
Securing Equal Share: A Principled Approach for Learning Multiplayer
Symmetric Games

Jiawei Ge * 1 Yuanhao Wang * 2 Wenzhe Li 3 Chi Jin 3

Abstract

This paper examines multiplayer symmetric
constant-sum games with more than two play-
ers in a competitive setting, such as Mahjong,
Poker, and various board and video games. In
contrast to two-player zero-sum games, equi-
libria in multiplayer games are neither unique
nor non-exploitable, failing to provide mean-
ingful guarantees when competing against op-
ponents who play different equilibria or non-
equilibrium strategies. This gives rise to a series
of long-lasting fundamental questions in multi-
player games regarding suitable objectives, solu-
tion concepts, and principled algorithms. This
paper takes an initial step towards addressing
these challenges by focusing on the natural ob-
jective of equal share—securing an expected
payoff of C/n in an n-player symmetric game
with a total payoff of C. We rigorously identify
the theoretical conditions under which achiev-
ing an equal share is tractable and design a se-
ries of efficient algorithms, inspired by no-regret
learning, that provably attain approximate equal
share across various settings. Furthermore, we
provide complementary lower bounds that justify
the sharpness of our theoretical results. Our ex-
perimental results highlight worst-case scenarios
where meta-algorithms from prior state-of-the-
art systems for multiplayer games fail to secure
an equal share, while our algorithm succeeds,
demonstrating the effectiveness of our approach.

*Equal contribution 1Department of Operations Research
and Financial Engineering, Princeton University 2Department of
Computer Science, Princeton University 3Department of Elec-
trical and Computer Engineering, Princeton University. Cor-
respondence to: Jiawei Ge <jg5300@princeton.edu>, Chi Jin
<chij@princeton.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
In recent years, AI systems have achieved remarkable suc-
cess in multi-agent decision-making problems, particularly
in a wide range of strategic games. These include, but
are not limited to, Go (Silver et al., 2016), Mahjong (Li
et al., 2020), Poker (Moravčı́k et al., 2017; Brown & Sand-
holm, 2018; 2019), Starcraft 2 (Vinyals et al., 2019), DOTA
2 (Berner et al., 2019), League of Legends (Ye et al., 2020),
and Diplomacy (Gray et al., 2020; Bakhtin et al., 2022;
, FAIR). Many of these games are two-player zero-sum
games1, where Nash equilibria (NEs) always exist and can
be computed in polynomial time. NEs in two-player zero-
sum games are also non-exploitable—an agent employing
a NE strategy will not lose even when facing an adversarial
opponent who seeks to exploit the agent’s weaknesses. Al-
though such equilibrium strategies do not necessarily capi-
talize on opponents’ weaknesses or guarantee large-margin
victories, human players often adopt suboptimal strategies
that deviate significantly from equilibria in complex games
with large state spaces. Consequently, AI agents who adopt
equilibrium strategies often outperform humans in practice
for two-player zero-sum games.

In contrast, multiplayer games—defined here as those
with more than two players—exhibit fundamentally dif-
ferent game structures compared to two-player zero-sum
games. This distinction introduces several unique chal-
lenges. Firstly, NEs are believed to be no longer com-
putable in polynomial time (Daskalakis et al., 2009; Chen
& Deng, 2005). Moreover, there may exist multiple NEs
with distinct values. Such non-uniqueness in equilibria
raises a critical concern about the adoption of equilibrium
strategies in multiplayer settings: if a learning agent adopts
an equilibrium that is different from other players, collec-
tively, they are not playing any single equilibrium, which
undermines the equilibrium property that dissuades the
agent from changing its strategy as long as others maintain
theirs. Finally, in multiplayer games, equilibrium strate-
gies are no longer non-exploitable and fail to provide mean-
ingful guarantees when competing against opponents who

1Games such as DOTA and League of Legends, despite in-
volving two teams, can be mostly considered similar to two-player
zero-sum games in terms of their game structures and solutions.

1

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

are not playing equilibria. Although the introduction of
alternative equilibrium notions such as (coarse) correlated
equilibria alleviates computational hardness, issues of non-
uniqueness and the lack of guarantees in the general set-
tings remain. This leads to the first critical question:

What is the suitable solution concept for learning in
multiplayer games?

Due to the presence of such fundamental challenge, even
state-of-the-art expert-level or superhuman AI systems for
popular multiplayer games, including Mahjong (Li et al.,
2020) (4 players), Poker (Brown & Sandholm, 2019) (6
players), and Diplomacy (Bakhtin et al., 2022; , FAIR)
(7 players), are designed with limited theoretical supports.
These works focus on developing algorithmic frameworks
capable of learning effective strategies that excel in lad-
ders, online gaming platforms, or tournaments against op-
ponents. Generally, most of these systems rely on a basic
self-play framework, starting from scratch or from oppo-
nents’ strategies acquired through behavior cloning, with
or without regularization. While the success of these
self-play algorithms is remarkable, their performance has
been demonstrated primarily within the specific applica-
tions they were designed for, often coupled with human
expertise and extensive engineering efforts. It remains un-
clear whether these algorithms are general-purpose solu-
tions that can be readily applied to multiplayer games be-
yond Mahjong, Poker, or Diplomacy. This leads to the sec-
ond important question:

What is the principled algorithm that provable learns a
rich class of multiplayer games?

In this paper, we consider multiplayer symmetric constant-
sum games, which are prevalent in games involving more
than two players. Examples include previously discussed
multiplayer games like Mahjong, Poker, and Diplomacy,
as well as a variety of board games such as Avalon (Light
et al., 2023), Mafia, and Catan.2 Symmetry brings fairness
among players, providing a natural baseline where a learn-
ing agent should at least secure an equal share — achiev-
ing an expected payoff of C/n in an n-player symmetric
game with a total payoff of C. This paper takes an ini-
tial step toward addressing the two fundamental questions
highlighted above by focusing on securing an equal share
in multiplayer symmetric normal-form games3. The main
contributions are summarized as follows:

1. Regarding the question of solution concepts, we first

2All these examples are symmetric games up to randomization
of the seating.

3Extensive-Form Games (EFGs) or Markov Games (MGs) can
be viewed as special cases of normal-form games, where each
action in normal-form games corresponds to a strategy in EFGs or
MGs, although such representations may not always be efficient.

demonstrate the insufficiency of classical equilibrium con-
cepts and general self-play frameworks (learning from
scratch) in achieving an equal share in symmetric games.
We then proceed to identify the structural conditions where
equal share is achievable. In contrast to two-player zero-
sum games, we prove that in order to achieve an equal share
in multiplayer games: (1) all opponents need to deploy the
same strategy; (2) all opponents must have limited adap-
tivity, and the learning agent has to model the opponents
(See Section 4). We show that without either condition, an
equal share can not be attained in the worst case. We prove
that our identified conditions apply to practical multiplayer
gaming platforms with a large player base. They are also
tightly connected to the design of many prior modern mul-
tiplayer AI agents.

2. Regarding the question of principled algorithms, this
paper illustrates how we can leverage existing tools from
no-regret learning and no-dynamic-regret learning com-
munities to achieve equal share with provable guarantees.
Concretely, this paper considers several opponent settings:
fixed, slowly adapting, and opponents that adapt at inter-
mediate rates. For all cases, we design algorithms that ap-
proximately achieve equal share, with an error tolerance of
1/poly(T), where T is the total number of games played.
Additionally, we provide matching lower bounds, demon-
strating that these guarantees cannot be significantly im-
proved in the worst-case scenario.

3. We further complement our theory by experiments on
two basic multiplayer symmetric games. Our experimen-
tal results illustrate that (1) the self-play meta-algorithms
from prior state-of-the-art systems for multiplayer games
can fail to secure an equal share even under favorable set-
tings, while our principled algorithm always succeeds; (2)
prior meta-algorithm has no clear advantage over our al-
gorithm on exploitability in the worst case. This indicates
that prior self-play algorithms are not general-purpose and
highlights the effectiveness of our theoretical framework.

1.1. Related work

AI gaming agents in practice. Building superhuman AI
has long been a goal in various games. A large body of
works in this line focus on two-player or two-team zero-
sum games like Chess (Campbell et al., 2002), Go (Silver
et al., 2016), Heads-Up Texas Hold’em (Moravčı́k et al.,
2017; Brown & Sandholm, 2018), Starcraft 2 (Vinyals
et al., 2019), DOTA 2 (Berner et al., 2019) and League
of Legends (Ye et al., 2020). Most of them are based on
finding equilibria via self-play, fictitious play, league train-
ing, etc. There is comparatively much less amount of work
on games with more than two players, whose game struc-
tures are fundamentally different from two-player zero-
sum games. Several remarkable multiplayer successes in-

2

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

clude Poker (Brown & Sandholm, 2019), Mahjong (Li
et al., 2020), Doudizhu (Zha et al., 2021) and Diplo-
macy (Bakhtin et al., 2022; , FAIR). Despite lacking a
clearly formulated learning objective, these works typically
design meta-algorithms, which include initially training the
model using behavior cloning from opponents, then en-
hancing it through self-play, and finally applying adapta-
tions based on the game’s specific structure or human ex-
pertise. It remains elusive whether such a recipe is gener-
ally effective for a wide range of multiplayer games.

Existing results for symmetric games. Von Neumann
& Morgenstern (1947) gave the first definition of sym-
metric games and used the three-player majority-vote ex-
ample to showcase the stark difference between symmet-
ric three-player zero-sum games and symmetric two-player
zero-sum games. In his seminal paper that introduced
Nash equilibrium (NE), Nash proved that a symmetric fi-
nite multi-player game must have a symmetric NE (Nash,
1951). However, this existence result holds little signifi-
cance from an individual standpoint, as there is no reason
a priori to assume that other players are indeed playing ac-
cording to this symmetric equilibrium. Papadimitriou &
Roughgarden (2005) studied the computational complexity
of finding the NE in symmetric multi-player games when
the number of actions available is much smaller than the
number of players and gave a polynomial-time algorithm
for the problem. In this case, symmetry greatly reduced the
computational complexity (as computing Nash in general
is PPAD-hard). Daskalakis (2009) proposed anonymous
games, a generalization of symmetric games.

No-regret learning. There is a rich literature on applying
no-regret learning algorithms to learning equilibria . It is
well-known that if all agents have no regret, the resulting
empirical average would be an approximate Coarse Corre-
lated Equilibrium (CCE) (Young, 2004), while if all agents
have no swap-regret, the resulting empirical average would
be an ϵ-Correlated Equilibrium (CE) (Hart & Mas-Colell,
2000; Cesa-Bianchi & Lugosi, 2006). Later work continu-
ing this line of research includes those with faster conver-
gence rates (Syrgkanis et al., 2015; Chen & Peng, 2020;
Daskalakis et al., 2021), last-iterate convergence guaran-
tees (Daskalakis & Panageas, 2018; Wei et al., 2020), and
extension to extensive-form games (Celli et al., 2020; Bai
et al., 2022b;a; Song et al., 2022) and Markov games (Song
et al., 2021; Jin et al., 2021).

2. Preliminaries
Notation. For any set A, its cardinality is represented by
|A|, and ∆(A) denotes a probability distribution over A.
We employ A⊗n to denote the Cartesian product of n in-
stances of A. Given a distribution x over A, x⊗n represents
the joint distribution of n independent copies of x, forming

a distribution over A⊗n. For a function f : A → R, we
denote ∥f∥∞ := maxa∈A |f(a)|. We use [n] to denote the
set {1, . . . , n}. In this paper, we use C to denote universal
constants, which may vary from line to line.

2.1. Normal-form games and equilibrium

Normal-form game. An n-player normal-form game con-
sists of a finite set of n players, where each player has
an action space Ai and a corresponding payoff function
Ui : A1 × · · · × An → [−1, 1] with Ui(a1, . . . , an)
denotes the payoff received by the i-th player if n play-
ers are taking joint actions (a1, . . . , an). We define a
game as constant-sum if there exists constant C such that∑n

i=1 Ui(a1, . . . , an) = C for all joint actions. We further
denote a game as zero-sum if it is a constant-sum game with
a total payoff of C = 0. Normal-form games can represent
a wide range of games as their special cases, including se-
quential games such as extensive-form or Markov games.
Due to space limit, we refer readers to Appendix A for
more details of basic concepts in normal-form games, in-
cluding formal definitions of strategy, learning protocol,
and best response.

Equilibrium. Nash Equilibrium (NE) is the most
commonly-used solution concept for games: a mixed strat-
egy x ∈ ∆(A1 × · · · × An) of all players is said to be
NE if x is a product distribution 4, and no player could
gain by deviating from her own strategy while holding all
other players’ strategies fixed. That is, for all i ∈ [n] and
a′i ∈ Ai, Ea∼x[Ui(ai, a−i)] ≥ Ea∼x[Ui(a

′
i, a−i)].

There are also two equilibrium notions relaxing the notion
of NE by no longer requiring x to be a product distribution.
It allows general joint distribution x which describes corre-
lated strategies among players. In particular, (1) x is a Cor-
related Equilibrium (CE) if for all i ∈ [n] and a′i ∈ Ai,
Ea∼x[Ui(ai, a−i) | ai] ≥ Ea∼x[Ui(a

′
i, a−i) | ai], and (2) x

is Coarse Correlated Equilibrium (CCE) if for all i ∈ [n]
and a′i ∈ Ai: Ea∼x[Ui(ai, a−i)] ≥ Ea∼x[Ui(a

′
i, a−i)].

The major difference between those two notions is in the
cases when the agent deviates from her current strategy,
whether she is still allowed to observe the randomness in
drawing actions from the correlated strategy. The relation-
ship among various equilibrium concepts is encapsulated
by NE ⊂ CE ⊂ CCE.

Two-player zero-sum games. In two-player zero-sum
games, all Nash equilibria share the unique payoff value
0. Furthermore, a Nash equilibrium is non-exploitable
against any strategy that is not necessarily an equilibrium.
In math, if (µ⋆, ν⋆) is the Nash equilibrium, we have
minν U1(µ

⋆, ν) = maxµ minν U1(µ, ν) = 0.

Multiplayer/general-sum games. When there are more

4Randomness in different players’ strategies are independent.

3

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

than two players, or games are no longer constant-sum
games, NEs become PPAD-hard to compute (Daskalakis
et al., 2009) while CEs and CCEs can be still computed in
polynomial time. All of these three concepts admit mul-
tiple equilibria with distinct payoffs. Furthermore, they
no longer own strong guarantees, such as non-exploitness,
when competing against non-equilibrium players.

2.2. Symmetric games and equal share

Symmetric games. For an n-player normal-form game
with an action space {Ai}ni=1 and a payoff {Ui}ni=1, we say
the game is symmetric if (1) Ai = A, for all i ∈ [n]; (2) for
any permutation σ : [n] → [n], we have Ui(a1, · · · , an) =
Uσ−1(i)(aσ(1), · · · , aσ(n)).

In short, the payoffs of a symmetric game for employing a
specific action are determined solely by the actions used by
others, agnostic of the identities of the players using them.
Thus, the payoff function of the first player denoted as U1,
is sufficient to encapsulate the entire game.

Symmetric games are popular in practice as they bring fair-
ness among players. Technically, all asymmetric can be
converted to symmetric games by randomizing the roles
of the players at the beginning of the game. Nevertheless,
casting the games in the symmetric form gives a natural
and minimal baseline — the learning agent should attain
an equal share in the long run.

Equal share. We say an agent attains an equal share, if its
average payoff of the games is at least C/n for a n-player
symmetric constant-sum game with a total payoff of C.

It is not hard to see that shifting the total payoff of a game
by any absolute constant will not alter the strategic aspects
of the game. Therefore, without loss of generality, this pa-
per sets a total payoff of C = 0 and focuses on achieving an
equal share in multiplayer symmetric zero-sum games.

3. Insufficiency of Equilibria and Self-play for
Equal Share

In this section, we demonstrate that existing equilibria no-
tions and the self-play from scratch algorithm are insuffi-
cient to secure equal shares in multiplayer symmetric zero-
sum games even under very basic settings. To show this,
we consider the following 3-player majority vote game:

Example 1 (Three-player majority vote game). Every
player chooses either 0 or 1. If all players take the same
action, then they receive a payoff of 0. Otherwise, being in
the majority yields a positive payoff of 1/2, while being in
the minority results in a negative payoff of −1.

Insufficiency of equilibria. In this setup, both pure strate-
gies (0, 0, 0) and (1, 1, 1) constitute NE. However, the ex-

istence of multiple NEs creates a predicament for the learn-
ing agent. It must choose which equilibrium to follow, yet
there is always the risk that the two opponents are both
playing the other NE, leading to a negative payoff for the
learner. In other words, adhering to a single NE does not
reliably ensure an equal share when multiple equilibria ex-
ist. Since NE ⊂ CE ⊂ CCE, we know the same limitation
also holds for CE and CCE.

Insufficiency of self-play from scratch. Self-play is a
training method in which the learning agent improves its
performance by repeatedly playing against copies of itself
without human supervision. See pseudo-code in Algorithm
1. The learner maintains its own strategy {xt}Tt=1. At the
tth iteration, the learner first pretends that all opponents are
employing its current strategy xt, and samples actions from
them. Then the learner updates its own strategy to xt+1 us-
ing the gradient information from the gameplay. The up-
dates can be made using any optimizer such as gradient
descent or Hedge.

Here, we argue that self-play from scratch (the algorithm
adopted in (Brown & Sandholm, 2019)) again fails to se-
cure an equal share in the same three-player majority vote
game: Consider two opponents play the same fixed strat-
egy that is one of the NEs. In this case, the learner has no
choice but to play the exact same NE as the opponents to
secure an equal share. That is, if the learner’s algorithm is
agnostic to the strategies of the opponents, it is doomed to
fail. We note that while recent systems (Li et al., 2020; Ja-
cob et al., 2022) combine self-play with behavior cloning
which is no longer agnostic to opponents’ strategies, our
experiment shows that their meta-algorithms remain insuf-
ficient to secure an equal share in the worst-case scenario
(See Section 6).

4. Sufficient Conditions for Securing Equal
Share

Here we further identify structural conditions of the games
where equal share is achievable. We will show that the
following two conditions are needed to achieve equal share:

Condition 1. All opponents need to deploy the same strat-
egy, i.e., x2 = . . . = xn;

Condition 2. All opponents must have limited adaptivity
and the player has to model the opponents,
i.e., {xj}nj=2 can not adversarially change
across different rounds of the game.

We justify these two conditions by proving that without ei-
ther condition, an equal share can not be attained in multi-
player symmetric games in the worst case. We remark that
both conditions restrict the strategies of opponents rather

4

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

than the type of games.

Non-adaptive opponents that deploy different strate-
gies. We start by considering the case where Condition 2
holds but Condition 1 does not hold.

Proposition 4.1. There exist symmetric zero-sum games
with opponents using fixed but differing strategies, such
that no learner’s strategy secures an equal share. In math,

max
x1

min
x2,··· ,xn

U1(x1, · · · , xn)

≤ min
x2,··· ,xn

max
x1

U1(x1, · · · , xn) ≤ 0 (1)

where both inequalities can be strict in certain games.

Here, we can further strengthen the proposition to require
opponents to deploy strategies without “collusion”. That
is, the hard instance holds even when the strategies em-
ployed by opponents are statistically independent without
any shared randomness. Proposition 4.1 highlights the
challenge when opponents can adopt different strategies.

Adaptive opponents that deploy identical strategy. We
next examine the case where Condition 1 holds but Condi-
tion 2 does not hold.

Proposition 4.2. There exist symmetric zero-sum games
such that no learner’s strategy secures an equal share
against adversarial opponents, even under the constraint
they adhere to identical strategy at each round. In math,

max
x1

min
x

U1(x1, x
⊗n−1)

≤ min
x

max
x1

U1(x1, x
⊗n−1) = 0, (2)

where the inequality can be strict in certain games.

Proposition 4.2 implies a property that makes multiplayer
games significantly different from two-player zero-sum
games: even under the favorable scenario of all opponents
employing identical strategies, one can no longer find a
fixed “non-exploitable” strategy agnostic to the strategies
of opponents. All strategies are exploitable. Opponent
modeling is necessary to secure an equal share.

Solution concepts beyond equilibrium. Combining
Proposition 4.1 and Proposition 4.2, we observe that both
conditions mentioned at the beginning of Section 4 are
needed to make equal share achievable. In math, we con-
clude from Eq.(1) and Eq.(2) that, out of the four related
minimax concepts, only minx maxx1 U1(x1, x

⊗n−1) = 0
across all multiplayer symmetric zero-sum games, which
guarantees an equal share. This remaining minimax con-
cept precisely corresponds to the two identified condi-
tions where opponents employ identical strategies, and the
learner must be adaptive to the opponents. Therefore, we
will use minx maxx1 U1(x1, x

⊗n−1) as our target solu-
tion concept for this paper to achieve equal share. We

remark that this solution concept does not necessarily cor-
respond to any equilibrium in most multiplayer games. We
conclude with this solution concept from a principled man-
ner with equal share as our primary objective. For con-
ciseness, from now on, we will also refer to the common
strategy employed by all opponents as the meta-strategy.

4.1. Connections between identified conditions and
practice

While the two identified conditions may seem restrictive,
here we argue that they in fact apply to practical multi-
player gaming platforms with a large player base. Con-
dition 1 is further implicitly adopted by most prior state-of-
the-art AI agents for multiplayer games.

Connection to multiplayer games with a large player
base. We argue that both identified conditions are well-
justified in modern multiplayer gaming platforms with a
large player base. Imagine a casino hosting N players who
randomly join poker tables or an online Mahjong match-
making platform with N users. Let {xi}Ni=1 be the strategy
set for these N players. We can then define the popula-
tion meta-strategy as x̄ = (1/N)

∑N
i=1 xi. The following

proposition claims that, for n-player symmetric zero-sum
games, in terms of the expected payoff, playing against
n− 1 random players is almost the same as playing against
n − 1 players who all adopt the same population meta-
strategy x̄, as long as N ≫ (n− 2)2.

Proposition 4.3. Let Ex−1
be the expectation over the ran-

domness on sampling n − 1 strategies uniformly from the
set {xi}Ni=1 without replacement. Then for any strategy
z ∈ ∆(A), we have |Ex−1 [U1(z, x−1)]−U1(z, x̄

⊗n−1)| ≤
2(n− 2)2/N .

Furthermore, it is often safe to assume that the population
meta-strategy x̄ — the average strategy of all players within
the player pool — will not quickly adapt to one particular
player’s strategy.

Connection to practical AI systems. We remark that a
majority of practical AI systems for multiplayer games (Li
et al., 2020; Brown & Sandholm, 2019; Bakhtin et al.,
2022; , FAIR) leverage self-play meta-algorithms (Algo-
rithm 1), which equate the strategies of all opponents with
those of the learner. This implicitly assumes all opponents
employ an identical strategy at every round.

5. Provably Efficient Algorithms
In this section, we explore efficient algorithms that prov-
ably secure an equal share under the two conditions iden-
tified in Section 4. Particularly, we consider several oppo-
nent settings with various adaptivity: fixed, slowly adapt-
ing, and opponents that adapt at intermediate rates.

5

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

We use the following notations throughout this section: at
round t, let xt denote the learner’s strategy, and yt the meta-
strategy employed by all opponents. We denote ut(·) as the
expected payoff function of the learner at round t, where
ut(·) := U1(·, (yt)⊗n−1). Then the average payoff of the
learner is: uavg(T) := (1/T)

∑T
t=1 u

t(xt).

5.1. Fixed opponents

We begin by exploring the simple stationary scenario,
where the meta-strategy used by the opponents remains
constant over time, denoted as yt = y for all t ∈ [T].

Notably, in this particular scenario, the payoff function
ut(·) remains constant over time. Additionally, by sym-
metry, it is not hard to observe that at least one action will
consistently yield an expected payoff of 0 in all rounds.
This implies maxa∈A

∑T
t=1 u

t(a) ≥ 0, which makes the
no-regret learning tool well-poised to achieve equal share
in this setting. Standard (static) regret, defined as fol-
lows, compares the learner’s total payoff to the total payoff
achieved by the best action in hindsight:

Reg(T) := maxa∈A
∑T

t=1 u
t(a)−

∑T
t=1 u

t(xt),

An algorithm has no-regret if Reg(T) ≤ o(T) for all large
T . We deploy a standard no-regret learning algorithm —
Hedge (Freund & Schapire, 1997), which provides the fol-
lowing guarantees:

Theorem 5.1 (Stationary opponents). Let {xt}Tt=1 be
the strategy sequence implemented by the Hedge algo-
rithm against stationary opponents. Then, with prob-
ability at least 1 − δ, we have uavg(T) ≥ u⋆ −
C
√

log(A/δ)/T , for some absolute constant C, where
u⋆ := maxa∈A U1(a, y

⊗n−1) ≥ 0.

The probability is taken over the random actions by op-
ponents sampled from the meta-strategy5. Theorem 5.1
claims that with stationary opponents, the Hedge algorithm
approximately achieves an equal share up to a Õ(1/

√
T)

error, which demonstrates its effectiveness in the long run.

5.2. Adaptive opponents

In practical scenarios, encountering a fixed opponent strat-
egy is relatively uncommon. More often, opponents adapt
and modify their strategies over time, responding to the
game’s dynamics and the actions of other players. Thus,
in this section, we shift our focus to the non-stationary sce-
nario, where the meta-strategy yt adopted by the opponents
varies over time.

According to Proposition 4.2, it is clear that attaining an

5Recall that our learning protocol in Section 2 assumes the
learner only observes the noisy actions of the other players at each
round.

equal share is impossible if opponents can change their
meta-strategy yt arbitrarily fast across different rounds.
Thus we introduce a constraint on the adaptive power of
the opponents by positing a variation budget VT , which
bounds the total variation of the payoff function across the
time horizon. Specifically, we assume the payoff function
belongs to U , which is defined as

U :=
{
{ut}Tt=1

∣∣∣∑T−1
t=1

∥∥ut+1 − ut
∥∥
∞ ≤ VT

}
. (3)

Furthermore, we denote G(n,A, VT) as the set of tuples,
which consists of a n-player symmetric zero-sum game
with A actions and a corresponding meta-strategy sequence
{yt}Tt=1, such that the payoff function {ut}Tt=1 ∈ U . This
constraint effectively moderates the adaptivity of the oppo-
nents compared to a fully adversarial setup.

Slowly adapting opponents. In non-stationary environ-
ments, the total payoff achieved by the best action in
hindsight maxa∈A

∑T
t=1 u

t(a) is no longer non-negative.
Therefore, minimizing standard regret in this setting is no
longer effective in securing an equal share. This motivates
us to turn our attention to a stronger notion of regret —
dynamic regret, defined as:

D-Reg(T) :=
∑T

t=1 maxa∈A ut(a)−
∑T

t=1 u
t(xt).

This measures a strategy’s performance against the best ac-
tion at each time step (dynamic oracle), providing a more
relevant benchmark in changing environments.

In the setting of symmetric games, the dynamic ora-
cle is always assured to secure an equal share, i.e.,∑T

t=1 maxa∈A ut(a) ≥ 0. Thus, any algorithm achieving
no-dynamic-regret is guaranteed to achieve an equal share
up to a small error. To this ends, we adapt a no-dynamic-
regret algorithm—Strongly Adaptive Online Learner with
Hedge H as a black box algorithm (SAOLH) (See Ap-
pendix C.1.2), as proposed by (Daniely et al., 2015) to our
setting and achieve following guarantees:

Theorem 5.2. Suppose that n ≥ 3, A ≥ 2, and VT ∈
[1, T], then for any game and any meta-strategy sequence
in G(n,A, VT), with probability at least 1 − δ, SAOLH

satisfies

uavg(T) ≥ u† − CV
1/3
T T−1/3

(√
log(A/δ) + log T

)
for some absolute constant C, where u† :=
(1/T)

∑T
t=1 maxa∈A ut(a) ≥ 0.

Theorem 5.2 implies that SAOLH achieves a non-negative
average payoff, up to an error term that scales with
Õ(V

1/3
T T−1/3). Therefore, if VT is sublinear in T ,

SAOLH is capable of approximately achieving equal share
over an extended duration.

6

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

Opponents that adapt at intermediate rates. Interest-
ingly, there is an intermediate regime where opponents’
strategies {yt}Tt=1 are changing neither too fast nor too
slow where the favorable algorithm for the learner might
be behavior cloning—simply mimic opponents’ strategies.

Formally, we define the behavior cloning algorithm for the
learner by making her action in t-th round the same as the
action taken by the 2nd player in (t − 1)-th round (See
Algorithm 2). Behavior cloning achieves the following:

Theorem 5.3. Suppose that n ≥ 3, A ≥ 2, and
VT ∈ [1, T], for any game and any meta-strategy se-
quence in G(n,A, VT), behavior cloning guarantees that
E[uavg(T)] ≥ −(VT + 1)/T.

We remark that while the error term O(VT /T) in Theorem
5.3 is always smaller than the error term Õ((VT /T)

1/3) in
Theorem 5.2, the latter is comparing to the baseline of dy-
namic oracle u†, which has a greater value than the base-
line in behavior cloning — 0. It is not hard to see that
in the intermediate regime Θ̃(u†) ≤ VT /T ≤ Θ(1), the
meta-strategy is changing too fast so that it is better for
the learner to simply copy the meta-strategy instead of run-
ning sophisticated no-dynamic-regret algorithm to learn the
game and to counter the meta-strategy by herself.

Matching lower bounds. Finally, we also complement
our upper bounds by matching lower bounds showing that
SAOLH and behavior cloning are already the near-optimal
algorithms in terms of error rates when compared with the
corresponding baselines — the dynamic oracle and zero
payoff respectively. The techniques used here are based on
adapting existing hard instances for a more general setup
to the symmetric zero-sum game setting. Please see more
discussion in Appendix C.2.

Theorem 5.4. There exists some absolute constant C > 0
such that for any n ≥ 3, A ≥ 2, and VT ∈ [1, T], and
any learning algorithm, there exists a game and a meta-
strategy sequence in G(n,A, VT), such that E[uavg(T)] ≤
u† − CV

1/3
T T−1/3.

Theorem 5.5. There exists some absolute constant C > 0
such that for any n ≥ 3, A ≥ 2, and VT ∈ [1, T], and
any learning algorithm, there exists a game and a meta-
strategy sequence in G(n,A, VT) such that E [uavg(T)] ≤
−CVT /T .

The expectation in both theorems are taking over the ran-
dom actions by the opponents as well as the possible in-
trinsic randomness in a stochastic algorithm. Theorem 5.4
and 5.5 match Theorem 5.2 and 5.3 respectively, up to ad-
ditional logarithmic factors.

6. Experiments
In this section, we focus on the scenario where one learning
agent competes against n−1 opponents who play the iden-
tical meta-strategy. For simplicity, we restrict ourselves to
the setting of fixed opponents. We aim to answer: (Q1) Can
existing algorithmic frameworks in previous superhuman
AI systems consistently secure an equal share under this
favorable setting? If not, what are the failure cases? (Q2)
Are these trained agents exploitable by adversarial oppo-
nents? We design the following two games to compare our
algorithm with prior self-play-based algorithms.

Majority Vote (MV). We first consider the standard 3-
player majority vote game (Example 1). Here [1, 0], [0, 1],
and [1/2, 1/2] are all NEs, where [p, 1 − p] denotes the
mixture strategy that takes the first action with probability
p and the second action with probability 1 − p. We fix the
opponent meta-strategy ymeta = [0.49, 0.51] for all rounds.

Switch Dominance Game (SDG). In each round, players
simultaneously choose an action from set {A,B,C}. Let
n be the total number of players and nA be the number of
agents choosing action A, We define the game rule as:{

B ≻ A ≻ C if nA > 0.2n,

C ≻ B ≻ A otherwise ,

where the rule i ≻ j ≻ k intuitively means that action i
dominates both j and k, and action j dominates k. SDG
is designed so that C is a dominated action when there
is a reasonable number of players taking action A, but a
dominating action otherwise. Concretely, for i ≻ j ≻ k,
we assign the following payoff (ri, rj , rk) to players taking
actions (i, j, k) respectively, where:

ri = I[nj + nk > 0],

rj = I[nk > 0]− I[nj + nk > 0] · ni/(nj + nk),

rk = −I[nj + nk > 0] · ni/(nj + nk)− I[nk > 0] · nj/nk.

This payoff design guarantees that SDG is a symmetric
zero-sum game. Here we set n = 30 and pick the fixed
meta-strategy of the opponents ymeta = [0.399, 0.6, 0.001]
(in the order of action A,B,C) for all rounds. Note that
while this game has an NE strategy [0, 0, 1], its utility is
negative against our chosen meta-strategy ymeta.

6.1. Learning algorithms

To better focus on the key game-theoretic property of the
algorithms, we idealize the process of imitation learning
by assuming that the learning agent has already learned
(i.e., has direct access to) the meta-strategy ymeta by the
opponents. In this setting, according to Theorem 5.1, our
theoretical framework suggests to directly run the Hedge
algorithm (Hedge) against opponents who play the meta-

7

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

Table 1. The distribution of mixed strategies to which different self-play algorithms converge in MV. We use SP BC λ as the short name
of SP BC reg with regularization coefficients λ.

Strategy SP scratch SP BC SP BC 10−5 SP BC 10−4 SP BC 10−3 SP BC 10−2 Hedge

[1, 0] 52% 48% 50% 46% 42% 42% 0%

[0, 1] 48% 52% 50% 54% 58% 58% 100%

Table 2. The utility and exploitability of each algorithm. Particularly, for MV, as self-play algorithms converge to two different solutions
with roughly equal probability, we evaluate the utility of the worse converged solution of the two to reflect the worst-case performance.

MV SP scratch / SP BC / SP BC reg Hedge

Utility (×10−2) -1.00 ± 0.09 1.03 ± 0.10

Exploitability -1.00 ± 0.00 -1.00 ± 0.00

SDG SP scratch / SP BC / SP BC reg Hedge

Utility -12.67 ± 0.01 1.00 ± 0.00

Exploitability -29.00 ± 0.00 -29.00 ± 0.00

strategy. We compare our algorithm against three meta-
algorithms adopted by prior state-of-the-art AI systems in
practice: (1) self-play from scratch (SP scratch) (Brown
& Sandholm, 2019); (2) self-play initialized from behav-
ior cloning (SP BC) (Li et al., 2020), and (3) self-play ini-
tialized from behavior cloning with regularization towards
the meta-strategy (SP BC reg) (Jacob et al., 2022). While
these AI systems further implement multi-step lookahead
with a few additional techniques, many of them only ap-
ply to sequential games, not the basic normal-form games.
Here, we focus on the comparison of the high-level game-
theoretic meta-algorithms.

Algorithm details. We also use the Hedge algorithm as the
optimizer for the self-play algorithm to update its strategy.
We choose the learning rate for the Hedge algorithm based
on theoretically optimal value and choose the regulariza-
tion parameter according to (Jacob et al., 2022). We refer
readers to Appendix D for more details.

6.2. Results

To answer Q1 and Q2, we evaluate the utility of the learned
strategy x̂ against the pre-specified meta-strategy ymeta, i.e.,
U1(x̂, y

⊗(n−1)
meta), as well as the exploitability of the learner

x̂, i.e., miny U1(x̂, y
⊗(n−1)). To measure the utility, we

evaluate the payoff of the agent’s converged strategy by
Monte Carlo methods with 3 × 105 games and report the
mean and standard deviation of 10 runs. As for the ex-
ploitability, pick the best exploiter strategy within 100 runs,
and report the payoff of the learner against that exploiter.

Convergence analysis. We first check the convergence for
each algorithm in both games:

MV: Table 1 reports the limiting solution each algorithm
converges to within 100 runs. Our algorithm (Hedge) con-
sistently converges to the good strategy [0, 1]. All self-play
variants have significant probability converge to the bad
strategy [1, 0], which has a negative utility against the cho-
sen meta-strategy ymeta = [0.49, 0.51].

SDG: We report that while our Hedge algorithm converges
to the strategy [0, 1, 0], all self-play variants consistently
converge to the strategy [0, 0, 1].

Utility and Exploitability. We summarize the results in
Table 2, which show that even in these two simple sym-
metric zero-sum games, none of the self-play algorithms
can consistently secure a non-negative payoff, i.e., an equal
share, in the worst case. This undesirable behavior persists
even without opponents making any adaptations! More-
over, based on these two games, we further conclude two
potential failure modes of self-play algorithms: (1) For
games with multiple NEs, such as MV, self-play methods
may converge to different NEs based on different initial-
ization. When the opponents’ meta-strategy (i.e., the initial
strategy for SP BC) lies close to the boundary of the con-
vergence basins of two different NEs, self-play algorithms
will have a non-zero probability of converging to both of
them due to the statistical randomness in the game. It is
likely one of the two NEs is undesirable against the meta-
strategy ymeta. (2) For games with a single NE, self-play
algorithms are still very likely to be attracted to this equi-
librium. A carefully designed game structure can result in
this NE yielding a negative utility against the chosen meta-
strategy, and hence jailbreak all self-play variants. The
aforementioned failure modes highlight a significant lim-
itation of self-play variants when being applied to diverse
and complex multiplayer games. In contrast, the princi-
pled algorithm according to our theory consistently beats
the meta-strategy of the opponents, receives a much higher
payoff, and secures an equal share. Regarding exploitabil-
ity, all learned strategies can be easily exploited by adver-
sarial opponents.

7. Conclusion
Unlike in the two-player zero-sum games, standard equi-
libria are no longer always the suitable solution concept for
multiplayer games. They are non-unique and lack mean-
ingful guarantees in general scenarios. This paper estab-

8

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

lishes a new theoretical framework that provides the solu-
tion concepts and the principled algorithms for multiplayer
games from the unique angle of achieving equal share.
We hope our results serve as the first step toward further
research on principled methodologies and algorithms for
multiplayer games.

Acknowledgement
The authors would like to thank Haifeng Xu for the help-
ful discussions. This work is supported by Office of Naval
Research N00014-22-1-2253.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Bai, Y., Jin, C., Mei, S., Song, Z., and Yu, T. Efficient

Φ-regret minimization in extensive-form games via on-
line mirror descent. arXiv preprint arXiv:2205.15294,
2022a.

Bai, Y., Jin, C., Mei, S., and Yu, T. Near-optimal learning of
extensive-form games with imperfect information. arXiv
preprint arXiv:2202.01752, 2022b.

Bakhtin, A., Wu, D. J., Lerer, A., Gray, J., Jacob, A. P.,
Farina, G., Miller, A. H., and Brown, N. Mastering
the game of no-press diplomacy via human-regularized
reinforcement learning and planning. arXiv preprint
arXiv:2210.05492, 2022.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak,
P., Dennison, C., Farhi, D., Fischer, Q., Hashme, S.,
Hesse, C., et al. Dota 2 with large scale deep reinforce-
ment learning. arXiv preprint arXiv:1912.06680, 2019.

Besbes, O., Gur, Y., and Zeevi, A. Stochastic multi-armed-
bandit problem with non-stationary rewards. Advances
in neural information processing systems, 27, 2014.

Brown, N. and Sandholm, T. Superhuman ai for heads-up
no-limit poker: Libratus beats top professionals. Sci-
ence, 359(6374):418–424, 2018.

Brown, N. and Sandholm, T. Superhuman ai for multi-
player poker. Science, 365(6456):885–890, 2019.

Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. Deep blue.
Artificial intelligence, 134(1-2):57–83, 2002.

Celli, A., Marchesi, A., Farina, G., and Gatti, N. No-regret
learning dynamics for extensive-form correlated equilib-
rium. Advances in Neural Information Processing Sys-
tems, 33:7722–7732, 2020.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge university press, 2006.

Chen, X. and Deng, X. 3-nash is ppad-complete. In Elec-
tronic Colloquium on Computational Complexity, vol-
ume 134, pp. 2–29. Citeseer, 2005.

Chen, X. and Peng, B. Hedging in games: Faster conver-
gence of external and swap regrets. Advances in Neu-
ral Information Processing Systems, 33:18990–18999,
2020.

Daniely, A., Gonen, A., and Shalev-Shwartz, S. Strongly
adaptive online learning. In International Conference on
Machine Learning, pp. 1405–1411. PMLR, 2015.

Daskalakis, C. Nash equilibria: Complexity, symmetries,
and approximation. Computer Science Review, 3(2):87–
100, 2009.

Daskalakis, C. and Panageas, I. Last-iterate convergence:
Zero-sum games and constrained min-max optimization.
arXiv preprint arXiv:1807.04252, 2018.

Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H.
The complexity of computing a nash equilibrium. SIAM
Journal on Computing, 39(1):195–259, 2009.

Daskalakis, C., Fishelson, M., and Golowich, N. Near-
optimal no-regret learning in general games. Advances
in Neural Information Processing Systems, 34:27604–
27616, 2021.

(FAIR)†, M. F. A. R. D. T., Bakhtin, A., Brown, N., Dinan,
E., Farina, G., Flaherty, C., Fried, D., Goff, A., Gray, J.,
Hu, H., et al. Human-level play in the game of diplomacy
by combining language models with strategic reasoning.
Science, 378(6624):1067–1074, 2022.

Freund, Y. and Schapire, R. E. A decision-theoretic gener-
alization of on-line learning and an application to boost-
ing. Journal of computer and system sciences, 55(1):
119–139, 1997.

Gray, J., Lerer, A., Bakhtin, A., and Brown, N. Human-
level performance in no-press diplomacy via equilibrium
search. arXiv preprint arXiv:2010.02923, 2020.

Hart, S. and Mas-Colell, A. A simple adaptive procedure
leading to correlated equilibrium. Econometrica, 68(5):
1127–1150, 2000.

9

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

Jacob, A. P., Wu, D. J., Farina, G., Lerer, A., Hu, H.,
Bakhtin, A., Andreas, J., and Brown, N. Modeling strong
and human-like gameplay with kl-regularized search.
In International Conference on Machine Learning, pp.
9695–9728. PMLR, 2022.

Jin, C., Liu, Q., Wang, Y., and Yu, T. V-learning–a simple,
efficient, decentralized algorithm for multiagent rl. arXiv
preprint arXiv:2110.14555, 2021.

Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R.,
Zhao, L., Qin, T., Liu, T.-Y., and Hon, H.-W. Suphx:
Mastering mahjong with deep reinforcement learning.
arXiv preprint arXiv:2003.13590, 2020.

Light, J., Cai, M., Shen, S., and Hu, Z. Avalonbench: Eval-
uating llms playing the game of avalon. In NeurIPS
2023 Foundation Models for Decision Making Work-
shop, 2023.

Moravčı́k, M., Schmid, M., Burch, N., Lisỳ, V., Morrill,
D., Bard, N., Davis, T., Waugh, K., Johanson, M., and
Bowling, M. Deepstack: Expert-level artificial intelli-
gence in heads-up no-limit poker. Science, 356(6337):
508–513, 2017.

Nash, J. Non-cooperative games. Annals of mathematics,
pp. 286–295, 1951.

Papadimitriou, C. H. and Roughgarden, T. Computing
equilibria in multi-player games. In SODA, volume 5,
pp. 82–91. Citeseer, 2005.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Song, Z., Mei, S., and Bai, Y. When can we learn general-
sum markov games with a large number of players
sample-efficiently? arXiv preprint arXiv:2110.04184,
2021.

Song, Z., Mei, S., and Bai, Y. Sample-efficient learning
of correlated equilibria in extensive-form games. arXiv
preprint arXiv:2205.07223, 2022.

Syrgkanis, V., Agarwal, A., Luo, H., and Schapire, R. E.
Fast convergence of regularized learning in games. Ad-
vances in Neural Information Processing Systems, 28,
2015.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu,
M., Dudzik, A., Chung, J., Choi, D. H., Powell, R.,
Ewalds, T., Georgiev, P., et al. Grandmaster level in star-
craft ii using multi-agent reinforcement learning. Nature,
575(7782):350–354, 2019.

Von Neumann, J. and Morgenstern, O. Theory of games
and economic behavior, 2nd rev. 1947.

Wei, C.-Y., Lee, C.-W., Zhang, M., and Luo, H. Linear
last-iterate convergence in constrained saddle-point op-
timization. arXiv preprint arXiv:2006.09517, 2020.

Ye, D., Chen, G., Zhang, W., Chen, S., Yuan, B., Liu, B.,
Chen, J., Liu, Z., Qiu, F., Yu, H., et al. Towards play-
ing full moba games with deep reinforcement learning.
Advances in Neural Information Processing Systems, 33:
621–632, 2020.

Young, H. P. Strategic Learning and its Limits. Oxford
University Press, 11 2004. ISBN 9780199269181.

Zha, D., Xie, J., Ma, W., Zhang, S., Lian, X., Hu, X., and
Liu, J. Douzero: Mastering doudizhu with self-play deep
reinforcement learning. In international conference on
machine learning, pp. 12333–12344. PMLR, 2021.

10

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

A. Extended Preliminaries
A.1. Basic concepts

Strategy A (mixed) strategy of a player is a probability distribution over the player’s actions. For i ∈ [n], we use
ai ∈ A and xi ∈ ∆(A) to denote an action and a mixed strategy of the i-th player respectively. We use a−i ∈ A⊗n−1

and x−i ∈ ∆(A⊗n−1) to denote the actions and the mixed strategies of the other players. We denote Ui(xi, x−i) :=
Eai∼xi,a−i∼x−i

[Ui(ai, a−i)] .

Learning protocol We assume that the learner knows the game rule, and thus her own payoff function U1. At every
round t, all players take action simultaneously, and the learner only observes the opponents’ noisy actions (at2, a

t
3, . . . , a

t
n)

that are sampled from their strategies.

Best response Given a mixed strategy x−i of the other n − 1 players, the best response set BRi(x−i) of the i-th player
is defined as BRi(x−i) := argmaxai∈Ai

Ui(ai, x−i).

A.2. No-regret learning

No-regret learning is a commonly adopted strategy in game theory to find equilibrium solutions. We consider a T -step
learning procedure, where for each round t ∈ [T]: (1) the agent picks a mixed strategy µt over A, (2) the environment
picks an adversarial loss ℓt ∈ [0, 1]|A|. The expected utility for t-th round is defined as −⟨µt, ℓt⟩. To measure the
performance of a particular algorithm, a common approach is to consider regret, where the algorithm’s performance is
compared against the single best action in hindsight. Specifically, for policy sequence (µ1, . . . , µT) taken by an algorithm,
the static regret is given, by

Reg(T) =
T∑

t=1

⟨µt, ℓt⟩ −min
a∈A

T∑
t=1

ℓt(a).

We say that the algorithm is a no-regret algorithm if Reg(T) = o(T). One of such no-regret learning algorithms is Hedge
algorithm, which performs the following exponential weight updates:

µt+1(a) ∝ µt(a)e−ηtℓt(a), for ∀a ∈ A.

where ηt is the learning rate. See Algorithm 5 for the Hedge algorithm as applied to our problem setup.

A.3. 3-player majority and minority game

In this section, we give a formal definition of the 3-player majority and minority game.

We define the 3-player majority game as a symmetric zero-sum game with action space A := {0, 1} and the payoff function
given by:

U1(0, 0, 0) = U1(1, 1, 1) = 0

U1(0, 1, 0) = U1(0, 0, 1) = U1(1, 1, 0) = U1(1, 0, 1) = 1/2

U1(0, 1, 1) = U1(1, 0, 0) = −1.

In other words, players receive a positive payoff if they are part of the majority and a negative payoff if they are in
the minority. Correspondingly, we define the 3-player minority game as a symmetric zero-sum game with action space
A := {0, 1} and the payoff function given by:

U1(0, 0, 0) = U1(1, 1, 1) = 0

U1(0, 1, 0) = U1(0, 0, 1) = U1(1, 1, 0) = U1(1, 0, 1) = −1/2

U1(0, 1, 1) = U1(1, 0, 0) = 1.

In other words, players receive a positive payoff if they are part of the minority and a negative payoff if they are in the
majority.

11

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

B. Proofs for Section 4
In the sequel, we will prove Proposition 4.1 in Section B.1, Proposition 4.2 in Section B.2 and Propostion 4.3 in Section
B.3.

B.1. Proof of Proposition 4.1

In this section, we will prove (1), where both inequalities can be made strict in certain games.

Proof of Proposition 4.1. For the first inequality, note that for any (x1, . . . , xn):

U1(x1, · · · , xn) ≤ max
x1

U1(x1, · · · , xn),

which implies

min
x2,··· ,xn

U1(x1, · · · , xn) ≤ min
x2,··· ,xn

max
x1

U1(x1, · · · , xn).

By further taking maximum over x1 ∈ ∆(A), we prove that

max
x1

min
x2,··· ,xn

U1(x1, · · · , xn) ≤ min
x2,··· ,xn

max
x1

U1(x1, · · · , xn).

To show the first inequality can be strict, we consider the 3-player majority vote. Suppose 3 players adopt the mixed
strategies (α1, 1− α1), (α2, 1− α2) and (α3, 1− α3), respectively. It then holds that

U1(x1, x2, x3) = U1(α1, α2, α3)

= α1

(
−(1− α2)(1− α3) +

1

2
α2(1− α3) +

1

2
α3(1− α2)

)
+ (1− α1)

(
−α2α3 +

1

2
α2(1− α3) +

1

2
α3(1− α2)

)
.

By choosing α2 = α3 = 0 when α1 > 1/2 and α2 = α3 = 1 when α1 ≤ 1/2, it can be seen that

max
α1

min
α2,α3

U1(α1, α2, α3) ≤ max
α1

min{−α1,−(1− α1)} = −1

2
.

Note that

min
α2,α3

max
α1

U1(α1, α2, α3)

=
1

2
min
α2,α3

max{−2(1− α2)(1− α3) + α2(1− α3) + α3(1− α2),

− 2α2α3 + α2(1− α3) + α3(1− α2)}

=
1

2
min
α2,α3

max{3(α2 + α3)− 4α2α3 − 2, α2 + α3 − 4α2α3}

= 0.

Thus, we show that maxα1
minα2,α3

U1(α1, α2, α3) < minα2,α3
maxα1

U1(α1, α2, α3), which implies the first inequality
can be strict.

For the second inequality, due to a restriction on the minimization constraints, it is straightforward that

min
x2,··· ,xn

max
x1

U1(x1, · · · , xn) ≤ min
x

max
x1

U1(x1, x
⊗n−1).

In the sequel, we prove minx maxx1 U1(x1, x
⊗n−1) = 0 via contradiction. Note that by choosing x1 = x, we can show

that
min
x

max
x1

U1(x1, x
⊗n−1) ≥ 0.

12

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

Suppose for some game inequality holds, then by definition

∀x ∈ ∆(A),∃x′ ∈ ∆(A), s.t. U1(x
′, x, · · · , x) > 0.

Define the set-valued argmax function ϕ : ∆(A) → 2∆(A):

ϕ(x) := {x′ ∈ ∆(A) | U1(x
′, x, · · · , x) = max

x′′
U1(x

′′, x, · · · , x)}.

We claim that argmax function ϕ(x) is:

• Always non-empty and convex;

• Has a closed graph.

The first property is obvious, so we focus on the second one. Suppose that sequences {xi}, {yi} satisfy xi → x, yi → y
and yi ∈ ϕ(xi). Since the payoff function is (Lipschitz) continuous, maxx′′ U1(x

′′, ·) is continuous by Berge’s maximum
theorem. Thus maxx′′ U1(x

′′, xi, · · · , xi) converges to maxx′′ U1(x
′′, x, · · · , x). Meanwhile U1(yi, xi, · · · , xi) converges

to U1(y, x, · · · , x). Thus

U1(y, x · · · , x) = lim
i→∞

U1(yi, xi, · · · , xi) = lim
i→∞

max
x′′

U1(x
′′, xi, · · · , xi) = max

x′′
U1(x

′′, x, · · · , x).

This implies y ∈ ϕ(x), and that ϕ has a closed graph. Thus by Kakutani’s fixed point theorem, ∃x∗ : x∗ ∈ ϕ(x∗). Now we
have

U1(x
∗, · · · , x∗) = max

x′′
U1(x

′′, x∗, · · · , x∗) > 0,

which contradicts with the assumption that the game is zero-sum and symmetric. Consequently, we prove the equation. As
a result, we have

min
x2,··· ,xn

max
x1

U1(x1, · · · , xn) ≤ min
x

max
x1

U1(x1, x
⊗n−1) = 0.

To show the second inequality can be strict, we consider a 3-player minority game. If the other two players act 0 and 1,
respectively, then the learner always receive −1/2 payoff, which is strictly less than 0. We then finish the proofs.

B.2. Proof of Proposition 4.2

In this section, we will prove (2), where the inequality can be made strict in certain games.

Proof of Proposition 4.2. In the proof of Proposition 4.1, we have already shown that minx maxx1 U1(x1, x
⊗n−1) = 0.

Thus, it remains to prove the inequality in (2).

Note that for any x1, x ∈ ∆(A), we have

U1(x1, x
⊗n−1) ≤ max

x1∈∆(A)
U1(x1, x

⊗n−1),

which implies for any x1 ∈ ∆(A)

min
x∈∆(A)

U1(x1, x
⊗n−1) ≤ min

x∈∆(A)
max

x1∈∆(A)
U1(x1, x

⊗n−1).

By further taking maximum over x1 ∈ ∆(A), we show that

max
x1∈∆(A)

min
x∈∆(A)

U1(x1, x
⊗n−1) ≤ min

x∈∆(A)
max

x1∈∆(A)
U1(x1, x

⊗n−1).

To show that the inequality can be strict, we consider the scenario where the learner is involved in a 3-player majority game
and plays a mixed strategy (β, 1 − β) (i.e. play 0 w.p. β; play 1 w.p. 1 − β). And the two opponents adopt an identical
mixed strategy (p, 1 − p) (i.e. play 0 w.p. p; play 1 w.p. 1 − p). Then, we can calculate the payoff of the learner as
U1(β, p, p) = β(−(1−p)2+p(1−p))+(1−β)(−p2+p(1−p)). It then follows that maxβ∈[0,1] minp∈[0,1] U1(β, p, p) ≤
maxβ∈[0,1] minp∈{0,1} U1(β, p, p) = −1/2, which is strictly less than 0. Thus, we finish the proofs.

13

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

B.3. Proof of Proposition 4.3

Proof of Proposition 4.3. Let Pw/o(i1, . . . , in−1) denote the probability of observing (i1, . . . , in−1) when sampling n− 1
points from N without replacement, and let Pw(i1, . . . , in−1) denote the probability of observing (i1, . . . , in−1) when
sampling n− 1 points from N with replacement. For any a, we then have

Ex−1
[U1(a, x−1)] =

∑
(i1,...,in−1)

Pw/o(i1, . . . , in−1)U1(a, xi1 , . . . , xin−1
)

U1(a, x̄
⊗n−1) =

∑
(i1,...,in−1)

Pw(i1, . . . , in−1)U1(a, xi1 , . . . , xin−1
).

Note that ∥U1∥∞ ≤ 1. Thus, we have∣∣Ex−1 [U1(a, x−1)]− U1(a, x̄
⊗n−1)

∣∣
≤

∑
(i1,...,in−1)

∣∣∣Pw/o(i1, . . . , in−1)− Pw(i1, . . . , in−1)
∣∣∣

=
∑

(i1,...,in−1) has repeated value

Pw(i1, . . . , in−1)− Pw/o(i1, . . . , in−1)

+
∑

(i1,...,in−1) no repeated value

Pw/o(i1, . . . , in−1)− Pw(i1, . . . , in−1)

= 2
∑

(i1,...,in−1) has repeated value

Pw(i1, . . . , in−1)− Pw/o(i1, . . . , in−1)

= 2

(
1− N(N − 1) . . . (N − n+ 2)

Nn−1

)
= 2

(
1−

(
1− 1

N

)(
1− 2

N

)
. . .

(
1− n− 2

N

))
≤ 2

(
1−

(
1− n− 2

N

)n−2
)

≤ 2(n− 2)2

N
.

C. Proofs for Section 5
In Section C.1, we establish guarantees for the Hedge algorithm, SAOLH, and behavior cloning. In Section C.2, we
provide a detailed discussion of the matching lower bounds and prove Theorem 5.4 and Theorem 5.5.

C.1. Guarantees for efficient algorithms

In the sequel, we establish guarantees for the Hedge algorithm by proving Theorem 5.1 in Section C.1.1, for SAOLH by
proving Theorem 5.2 in Section C.1.2, and for behavior cloning by proving Theorem 5.3 in Section C.1.3.

C.1.1. PROOF OF THEOREM 5.1

In this section, we establish guarantees for the Hedge algorithm when facing fixed opponents.

Proof of Theorem 5.1. Let a⋆ ∈ argmaxa∈AU1(·, y⊗n−1). We then have

u⋆ − 1

T

T∑
t=1

ut(xt)

14

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

= U1(a
⋆, y⊗n−1)− 1

T

T∑
t=1

ut(xt)

= U1(a
⋆, y⊗n−1)− 1

T

T∑
t=1

U1(a
⋆, at−1)︸ ︷︷ ︸

(i)

+
1

T

T∑
t=1

U1(a
⋆, at−1)−

1

T

T∑
t=1

U1(x
t, at−1)︸ ︷︷ ︸

(ii)

+
1

T

T∑
t=1

U1(x
t, at−1)−

1

T

T∑
t=1

ut(xt)︸ ︷︷ ︸
(iii)

For (i), by Hoeffding’s inequality and union bound, we have with probability at least 1− δ that

(i) ≤ O(

√
log(A/δ)

T
)

For (ii), by Hedge algorithm, we have

(ii) ≤ O(

√
log(A)

T
)

For (iii), note that {U1(x
t, at−1) − ut(xt)}Tt=1 is a martingale difference sequence, thus by Azuma–Hoeffding inequality,

we have with probability at least 1− δ that

(iii) ≤ O(

√
log(1/δ)

T
).

Combining the above results, we have

u⋆ − 1

T

T∑
t=1

ut(xt) ≤ C

√
log(A/δ)

T

for some absolute constant C > 0. Thus we finish the proofs.

C.1.2. PROOF OF THEOREM 5.2

In this section, we establish guarantees for SAOLH when facing adaptive opponents.

The basic idea behind SAOLH is to execute H in parallel over each interval within a carefully selected set. This algorithm
dynamically adjusts the weight of each interval based on the previously observed regret. In each round, SAOLH selects
an interval in proportion to its assigned weight, applies H to each time slot within this interval, and follows its advice.
Through this mechanism, SAOLH achieves a near-optimal performance on every time interval. We will leverage the
strong adaptivity of SAOLH in our proofs.

Proof of Theorem 5.2. Let I be any fixed interval in [0, T], a0 ∈ argmaxa∈A
{∑

t∈I ut(a)
}

and ut,⋆ := maxa∈A ut(a).
It holds that ∑

t∈I

(
ut,⋆ − ut(xt)

)
=
∑
t∈I

(
ut,⋆ − ut(a0)

)
︸ ︷︷ ︸

(i)

+
∑
t∈I

(
ut(a0)− U1(a0, a

t
−1)
)

15

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

+
∑
t∈I

(
U1(a0, a

t
−1)− U1(x

t, at−1)
)

︸ ︷︷ ︸
(ii)

+
∑
t∈I

(
U1(x

t, at−1)− ut(xt)
)
.

For (i), it can be seen that

(i) =
∑
t∈I

(
ut,⋆ − ut(a0)

)
≤ |I|max

t∈I

{
ut,⋆ − ut(a0)

}
≤ 2VI |I|.

Here the last inequality follows from the following argument: otherwise there exists t0 ∈ I such that ut0,⋆−ut0(a0) > 2VI .
Let a1 ∈ argmaxa∈Au

t0(a). For all t ∈ I, it then holds that ut(a1) ≥ ut0(a1) − VI = ut0,⋆ − VI > ut0(a0) + VI ≥
ut(a0). Contradict to the definition of a0!

For (ii), we have

(ii) ≤ max
a∈A

∑
t∈I

(
U1(a, a

t
−1)− U1(x

t, at−1)
)
≤ C(

√
logA+ log T)

√
|I|,

where the last inequality follows from Theorem 1 in (Daniely et al., 2015).

Combining the upper bound of (i) and (ii), we have for any fixed interval I ⊂ [0, T],∑
t∈I

(
ut,⋆ − ut(xt)

)
≤ 2VI |I|+

∑
t∈I

(
ut(a0)− U1(a0, a

t
−1)
)
+ C(

√
logA+ log T)

√
|I|

+
∑
t∈I

(
U1(x

t, at−1)− ut(xt)
)
.

We segment the time horizon T into T/|I| batches {Ij} with each length |I|. It then holds for all j that∑
t∈Ij

(
ut,⋆ − ut(xt)

)
≤ 2VIj |I|+

∑
t∈Ij

(
ut(a0)− U1(a0, a

t
−1)
)
+ C(

√
logA+ log T)

√
|I|

+
∑
t∈Ij

(
U1(x

t, at−1)− ut(xt)
)
.

Sum over j gives

D-Reg(T)

≤ 2VT |I|+
T∑

t=1

(
ut(a0)− U1(a0, a

t
−1)
)

︸ ︷︷ ︸
(iii)

+C(T/
√

|I|) · (
√
logA+ log T)

+

T∑
t=1

(
U1(x

t, at−1)− ut(xt)
)

︸ ︷︷ ︸
(iv)

.

For (iii), note that {ut(a) − U1(a, a
t
−1)}Tt=1 is a martingale difference sequence, we have with probability at least 1 − δ

that

(iii) ≤ max
a∈A

T∑
t=1

(
ut(a)− U1(a, a

t
−1)
)
≤ O

(√
T log(A/δ)

)
,

16

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

where the last inequality follows from Azuma–Hoeffding inequality and union bound.

For (iv), note that {U1(x
t, at−1) − ut(xt)}Tt=1 is a martingale difference sequence, thus by Azuma–Hoeffding inequality,

we have with probability at least 1− δ that

(iv) ≤ O
(√

T log(1/δ)
)
.

Consequently we have with probability at least 1− δ that

D-Reg(T) ≤ 2VT |I|+ C(T/
√
|I|) · (

√
logA+ log T) +O

(√
T log(A/δ)

)
.

Choosing |I| = (T/VT)
2/3, we have with probability at least 1− δ that

D-Reg(T) ≤ O
(
V

1/3
T T 2/3(

√
log(A/δ) + log T)

)
.

Finally, by the definition of uavg(T) and u†, we show that

uavg(T) ≥ u† − CV
1/3
T T−1/3

(√
log(A/δ) + log T

)
for some absolute constant C.

C.1.3. PROOF OF THEOREM 5.3

In this section, we establish guarantees for behavior cloning (Algorithm 2) when facing adaptive opponents.

Proof of Theorem 5.3. Note that

E

[
T∑

t=1

ut(xt)

]
≥ −1 + E

[
T∑

t=2

ut(xt)

]

= −1 + E

[
T∑

t=2

U1(a
t−1
2 , (yt)⊗n−1)

]

≥ −1− VT − E

[
T∑

t=2

U1(a
t−1
2 , (yt−1)⊗n−1)

]
(by the defition of VT)

= −1− VT − E

[
T∑

t=2

U1(y
t−1, (yt−1)⊗n−1)

]
(since at−1

2 ∼ yt−1)

= −1− VT (since the game is symmetric and zero-sum)

Finally, by the definition of uavg(T), we finish the proofs.

C.2. Matching lower bounds

Upon examining Theorem 5.2 alongside Theorem 5.3, it becomes apparent that Theorem 5.2 benchmarks against a more
stringent standard (i.e., the dynamic oracle) and incurs a larger error of V 1/3

T T−1/3, while Theorem 5.3 sets its comparison
against a baseline metric (i.e., the average payoff) and attains a smaller error of VT /T . Regarding this observation, one
might aspire to devise an algorithm whose payoff satisfies: uavg(T) ≥ u†−Õ(VT /T). However, Theorem 5.4 and Theorem
5.5 demonstrate that such a goal is unattainable, by exploring the fundamental limits faced when competing against non-
stationary opponents.

Theorem 5.4 shows, when contending with non-stationary opponent, the optimal algorithm must incur a dynamic regret at
least order of V 1/3

T T 2/3, closing off the possibility of attaining a better VT rate. It’s noteworthy that a similar lower bound

17

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

for dynamic regret has already been established under broader conditions (Besbes et al., 2014). The distinction of Theorem
5.4 lies in further restricting the hard problems to be symmetric games, implying that the structure of symmetric game does
not offer an advantage in improving dynamic regret in the worst case. By comparing this lower bound with Theorem 5.2,
it is evident that SAOLH is demonstrated to be minimax optimal, albeit with the inclusion of some logarithmic factors.

Theorem 5.5 establishes the fundamental limit when comparing to average payoff 0. The guarantees achieved by Theorem
5.3 can not be improved in the worst case, showing behavior cloning is demonstrated to be optimal upto some constant.

C.2.1. PROOF OF THEOREM 5.4

Proof of Theorem 5.4. We define

U
(3)
1 (a, b, c) :=

payoff for 3-player majority game if a, b, c ∈ {0, 1}
−1 if a /∈ {0, 1}, b, c ∈ {0, 1}
defined by symmetric o.w.

which is basically the payoff function for 3-player majority game with extra dummy actions. We then define

U
(n)
1 (a, a2, . . . , an) :=

1

(n− 1)(n− 2)

∑
2≤i ̸=j≤n

U
(3)
1 (a, ai, aj).

We consider a game that evolves stochastically, with n players, action space A = {0, 1, . . . , A−1}, and the payoff function
of the first player given by U

(n)
1 . We segment the decision horizon T into T/∆T batches {Tj}, with each batch comprising

∆T episodes. We consider two distinct scenarios:

• Case1: All the other players employ a mixture strategy (1/2 − ϵ, 1/2 + ϵ) (i.e., playing 0 with probability 1/2 − ϵ,
playing 1 with probability 1/2 + ϵ);

• Case 2: All the other players employ a mixture strategy (1/2 + ϵ, 1/2 − ϵ) (i.e., playing 0 with probability 1/2 + ϵ,
playing 1 with probability 1/2− ϵ);

At the beginning of each batch, one of these scenarios is randomly selected (with equal probability) and remains constant
throughout that batch.

Let m = T/∆T represent total number of batches. We fix some algorithm and a batch j ∈ {1, . . . ,m}. Let δj ∈ {1, 2}
indicate batch j belongs to Case1 or Case2. We denote by Pj

δj
the probability distribution conditioned on batch j belongs

to Case δj , and by P0 the probability distribution when all the other players employ a mixture strategy (1/2, 1/2). We
further denote by Ej

δj
[·] and E0[·] the corresponding expectations. We denote by N j

a the number of times action a was
played in batch j. If the batch j belongs to Case δj , then the optimal action in the batch is −δj + 2. We first present a
useful lemma.

Lemma C.1. Let f : {−1, 0, 1/2}|Tj |×A → [0,M] be any bounded real function defined on the payoff matrices R. Then,
for any δj ∈ {1, 2}, ϵ ≤ 1/4:

Ej
δj
[f(R)]− E0[f(R)] ≤ M

2

√
−2|Tj | ln (1− 4ϵ2) ≤ 2Mϵ

√
∆T .

By Lemma C.1 with f = N j
−δj+2, we have

Ej
δj
[N j

−δj+2]− E0[N
j
−δj+2] ≤ 2ϵ|Tj |

√
∆T . (4)

Note that

Ej
δj
[ut(xt)] = −Pj

δj
(xt /∈ {0, 1}) + (−ϵ− 2ϵ2)Pj

δj
(xt = δj − 1) + (ϵ− 2ϵ2)Pj

δj
(xt = −δj + 2)

≤ (−ϵ− 2ϵ2)Pj
δj
(xt ̸= −δj + 2) + (ϵ− 2ϵ2)Pj

δj
(xt = −δj + 2)

18

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

= −ϵ− 2ϵ2 + 2ϵ · Pj
δj
(xt = −δj + 2),

therefore,

Ej
δj

∑
t∈Tj

ut(xt)

 ≤ (−ϵ− 2ϵ2)|Tj |+ 2ϵ · Ej
δj
[N j

−δj+2]

≤ (−ϵ− 2ϵ2)|Tj |+ 2ϵ · Ej
0[N

j
−δj+2] + 4ϵ2|Tj |

√
∆T . (by (4))

Consequently, we have

1

2
Ej
1

∑
t∈Tj

ut(xt)

+
1

2
Ej
2

∑
t∈Tj

ut(xt)

 ≤ (−ϵ− 2ϵ2)|Tj |+ ϵ|Tj |+ 4ϵ2|Tj |
√

∆T . (5)

It then holds that

EAlg

 m∑
j=1

∑
t∈Tj

ut(xt)

 =

m∑
j=1

EAlg

∑
t∈Tj

ut(xt)

=

m∑
j=1

EAlg

1
2
Ej
1

∑
t∈Tj

ut(xt)

+
1

2
Ej
2

∑
t∈Tj

ut(xt)

≤

m∑
j=1

((−ϵ− 2ϵ2)|Tj |+ ϵ|Tj |+ 4ϵ2|Tj |
√

∆T)

= −2ϵ2T + 4ϵ2T
√

∆T .

Set ϵ = min{1/(8
√
∆T), VT∆T /T}. We then have

EAlg[D-Reg(T)] = (ϵ− 2ϵ2)T − EAlg

[
T∑

t=1

ut(xt)

]
≥ (ϵ− 2ϵ2)T − (−2ϵ2T + 4ϵ2T

√
∆T)

= ϵT − 4ϵ2T
√

∆T

= ϵT (1− 4ϵ
√
∆T)

≥ 1

2
ϵT

=
1

2
min

{
1

8
√
∆T

,
VT∆T

T

}
T.

Choosing ∆T = (T/VT)
2/3, we then have

EAlg[D-Reg(T)] ≥ CV
1/3
T T 2/3.

Recall the definition of uavg(T) and u†, we then finish the proofs.

We prove Lemma C.1 in the following.

Proof of Lemma C.1. We have that

Ej
δj
[f(R)]− E0[f(R)] =

∑
R

f(R)
(
Pj
δj
(R)− P0(R)

)
19

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

≤
∑

R:Pj
δj

(R)≥P0(R)

f(R)
(
Pj
δj
(R)− P0(R)

)
≤ M

∑
R:Pj

δj
(R)≥P0(R)

(
Pj
δj
(R)− P0(R)

)

=
M

2
∥Pj

δj
− P0∥TV

≤ M

2

√
2KL(P0 ∥ Pj

δj
), (6)

where the last ineqaulity follows from Pinsker’s inequality. Let Rt ∈ RA be a random vector denoting the payoff for each
action at time t, and let Rt ∈ Rt×A denote the payoff matrix received upon time t: Rt = [R1, . . . , Rt]

T . By the chain rule
for the relative entropy, we have

KL(P0 ∥ Pj
δj
) =

|Tj |∑
t=1

ERt−1

[
KL
(
P0(Rt | Rt−1) ∥ Pj

δj
(Rt | Rt−1)

)]
. (7)

Note that

P0(Rt = [−1, 0,−1, . . . ,−1] | Rt−1) = P0(Rt = [0,−1,−1, . . . ,−1] | Rt−1) = 1/4

P0(Rt = [1/2, 1/2,−1, . . . ,−1] | Rt−1) = 1/2.

In the case δj = 1, we have

Pj
δj
(Rt = [−1, 0,−1, . . . ,−1] | Rt−1) = (1/2 + ϵ)2

Pj
δj
(Rt = [0,−1,−1, . . . ,−1] | Rt−1) = (1/2− ϵ)2

Pj
δj
(Rt = [1/2, 1/2,−1, . . . ,−1] | Rt−1) = 2(1/2 + ϵ)(1/2− ϵ).

In the case δj = 2, we have

Pj
δj
(Rt = [−1, 0,−1, . . . ,−1] | Rt−1) = (1/2− ϵ)2

Pj
δj
(Rt = [0,−1,−1, . . . ,−1] | Rt−1) = (1/2 + ϵ)2

Pj
δj
(Rt = [1/2, 1/2,−1, . . . ,−1] | Rt−1) = 2(1/2 + ϵ)(1/2− ϵ).

Thus, we have

KL
(
P0(Rt | Rt−1) ∥ Pj

δj
(Rt | Rt−1)

)
(8)

=
1

4
ln

1/4

(1/2 + ϵ)2
+

1

4
ln

1/4

(1/2− ϵ)2
+

1

2
ln

1/2

2(1/2 + ϵ)(1/2− ϵ)

=− ln
(
1− 4ϵ2

)
. (9)

Combining (6), (7) and (8), we have

Ej
δj
[f(R)]− E0[f(R)] ≤ M

2

√
−2|Tj | ln (1− 4ϵ2).

If we further have ϵ ≤ 1/4, it then holds that − ln
(
1− 4ϵ2

)
≤ 16 ln(4/3)ϵ2 and consequently

Ej
δj
[f(R)]− E0[f(R)] ≤ M

2

√
−2|Tj | ln (1− 4ϵ2) ≤ 2Mϵ

√
|Tj | ≤ 2Mϵ

√
∆T .

20

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

C.2.2. PROOF OF THEOREM 5.5

Proof of Theorem 5.5. We consider a game that evolves stochastically, with n players, action space A = {0, 1, . . . , A−1},
and the same payoff function U

(n)
1 as outlined in Theorem 5.4. We segment the decision horizon T into T/∆T batches

{Tj}, with each batch comprising ∆T episodes. We consider two distinct scenarios:

• Case1: All the other players play 0;

• Case 2: All the other players play 1.

In Case 1, we have ut(0) = 0 and ut(a) = −1 for all a ̸= 0. In Case 2, we have ut(1) = 0 and ut(a) = −1 for all a ̸= 1.
At the beginning of each batch, one of these scenarios is randomly selected (with equal probability) and remains constant
throughout that batch.

Let m = T/∆T represent total number of batches. We fix some algorithm. Let δj ∈ {1, 2} indicate batch j belongs to
Case1 or Case2. We denote by Pj

δj
the probability distribution conditioned on batch j belongs to Case δj , and by Ej

δj
[·] the

corresponding expectation. It then holds that

EAlg

 m∑
j=1

∑
t∈Tj

ut(xt)

 =

m∑
j=1

EAlg

∑
t∈Tj

ut(xt)

=

m∑
j=1

EAlg

1
2
Ej
1

∑
t∈Tj

ut(xt)

+
1

2
Ej
2

∑
t∈Tj

ut(xt)

≤

m∑
j=1

EAlg

[
1

2
Ej
1

[
utj,1(xtj,1)

]
+

1

2
Ej
2

[
utj,1(xtj,1)

]]
,

where tj,1 represents the first episode of batch j and the inequality follows from the fact that ut ≤ 0. Note that
1

2
Ej
1

[
utj,1(xtj,1)

]
+

1

2
Ej
2

[
utj,1(xtj,1)

]
= −1

2

(
Pj
1(x

tj,1 ̸= 0) + Pj
2(x

tj,1 ̸= 1)
)

= −1

2

(
P(xtj,1 ̸= 0) + P(xtj,1 ̸= 1)

)
≤ −1

2
,

where the second equation follows from the fact that xtj,1 is independent of δj . Thus, we have

EAlg

 m∑
j=1

∑
t∈Tj

ut(xt)

 ≤ −m

2
= − T

2∆T
.

Choosing ∆T = T/VT , we have

EAlg

 m∑
j=1

∑
t∈Tj

ut(xt)

 ≤ −VT /2.

Recall the definition of uavg(T), we then finish the proofs.

D. Experiments Details
In this section, we provide additional details for our experiments.

D.1. Algorithms

We refer readers to Algorithm 3-6 for detailed implementation of algorithms in the experiment. For MV, we choose η = 1.
For SDG, we choose η = 2.

D.2. Computation Resources

The experiments are conducted on a server with 256 CPUs. Each experiment can be completed in a few minutes.

21

Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games

Algorithm 1 Self-play meta-algorithm
1: Initialize learner’s mixed strategy x1.
2: for t = 1, . . . , T do
3: Sample action ati ∼ xt for all player i ∈ [n].
4: Update strategy xt+1 using the gradient information U1(·, at−1).

Algorithm 2 Behavior Cloning
1: In the first round, play a ∼ Uniform(A).
2: for t = 2, . . . , T do
3: Play at−1

2 , i.e. the action played by Player 2 in the last round.

Algorithm 3 Self-Play

Require: Number of iterations T , action space A, learning rate ηt = η
√

log |A|
t , number of players n, and initialize

strategy x0.
1: for t = 1 to T do
2: Sample actions at−1

i ∼ xt−1 for i = 2, . . . , n. Denote at−1
−1 := (at−1

2 , . . . , at−1
n).

3: Update
xt(a) ∝ xt−1(a)exp{ηtU1(a, a

t−1
−1)},∀a ∈ A.

Algorithm 4 Self-Play with Regularization

Require: Number of iterations T , action space A, learning rate ηt = η
√

log |A|
t , number of players n, initialize strategy

x0, meta-strategy ymeta, and regularization parameter λ.
1: for t = 1 to T do
2: Sample actions at−1

i ∼ xt−1 for i = 2, . . . , n. Denote at−1
−1 := (at−1

2 , . . . , at−1
n).

3: Update

xt(a) ∝ exp

{
log x0(a) +

∑
τ<t ητU1(a, a

τ
−1) + λ

∑
τ<t ητ log ymeta(a)

1 + λ
∑

τ<t ητ

}
,∀a ∈ A.

Algorithm 5 Hedge

Require: Number of iterations T , action space A, learning rate ηt = η
√

log |A|
t , number of players n, and initialize

strategy x0.
1: for t = 1 to T do
2: Sample actions at−1

i ∼ ymeta for i = 2, . . . , n. Denote at−1
−1 := (at−1

2 , . . . , at−1
n).

3: Update
xt(a) ∝ xt−1(a)exp{ηtU1(a, a

t−1
−1)},∀a ∈ A.

Algorithm 6 Exploiter for strategy x

Require: Number of iterations T , action space A, learning rate ηt = η
√

log |A|
t , number of players n, and initialize

strategy x0.
1: for t = 1 to T do
2: Sample actions at−1

1 ∼ x.
3: Sample actions at−1

i ∼ xt−1 for i = 2, . . . , n. Denote at−1
−1 := (at−1

2 , . . . , at−1
n).

4: Update

xt(a) ∝ xt−1(a)exp

{
− ηt
n− 1

n∑
i=2

U1

(
at−1
1 , at−1

−1 [: i− 1], a, at−1
−1 [i+ 1 :]

)}
,∀a ∈ A.

22

