problems with irregular initial and boundary conditions.

In this work, we leverage the advantages of B-spline functions and physics-informed learning, to form
physics-informed deep B-spline networks (PI-DBSN) to efficiently learn parameterized PDEs with varying
initial and boundary conditions (Fig. 1). The network composites of B-spline basis functions, and a param-
eterized neural network that learns the weights for the B-spline basis. Specifically, the coefficient network
takes inputs of the PDE and ICBC parameters, and outputs the control points tensor (i.e., weights of B-
splines). Then this control points tensor is multiplied with the B-spline basis to produce the final output as
the approximation of PDEs. One can evaluate the prediction of the PDE solution at any point, and we use
physics loss and data loss to train the network similar to PINNs (Cuomo et al., 2022). There are several
advantages for the proposed PI-DBSN:
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Figure 1: Diagram of PI-DBSN. The coefficient network takes system and ICBC parameters as input and
outputs the control points tensor, which is then multiplied with the B-spline basis to produce the final output.
Physics and data losses are imposed to train the network. Solid lines depict the forward pass, and dashed
lines depict the backward pass of the network.

1. The B-spline basis functions are fixed and can be pre-calculated before training, thus we only need
to train the coefficient network which saves computation and stabilizes training.

2. The B-spline functions have analytical expressions for its gradients and higher-order derivatives,
which provide faster and more accurate calculation for the physics-informed losses during training
over automatic differentiation.

3. Due to the properties of B-splines, we can directly specify Dirichlet boundary conditions and initial
conditions through the control points tensor without imposing loss functions, which helps with
learning extreme and complex ICBCs.

The rest of the paper is organized as follow. We discuss related work in Sec. 2, and introduce our proposed
PI-DBSN in Sec. 3. We then show in Sec. 4 that despite the use of fixed B-spline basis, the PI-DBSN
is a universal approximator and can learn high-dimensional PDEs. Following the theoretical analysis, in
Sec. 5 we demonstrate with experiments that PI-DBSN can solve problems with discontinuous ICBCs and
outperforms existing methods, and is able to learn high-dimensional PDEs. Finally, we conclude the paper
in Sec. 6.

2 RELATED WORK

PINNs: Physics-informed neural networks (PINNs) are neural networks that are trained to solve supervised
learning tasks while respecting any given laws of physics described by general nonlinear partial differential
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equations (Raissi et al., 2019; Han et al., 2018; Cuomo et al., 2022). PINNs take both data and the physics
model of the system into account, and are able to solve the forward problem of getting PDE solutions, and
the inverse problem of discovering underlying governing PDEs from data. PINNs have been widely used
in power systems (Misyris et al., 2020), fluid mechanics (Cai et al., 2022) and medical care (Sahli Costabal
et al., 2020), etc. Different variants of PINN have been proposed to meet different design criteria, for
example Bayesian physics-informed neural networks are used for forward and inverse PDE problems with
noisy data (Yang et al., 2021), physics-informed neural networks with hard constraints are proposed to
solve topology optimizations (Lu et al., 2021b), and parallel physics-informed neural networks via domain
decomposition are proposed to solve multi-scale and multi-physics problems (Shukla et al., 2021). It is
shown that under certain assumptions that PINNs have bounded error and converge to the ground truth
solutions (De Ryck & Mishra, 2022; Mishra & Molinaro, 2023; 2022; Fang, 2021; Pang et al., 2019; Jiao
et al., 2021). We leverage the idea of physics-informed learning as we constrain the network output to satisfy
physics laws, but use a novel B-spline formulation for more efficient training for families of PDEs.

Neural Operators: Neural operators are a class of deep learning architectures designed to learn maps
between infinite-dimensional function spaces instead of values of specific functions (Kovachki et al., 2023).
DeepONets (Lu et al., 2019; 2021a) and Fourier Neural Operators (FNOs) (Li et al., 2020) are two common
approaches along this line of research, and a detailed comparison can be found in Lu et al. (2022). In Wang
et al. (2021) DeepONets are combined with physics-informed learning to solve fixed PDEs. Generalizations
of DeepONet (Gao et al., 2021) and FNO (Li et al., 2024) consider learning (state) parameterized PDEs
with fast evaluation, but training is usually slow. Recent work (Kumar et al., 2024) incorporates multi-task
mechanism within DeepONet to learn PDEs with varying conditions, but unique and manually designed
polynomial representation of the varying parameter is needed as input to the branch net of the system. While
all DeepONet-based methods need to train two networks at a time (branch and trunk net in the architecture)
and impose losses on ICBCs, our method directly specifies ICBCs, and uses fixed B-spline functions as the
basis such that only one coefficient network is trained for better efficiency and stability.

B-splines + NN: B-splines are piece-wise polynomial functions derived from slight adjustments of Bezier
curves, aimed at obtaining polynomial curves that tie together smoothly (Ahlberg et al., 2016). B-splines
have been widely used in signal and imaging processing (Unser, 1999; Lehmann et al., 2001), computer
aided design (Riesenfeld, 1973; Li, 2020), etc. B-splines are also used to assist in solving PDEs, for ex-
ample Jia et al. (2013) uses B-spline in finite element methods for PDE solving, and in Song et al. (2022)
spline-inspired mesh movement networks are proposed to solve PDEs. B-splines together with neural net-
works (NNs) are used for surface reconstruction (Iglesias et al., 2004), nonlinear system modeling (Yiu et al.,
2001; Wang et al., 2022b), and controller design for dynamical systems (Chen et al., 2004; Deng et al., 2008).
In Fakhoury et al. (2022) and Doległo et al. (2022) NNs are used to learn weights for B-spline functions to
approximate fixed ODEs and PDEs, respectively. Note that the recently proposed Kolmogorov–Arnold Net-
works (KANs) also uses splines in neural networks (Liu et al., 2024), but is different from our work. In
KAN the spline functions are used to produce learnable weights in the NN as an alternative architecture
to multi-layer perceptrons (MLPs). In our work the B-splines are fixed and the neural network can take
arbitrary MLP/non-MLP based architectures including KANs.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

The goal of this paper is to efficiently estimate high-dimensional surfaces with corresponding governing
physics laws of a wide range variety of parameters (e.g., the solution of a family of ODEs/PDEs). We denote
s : Rn → R as the ground truth, i.e., s(x) is the value of the surface at point x, where x ∈ Rn. We assume
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the physics laws can be written as

Fi(s, x, u) = 0, x ∈ Ωi(α), ∀i = 1, · · · , N, (1)

where u ∈ Rm is the parameters of the physics systems, N is the number of governing equations, Ωi(α) ∈
Rn parameterized by α is the region that the i-th physics law applies. We denote Ω ∈ Rn the general region
of interest, and in this paper we consider n-dimensional bounded domain Ω = [a1, b1] × [a2, b2] × · · · ×
[an, bn]. Our goal is to generate ŝ with neural networks to estimate s on the entire domain of Ω, with all
possible parameters u and α. For example, in the case of solving 2D heat equations on (x1, x2) ∈ [0, α]2 at
time t ∈ [0, 10] with varying coefficient u ∈ [0, 2] and α ∈ [3, 4], we have the physics laws to be

F1(s, x, u) = ∂s/∂t− u
(
∂2s/∂x2

1 + ∂2s/∂x2
2

)
= 0, x = (x1, x2, t) ∈ Ωx × Ωt, (2)

F2(s, x, u) = s− 1 = 0, x = (x1, x2, t) ∈ ∂Ωx × Ωt (3)

where Ωx = [0, α]2 and Ωt = [0, 10], and ∂Ωx is the boundary of Ωx. Here, equation 2 is the heat equation
and equation 3 is the boundary condition. In this case, we want to solve for s on Ω = Ωx × Ωt for all
u ∈ [0, 2] and α ∈ [3, 4]. Similar problems have been studied in (Li et al., 2024; Gao et al., 2021; Cho
et al., 2024) while the majority of the literature considers solving parameterized PDEs but with either fixed
coefficients or fixed domain and initial/boundary conditions. We slightly generalize the problem to consider
systems with varying parameters, and with potential varying domains and initial/boundary conditions.

3.2 B-SPLINES WITH BASIS FUNCTIONS

In this section, we introduce one-dimensional B-splines. For state space x ∈ R, the B-spline basis functions
are given by the Cox-de Boor recursion formula:

Bi,d(x) =
x− x̂i

x̂i+d − x̂i
Bi,d−1(x) +

x̂i+d+1 − x

x̂i+d+1 − x̂i+1
Bi+1,d−1(x), (4)

and

Bi,0(x) =

{
1, x̂i ≤ x < x̂i+1,

0, otherwise.
(5)

Here, Bi,d(x) denotes the value of the i-th B-spline basis of order d evaluated at x, and x̂i ∈ (x̂i)
ℓ+d+1
i=1

is a non-decreasing vector of knot points. Since a B-spline is a piece-wise polynomial function, the knot
points determine in which polynomial the parameter x belongs. While there are multiple ways of choosing
knot points, we use (x̂i)

ℓ+d+1
i=1 with x̂1 = x̂2 = · · · = x̂d+1 and x̂ℓ+1 = x̂ℓ+2 = · · · = x̂ℓ+d+1, and for

the remaining knot points we select equispaced values. For example on [0, 3] with number of control points
ℓ = 6 and order d = 3, we have x̂ = [0, 0, 0, 0, 1, 2, 3, 3, 3, 3], in total ℓ+ d+ 1 = 10 knot points.

We then define the control points
c := [c1, c2, . . . , cℓ], (6)

and the B-spline basis functions vector

Bd(x) := [B1,d(x), B2,d(x), . . . , Bℓ,d(x)]
⊤. (7)

Then, we can approximate a solution s(x) with

ŝ(x) = cBd(x). (8)

Note that with our choice of knot points, we ensure the initial and final values of ŝ(x) coincide with the
initial and final control points c1 and cℓ. This property will be used later to directly impose initial conditions
and Dirichlet boundary conditions with PI-DBSN.

[Distribution Statement A] Approved for public release and unlimited distribution



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

3.3 MULTI-DIMENSIONAL B-SPLINES

Now we extend the B-spline scheme to the multi-dimensional case. We start by considering the 2D case
where x = [x1, x2]

⊤ ∈ R2. Along each dimension xi, we can generate B-spline basis functions based on
the Cox-de Boor recursion formula in equation 4 and equation 5. We denote the B-spline basis of order d
as Bi,d(x1), Bj,d(x2) for the i-th and j-th function of x1 and x2, respectively. Then with a control points
matrix C = [ci,j ]ℓ×p, the 2-dimensional surface can be approximated by the B-splines as

s(x1, x2) ≈
ℓ∑

i=1

p∑
j=1

ci,jBi,d(x1)Bj,d(x2), (9)

where ℓ and p are the number of control points along the 2 dimensions. This can be written in the matrix
multiplication form as

ŝ(x1, x2) = Bd(x1)
⊤CBd(x2) = [B1,d(x1), · · · , B1,ℓ(x1)]

 c1,1 · · · c1,p
...

...
...

cℓ,1 · · · cℓ,p


 B1,d(x2)

...
Bp,d(x2)

 , (10)

where ŝ(x1, x2) is the approximation of the 2D solution at (x1, x2), C is the control points matrix and
Bd(x1) and Bd(x2) are the B-spline vectors defined in equation 7.

More generally, for a n-dimensional space x = [x1, · · · , xn] ∈ Rn, we can generate B-spline basis functions
based on the Cox-de Boor recursion formula along each dimension xi with order di for i = 1, 2, · · · , n, and
the n-dimensional control point tensor will be given by C = [ci1,i2,··· ,in ]ℓ1×ℓ2×···×ℓn , where ik is the k-th
index of the control point, and ℓk is the number of control points along the k-th dimension. We can then
approximate the n-dimensional surface with B-splines and control points via

ŝ(x1, x2, · · · , xn) =

ℓ1∑
i1=1

ℓ2∑
i2=1

· · ·
ℓn∑

in=1

ci1,i2,··· ,inBi1,d1
(x1)Bi2,d2

(x2) · · ·Bin,dn
(xn). (11)

3.4 PHYSICS-INFORMED B-SPLINE NETS

In this section, we introduce our proposed physics-informed deep B-spline networks (PI-DBSN). The overall
diagram of the network is shown in Fig. 1. The network composites a coefficient network that learns the
control point tensor C with system parameters u and ICBC parameters α, and the B-spline basis functions
Bdi

of order di for i = 1, · · · , n. During the forward pass, the control point tensor C output from the
coefficient net is multiplied with the B-spline basis functions Bdi

via equation 11 to get the approximation ŝ.
For the backward pass, two losses are imposed to efficiently and effectively train PI-DBSN. We first impose
a physics model loss Lp =

∑N
i=1

∑
x∈P

1
|P| |Fi(s, x, u)|2 where Fi is the governing physics model of the

system as defined in equation 1, and P is the set of points sampled to evaluated the governing physics model.
When data is available, we can additionally impose a data loss Ld = 1

|D|
∑

x∈D |s(x) − ŝ(x)|2 to capture
the mean square error of the approximation, where s is the data point for the high dimensional surface, D
is the data set, and ŝ is the prediction from the PI-DBSN. The total loss is given by L = wpLp + wdLd

where wp and wd are the weights for physics and data losses, and are usually set to values close to 1. We
use Gθ(u, α)(x) to denote the PI-DBSN parameterized by θ, where (u, α) is the input to the coefficient net
(parameters of the system and ICBCs), and x will be the input to the PI-DBSN (the state and time in PDEs).
With this notation we have C = Gθ(u, α) and ŝ(x) = Gθ(u, α)(x).

Note that several good properties of B-splines are leveraged in PI-DBSN.
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First, the derivatives of the B-spline functions can be analytically calculated. Specifically, the p-th
derivative of the d-th ordered B-spline is given by (Butterfield, 1976)

dp

dxp
Bi,d(x) =

(d− 1)!

(d− p− 1)!

p∑
k=0

(−1)k
(
p

k

)
Bi+k,d−p(x)∏p−1

j=0 (x̂i+d−j−1 − x̂i+k)
. (12)

Given this, we can directly calculate these values for the back-propagation of physics model loss Lp, which
improves both computation efficiency and accuracy over automatic differentiation that is commonly used in
physic-informed learning (Cuomo et al., 2022).

Besides, any Dirichlet boundary conditions and initial conditions can be directly assigned via the
control points tensor without any learning involved. This is due to the fact that the approximated solution
ŝ at the end points along each axis will have the exact value of the control point. For example, in a 2D case
when the initial condition is given by s(x, 0) = 0,∀x, we can set the first column of the control points tensor
ci1,1 = 0 for all i1 = 1, · · · , ℓ1 and this will ensure the initial condition is met for the PI-DBSN output. This
greatly enhances the accuracy of the learned solution near initial and boundary conditions, and improves the
ease of design for the loss function as weight factors are often used to impose stronger initial and boundary
condition constraints in previous literature (Wang et al., 2022a). We will demonstrate later in the experiment
section where we compare the proposed PI-DBSN with physic-informed DeepONet that this feature will
result in better estimation of the PDEs when the initial and boundary conditions are hard to learn.

Furthermore, better training stability can be obtained. The B-spline basis functions are fixed and can be
calculated in advance, and training is involved only for the coefficient net.

4 THEORETICAL ANALYSIS

In this section, we provide theoretical guarantees of the proposed PI-DBSN on learning high-dimensional
PDEs. We first show that B-splines are universal approximators, and then show that with combination of
B-splines and neural networks, the proposed PI-DBSN is a universal approximator under certain conditions.
At last we argue that when the physics loss is densely imposed and the loss functions are minimized, the
network can learn unique PDE solutions. All theorem proofs can be found the in the Appendix of the paper.

We first consider the one-dimensional function space L2([a, b]) with L2 norm defined over the interval [a, b].
For two functions s, g ∈ L2([a, b]), we define the inner product of these two functions as

⟨s, g⟩ :=
∫ b

a

s(x)g∗(x)dx, (13)

where ∗ denotes the conjugate complex. We say a function s(x) is square-integrable if the following holds

⟨s, s⟩ =
∫ b

a

|s(x)|2dx < ∞. (14)

We define the L2 norm between two functions s, g as

∥s− g∥2 :=

(∫ b

a

|s(x)− g(x)|2dx

) 1
2

. (15)

We then state the following theorem that shows B-spline functions are universal approximators in the sense
of L2 norms in one dimension.
Theorem 1. Given a positive natural number d and any d-time differentiable function s(x) ∈ L2([a, b]),
then for any ϵ > 0, there exist a positive natural value ℓ, and a realization of control points c1, c2, · · · , cℓ
such that

∥s− ŝ∥2 ≤ ϵ, (16)
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where

ŝ(x) =

ℓ∑
i=1

ciBi,d(x)

is the B-spline approximation with Bi,d(x) being the B-spline basis functions defined in equation 7.

Now that we have the error bound of B-spline approximations in one dimension, we will extend the results to
arbitrary dimensions. We point out that the space L2([a, b]) is a Hilbert space (Balakrishnan, 2012). Let us
consider n Hilbert spaces L2([ai, bi]) for i = 1, 2, · · · , n. We define the inner products of two n-dimensional
functions s, g ∈ L2([a1, b1]× · · · × [an, bn]) as

⟨s, g⟩ :=
∫ bn

an

· · ·
∫ b1

a1

s(x1, · · · , xn)g
∗(x1, · · · , xn)dx1 · · · dxn, (17)

and we say a function s : Rn → R is square-integrable if

⟨s, s⟩ =
∫ bn

an

· · ·
∫ b1

a1

|s(x1, · · · , xn)|2dx1 · · · dxn < ∞. (18)

Now we present the following lemma to bound the approximation error of n-dimensional B-splines.
Lemma 2. Given a set positive natural numbers d1, · · · , dn and a d-time differentiable function
s(x1, x2, · · · , xn) ∈ L2([a1, b1] × [a2, b2] × · · · × [an, bn]). Assume d ≥ max{d1, · · · , dn}, then given
any ϵ > 0, there exist ℓi ∈ N+ of control points for each component i = 1, ..., n, such that

∥s(x1, x2, · · · , xn)− ŝ(x1, x2, · · · , xn)∥2 ≤ ϵ, (19)

where

ŝ(x1, x2, · · · , xn) =

ℓ1∑
i1=1

ℓ2∑
i2=1

· · ·
ℓn∑

in=1

ci1,i2,··· ,inBi1,d1
(x1)Bi2,d2

(x2) · · ·Bin,dn
(xn). (20)

On the other hand, we know that neural networks are universal approximators (Hornik et al., 1989; Leshno
et al., 1993), i.e., with large enough width or depth a neural network can approximate any function with ar-
bitrary precision. We restate the universal approximation theorem in our context assuming the requirements
for the neural network are met. 1

Theorem 3. Given any u and α in a finite parameter set, and any control points tensor C := [c]ℓ1×···×ℓn ,
for the coefficient net Gθ(u, α) and ∀ϵ > 0, when the network has enough width and depth, there is θ∗ such
that

∥Gθ∗(u, α)− C∥ ≤ ϵ. (21)

Then, we combine Lemma 2 and Theorem 3 to show the universal approximation property of PI-DBSN.
Theorem 4. For any n ∈ N+ dimension, any u and α in a finite parameter set, let di be the order of B-
spline basis for dimension i = 1, 2, · · · , n. Then for any d-time differentiable function s(x1, x2, · · · , xn) ∈
L2([a1, b1]× [a2, b2]× · · · × [an, bn]) with d ≥ max{d1, · · · , dn} where the domain depends on α and the
function depends on u, and any ϵ > 0, there exist a PI-DBSN configuration Gθ(u, α) with enough width and
depth, and corresponding parameters θ∗ independent of u and α such that

∥s̃− s∥2 ≤ ϵ, (22)

where s̃ = Gθ∗(u, α)(x) is the B-spline approximation defined in equation 11 with the control points tensor
Gθ∗(u, α).

1The Borel space assumptions are met since we consider L2 space which is a Borel space.

[Distribution Statement A] Approved for public release and unlimited distribution



329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

Theorem 4 tells us the proposed PI-BDSN is an universal appproximator of high-dimensional surfaces with
varying parameters and domains. Thus we know that when the solution of the problem defined in equation 1
is unique, and the physics-informed loss functions Lp is densely imposed and attains zero (De Ryck &
Mishra, 2022; Mishra & Molinaro, 2023), we learn the solution of the PDE problem of arbitrary dimensions.

5 EXPERIMENTS

In this section, we present simulation results on estimating the recovery probability of a dynamical system
which gives irregular ICBCs, and on estimating the solution of 3D Heat equations.

5.1 RECOVERY PROBABILITIES

We consider an autonomous system with dynamics

dxt = u dt+ dwt, (23)

where x ∈ R is the state, wt ∈ R is the standard Wiener process with w0 = 0, and u ∈ R is the system
parameter. Given a set

Cα = {x ∈ R : x ≥ α} , (24)
we want to estimate the probability of reaching Cα at least once within time horizon t starting at some x0.
Here, α is the varying parameter of the set Cα. Mathematically this can be written as

s(x0, t) := P (∃τ ∈ [0, t], s.t. xτ ∈ Cα | x0) . (25)

From (Chern et al., 2021) we know that such probability is the solution of convection-diffusion equations
with certain initial and boundary conditions

PDE:
∂s

∂t
(x, t)− u

∂s

∂x
(x, t)− 1

2
tr

(
∂2s

∂x2
(x, t)

)
= 0, ∀[x, t] ∈ Cc

α × T (26)

ICBC: s(α, t) = 1,∀t ∈ T , s(x, 0) = 0,∀x ∈ Cc
α, (27)

where Cc
α is the complement of Cα, and T = [0, T ] for some T of interest. Note that the initial condition and

boundary condition at (x, t) = (α, 0) is not continuous,2 which imposes difficulty for learning the solutions.

Method Computation Time (s)
PI-DBSN 370.48
PINN 809.86
PI-DeepONet 1455.16

Table 1: Computation time in seconds.

We train PI-DBSN with 3-layer fully connected neural net-
works with ReLU activation on varying parameters u ∈ [0, 2]
and α ∈ [0, 4], and test on randomly selected parameters
in the same domain. We compare PI-DBSN with physics-
informed neural network (PINN) (Cuomo et al., 2022) and
physics-informed DeepONet (PI-DeepONet) (Goswami et al.,
2023) with similar NN configurations. Fig. 2 visualizes the
prediction results. It can be seen that both PI-DBSN and
PINN can approximate the ground truth value accurately, while
PI-DeepONet fails to do so. The possible reason is that PI-
DeepONet can hardly capture the initial and boundary conditions correctly when the parameter set is rel-
atively large. Besides, with the vanilla implementation of PI-DeepONet, the training tends to be unstable,
and special training schemes such as the ones mentioned in Lee & Shin (2024) might be needed for finer
results. The mean squared error (MSE) of the prediction are 3.064 ·10−4 (Proposed PI-DBSN), 4.323 ·10−4

(PINN), and 1.807 · 10−1 (PI-DeepONet).

2When on the boundary of the Cα, the recovery probability at horizon t = 0 is s(α, 0) = 1, but close to the boundary
with very small t the recovery probability is s(x, 0) = 0.
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Ground Truth Proposed PINN PI-DeepONet

Figure 2: Recovery probability at u = 1.5 and α = 2, t ∈ [0, 10] is considered. The prediction MSE are
3.064 · 10−4 (PI-DBSN), 4.323 · 10−4 (PINN), and 1.807 · 10−1 (PI-DeepONet).

Number of Control Points 2 5 10 15 20 25
Number of NN Parameters 4417 5392 9617 17092 27817 41792

Training Time (s) 241.76 223.53 247.39 295.67 310.83 370.48
Prediction MSE (×10−4) 5357.9 7.327 7.313 5.817 4.490 3.064

Table 2: PI-DBSN prediction MSE with different numbers of control points along each dimension.
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Figure 3: Total (physics and data) loss vs. epochs.

We then compare the training speed and computa-
tion time for the three methods, as shown in Fig. 3
and Table 1. We can see that the loss for PI-DBSN
drops the fastest and reaches convergence in the
shortest amount of time. This is because PI-DBSN
has a relatively smaller NN size with the fixed B-
spline basis, and achieves zero initial and boundary
condition losses at the very beginning of the train-
ing. Besides, thanks to the analytical calculation
of gradients and Hessians, the training time of PI-
DBSN is the shortest among all three methods.

We also investigate the effect of the number of con-
trol points on the performance of PI-DBSN. Table 2
shows the approximation error and training time of
PI-DBSN with different numbers of control points
along each dimension. We can see that the training time increases as the number of control points increases,
and the approximation error decreases, which matches with Theorem 4 which indicates more control points
can result in less approximation error.

Experiment details and additional experiment results to verify the derivative calculations from B-splines and
the optimality of the control points can be found in the Appendix of the paper.

5.2 3D HEAT EQUATIONS

We consider the 3D heat equation given by

∂

∂t
s(x, t) = D

∂2

∂x2
s(x, t), (28)
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Learned Heat Equations
Residuals𝑥! − 𝑡 plane 𝑥" − 𝑡 plane 𝑥# − 𝑡 plane

Figure 4: Evolution of 3D heat equation in a box with Dirichlet and Neumann boundary conditions. The
learned solutions (left) and the residuals (right).

where D = 0.1 is the constant diffusion coefficient. Here x = [x1, x2, x3] ∈ R3 are the states, and the
domains of interest are Ωx1

= Ωx2
= Ωx3

= [0, 1], and Ωt = [0, 1]. All lengths are in centimeters (cm) and
the time is in seconds (s). In this experiment we solve equation 28 with random linear initial conditions:

s(x, t = 0) = α1 · x1 + α2 · x2 + α3 · x3 + α0 (29)
where α1, α2, α3 ∈ [−0.5, 0.5] and α0 ∈ [0, 1] are randomly chosen. We impose the following Dirichlet
and Neumann boundary conditions:

s(x, t|x3 = 0) = s(x, t|x3 = 1) = 1 (30)
∂

∂x1
s(x, t|x1 = 0) =

∂

∂x1
s(x, t|x1 = 1) =

∂

∂x2
s(x, t|x2 = 0) =

∂

∂x2
s(x, t|x2 = 1) = 0 (31)

We train PI-DBSN on varying α with ℓ = 15 control points along each dimension. Detailed training
configurations can be found in the Appendix of the paper. Fig. 4 (left) shows the learned heat equation.
It can be seen that the value is diffusing over time as intended. Fig. 4 (right) shows a slice of the residual
of the learned heat equation in the x1-t plane. Although our initial condition does not adhere to the heat
equation as estimated by the B-spline derivative, we quickly achieve a low residual. The average residuals
during training and testing are 0.0028 and 0.0032, which indicates the efficacy of the PI-DBSN method.

6 CONCLUSION

In this paper, we consider the problem of learning solutions of PDEs with varying system parameters and
initial and boundary conditions. We propose physics-informed deep B-spline networks (PI-DBSN), which
incorporate B-spline functions into neural networks, to efficiently solve this problem. The advantages of the
proposed PI-DBSN is that it can produce accurate analytical derivatives over automatic differentiation to cal-
culate physics-informed losses, and can directly impose initial conditions and Dirichlet boundary conditions
through B-spline coefficients. We prove theoretical guarantees that PI-DBSNs are universal approximators
and under certain conditions can reconstruct PDEs of arbitrary dimensions. We then demonstrate in experi-
ments that PI-DBSN performs better than existing methods on learning families of PDEs with discontinuous
ICBCs, and has the capability of addressing higher dimensional problems.

For limitations and future work, we point out that even though B-splines are arguably a more efficient repre-
sentation of the PDE problems, the PI-DBSN method still suffers from the curse of dimensionality. Specifi-
cally, the number of control points scales exponentially with the dimension of the problem, and as our theory
and experiment suggest denser control points will help with obtaining lower approximation error. Besides,
while the current formulation only allows regular geometry for the domain of interest, diffeomorphism trans-
formations and non-uniform rational B-Splines (NURBS) (Piegl & Tiller, 2012) can be potentially applied to
generalize the framework to irregular domains. How to further exploit the structure of the problem and learn
large solution spaces in high dimensions with sparse data in complex domains are exciting future directions.

[Distribution Statement A] Approved for public release and unlimited distribution



470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

Copyright 2024 Carnegie Mellon University and Duquesne University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING IN-
STITUTE MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVER-
SITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Requests for permission for non-licensed uses should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM25-0126

REFERENCES

J Harold Ahlberg, Edwin Norman Nilson, and Joseph Leonard Walsh. The Theory of Splines and Their
Applications: Mathematics in Science and Engineering: A Series of Monographs and Textbooks, Vol. 38,
volume 38. Elsevier, 2016.

Alampallam V Balakrishnan. Applied Functional Analysis: A, volume 3. Springer Science & Business
Media, 2012.

Thierry Blu and Michael Unser. Quantitative fourier analysis of approximation techniques. i. interpolators
and projectors. IEEE Transactions on signal processing, 47(10):2783–2795, 1999.

Kenneth R Butterfield. The computation of all the derivatives of a b-spline basis. IMA Journal of Applied
Mathematics, 17(1):15–25, 1976.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-informed
neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, pp. 1–12, 2022.

YangQuan Chen, Kevin L Moore, and Vikas Bahl. Learning feedforward control using a dilated b-spline
network: Frequency domain analysis and design. IEEE Transactions on neural networks, 15(2):355–366,
2004.

Albert Chern, Xiang Wang, Abhiram Iyer, and Yorie Nakahira. Safe control in the presence of stochastic
uncertainties. In 2021 60th IEEE Conference on Decision and Control (CDC), pp. 6640–6645. IEEE,
2021.

Woojin Cho, Minju Jo, Haksoo Lim, Kookjin Lee, Dongeun Lee, Sanghyun Hong, and Noseong Park. Pa-
rameterized physics-informed neural networks for parameterized pdes. arXiv preprint arXiv:2408.09446,
2024.

[Distribution Statement A] Approved for public release and unlimited distribution



517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and
Francesco Piccialli. Scientific machine learning through physics–informed neural networks: Where we
are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

Tim De Ryck and Siddhartha Mishra. Error analysis for physics-informed neural networks (pinns) approxi-
mating kolmogorov pdes. Advances in Computational Mathematics, 48(6):79, 2022.

Chongyang Deng and Hongwei Lin. Progressive and iterative approximation for least squares b-spline curve
and surface fitting. Computer-Aided Design, 47:32–44, 2014.

Heng Deng, Ramesh Oruganti, and Dipti Srinivasan. Neural controller for ups inverters based on b-spline
network. IEEE Transactions on Industrial Electronics, 55(2):899–909, 2008.
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APPENDIX

A PROOF OF THEOREMS

A.1 PROOF OF THEOREM 1

Proof. (Theorem 1) From (Jia & Lei, 1993; Strang & Fix, 1971) we know that given d the least square
spline approximation of ŝ(x) =

∑ℓ
i=1 ciBi,d(x) can be obtained by applying pre-filtering, sampling and

post-filtering on s, with L2 error bounded by

∥s− ŝ∥2 ≤ Cd · T d · ∥s(d)∥, (32)

where Cd is a known constant (Blu & Unser, 1999), T is the sampling interval of the pre-filtered function,
and ∥s(d)∥ is the norm of the d-th derivative of s defined by∥∥∥s(d)∥∥∥ =

(
1

2π

∫ +∞

−∞
ω2d|S(ω)|2dω

)1/2

, (33)

and S(ω) is the Fourier transform of s(x). Note that given s and d,
∥∥s(d)∥∥ is a known constant.

Then, from (Unser, 1999) we know that the samples from the pre-filtered functions are exactly the control
points ci that minimize the L2 norm in equation 15 in our problem. In other words, the sampling time T and
the number of control points ℓ are coupled through the following relationship

T =
b− a

ℓ− 1
, (34)

since the domain is [a, b] and it is divided into ℓ − 1 equispaced intervals for control points. Then with ci
being the samples with interval T , we can rewrite the error bound into

∥s− ŝ∥2 ≤ Cd ·
(
b− a

ℓ− 1

)d

· ∥s(d)∥ (35)

Thus we know that for ∀ϵ > 0, we can find ℓ such that

∥s− ŝ∥2 ≤ (b− a)dCd∥s(d)∥
(ℓ− 1)d

≤ ϵ (36)

because for fixed d the numerator is a constant, and the L2 norm bound converges to 0 as ℓ → ∞.

A.2 PROOF OF LEMMA 2

Proof. (Lemma 2) For given ℓ1, · · · , ℓn, let C := [c]ℓ1×···×ℓn be the control points tensor such that
∥s(x1, x2, · · · , xn) − ŝ(x1, x2, · · · , xn)∥2 is minimized. Let (x′

1, x
′
2, · · · , x′

n) denote the knot points in
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the n-dimensional space, i.e., the equispaced grids where the control points are located. Then from Theo-
rem 1 and the separability of the B-splines (Pratt, 2007), we know that

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x
′
2, · · · , x′

n)dx1 ≤ ϵx1 , (37)

where ϵx1 =
(b−a)d1Cd1

∥s(d1)∥
(ℓ1−1)d1

. This shows that the L2 norm along the x1 direction at any knots points
(x′

2, · · · , x′
n) is bounded. Now we show the following is bounded

∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, · · · , x′

n)dx1dx2. (38)

We argue that s is Lipschitz as it is defined on a bounded domain and is d-time differentiable, and ŝ is also
Lipschitz as B-spline functions of any order are Lipschitz (Prautzsch, 2002; Kunoth et al., 2018) and C is
finite. Then we know that (s − ŝ)(s − ŝ)∗ is Lipschitz with some Lipschitz constant Lxi

along dimension
i for i = 1, 2, · · · , n. For ∀x2 ∈ [a2, b2], there is a knot point x′

2 such that |x2 − x′
2| ≤ b2−a2

ℓ2−1 since knot
points are equispaced. Thus, we know for ∀x2 ∈ [a2, b2], there is x′

2 such that

|(s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, · · · , x′

n)− (s− ŝ)(s− ŝ)∗(x1, x
′
2, x

′
3, · · · , x′

n)| ≤ Lx2

b2 − a2
ℓ2 − 1

(39)

Then we have

∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, · · · , x′

n)dx1dx2 (40)

≤
∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x
′
2, x

′
3, · · · , x′

n)dx1dx2

+

∫ b2

a2

∫ b1

a1

|(s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, · · · , x′

n)− (s− ŝ)(s− ŝ)∗(x1, x
′
2, x

′
3, · · · , x′

n)|dx1dx2

(41)

≤
∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x
′
2, x

′
3, · · · , x′

n)dx1dx2 +

∫ b2

a2

∫ b1

a1

Lx2

b2 − a2
ℓ2 − 1

dx1dx2 (42)

≤ (b2 − a2)

[
ϵx1 + Lx2

(b2 − a2)(b1 − a1)

ℓ2 − 1

]
:= ϵx1,x2 , (43)

where equation 41 is the triangle inequality of norms, and equation 42 is due to the Lipschitz-ness of the
function.
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Similarly we can show the bound when we integrate the next dimension∫ b3

a3

∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x2, x3, x
′
4, · · · , x′

n)dx1dx2dx3 (44)

≤
∫ b3

a3

∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, x

′
4, · · · , x′

n)dx1dx2dx3

+

∫ b3

a3

∫ b2

a2

∫ b1

a1

|(s− ŝ)(s− ŝ)∗(x1, x2, x3, x
′
4, · · · , x′

n)− (s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, x

′
4, · · · , x′

n)|dx1dx2dx3

(45)

≤
∫ b3

a3

∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, x

′
4, · · · , x′

n)dx1dx2dx3 +

∫ b3

a3

∫ b2

a2

∫ b1

a1

Lx3

b3 − a3
ℓ3 − 1

dx1dx2dx3

(46)

≤ (b3 − a3)

[
ϵx1,x2

+ Lx3

(b3 − a3)(b2 − a2)(b1 − a1)

ℓ3 − 1

]
:= ϵx1,x2,x3

. (47)

We know that ϵx1,x2,x3
→ 0 when ℓi → ∞ for i = 1, 2, 3. By keeping doing this, recursively we can find

the bound ϵx1,··· ,xn
that∫ bn

an

· · ·
∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, · · · , xn)dx1 · · · dxn ≤ ϵx1,··· ,xn
, (48)

where the left hand side is exactly ∥s(x1, x2, · · · , xn) − ŝ(x1, x2, · · · , xn)∥22, and the right hand side
ϵx1,··· ,xn

→ 0 when ℓi → ∞ for all i = 1, 2, · · · , n. Thus for any ϵ > 0, we can find ℓi for i = 1, 2, · · · , n
such that

∥s(x1, x2, · · · , xn)− ŝ(x1, x2, · · · , xn)∥2 ≤ ϵ (49)

A.3 PROOF OF THEOREM 4

Proof. (Theorem 4) For any u and α, from Lemma 2 we know that there is ℓ1, · · · , ℓn and the control points
realization C := [c]ℓ1×···×ℓn such that ∥s(x1, x2, · · · , xn) − ŝ(x1, x2, · · · , xn)∥2 ≤ ϵ1 for any ϵ1 > 0,
where ŝ is the B-spline approximation defined in equation 11 with the control points tensor C. Then, from
Theorem 3 we know that there is a DBSN configuration Gθ(u, α) and corresponding parameters θ∗ such
that ∥Gθ∗(u, α) − C∥ ≤ ϵ2 for any ϵ2 > 0. Since B-spline functions of any order are continuous and
Lipschitz (Prautzsch, 2002; Kunoth et al., 2018), we know that ∥s̃ − ŝ∥2 ≤ Lϵ2 for some Lipschitz related
constant L. Then by triangle inequality of the L2 norm, we have

∥s̃− s∥2 ≤ ∥s̃− ŝ∥2 + ∥ŝ− s∥2 ≤ ϵ1 + Lϵ2. (50)

For any ϵ > 0 we can find ϵ1 and ϵ2 such that ϵ = ϵ1 + Lϵ2 to bound the norm.

B ADDITIONAL THEORETICAL RESULTS

Considering a one-dimensional B-spline of the form as equation 8, where x ∈ [a, b], we have

ŝ ∈ [a, b]× [c, c] , (51)

where
c = min

i=1,...,ℓ
ci, c = max

i=1,...,ℓ
ci.
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This property is inherent to the Bernstein polynomials used to generate Bézier curves. Specifically, the
Bézier curve is a subtype of the B-spline, and it is also possible to transform Bézier curves into B-splines
and vice versa (Prautzsch, 2002).

This property also holds in the multidimensional case when the B-spline is represented by a tensor product
of the B-spline basis functions in equation 11 (Prautzsch, 2002):

ŝ ∈ [a1, b1]× · · · × [an, bn]× [c, c] , (52)

where
c = min

i1=1,...,ℓ1
i2=1,...,ℓ2

...
in=1,...,ℓn

ci1,i2,...,in , c = max
i1=1,...,ℓ1
i2=1,...,ℓ2

...
in=1,...,ℓn

ci1,i2,...,in .

This property offers a practical tool for verifying the reliability of the results produced by the trained learning
scheme. In the case of learning recovery probabilities, the approximated solution should provide values
between 0 and 1. Since the number of control points is finite, a robust and reliable solution occurs if all
generated control points are within the range [0, 1], i.e.,

c = 0 c = 1.

C EXPERIMENT DETAILS

C.1 TRAINING DATA

Recovery Probabilities: The convection diffusion PDE defined in equation 26 and equation 27 has analyt-
ical solution

s(x, t) =

∫ t

0

(α− x)√
2πτ3

exp

(
− ((α− x)− uτ)

2

2τ

)
dτ, (53)

where α is the parameter of the boundary of the set in equation 24, and u is the parameter of the system
dynamics in equation 23. We use numerical integration to solve equation 53 to obtain ground truth training
data for the experiments.

C.2 NETWORK CONFIGURATIONS

Recovery Probabilities: For PI-DBSN and PINN, we use 3-layer fully connected neural networks with
ReLU activation functions. The number of neurons for each hidden layer is set to be 64. For PI-DeepONet,
we use 3-layer fully connected neural networks with ReLU activation functions for both the branch net and
the trunk net. The number of neurons for each hidden layer is set to be 64. All methods use Adam as the
optimizer.

3D Heat Equations: We set the B-splines to have the same number ℓ = 15 of equispaced control points
in each direction including time. We sample the solution of the heat equation at 21 equally spaced locations
in each dimension. Thus, each time step consists of 153 = 3375 control points and each sample returns
154 = 50625 control points total. The inputs to our neural network are the values of α from which it
learns the control points, and subsequently the initial condition surface via direct supervised learning. This
is followed by learning the control points associated with later times, (t > 0) via the PI-DBSN method.
Because of the natural time evolution component of this problem, we use a network with residual connections
and sequentially learn each time step. The neural network has a size of about 5× 104 learnable parameters.
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Figure 5: Physics loss vs. epochs.

C.3 TRAINING CONFIGURATIONS

All comparison experiments are run on a Linux machine with Intel i7 CPU and 16GB memory.

C.4 EVALUATION METRICS

The reported mean square error (MSE) is calculated on the mesh grid of the domain of interest. Specifically,
for the recovery probability experiment, the testing data is generated and the prediction is evaluated on
(x, t) ∈ [−10, α] × [0, 10] with dx = 0.1 and dt = 0.1. For the 3D heat equation problem, the testing
evaluation is on (x1, x2, x3, t) ∈ [0, 1]4 with dx = dt = 0.01.

The | · | used in evaluating data and physics losses denote absolute values.

C.5 LOSS FUNCTION VALUES

We visualize the physics loss and data loss separately for all three methods considered in section 5.1. Fig. 5
shows the physics loss and Fig. 6 shows the data loss (without ICBC losses for fair comparison with PI-
DBSN). We can see that PI-DBSN achieves similar physics loss values compared with PINN, but converges
much faster. Besides, PI-DBSN achieves much lower data losses under this varying parameter setting,
possibly due to its efficient representation of the solution space. PI-DeepONet has high physics and data
loss values in this case study.

C.6 PINN PERFORMANCE ON 3D HEAT EQUATIONS

We report results of PINN (Raissi et al., 2019) for the 3D heat equations case study in section 5.2 for
comparison. The PINN consists of 4 hidden layers with 50 neurons in each layer. We use Tanh as the
activation functions. We train PINN for 30000 epochs, with physics and data loss weights wp = wd = 1.
Fig. 7 visualizes the PINN prediction along different planes. The testing residual is 0.0121, which is higher
than the reported value (0.0032) for PI-DBSN.
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Figure 6: Data loss vs. epochs.

Learned Heat Equations

𝑥! - 𝑡 plane𝑥" - 𝑡 plane𝑥# - 𝑡 plane Residuals

Figure 7: The learned solutions (left) and the residuals (right) for the 3D heat equations with PINN.
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D ADDITIONAL EXPERIMENTS

D.1 B-SPLINE DERIVATIVES

In this section, we show that the analytical formula in equation 12 can produce fast and accurate calculation
of B-spline derivatives. Fig. 8 shows the derivatives from B-spline analytical formula and finite difference
for the 2D space [−10, 2] × [0, 10] with the number of control point ℓ1 = ℓ2 = 15. The control points are
generated randomly on the 2D space, and the derivatives are evaluated at mesh grids with N1 = N2 = 100.
We can see that the derivatives generated from B-spline formulas match well with the ones from finite
difference, except for the boundary where finite difference is not accurate due to the lack of neighboring
data points.

1st Derivative (B-Spline) 1st Derivative (Finite Difference) Difference (1st)

2nd Derivative (B-Spline) 2nd Derivative (Finite Difference) Difference (2nd)

Figure 8: First and second derivatives from B-splines and finite difference.

D.2 OPTIMALITY OF CONTROL POINTS

In this section, we show that the learned control points of PI-DBSN are near-optimal in the L2 norm sense.
For the recovery probability problem considered in section 5.1, we investigate the case for a fixed set of
system and ICBC parameters u = 1.5 and α = 2. We use the number of control points ℓ1 = ℓ2 = 25 on the
domain [−10, 2] × [0, 10], and obtain the optimal control points C∗ in the L2 norm sense by solving least
square problem (Deng & Lin, 2014) with the ground truth data. We then compare the learned control points
C with C∗ and the results are visualized in Fig. 9. We can see that the learned control points are very close to
the optimal control points, which validates the efficacy of PI-DBSN. The only region where the difference is
relatively large is near c25,0, where the solution is not continuous and hard to characterize with this number
of control points.
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Control Points (Optimal) Control Points (PI-DBSN) Difference

Figure 9: Control points.

Method Computation Time (s)
PI-DBSN 271
PINN 365
PI-DeepONet 429

Table 3: Computation time in seconds (with A100 GPU).

D.3 EXPERIMENTS ON GPUS

We tested the performance of PI-DBSN and the baselines on a cloud server with one A100 GPU. Note that
our implementations are in PyTorch (Paszke et al., 2019), thus it naturally adapts to both CPU and GPU
running configurations. The experiment settings are the same as in section 5.1. The running time of the
three methods are reported in Table 3. We can see that GPU implementation accelerates training for all three
methods, and PI-DBSN has the shortest running time, which is consistent with the CPU implementation
results.

D.4 ROBUSTNESS AND LOSS FUNCTION WEIGHTS ABLATIONS

In this section, we provide ablation experiments of the proposed PI-DBSN with different loss function
configurations, and examine its robustness again noise. The setting is described in section 5.1. We first
train with noiseless data and vary the data loss weight wd. Table 4 shows the average MSE and its standard
deviation over 10 independent runs. We can see that with more weights on the data loss, the prediction
MSE reduces as noiseless data help with PI-DBSN to learn the ground truth solution. We then train with
injected additive zero-mean Gaussian noise with standard deviation 0.05 and vary the physics loss weight
wp. Table 5 shows the results. It can be seen that increasing physics loss weights help PI-DBSN to learn
the correct neighboring relationships despite noisy training data, which reduces prediction MSE. In general,
the weight choices should depend on the quality of the data, the training configurations (e.g., learning rates,
optimizer, neural network architecture).

wd 1 2 3 4 5
wp 1 1 1 1 1

Prediction MSE (×10−5) 36.76± 12.16 12.91± 10.40 10.21± 3.99 9.28± 6.78 3.95± 1.36

Table 4: PI-DBSN prediction MSE (noiseless data).
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wd 1 1 1 1 1
wp 1 2 3 4 5

Prediction MSE (×10−4) 31.58± 6.46 33.15± 7.77 13.37± 11.74 7.95± 6.24 3.86± 2.05

Table 5: PI-DBSN prediction MSE (additive Gaussian noise data).

Number of Hidden Layers 2 3 4 5
Number of NN parameters 37632 41792 45952 50112
Prediction MSE (×10−4) 1.12± 0.43 0.90± 0.42 3.17± 2.46 3.12± 2.81

Table 6: PI-DBSN prediction MSE with different numbers of NN layers.

D.5 NUMBER OF NN LAYERS AND PARAMETERS ABLATION

In this section, we show ablation results on the number of neural network (NN) layers and parameters. We
follow the experiment settings in section 5.1, and train the proposed PI-DBSN with different numbers of
hidden layers, each with 10 independent runs. The number of NN parameters, the prediction MSE and its
standard deviation are shown in Table 6. We can see that with 3 layers the network achieves the lowest
prediction errors, while the number of layers does not have huge influence on the overall performance.

D.6 BURGERS’ EQUATION

We conduct additional experiments on the following Burgers’ equation.

∂s

∂t
+ us

∂s

∂x
= ν

∂2s

∂x2
, (54)

where ν = 0.01 and u ∈ [0.5, 1.5] is a changing parameter. The domain of interest is set to be (x, t) ∈
[0, 10]× [0, 8], and the initial condition is

s(x, 0) = exp{−(x− α)2/2}, (55)

where α ∈ [2, 4] is a changing parameter. We train PI-DBSN with 3-layer fully connected neural networks
with ReLU activation on varying parameters u ∈ [0.5, 1.5] and α ∈ [2, 4], and test on randomly selected
parameters in the same domain. The B-spline basis of order 4 is used and the number of control points along
x and t are set to be ℓx = ℓt = 100. Note that more control points are used in this case study compared to the
convection diffusion equation in section 5.1, as the solution of the Burgers’ equation has higher frequency
along the ridge which requires finer control points to represent. Fig. 10 visualizes the prediction results on
several random parameter settings. The average MSE across 20 test cases is 1.319 ± 0.408 × 10−2. This
error rate is comparable to the Fourier neural operators as reported in (Li et al., 2020, Figure 3).
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Figure 10: Results on Burgers’ equations with different random parameter settings.
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