
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

PHYSICS-INFORMED DEEP B-SPLINE NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-informed machine learning provides an approach to combining data and govern-
ing physics laws for solving complex partial differential equations (PDEs). However,
efficiently solving PDEs with varying parameters and changing initial conditions and
boundary conditions (ICBCs) remains an open challenge. We propose a hybrid frame-
work that uses a neural network to learn B-spline control points to approximate solu-
tions to PDEs with varying system and ICBC parameters. The proposed network can be
trained efficiently as one can directly specify ICBCs without imposing losses, calculate
physics-informed loss functions through analytical formulas, and requires only learning
the weights of B-spline functions as opposed to both weights and basis as in traditional
neural operator learning methods. We show theoretical guarantees that the proposed B-
spline networks are universal approximators of arbitrary dimensional PDEs under certain
conditions. We also demonstrate in experiments that the proposed B-spline network can
solve problems with discontinuous ICBCs and outperforms existing methods, and is able
to learn solutions of 3D heat equations with diverse initial conditions.

1 INTRODUCTION

Recent advances in scientific machine learning have boosted the development for solving complex partial
differential equations (PDEs). Physics-informed neural networks (PINNs) are proposed to combine infor-
mation of available data and the governing physics model to learn the solutions of PDEs (Raissi et al., 2019;
Han et al., 2018). However, in the real world the parameters for the PDE and for the initial and boundary
conditions can be changing, and solving PDEs for all possible parameters can be important but demanding.
For example in a safety-critical control scenario, the system dynamics and the safe region can vary over time,
resulting in changing parameters for the PDE that characterizes the probability of safety. On the other hand,
solving such PDEs is important for safe control but can be hard to achieve in real time with limited online
computation. In general, to account for parameterized PDEs and varying initial conditions and boundary
conditions (ICBCs) in PINNs is challenging, as the solution space becomes much larger (Karniadakis et al.,
2021). To tackle this challenge, parameterized PINNs are proposed (Cho et al., 2024). Plus, a new line of
research on neural operators is conducted to learn operations of functions instead of the value of one spe-
cific function (Kovachki et al., 2023; Li et al., 2020; Lu et al., 2019). Nevertheless, such methods can not
efficiently handle problems with irregular initial and boundary conditions.

In this work, we leverage the advantages of B-spline functions and physics-informed learning, to form
physics-informed deep B-spline networks (PI-DBSN) to efficiently learn parameterized PDEs with varying
initial and boundary conditions (Fig. 1). The network composites of B-spline basis functions, and a param-
eterized neural network that learns the weights for the B-spline basis. Specifically, the coefficient network
takes inputs of the PDE and ICBC parameters, and outputs the control points tensor (i.e., weights of B-
splines). Then this control points tensor is multiplied with the B-spline basis to produce the final output as
the approximation of PDEs. One can evaluate the prediction of the PDE solution at any point, and we use
physics loss and data loss to train the network similar to PINNs (Cuomo et al., 2022). There are several
advantages for the proposed PI-DBSN:

[Distribution Statement A] Approved for public release and unlimited distribution

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

𝑏!

𝑏"

…

𝑢

σ

σ

…

Coefficient Network

Basis Function Generation

Control Points

B-Spline Basis

𝐶 = 𝑐!# ,!$,⋯,!% ℓ#×ℓ$×⋯×ℓ%

Training Data
𝑠

Data Loss

ℒ# =$ �̂� − 𝑠 $

𝒟

Physics Model Loss

ℒ& =$|ℱ' 𝑠, 𝑥, 𝑢 |$
(

')*

𝐵!,& 𝑥

=
𝑥 − 𝑥'!
𝑥'!'& −𝑥'!

𝐵!,&() 𝑥

+
𝑥'!'&') −𝑥
𝑥'!'&') −𝑥'!')

𝐵!'),&() 𝑥

𝐵!,* 𝑥 =)1,		𝑥'!≤ 𝑥 < 𝑥'!')
0, otherwise

Cox-de Boor recursion formula

	�̂� = : ⋯
ℓ#

!#+)

: 𝑐!# ,!$,⋯,!%

ℓ#

!#+)
𝐵!# ,& 𝑥) ⋯𝐵!% ,& 𝑥,

Prediction

𝑥!

𝑥"

…

Physics Model
ℱ!(𝑠, 𝑥, 𝑢)

𝐵& 𝑥) 	⋯𝐵& 𝑥,

𝛼

𝐺𝜽(𝑢, 𝑎)

Figure 1: Diagram of PI-DBSN. The coefficient network takes system and ICBC parameters as input and
outputs the control points tensor, which is then multiplied with the B-spline basis to produce the final output.
Physics and data losses are imposed to train the network. Solid lines depict the forward pass, and dashed
lines depict the backward pass of the network.

1. The B-spline basis functions are fixed and can be pre-calculated before training, thus we only need
to train the coefficient network which saves computation and stabilizes training.

2. The B-spline functions have analytical expressions for its gradients and higher-order derivatives,
which provide faster and more accurate calculation for the physics-informed losses during training
over automatic differentiation.

3. Due to the properties of B-splines, we can directly specify Dirichlet boundary conditions and initial
conditions through the control points tensor without imposing loss functions, which helps with
learning extreme and complex ICBCs.

The rest of the paper is organized as follow. We discuss related work in Sec. 2, and introduce our proposed
PI-DBSN in Sec. 3. We then show in Sec. 4 that despite the use of fixed B-spline basis, the PI-DBSN
is a universal approximator and can learn high-dimensional PDEs. Following the theoretical analysis, in
Sec. 5 we demonstrate with experiments that PI-DBSN can solve problems with discontinuous ICBCs and
outperforms existing methods, and is able to learn high-dimensional PDEs. Finally, we conclude the paper
in Sec. 6.

2 RELATED WORK

PINNs: Physics-informed neural networks (PINNs) are neural networks that are trained to solve supervised
learning tasks while respecting any given laws of physics described by general nonlinear partial differential

[Distribution Statement A] Approved for public release and unlimited distribution

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

equations (Raissi et al., 2019; Han et al., 2018; Cuomo et al., 2022). PINNs take both data and the physics
model of the system into account, and are able to solve the forward problem of getting PDE solutions, and
the inverse problem of discovering underlying governing PDEs from data. PINNs have been widely used
in power systems (Misyris et al., 2020), fluid mechanics (Cai et al., 2022) and medical care (Sahli Costabal
et al., 2020), etc. Different variants of PINN have been proposed to meet different design criteria, for
example Bayesian physics-informed neural networks are used for forward and inverse PDE problems with
noisy data (Yang et al., 2021), physics-informed neural networks with hard constraints are proposed to
solve topology optimizations (Lu et al., 2021b), and parallel physics-informed neural networks via domain
decomposition are proposed to solve multi-scale and multi-physics problems (Shukla et al., 2021). It is
shown that under certain assumptions that PINNs have bounded error and converge to the ground truth
solutions (De Ryck & Mishra, 2022; Mishra & Molinaro, 2023; 2022; Fang, 2021; Pang et al., 2019; Jiao
et al., 2021). We leverage the idea of physics-informed learning as we constrain the network output to satisfy
physics laws, but use a novel B-spline formulation for more efficient training for families of PDEs.

Neural Operators: Neural operators are a class of deep learning architectures designed to learn maps
between infinite-dimensional function spaces instead of values of specific functions (Kovachki et al., 2023).
DeepONets (Lu et al., 2019; 2021a) and Fourier Neural Operators (FNOs) (Li et al., 2020) are two common
approaches along this line of research, and a detailed comparison can be found in Lu et al. (2022). In Wang
et al. (2021) DeepONets are combined with physics-informed learning to solve fixed PDEs. Generalizations
of DeepONet (Gao et al., 2021) and FNO (Li et al., 2024) consider learning (state) parameterized PDEs
with fast evaluation, but training is usually slow. Recent work (Kumar et al., 2024) incorporates multi-task
mechanism within DeepONet to learn PDEs with varying conditions, but unique and manually designed
polynomial representation of the varying parameter is needed as input to the branch net of the system. While
all DeepONet-based methods need to train two networks at a time (branch and trunk net in the architecture)
and impose losses on ICBCs, our method directly specifies ICBCs, and uses fixed B-spline functions as the
basis such that only one coefficient network is trained for better efficiency and stability.

B-splines + NN: B-splines are piece-wise polynomial functions derived from slight adjustments of Bezier
curves, aimed at obtaining polynomial curves that tie together smoothly (Ahlberg et al., 2016). B-splines
have been widely used in signal and imaging processing (Unser, 1999; Lehmann et al., 2001), computer
aided design (Riesenfeld, 1973; Li, 2020), etc. B-splines are also used to assist in solving PDEs, for ex-
ample Jia et al. (2013) uses B-spline in finite element methods for PDE solving, and in Song et al. (2022)
spline-inspired mesh movement networks are proposed to solve PDEs. B-splines together with neural net-
works (NNs) are used for surface reconstruction (Iglesias et al., 2004), nonlinear system modeling (Yiu et al.,
2001; Wang et al., 2022b), and controller design for dynamical systems (Chen et al., 2004; Deng et al., 2008).
In Fakhoury et al. (2022) and Doległo et al. (2022) NNs are used to learn weights for B-spline functions to
approximate fixed ODEs and PDEs, respectively. Note that the recently proposed Kolmogorov–Arnold Net-
works (KANs) also uses splines in neural networks (Liu et al., 2024), but is different from our work. In
KAN the spline functions are used to produce learnable weights in the NN as an alternative architecture
to multi-layer perceptrons (MLPs). In our work the B-splines are fixed and the neural network can take
arbitrary MLP/non-MLP based architectures including KANs.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

The goal of this paper is to efficiently estimate high-dimensional surfaces with corresponding governing
physics laws of a wide range variety of parameters (e.g., the solution of a family of ODEs/PDEs). We denote
s : Rn → R as the ground truth, i.e., s(x) is the value of the surface at point x, where x ∈ Rn. We assume

[Distribution Statement A] Approved for public release and unlimited distribution

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2025

the physics laws can be written as

Fi(s, x, u) = 0, x ∈ Ωi(α), ∀i = 1, · · · , N, (1)

where u ∈ Rm is the parameters of the physics systems, N is the number of governing equations, Ωi(α) ∈
Rn parameterized by α is the region that the i-th physics law applies. We denote Ω ∈ Rn the general region
of interest, and in this paper we consider n-dimensional bounded domain Ω = [a1, b1] × [a2, b2] × · · · ×
[an, bn]. Our goal is to generate ŝ with neural networks to estimate s on the entire domain of Ω, with all
possible parameters u and α. For example, in the case of solving 2D heat equations on (x1, x2) ∈ [0, α]2 at
time t ∈ [0, 10] with varying coefficient u ∈ [0, 2] and α ∈ [3, 4], we have the physics laws to be

F1(s, x, u) = ∂s/∂t− u
(
∂2s/∂x2

1 + ∂2s/∂x2
2

)
= 0, x = (x1, x2, t) ∈ Ωx × Ωt, (2)

F2(s, x, u) = s− 1 = 0, x = (x1, x2, t) ∈ ∂Ωx × Ωt (3)

where Ωx = [0, α]2 and Ωt = [0, 10], and ∂Ωx is the boundary of Ωx. Here, equation 2 is the heat equation
and equation 3 is the boundary condition. In this case, we want to solve for s on Ω = Ωx × Ωt for all
u ∈ [0, 2] and α ∈ [3, 4]. Similar problems have been studied in (Li et al., 2024; Gao et al., 2021; Cho
et al., 2024) while the majority of the literature considers solving parameterized PDEs but with either fixed
coefficients or fixed domain and initial/boundary conditions. We slightly generalize the problem to consider
systems with varying parameters, and with potential varying domains and initial/boundary conditions.

3.2 B-SPLINES WITH BASIS FUNCTIONS

In this section, we introduce one-dimensional B-splines. For state space x ∈ R, the B-spline basis functions
are given by the Cox-de Boor recursion formula:

Bi,d(x) =
x− x̂i

x̂i+d − x̂i
Bi,d−1(x) +

x̂i+d+1 − x

x̂i+d+1 − x̂i+1
Bi+1,d−1(x), (4)

and

Bi,0(x) =

{
1, x̂i ≤ x < x̂i+1,

0, otherwise.
(5)

Here, Bi,d(x) denotes the value of the i-th B-spline basis of order d evaluated at x, and x̂i ∈ (x̂i)
ℓ+d+1
i=1

is a non-decreasing vector of knot points. Since a B-spline is a piece-wise polynomial function, the knot
points determine in which polynomial the parameter x belongs. While there are multiple ways of choosing
knot points, we use (x̂i)

ℓ+d+1
i=1 with x̂1 = x̂2 = · · · = x̂d+1 and x̂ℓ+1 = x̂ℓ+2 = · · · = x̂ℓ+d+1, and for

the remaining knot points we select equispaced values. For example on [0, 3] with number of control points
ℓ = 6 and order d = 3, we have x̂ = [0, 0, 0, 0, 1, 2, 3, 3, 3, 3], in total ℓ+ d+ 1 = 10 knot points.

We then define the control points
c := [c1, c2, . . . , cℓ], (6)

and the B-spline basis functions vector

Bd(x) := [B1,d(x), B2,d(x), . . . , Bℓ,d(x)]
⊤. (7)

Then, we can approximate a solution s(x) with

ŝ(x) = cBd(x). (8)

Note that with our choice of knot points, we ensure the initial and final values of ŝ(x) coincide with the
initial and final control points c1 and cℓ. This property will be used later to directly impose initial conditions
and Dirichlet boundary conditions with PI-DBSN.

[Distribution Statement A] Approved for public release and unlimited distribution

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

3.3 MULTI-DIMENSIONAL B-SPLINES

Now we extend the B-spline scheme to the multi-dimensional case. We start by considering the 2D case
where x = [x1, x2]

⊤ ∈ R2. Along each dimension xi, we can generate B-spline basis functions based on
the Cox-de Boor recursion formula in equation 4 and equation 5. We denote the B-spline basis of order d
as Bi,d(x1), Bj,d(x2) for the i-th and j-th function of x1 and x2, respectively. Then with a control points
matrix C = [ci,j]ℓ×p, the 2-dimensional surface can be approximated by the B-splines as

s(x1, x2) ≈
ℓ∑

i=1

p∑
j=1

ci,jBi,d(x1)Bj,d(x2), (9)

where ℓ and p are the number of control points along the 2 dimensions. This can be written in the matrix
multiplication form as

ŝ(x1, x2) = Bd(x1)
⊤CBd(x2) = [B1,d(x1), · · · , B1,ℓ(x1)]

 c1,1 · · · c1,p
...

...
...

cℓ,1 · · · cℓ,p

 B1,d(x2)

...
Bp,d(x2)

 , (10)

where ŝ(x1, x2) is the approximation of the 2D solution at (x1, x2), C is the control points matrix and
Bd(x1) and Bd(x2) are the B-spline vectors defined in equation 7.

More generally, for a n-dimensional space x = [x1, · · · , xn] ∈ Rn, we can generate B-spline basis functions
based on the Cox-de Boor recursion formula along each dimension xi with order di for i = 1, 2, · · · , n, and
the n-dimensional control point tensor will be given by C = [ci1,i2,··· ,in]ℓ1×ℓ2×···×ℓn , where ik is the k-th
index of the control point, and ℓk is the number of control points along the k-th dimension. We can then
approximate the n-dimensional surface with B-splines and control points via

ŝ(x1, x2, · · · , xn) =

ℓ1∑
i1=1

ℓ2∑
i2=1

· · ·
ℓn∑

in=1

ci1,i2,··· ,inBi1,d1
(x1)Bi2,d2

(x2) · · ·Bin,dn
(xn). (11)

3.4 PHYSICS-INFORMED B-SPLINE NETS

In this section, we introduce our proposed physics-informed deep B-spline networks (PI-DBSN). The overall
diagram of the network is shown in Fig. 1. The network composites a coefficient network that learns the
control point tensor C with system parameters u and ICBC parameters α, and the B-spline basis functions
Bdi

of order di for i = 1, · · · , n. During the forward pass, the control point tensor C output from the
coefficient net is multiplied with the B-spline basis functions Bdi

via equation 11 to get the approximation ŝ.
For the backward pass, two losses are imposed to efficiently and effectively train PI-DBSN. We first impose
a physics model loss Lp =

∑N
i=1

∑
x∈P

1
|P| |Fi(s, x, u)|2 where Fi is the governing physics model of the

system as defined in equation 1, and P is the set of points sampled to evaluated the governing physics model.
When data is available, we can additionally impose a data loss Ld = 1

|D|
∑

x∈D |s(x) − ŝ(x)|2 to capture
the mean square error of the approximation, where s is the data point for the high dimensional surface, D
is the data set, and ŝ is the prediction from the PI-DBSN. The total loss is given by L = wpLp + wdLd

where wp and wd are the weights for physics and data losses, and are usually set to values close to 1. We
use Gθ(u, α)(x) to denote the PI-DBSN parameterized by θ, where (u, α) is the input to the coefficient net
(parameters of the system and ICBCs), and x will be the input to the PI-DBSN (the state and time in PDEs).
With this notation we have C = Gθ(u, α) and ŝ(x) = Gθ(u, α)(x).

Note that several good properties of B-splines are leveraged in PI-DBSN.

[Distribution Statement A] Approved for public release and unlimited distribution

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

First, the derivatives of the B-spline functions can be analytically calculated. Specifically, the p-th
derivative of the d-th ordered B-spline is given by (Butterfield, 1976)

dp

dxp
Bi,d(x) =

(d− 1)!

(d− p− 1)!

p∑
k=0

(−1)k
(
p

k

)
Bi+k,d−p(x)∏p−1

j=0 (x̂i+d−j−1 − x̂i+k)
. (12)

Given this, we can directly calculate these values for the back-propagation of physics model loss Lp, which
improves both computation efficiency and accuracy over automatic differentiation that is commonly used in
physic-informed learning (Cuomo et al., 2022).

Besides, any Dirichlet boundary conditions and initial conditions can be directly assigned via the
control points tensor without any learning involved. This is due to the fact that the approximated solution
ŝ at the end points along each axis will have the exact value of the control point. For example, in a 2D case
when the initial condition is given by s(x, 0) = 0,∀x, we can set the first column of the control points tensor
ci1,1 = 0 for all i1 = 1, · · · , ℓ1 and this will ensure the initial condition is met for the PI-DBSN output. This
greatly enhances the accuracy of the learned solution near initial and boundary conditions, and improves the
ease of design for the loss function as weight factors are often used to impose stronger initial and boundary
condition constraints in previous literature (Wang et al., 2022a). We will demonstrate later in the experiment
section where we compare the proposed PI-DBSN with physic-informed DeepONet that this feature will
result in better estimation of the PDEs when the initial and boundary conditions are hard to learn.

Furthermore, better training stability can be obtained. The B-spline basis functions are fixed and can be
calculated in advance, and training is involved only for the coefficient net.

4 THEORETICAL ANALYSIS

In this section, we provide theoretical guarantees of the proposed PI-DBSN on learning high-dimensional
PDEs. We first show that B-splines are universal approximators, and then show that with combination of
B-splines and neural networks, the proposed PI-DBSN is a universal approximator under certain conditions.
At last we argue that when the physics loss is densely imposed and the loss functions are minimized, the
network can learn unique PDE solutions. All theorem proofs can be found the in the Appendix of the paper.

We first consider the one-dimensional function space L2([a, b]) with L2 norm defined over the interval [a, b].
For two functions s, g ∈ L2([a, b]), we define the inner product of these two functions as

⟨s, g⟩ :=
∫ b

a

s(x)g∗(x)dx, (13)

where ∗ denotes the conjugate complex. We say a function s(x) is square-integrable if the following holds

⟨s, s⟩ =
∫ b

a

|s(x)|2dx < ∞. (14)

We define the L2 norm between two functions s, g as

∥s− g∥2 :=

(∫ b

a

|s(x)− g(x)|2dx

) 1
2

. (15)

We then state the following theorem that shows B-spline functions are universal approximators in the sense
of L2 norms in one dimension.
Theorem 1. Given a positive natural number d and any d-time differentiable function s(x) ∈ L2([a, b]),
then for any ϵ > 0, there exist a positive natural value ℓ, and a realization of control points c1, c2, · · · , cℓ
such that

∥s− ŝ∥2 ≤ ϵ, (16)

[Distribution Statement A] Approved for public release and unlimited distribution

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

where

ŝ(x) =

ℓ∑
i=1

ciBi,d(x)

is the B-spline approximation with Bi,d(x) being the B-spline basis functions defined in equation 7.

Now that we have the error bound of B-spline approximations in one dimension, we will extend the results to
arbitrary dimensions. We point out that the space L2([a, b]) is a Hilbert space (Balakrishnan, 2012). Let us
consider n Hilbert spaces L2([ai, bi]) for i = 1, 2, · · · , n. We define the inner products of two n-dimensional
functions s, g ∈ L2([a1, b1]× · · · × [an, bn]) as

⟨s, g⟩ :=
∫ bn

an

· · ·
∫ b1

a1

s(x1, · · · , xn)g
∗(x1, · · · , xn)dx1 · · · dxn, (17)

and we say a function s : Rn → R is square-integrable if

⟨s, s⟩ =
∫ bn

an

· · ·
∫ b1

a1

|s(x1, · · · , xn)|2dx1 · · · dxn < ∞. (18)

Now we present the following lemma to bound the approximation error of n-dimensional B-splines.
Lemma 2. Given a set positive natural numbers d1, · · · , dn and a d-time differentiable function
s(x1, x2, · · · , xn) ∈ L2([a1, b1] × [a2, b2] × · · · × [an, bn]). Assume d ≥ max{d1, · · · , dn}, then given
any ϵ > 0, there exist ℓi ∈ N+ of control points for each component i = 1, ..., n, such that

∥s(x1, x2, · · · , xn)− ŝ(x1, x2, · · · , xn)∥2 ≤ ϵ, (19)

where

ŝ(x1, x2, · · · , xn) =

ℓ1∑
i1=1

ℓ2∑
i2=1

· · ·
ℓn∑

in=1

ci1,i2,··· ,inBi1,d1
(x1)Bi2,d2

(x2) · · ·Bin,dn
(xn). (20)

On the other hand, we know that neural networks are universal approximators (Hornik et al., 1989; Leshno
et al., 1993), i.e., with large enough width or depth a neural network can approximate any function with ar-
bitrary precision. We restate the universal approximation theorem in our context assuming the requirements
for the neural network are met. 1

Theorem 3. Given any u and α in a finite parameter set, and any control points tensor C := [c]ℓ1×···×ℓn ,
for the coefficient net Gθ(u, α) and ∀ϵ > 0, when the network has enough width and depth, there is θ∗ such
that

∥Gθ∗(u, α)− C∥ ≤ ϵ. (21)

Then, we combine Lemma 2 and Theorem 3 to show the universal approximation property of PI-DBSN.
Theorem 4. For any n ∈ N+ dimension, any u and α in a finite parameter set, let di be the order of B-
spline basis for dimension i = 1, 2, · · · , n. Then for any d-time differentiable function s(x1, x2, · · · , xn) ∈
L2([a1, b1]× [a2, b2]× · · · × [an, bn]) with d ≥ max{d1, · · · , dn} where the domain depends on α and the
function depends on u, and any ϵ > 0, there exist a PI-DBSN configuration Gθ(u, α) with enough width and
depth, and corresponding parameters θ∗ independent of u and α such that

∥s̃− s∥2 ≤ ϵ, (22)

where s̃ = Gθ∗(u, α)(x) is the B-spline approximation defined in equation 11 with the control points tensor
Gθ∗(u, α).

1The Borel space assumptions are met since we consider L2 space which is a Borel space.

[Distribution Statement A] Approved for public release and unlimited distribution

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

Theorem 4 tells us the proposed PI-BDSN is an universal appproximator of high-dimensional surfaces with
varying parameters and domains. Thus we know that when the solution of the problem defined in equation 1
is unique, and the physics-informed loss functions Lp is densely imposed and attains zero (De Ryck &
Mishra, 2022; Mishra & Molinaro, 2023), we learn the solution of the PDE problem of arbitrary dimensions.

5 EXPERIMENTS

In this section, we present simulation results on estimating the recovery probability of a dynamical system
which gives irregular ICBCs, and on estimating the solution of 3D Heat equations.

5.1 RECOVERY PROBABILITIES

We consider an autonomous system with dynamics

dxt = u dt+ dwt, (23)

where x ∈ R is the state, wt ∈ R is the standard Wiener process with w0 = 0, and u ∈ R is the system
parameter. Given a set

Cα = {x ∈ R : x ≥ α} , (24)
we want to estimate the probability of reaching Cα at least once within time horizon t starting at some x0.
Here, α is the varying parameter of the set Cα. Mathematically this can be written as

s(x0, t) := P (∃τ ∈ [0, t], s.t. xτ ∈ Cα | x0) . (25)

From (Chern et al., 2021) we know that such probability is the solution of convection-diffusion equations
with certain initial and boundary conditions

PDE:
∂s

∂t
(x, t)− u

∂s

∂x
(x, t)− 1

2
tr

(
∂2s

∂x2
(x, t)

)
= 0, ∀[x, t] ∈ Cc

α × T (26)

ICBC: s(α, t) = 1,∀t ∈ T , s(x, 0) = 0,∀x ∈ Cc
α, (27)

where Cc
α is the complement of Cα, and T = [0, T] for some T of interest. Note that the initial condition and

boundary condition at (x, t) = (α, 0) is not continuous,2 which imposes difficulty for learning the solutions.

Method Computation Time (s)
PI-DBSN 370.48
PINN 809.86
PI-DeepONet 1455.16

Table 1: Computation time in seconds.

We train PI-DBSN with 3-layer fully connected neural net-
works with ReLU activation on varying parameters u ∈ [0, 2]
and α ∈ [0, 4], and test on randomly selected parameters
in the same domain. We compare PI-DBSN with physics-
informed neural network (PINN) (Cuomo et al., 2022) and
physics-informed DeepONet (PI-DeepONet) (Goswami et al.,
2023) with similar NN configurations. Fig. 2 visualizes the
prediction results. It can be seen that both PI-DBSN and
PINN can approximate the ground truth value accurately, while
PI-DeepONet fails to do so. The possible reason is that PI-
DeepONet can hardly capture the initial and boundary conditions correctly when the parameter set is rel-
atively large. Besides, with the vanilla implementation of PI-DeepONet, the training tends to be unstable,
and special training schemes such as the ones mentioned in Lee & Shin (2024) might be needed for finer
results. The mean squared error (MSE) of the prediction are 3.064 ·10−4 (Proposed PI-DBSN), 4.323 ·10−4

(PINN), and 1.807 · 10−1 (PI-DeepONet).

2When on the boundary of the Cα, the recovery probability at horizon t = 0 is s(α, 0) = 1, but close to the boundary
with very small t the recovery probability is s(x, 0) = 0.

[Distribution Statement A] Approved for public release and unlimited distribution

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

Ground Truth Proposed PINN PI-DeepONet

Figure 2: Recovery probability at u = 1.5 and α = 2, t ∈ [0, 10] is considered. The prediction MSE are
3.064 · 10−4 (PI-DBSN), 4.323 · 10−4 (PINN), and 1.807 · 10−1 (PI-DeepONet).

Number of Control Points 2 5 10 15 20 25
Number of NN Parameters 4417 5392 9617 17092 27817 41792

Training Time (s) 241.76 223.53 247.39 295.67 310.83 370.48
Prediction MSE (×10−4) 5357.9 7.327 7.313 5.817 4.490 3.064

Table 2: PI-DBSN prediction MSE with different numbers of control points along each dimension.

0 5000 10000 15000 20000 25000 30000
Epochs

10 5

10 4

10 3

10 2

10 1

Lo
ss

 (l
og

 sc
al

e)

PI-DBSN
PINN
PI-DeepONet

Figure 3: Total (physics and data) loss vs. epochs.

We then compare the training speed and computa-
tion time for the three methods, as shown in Fig. 3
and Table 1. We can see that the loss for PI-DBSN
drops the fastest and reaches convergence in the
shortest amount of time. This is because PI-DBSN
has a relatively smaller NN size with the fixed B-
spline basis, and achieves zero initial and boundary
condition losses at the very beginning of the train-
ing. Besides, thanks to the analytical calculation
of gradients and Hessians, the training time of PI-
DBSN is the shortest among all three methods.

We also investigate the effect of the number of con-
trol points on the performance of PI-DBSN. Table 2
shows the approximation error and training time of
PI-DBSN with different numbers of control points
along each dimension. We can see that the training time increases as the number of control points increases,
and the approximation error decreases, which matches with Theorem 4 which indicates more control points
can result in less approximation error.

Experiment details and additional experiment results to verify the derivative calculations from B-splines and
the optimality of the control points can be found in the Appendix of the paper.

5.2 3D HEAT EQUATIONS

We consider the 3D heat equation given by

∂

∂t
s(x, t) = D

∂2

∂x2
s(x, t), (28)

[Distribution Statement A] Approved for public release and unlimited distribution

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

Learned Heat Equations
Residuals𝑥! − 𝑡 plane 𝑥" − 𝑡 plane 𝑥# − 𝑡 plane

Figure 4: Evolution of 3D heat equation in a box with Dirichlet and Neumann boundary conditions. The
learned solutions (left) and the residuals (right).

where D = 0.1 is the constant diffusion coefficient. Here x = [x1, x2, x3] ∈ R3 are the states, and the
domains of interest are Ωx1

= Ωx2
= Ωx3

= [0, 1], and Ωt = [0, 1]. All lengths are in centimeters (cm) and
the time is in seconds (s). In this experiment we solve equation 28 with random linear initial conditions:

s(x, t = 0) = α1 · x1 + α2 · x2 + α3 · x3 + α0 (29)
where α1, α2, α3 ∈ [−0.5, 0.5] and α0 ∈ [0, 1] are randomly chosen. We impose the following Dirichlet
and Neumann boundary conditions:

s(x, t|x3 = 0) = s(x, t|x3 = 1) = 1 (30)
∂

∂x1
s(x, t|x1 = 0) =

∂

∂x1
s(x, t|x1 = 1) =

∂

∂x2
s(x, t|x2 = 0) =

∂

∂x2
s(x, t|x2 = 1) = 0 (31)

We train PI-DBSN on varying α with ℓ = 15 control points along each dimension. Detailed training
configurations can be found in the Appendix of the paper. Fig. 4 (left) shows the learned heat equation.
It can be seen that the value is diffusing over time as intended. Fig. 4 (right) shows a slice of the residual
of the learned heat equation in the x1-t plane. Although our initial condition does not adhere to the heat
equation as estimated by the B-spline derivative, we quickly achieve a low residual. The average residuals
during training and testing are 0.0028 and 0.0032, which indicates the efficacy of the PI-DBSN method.

6 CONCLUSION

In this paper, we consider the problem of learning solutions of PDEs with varying system parameters and
initial and boundary conditions. We propose physics-informed deep B-spline networks (PI-DBSN), which
incorporate B-spline functions into neural networks, to efficiently solve this problem. The advantages of the
proposed PI-DBSN is that it can produce accurate analytical derivatives over automatic differentiation to cal-
culate physics-informed losses, and can directly impose initial conditions and Dirichlet boundary conditions
through B-spline coefficients. We prove theoretical guarantees that PI-DBSNs are universal approximators
and under certain conditions can reconstruct PDEs of arbitrary dimensions. We then demonstrate in experi-
ments that PI-DBSN performs better than existing methods on learning families of PDEs with discontinuous
ICBCs, and has the capability of addressing higher dimensional problems.

For limitations and future work, we point out that even though B-splines are arguably a more efficient repre-
sentation of the PDE problems, the PI-DBSN method still suffers from the curse of dimensionality. Specifi-
cally, the number of control points scales exponentially with the dimension of the problem, and as our theory
and experiment suggest denser control points will help with obtaining lower approximation error. Besides,
while the current formulation only allows regular geometry for the domain of interest, diffeomorphism trans-
formations and non-uniform rational B-Splines (NURBS) (Piegl & Tiller, 2012) can be potentially applied to
generalize the framework to irregular domains. How to further exploit the structure of the problem and learn
large solution spaces in high dimensions with sparse data in complex domains are exciting future directions.

[Distribution Statement A] Approved for public release and unlimited distribution

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

Copyright 2024 Carnegie Mellon University and Duquesne University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING IN-
STITUTE MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVER-
SITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Requests for permission for non-licensed uses should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM25-0126

REFERENCES

J Harold Ahlberg, Edwin Norman Nilson, and Joseph Leonard Walsh. The Theory of Splines and Their
Applications: Mathematics in Science and Engineering: A Series of Monographs and Textbooks, Vol. 38,
volume 38. Elsevier, 2016.

Alampallam V Balakrishnan. Applied Functional Analysis: A, volume 3. Springer Science & Business
Media, 2012.

Thierry Blu and Michael Unser. Quantitative fourier analysis of approximation techniques. i. interpolators
and projectors. IEEE Transactions on signal processing, 47(10):2783–2795, 1999.

Kenneth R Butterfield. The computation of all the derivatives of a b-spline basis. IMA Journal of Applied
Mathematics, 17(1):15–25, 1976.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-informed
neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, pp. 1–12, 2022.

YangQuan Chen, Kevin L Moore, and Vikas Bahl. Learning feedforward control using a dilated b-spline
network: Frequency domain analysis and design. IEEE Transactions on neural networks, 15(2):355–366,
2004.

Albert Chern, Xiang Wang, Abhiram Iyer, and Yorie Nakahira. Safe control in the presence of stochastic
uncertainties. In 2021 60th IEEE Conference on Decision and Control (CDC), pp. 6640–6645. IEEE,
2021.

Woojin Cho, Minju Jo, Haksoo Lim, Kookjin Lee, Dongeun Lee, Sanghyun Hong, and Noseong Park. Pa-
rameterized physics-informed neural networks for parameterized pdes. arXiv preprint arXiv:2408.09446,
2024.

[Distribution Statement A] Approved for public release and unlimited distribution

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and
Francesco Piccialli. Scientific machine learning through physics–informed neural networks: Where we
are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

Tim De Ryck and Siddhartha Mishra. Error analysis for physics-informed neural networks (pinns) approxi-
mating kolmogorov pdes. Advances in Computational Mathematics, 48(6):79, 2022.

Chongyang Deng and Hongwei Lin. Progressive and iterative approximation for least squares b-spline curve
and surface fitting. Computer-Aided Design, 47:32–44, 2014.

Heng Deng, Ramesh Oruganti, and Dipti Srinivasan. Neural controller for ups inverters based on b-spline
network. IEEE Transactions on Industrial Electronics, 55(2):899–909, 2008.

Kamil Doległo, Anna Paszyńska, Maciej Paszyński, and Leszek Demkowicz. Deep neural networks for
smooth approximation of physics with higher order and continuity b-spline base functions. arXiv preprint
arXiv:2201.00904, 2022.

Daniele Fakhoury, Emanuele Fakhoury, and Hendrik Speleers. Exsplinet: An interpretable and expressive
spline-based neural network. Neural Networks, 152:332–346, 2022.

Zhiwei Fang. A high-efficient hybrid physics-informed neural networks based on convolutional neural net-
work. IEEE Transactions on Neural Networks and Learning Systems, 33(10):5514–5526, 2021.

Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-adaptive convolutional
neural networks for solving parameterized steady-state pdes on irregular domain. Journal of Computa-
tional Physics, 428:110079, 2021.

Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed deep neural
operator networks. In Machine Learning in Modeling and Simulation: Methods and Applications, pp.
219–254. Springer, 2023.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations using
deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

Andrés Iglesias, G Echevarrı́a, and Akemi Gálvez. Functional networks for b-spline surface reconstruction.
Future Generation Computer Systems, 20(8):1337–1353, 2004.

Rong-Qing Jia and JJ Lei. Approximation by multiinteger translates of functions having global support.
Journal of approximation theory, 72(1):2–23, 1993.

Yue Jia, Yongjie Zhang, Gang Xu, Xiaoying Zhuang, and Timon Rabczuk. Reproducing kernel triangular
b-spline-based fem for solving pdes. Computer Methods in Applied Mechanics and Engineering, 267:
342–358, 2013.

Yuling Jiao, Yanming Lai, Dingwei Li, Xiliang Lu, Fengru Wang, Yang Wang, and Jerry Zhijian Yang. A
rate of convergence of physics informed neural networks for the linear second order elliptic pdes. arXiv
preprint arXiv:2109.01780, 2021.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-
informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[Distribution Statement A] Approved for public release and unlimited distribution

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Learning maps between function spaces with applications to
pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Varun Kumar, Somdatta Goswami, Katiana Kontolati, Michael D Shields, and George Em Karniadakis.
Synergistic learning with multi-task deeponet for efficient pde problem solving. arXiv preprint
arXiv:2408.02198, 2024.

Angela Kunoth, Tom Lyche, Giancarlo Sangalli, Stefano Serra-Capizzano, Tom Lyche, Carla Manni, and
Hendrik Speleers. Foundations of spline theory: B-splines, spline approximation, and hierarchical refine-
ment. Splines and PDEs: From Approximation Theory to Numerical Linear Algebra: Cetraro, Italy 2017,
pp. 1–76, 2018.

Sanghyun Lee and Yeonjong Shin. On the training and generalization of deep operator networks. SIAM
Journal on Scientific Computing, 46(4):C273–C296, 2024.

Thomas Martin Lehmann, Claudia Gonner, and Klaus Spitzer. Addendum: B-spline interpolation in medical
image processing. IEEE transactions on medical imaging, 20(7):660–665, 2001.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–867,
1993.

Liang Li. Application of cubic b-spline curve in computer-aided animation design. Computer-Aided Design
and Applications, 18(S1):43–52, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv
preprint arXiv:2010.08895, 2020.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar Aziz-
zadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial differential
equations. ACM/JMS Journal of Data Science, 1(3):1–27, 2024.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y
Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756, 2024.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for identi-
fying differential equations based on the universal approximation theorem of operators. arXiv preprint
arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlin-
ear operators via deeponet based on the universal approximation theorem of operators. Nature machine
intelligence, 3(3):218–229, 2021a.

Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G Johnson. Physics-
informed neural networks with hard constraints for inverse design. SIAM Journal on Scientific Computing,
43(6):B1105–B1132, 2021b.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and George Em
Karniadakis. A comprehensive and fair comparison of two neural operators (with practical extensions)
based on fair data. Computer Methods in Applied Mechanics and Engineering, 393:114778, 2022.

[Distribution Statement A] Approved for public release and unlimited distribution

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed neural
networks for approximating a class of inverse problems for pdes. IMA Journal of Numerical Analysis, 42
(2):981–1022, 2022.

Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed neural
networks for approximating pdes. IMA Journal of Numerical Analysis, 43(1):1–43, 2023.

George S Misyris, Andreas Venzke, and Spyros Chatzivasileiadis. Physics-informed neural networks for
power systems. In 2020 IEEE Power & Energy Society General Meeting (PESGM), pp. 1–5. IEEE, 2020.

Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physics-informed neural networks.
SIAM Journal on Scientific Computing, 41(4):A2603–A2626, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Les Piegl and Wayne Tiller. The NURBS book. Springer Science & Business Media, 2012.

William K Pratt. Digital image processing: PIKS Scientific inside, volume 4. Wiley Online Library, 2007.

H Prautzsch. Bézier and b-spline techniques, 2002.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational physics, 378:686–707, 2019.

Richard Franklin Riesenfeld. Applications of b-spline approximation to geometric problems of computer-
aided design. Syracuse University, 1973.

Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris, Daniel E Hurtado, and Ellen Kuhl. Physics-informed
neural networks for cardiac activation mapping. Frontiers in Physics, 8:42, 2020.

Khemraj Shukla, Ameya D Jagtap, and George Em Karniadakis. Parallel physics-informed neural networks
via domain decomposition. Journal of Computational Physics, 447:110683, 2021.

Wenbin Song, Mingrui Zhang, Joseph G Wallwork, Junpeng Gao, Zheng Tian, Fanglei Sun, Matthew Pig-
gott, Junqing Chen, Zuoqiang Shi, Xiang Chen, et al. M2n: Mesh movement networks for pde solvers.
Advances in Neural Information Processing Systems, 35:7199–7210, 2022.

Gilbert Strang and George Fix. A fourier analysis of the finite element variational method. In Constructive
aspects of functional analysis, pp. 793–840. Springer, 1971.

Michael Unser. Splines: A perfect fit for signal and image processing. IEEE Signal processing magazine,
16(6):22–38, 1999.

Jiangyu Wang, Xingjie Peng, Zhang Chen, Bingyan Zhou, Yajin Zhou, and Nan Zhou. Surrogate modeling
for neutron diffusion problems based on conservative physics-informed neural networks with boundary
conditions enforcement. Annals of Nuclear Energy, 176:109234, 2022a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605, 2021.

Yanjiao Wang, Shihua Tang, and Muqing Deng. Modeling nonlinear systems using the tensor network
b-spline and the multi-innovation identification theory. International Journal of Robust and Nonlinear
Control, 32(13):7304–7318, 2022b.

[Distribution Statement A] Approved for public release and unlimited distribution

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

Liu Yang, Xuhui Meng, and George Em Karniadakis. B-pinns: Bayesian physics-informed neural networks
for forward and inverse pde problems with noisy data. Journal of Computational Physics, 425:109913,
2021.

Ka Fai Cedric Yiu, Song Wang, Kok Lay Teo, and Ah Chung Tsoi. Nonlinear system modeling via knot-
optimizing b-spline networks. IEEE transactions on neural networks, 12(5):1013–1022, 2001.

APPENDIX

A PROOF OF THEOREMS

A.1 PROOF OF THEOREM 1

Proof. (Theorem 1) From (Jia & Lei, 1993; Strang & Fix, 1971) we know that given d the least square
spline approximation of ŝ(x) =

∑ℓ
i=1 ciBi,d(x) can be obtained by applying pre-filtering, sampling and

post-filtering on s, with L2 error bounded by

∥s− ŝ∥2 ≤ Cd · T d · ∥s(d)∥, (32)

where Cd is a known constant (Blu & Unser, 1999), T is the sampling interval of the pre-filtered function,
and ∥s(d)∥ is the norm of the d-th derivative of s defined by∥∥∥s(d)∥∥∥ =

(
1

2π

∫ +∞

−∞
ω2d|S(ω)|2dω

)1/2

, (33)

and S(ω) is the Fourier transform of s(x). Note that given s and d,
∥∥s(d)∥∥ is a known constant.

Then, from (Unser, 1999) we know that the samples from the pre-filtered functions are exactly the control
points ci that minimize the L2 norm in equation 15 in our problem. In other words, the sampling time T and
the number of control points ℓ are coupled through the following relationship

T =
b− a

ℓ− 1
, (34)

since the domain is [a, b] and it is divided into ℓ − 1 equispaced intervals for control points. Then with ci
being the samples with interval T , we can rewrite the error bound into

∥s− ŝ∥2 ≤ Cd ·
(
b− a

ℓ− 1

)d

· ∥s(d)∥ (35)

Thus we know that for ∀ϵ > 0, we can find ℓ such that

∥s− ŝ∥2 ≤ (b− a)dCd∥s(d)∥
(ℓ− 1)d

≤ ϵ (36)

because for fixed d the numerator is a constant, and the L2 norm bound converges to 0 as ℓ → ∞.

A.2 PROOF OF LEMMA 2

Proof. (Lemma 2) For given ℓ1, · · · , ℓn, let C := [c]ℓ1×···×ℓn be the control points tensor such that
∥s(x1, x2, · · · , xn) − ŝ(x1, x2, · · · , xn)∥2 is minimized. Let (x′

1, x
′
2, · · · , x′

n) denote the knot points in

[Distribution Statement A] Approved for public release and unlimited distribution

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

the n-dimensional space, i.e., the equispaced grids where the control points are located. Then from Theo-
rem 1 and the separability of the B-splines (Pratt, 2007), we know that

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x
′
2, · · · , x′

n)dx1 ≤ ϵx1 , (37)

where ϵx1 =
(b−a)d1Cd1

∥s(d1)∥
(ℓ1−1)d1

. This shows that the L2 norm along the x1 direction at any knots points
(x′

2, · · · , x′
n) is bounded. Now we show the following is bounded

∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, · · · , x′

n)dx1dx2. (38)

We argue that s is Lipschitz as it is defined on a bounded domain and is d-time differentiable, and ŝ is also
Lipschitz as B-spline functions of any order are Lipschitz (Prautzsch, 2002; Kunoth et al., 2018) and C is
finite. Then we know that (s − ŝ)(s − ŝ)∗ is Lipschitz with some Lipschitz constant Lxi

along dimension
i for i = 1, 2, · · · , n. For ∀x2 ∈ [a2, b2], there is a knot point x′

2 such that |x2 − x′
2| ≤ b2−a2

ℓ2−1 since knot
points are equispaced. Thus, we know for ∀x2 ∈ [a2, b2], there is x′

2 such that

|(s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, · · · , x′

n)− (s− ŝ)(s− ŝ)∗(x1, x
′
2, x

′
3, · · · , x′

n)| ≤ Lx2

b2 − a2
ℓ2 − 1

(39)

Then we have

∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, · · · , x′

n)dx1dx2 (40)

≤
∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x
′
2, x

′
3, · · · , x′

n)dx1dx2

+

∫ b2

a2

∫ b1

a1

|(s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, · · · , x′

n)− (s− ŝ)(s− ŝ)∗(x1, x
′
2, x

′
3, · · · , x′

n)|dx1dx2

(41)

≤
∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x
′
2, x

′
3, · · · , x′

n)dx1dx2 +

∫ b2

a2

∫ b1

a1

Lx2

b2 − a2
ℓ2 − 1

dx1dx2 (42)

≤ (b2 − a2)

[
ϵx1 + Lx2

(b2 − a2)(b1 − a1)

ℓ2 − 1

]
:= ϵx1,x2 , (43)

where equation 41 is the triangle inequality of norms, and equation 42 is due to the Lipschitz-ness of the
function.

[Distribution Statement A] Approved for public release and unlimited distribution

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2025

Similarly we can show the bound when we integrate the next dimension∫ b3

a3

∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x2, x3, x
′
4, · · · , x′

n)dx1dx2dx3 (44)

≤
∫ b3

a3

∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, x

′
4, · · · , x′

n)dx1dx2dx3

+

∫ b3

a3

∫ b2

a2

∫ b1

a1

|(s− ŝ)(s− ŝ)∗(x1, x2, x3, x
′
4, · · · , x′

n)− (s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, x

′
4, · · · , x′

n)|dx1dx2dx3

(45)

≤
∫ b3

a3

∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x2, x
′
3, x

′
4, · · · , x′

n)dx1dx2dx3 +

∫ b3

a3

∫ b2

a2

∫ b1

a1

Lx3

b3 − a3
ℓ3 − 1

dx1dx2dx3

(46)

≤ (b3 − a3)

[
ϵx1,x2

+ Lx3

(b3 − a3)(b2 − a2)(b1 − a1)

ℓ3 − 1

]
:= ϵx1,x2,x3

. (47)

We know that ϵx1,x2,x3
→ 0 when ℓi → ∞ for i = 1, 2, 3. By keeping doing this, recursively we can find

the bound ϵx1,··· ,xn
that∫ bn

an

· · ·
∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, · · · , xn)dx1 · · · dxn ≤ ϵx1,··· ,xn
, (48)

where the left hand side is exactly ∥s(x1, x2, · · · , xn) − ŝ(x1, x2, · · · , xn)∥22, and the right hand side
ϵx1,··· ,xn

→ 0 when ℓi → ∞ for all i = 1, 2, · · · , n. Thus for any ϵ > 0, we can find ℓi for i = 1, 2, · · · , n
such that

∥s(x1, x2, · · · , xn)− ŝ(x1, x2, · · · , xn)∥2 ≤ ϵ (49)

A.3 PROOF OF THEOREM 4

Proof. (Theorem 4) For any u and α, from Lemma 2 we know that there is ℓ1, · · · , ℓn and the control points
realization C := [c]ℓ1×···×ℓn such that ∥s(x1, x2, · · · , xn) − ŝ(x1, x2, · · · , xn)∥2 ≤ ϵ1 for any ϵ1 > 0,
where ŝ is the B-spline approximation defined in equation 11 with the control points tensor C. Then, from
Theorem 3 we know that there is a DBSN configuration Gθ(u, α) and corresponding parameters θ∗ such
that ∥Gθ∗(u, α) − C∥ ≤ ϵ2 for any ϵ2 > 0. Since B-spline functions of any order are continuous and
Lipschitz (Prautzsch, 2002; Kunoth et al., 2018), we know that ∥s̃ − ŝ∥2 ≤ Lϵ2 for some Lipschitz related
constant L. Then by triangle inequality of the L2 norm, we have

∥s̃− s∥2 ≤ ∥s̃− ŝ∥2 + ∥ŝ− s∥2 ≤ ϵ1 + Lϵ2. (50)

For any ϵ > 0 we can find ϵ1 and ϵ2 such that ϵ = ϵ1 + Lϵ2 to bound the norm.

B ADDITIONAL THEORETICAL RESULTS

Considering a one-dimensional B-spline of the form as equation 8, where x ∈ [a, b], we have

ŝ ∈ [a, b]× [c, c] , (51)

where
c = min

i=1,...,ℓ
ci, c = max

i=1,...,ℓ
ci.

[Distribution Statement A] Approved for public release and unlimited distribution

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2025

This property is inherent to the Bernstein polynomials used to generate Bézier curves. Specifically, the
Bézier curve is a subtype of the B-spline, and it is also possible to transform Bézier curves into B-splines
and vice versa (Prautzsch, 2002).

This property also holds in the multidimensional case when the B-spline is represented by a tensor product
of the B-spline basis functions in equation 11 (Prautzsch, 2002):

ŝ ∈ [a1, b1]× · · · × [an, bn]× [c, c] , (52)

where
c = min

i1=1,...,ℓ1
i2=1,...,ℓ2

...
in=1,...,ℓn

ci1,i2,...,in , c = max
i1=1,...,ℓ1
i2=1,...,ℓ2

...
in=1,...,ℓn

ci1,i2,...,in .

This property offers a practical tool for verifying the reliability of the results produced by the trained learning
scheme. In the case of learning recovery probabilities, the approximated solution should provide values
between 0 and 1. Since the number of control points is finite, a robust and reliable solution occurs if all
generated control points are within the range [0, 1], i.e.,

c = 0 c = 1.

C EXPERIMENT DETAILS

C.1 TRAINING DATA

Recovery Probabilities: The convection diffusion PDE defined in equation 26 and equation 27 has analyt-
ical solution

s(x, t) =

∫ t

0

(α− x)√
2πτ3

exp

(
− ((α− x)− uτ)

2

2τ

)
dτ, (53)

where α is the parameter of the boundary of the set in equation 24, and u is the parameter of the system
dynamics in equation 23. We use numerical integration to solve equation 53 to obtain ground truth training
data for the experiments.

C.2 NETWORK CONFIGURATIONS

Recovery Probabilities: For PI-DBSN and PINN, we use 3-layer fully connected neural networks with
ReLU activation functions. The number of neurons for each hidden layer is set to be 64. For PI-DeepONet,
we use 3-layer fully connected neural networks with ReLU activation functions for both the branch net and
the trunk net. The number of neurons for each hidden layer is set to be 64. All methods use Adam as the
optimizer.

3D Heat Equations: We set the B-splines to have the same number ℓ = 15 of equispaced control points
in each direction including time. We sample the solution of the heat equation at 21 equally spaced locations
in each dimension. Thus, each time step consists of 153 = 3375 control points and each sample returns
154 = 50625 control points total. The inputs to our neural network are the values of α from which it
learns the control points, and subsequently the initial condition surface via direct supervised learning. This
is followed by learning the control points associated with later times, (t > 0) via the PI-DBSN method.
Because of the natural time evolution component of this problem, we use a network with residual connections
and sequentially learn each time step. The neural network has a size of about 5× 104 learnable parameters.

[Distribution Statement A] Approved for public release and unlimited distribution

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000 30000
Epochs

10 4

10 3

10 2

10 1

Lo
ss

 (l
og

 sc
al

e)

PI-DBSN
PINN
PI-DeepONet

Figure 5: Physics loss vs. epochs.

C.3 TRAINING CONFIGURATIONS

All comparison experiments are run on a Linux machine with Intel i7 CPU and 16GB memory.

C.4 EVALUATION METRICS

The reported mean square error (MSE) is calculated on the mesh grid of the domain of interest. Specifically,
for the recovery probability experiment, the testing data is generated and the prediction is evaluated on
(x, t) ∈ [−10, α] × [0, 10] with dx = 0.1 and dt = 0.1. For the 3D heat equation problem, the testing
evaluation is on (x1, x2, x3, t) ∈ [0, 1]4 with dx = dt = 0.01.

The | · | used in evaluating data and physics losses denote absolute values.

C.5 LOSS FUNCTION VALUES

We visualize the physics loss and data loss separately for all three methods considered in section 5.1. Fig. 5
shows the physics loss and Fig. 6 shows the data loss (without ICBC losses for fair comparison with PI-
DBSN). We can see that PI-DBSN achieves similar physics loss values compared with PINN, but converges
much faster. Besides, PI-DBSN achieves much lower data losses under this varying parameter setting,
possibly due to its efficient representation of the solution space. PI-DeepONet has high physics and data
loss values in this case study.

C.6 PINN PERFORMANCE ON 3D HEAT EQUATIONS

We report results of PINN (Raissi et al., 2019) for the 3D heat equations case study in section 5.2 for
comparison. The PINN consists of 4 hidden layers with 50 neurons in each layer. We use Tanh as the
activation functions. We train PINN for 30000 epochs, with physics and data loss weights wp = wd = 1.
Fig. 7 visualizes the PINN prediction along different planes. The testing residual is 0.0121, which is higher
than the reported value (0.0032) for PI-DBSN.

[Distribution Statement A] Approved for public release and unlimited distribution

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000 30000
Epochs

10 6

10 5

10 4

10 3

10 2

10 1
Lo

ss
 (l

og
 sc

al
e)

PI-DBSN
PINN
PI-DeepONet

Figure 6: Data loss vs. epochs.

Learned Heat Equations

𝑥! - 𝑡 plane𝑥" - 𝑡 plane𝑥# - 𝑡 plane Residuals

Figure 7: The learned solutions (left) and the residuals (right) for the 3D heat equations with PINN.

[Distribution Statement A] Approved for public release and unlimited distribution

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTS

D.1 B-SPLINE DERIVATIVES

In this section, we show that the analytical formula in equation 12 can produce fast and accurate calculation
of B-spline derivatives. Fig. 8 shows the derivatives from B-spline analytical formula and finite difference
for the 2D space [−10, 2] × [0, 10] with the number of control point ℓ1 = ℓ2 = 15. The control points are
generated randomly on the 2D space, and the derivatives are evaluated at mesh grids with N1 = N2 = 100.
We can see that the derivatives generated from B-spline formulas match well with the ones from finite
difference, except for the boundary where finite difference is not accurate due to the lack of neighboring
data points.

1st Derivative (B-Spline) 1st Derivative (Finite Difference) Difference (1st)

2nd Derivative (B-Spline) 2nd Derivative (Finite Difference) Difference (2nd)

Figure 8: First and second derivatives from B-splines and finite difference.

D.2 OPTIMALITY OF CONTROL POINTS

In this section, we show that the learned control points of PI-DBSN are near-optimal in the L2 norm sense.
For the recovery probability problem considered in section 5.1, we investigate the case for a fixed set of
system and ICBC parameters u = 1.5 and α = 2. We use the number of control points ℓ1 = ℓ2 = 25 on the
domain [−10, 2] × [0, 10], and obtain the optimal control points C∗ in the L2 norm sense by solving least
square problem (Deng & Lin, 2014) with the ground truth data. We then compare the learned control points
C with C∗ and the results are visualized in Fig. 9. We can see that the learned control points are very close to
the optimal control points, which validates the efficacy of PI-DBSN. The only region where the difference is
relatively large is near c25,0, where the solution is not continuous and hard to characterize with this number
of control points.

[Distribution Statement A] Approved for public release and unlimited distribution

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2025

Control Points (Optimal) Control Points (PI-DBSN) Difference

Figure 9: Control points.

Method Computation Time (s)
PI-DBSN 271
PINN 365
PI-DeepONet 429

Table 3: Computation time in seconds (with A100 GPU).

D.3 EXPERIMENTS ON GPUS

We tested the performance of PI-DBSN and the baselines on a cloud server with one A100 GPU. Note that
our implementations are in PyTorch (Paszke et al., 2019), thus it naturally adapts to both CPU and GPU
running configurations. The experiment settings are the same as in section 5.1. The running time of the
three methods are reported in Table 3. We can see that GPU implementation accelerates training for all three
methods, and PI-DBSN has the shortest running time, which is consistent with the CPU implementation
results.

D.4 ROBUSTNESS AND LOSS FUNCTION WEIGHTS ABLATIONS

In this section, we provide ablation experiments of the proposed PI-DBSN with different loss function
configurations, and examine its robustness again noise. The setting is described in section 5.1. We first
train with noiseless data and vary the data loss weight wd. Table 4 shows the average MSE and its standard
deviation over 10 independent runs. We can see that with more weights on the data loss, the prediction
MSE reduces as noiseless data help with PI-DBSN to learn the ground truth solution. We then train with
injected additive zero-mean Gaussian noise with standard deviation 0.05 and vary the physics loss weight
wp. Table 5 shows the results. It can be seen that increasing physics loss weights help PI-DBSN to learn
the correct neighboring relationships despite noisy training data, which reduces prediction MSE. In general,
the weight choices should depend on the quality of the data, the training configurations (e.g., learning rates,
optimizer, neural network architecture).

wd 1 2 3 4 5
wp 1 1 1 1 1

Prediction MSE (×10−5) 36.76± 12.16 12.91± 10.40 10.21± 3.99 9.28± 6.78 3.95± 1.36

Table 4: PI-DBSN prediction MSE (noiseless data).

[Distribution Statement A] Approved for public release and unlimited distribution

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2025

wd 1 1 1 1 1
wp 1 2 3 4 5

Prediction MSE (×10−4) 31.58± 6.46 33.15± 7.77 13.37± 11.74 7.95± 6.24 3.86± 2.05

Table 5: PI-DBSN prediction MSE (additive Gaussian noise data).

Number of Hidden Layers 2 3 4 5
Number of NN parameters 37632 41792 45952 50112
Prediction MSE (×10−4) 1.12± 0.43 0.90± 0.42 3.17± 2.46 3.12± 2.81

Table 6: PI-DBSN prediction MSE with different numbers of NN layers.

D.5 NUMBER OF NN LAYERS AND PARAMETERS ABLATION

In this section, we show ablation results on the number of neural network (NN) layers and parameters. We
follow the experiment settings in section 5.1, and train the proposed PI-DBSN with different numbers of
hidden layers, each with 10 independent runs. The number of NN parameters, the prediction MSE and its
standard deviation are shown in Table 6. We can see that with 3 layers the network achieves the lowest
prediction errors, while the number of layers does not have huge influence on the overall performance.

D.6 BURGERS’ EQUATION

We conduct additional experiments on the following Burgers’ equation.

∂s

∂t
+ us

∂s

∂x
= ν

∂2s

∂x2
, (54)

where ν = 0.01 and u ∈ [0.5, 1.5] is a changing parameter. The domain of interest is set to be (x, t) ∈
[0, 10]× [0, 8], and the initial condition is

s(x, 0) = exp{−(x− α)2/2}, (55)

where α ∈ [2, 4] is a changing parameter. We train PI-DBSN with 3-layer fully connected neural networks
with ReLU activation on varying parameters u ∈ [0.5, 1.5] and α ∈ [2, 4], and test on randomly selected
parameters in the same domain. The B-spline basis of order 4 is used and the number of control points along
x and t are set to be ℓx = ℓt = 100. Note that more control points are used in this case study compared to the
convection diffusion equation in section 5.1, as the solution of the Burgers’ equation has higher frequency
along the ridge which requires finer control points to represent. Fig. 10 visualizes the prediction results on
several random parameter settings. The average MSE across 20 test cases is 1.319 ± 0.408 × 10−2. This
error rate is comparable to the Fourier neural operators as reported in (Li et al., 2020, Figure 3).

[Distribution Statement A] Approved for public release and unlimited distribution

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2025

Figure 10: Results on Burgers’ equations with different random parameter settings.

[Distribution Statement A] Approved for public release and unlimited distribution

	Introduction
	Related Work
	Proposed Method
	Problem Formulation
	B-Splines with Basis Functions
	Multi-Dimensional B-splines
	Physics-Informed B-Spline Nets

	Theoretical Analysis
	Experiments
	Recovery Probabilities
	3D Heat Equations

	Conclusion
	Proof of Theorems
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Theorem 4

	Additional Theoretical Results
	Experiment Details
	Training Data
	Network Configurations
	Training Configurations
	Evaluation Metrics
	Loss Function Values
	PINN Performance on 3D Heat Equations

	Additional Experiments
	B-spline Derivatives
	Optimality of Control Points
	Experiments on GPUs
	Robustness and Loss Function Weights Ablations
	Number of NN Layers and Parameters Ablation
	Burgers' Equation

