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Imagination will often carry us to worlds that never were.
But without it we go nowhere — Carl Sagan.

ABSTRACT

Like humans devoid of imagination, current machine learning systems lack the
ability to adapt to new, unexpected situations by foreseeing them, which makes
them unable to solve new tasks by analogical reasoning. In this work, we introduce
a new compositional imagination framework that improves a model’s ability to
generalize out-of-distribution. One of the key components of our framework is
object-centric inductive biases that enables models to perceive the environment
as a series of objects, properties, and transformations. By composing these key
ingredients, it is possible to generate new unseen tasks that, when used to train the
model, improve systematic generalization. Experiments on a simplified version
of the Abstraction and Reasoning Corpus (ARC) demonstrate the effectiveness of
our framework.

1 INTRODUCTION

Using simple concepts as building blocks, humans have the capacity to compose and enhance knowl-
edge by relating it to previous experiences. Such analogical reasoning [23, 21] leverages the compo-
sitional structure of the world to make sense of new experiences and to imagine previously unseen
scenarios. Many machine learning models are also able to acquire knowledge from data and use it
successfully to perform a given task. However, their ability to adapt this knowledge to new domains
remains unsatisfactory [4].

Objects are one of the core abstractions of the human brain when applying analogical reason-
ing [23]. For instance, we can infer the properties of a new object by transferring our knowl-
edge of these properties from similar objects [21]. This realization has inspired a recent body
of work that focuses on learning models that discover objects in a visual scene without supervi-
sion [8, 17, 10, 27, 11, 3, 28, 20]. Many of these works propose several inductive biases that lead to
a visual scene decomposition in terms of its constituting objects. The expectation is that such object-
centric decomposition would lead to better generalization since it better represents the underlying
structure of the physical world [22]. To the best of our knowledge, the effect of such object-centric
representations for systematic generalization in visual reasoning tasks remains largely unexplored.

In an attempt to better measure the gap between machine and human learning, Chollet [4] introduced
the Abstraction and Reasoning Corpus (ARC). ARC consists of visual analogy tasks made of few
input-output pairs. The goal of a model is to learn to infer the program applied to the inputs from few
demonstrations and test it on novel samples. The ARC challenge remains insurmountable by current
ML systems. Chollet [4] hypothesizes that a successful algorithm should be able to synthetize new
solutions by recombining a set of subprograms or primitives based on core knowledge [23].

Dreamcoder [7] is one of the methods that are closest to Chollet’s desiderata for solving ARC. In
their work, Ellis et al. [7] propose imagining new program instances by composing primitives from
a domain-specific language (DSL) and training the model to recognize the resulting solutions. In
their work, the authors show that augmenting the training data with imagined programs is critical in
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a low data regime. They also test their model on a suite of program induction domains where the
developer can anticipate which primitives it needs to provide in the initial DSL. In a visual domain
such as ARC, however, such primitives require more high-level notions related to core knowledge
and are difficult to anticipate.

In this work, we propose a way of using object-centric inductive biases to derive a new composi-
tional imagination framework in which a model can learn a series of concepts without the need for
specifying a DSL. We show that by imagining new scenarios that are composed of learned concepts,
and by learning to predict back those concepts, the model better generalizes to compositions unseen
during training. Finally, since exploring new methods directly on ARC is a daunting task, we intro-
duce Sort-of-ARC, a dataset where the programs operate on objects and are conditioned on some of
their attributes in a controlled environment.

2 RELATED WORK

Visual Reasoning. Both Hoshen & Werman [13] and Barrett et al. [2] propose to assess the rea-
soning ability of a neural network by applying standardized intelligence tests such as Raven’s Pro-
gressive Matrices (RPM) [15, 35]. These kinds of problems have inspired a large number of deep
learning methods [12, 14, 24, 38, 31, 34, 36]. In a recent survey, Mitchell [21] recommends evalu-
ating models on generative tasks that focus on human core knowledge [23]. ARC presents one such
task, where rather than choosing an answer, the solver has to generate its own solution, and hence
is more resistant to learning shortcuts (unlike in the case of RPM). However, ARC remains unap-
proachable by current deep learning methods. Since its release, the neural abstract reasoner [16] is
the only deep learning method that succeeds in a reduced subset of ARC’s problems.

Object-centric Representations. The objective of this line of work is to represent a visual scene
in terms of the objects that compose it. Spatial mixture models [20, 3, 11] define a Gaussian mix-
ture model weighted by the slot masks decoded from a set of learned structured latents. Spatial-
transformer-based models further disentangle each slot’s latent representation into several variables
(e.g. content, location, presence, depth) [8, 17, 5, 25, 19]. All these approaches focus on the gener-
ative abilities of the models; in our case, we study the impact of object-centric inductive biases on
systematic generalization of the models in a visual reasoning task. We observe that modularity of
representations is as important as the mechanisms [9] that operate on them. Additionally, we show
that object-centric inductive biases of both representations and mechanisms allow us to derive an
imagination framework that leads to better systematic generalization.

Imagination in Deep Learning. It is well known that data generation techniques such as data
augmentation [1, 6, 32], domain randomization [26], and mixup [37] can be used to improve the
generalization capacity of a model. These methods tend to generate samples that lie in the training
set manifold. Thus, they are not adequate for algorithmic reasoning tasks that that evaluate models
on completely novel situations. Another body of work leverages the compositional structure of the
world and of algorithms to generate samples that could not be obtained by interpolation [18, 33, 7].
However, the latter works rely on a set of defined primitives or DSL, which is not possible to obtain
in more realistic or challenging settings.

3 OBJECT-CENTRIC COMPOSITIONAL IMAGINATION

We propose a model that leverages compositional inductive biases in the architecture to generate
new data points. Our model learns to compose object-centric representations with a series of learned
operations, and generate new imagined scenarios by re-arranging these components in novel ways.
Training models on imagined scenarios helps these models to generalize more systematically.

3.1 Sort-of-ARC

While the performance of a model on ARC is an interesting metric for comparing artificial reasoning
systems, ARC’s level of difficulty makes it impenetrable from a research perspective. We thus
introduce Sort-of-ARC, a toy version of ARC that shares the same input space and presents a series
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Figure 1: Sort-of-ARC episode. The top row contains the inputs and the bottom row the outputs
after applying a program on the input. In the figure, the program moves shape X one pixel up. The
model receives the first five columns as support set and the input (top) of the sixth column as query.
The output of the model is compared to the output of the query (bottom).

of simpler problems. These problems are generated by systematically applying a series of operations
that test different aspects of reasoning algorithms, and which might eventually be extended and scale
to the full benchmark. Some of these aspects include the ability to make abstractions such as objects,
retrieving these objects based on their properties, applying operations to objects, and generalizing to
new unseen combinations of objects, properties, and operations.

For each task, the model is given a support set indexed by S composed of visual I/O pairs {xi,yi}i∈S

with xi,yi ∈ Rd×d×c. A task transforms each input of the same support set according to a pro-
gram that is defined by a condition and a transformation. The condition selects the object prop-
erties to which we will apply a particular transformation (e.g., the condition/transformation pair
red/right translation would consist in translating all the red objects to the right).

During training, the model is presented with a support set of N I/O pairs {xi,yi} to which we ap-
ply the same condition/transformation rule and train it to reconstruct the corresponding output yq

of query input xq . The model has to first infer the underlying program that generated the support
set and then apply it to a query input to generate the right output. To explicitly measure the sys-
tematic generalization abilities of object-centric models, we consider an out-of-distribution (OOD)
train/test split setting where all the condition and transformation primitives are seen during training
individually, but some pairs are held-out in the test set. More details can be found in the Appendix A.

3.2 OUR MODEL

Our model is composed of two parts, a controller and an executor. The controller encodes the
support set and outputs an embedding containing instructions; the executor then modifies an input
query conditioned on these instructions. All our model variants and baselines differ from one another
by the executor architecture. We provide a schematic of our model in Figure 5 and more details in
Algorithm 1.

3.2.1 CONTROLLER

The controller encodes a set of pairs {xi,oi}i=1..N of inputs X and outputs O, and outputs an
instruction embedding z that will be given to the executor. We consider different architectures
for the controller: The perception backbone can either be slot-attention or CNN-based that would
encode each image in the support set. The backbone is then followed by a transformer encoder [29]
to output the instruction embedding z ∈ Rp given to the executor.

3.2.2 EXECUTOR

The executor takes as input a query xq ∈ Rd×d×c and an instruction embedding z ∈ Rp provided by
the controller, and outputs the resulting query modification oq ∈ Rd×d×c. This process is composed
of four main steps: (1) Decomposing the visual query input xq into a set of K entity-centric latent
representations H = {hk}k=1..K . (2) Translating the instruction embedding z into a neural program
via a selection bottleneck (details below). (3) Structured update of the the entity-centric latent query
set H according to the selected neural program. (4) Entity-centric rendering of the updated latent
set. Steps (1) and (4) are parametrized by a slot attention module [20] and a spatial broadcast
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decoder [30], respectively. The novelty of our approach lies in Steps (2) and (3), which we describe
in detail below.

Neural Program Selection Bottleneck. The executor translates an instruction embedding z into
a neural program via a key-query attention mechanism. This mechanism selects a (1) condition c,
which is used to select which latent slots the program should update; and a (2) transformation p,
which defines how the latent slots should be modified. We let (c, cprob), (p,pprob) = Selection(z)
be the output of this selection mechanism, with cprob,pprob the selection probabilities obtained by
the soft attention mechanism described below.

The queries of the two soft attention mechanisms are extracted from the instruction embedding z
with two different parametric operations, f c

query and fp
query, such that Qc = f c

query(z) ∈ R1×p and
Qp = fp

query(z) ∈ R1×p where c and p are used to index the condition and the transformation
selection mechanisms, respectively. The keys and values are partitioned and learned embeddings as
part of the model and we denote them as Kc, Vc ∈ RNc×p and Kp, Vp ∈ RNp×p, where Nc (resp.
Np) denotes the number of learned condition (resp. transformation) embeddings. The resulting
neural program is thus described by the softly selected condition c and transformation p embeddings
obtained by the usual key-query attention mechanism:

c = softmax(
QcK

T
c√

p
)Vc and p = softmax(

QpK
T
p√

p
)Vp (1)

Entity-Centric Update. Given a condition c and a transformation p, the latent slots H extracted
from a query image are updated in an entity-centric way. This update mechanism produces a latent
output Hnew = Update(H, c,p).

The condition c selects which slot to update by defining an update gate for each slot; for a
given slot k, the update gate αk is obtained by comparing it to the condition such that αk =
σ(MLPpres([hk, c])). The transformation p defines a slot-wise update h̃k = MLPup([hk,p]) such
that updated slot representation for slot k is defined by hnew

k = hk + αk ∗ h̃k. The output image is
then rendered using a Spatial Broadcast Decoder [30] on the new slots Hnew.

We let o = Decode(Hnew) be the output image obtained by the structured entity-centric update to
the query image x, conditioned on condition and transformation embeddings c and p.

3.3 COMPOSITIONAL IMAGINATION

Our main contribution consists of showing how object-centric inductive biases enable a learning
paradigm in which new tasks are imagined and composed of primitive concepts learned during
training. Similar to the work by Ellis et al. [7], this paradigm is loosely inspired by the wake-sleep
algorithm in which a recognition model (e.g., our controller) is trained on imagined data produced
by a generative model (e.g., our executor). We propose to imagine new scenarios by selecting, in a
random and uniform way, a condition ic and a transformation ip. We then train the model to predict
the proper condition and transformation indices given the imagined I/O set. During the imagination
phase, we reuse the episodes seen during the ”wake” phase X = {xi}i=1..N . The imagination phase
is thus composed of the following steps:

ic ∼ U(1, Nc), ip ∼ U(1, Np), (2)

o
ic,ip
i = Decode(Update(hi, cic ,pip)), z

ic,ip = Controller(X,Oic,ip) (3)

(cic,ip , c
ic,ip
prob ), (pic,ip ,p

ic,ip
prob ) = Selection(zic,ip). (4)

The model is trained to predict which condition/transformation were sampled to construct the imag-
ines episodes and thus minimize the following cross-entropy loss:

Lim = − log(c
ic,ip
prob )ic − log(p

ic,ip
prob )ip (5)

where (cic,ipprob )ic is the ic (and ip respectively) position of predicted probability vector for the inferred
condition cic .
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Figure 2: Train, validation, and test accuracy curves for our model when trained without (left) and
with (right) imagined episodes. Imagined episodes are introduced after epoch 300.

The overall training objective is thus composed of the query output prediction loss and the imag-
ination loss. Details about the coefficients and different warm-up schedules are given in the Ap-
pendix C.

4 EXPERIMENTS

Our main goal is to showcase that object-centric inductive biases allow us to derive a compositional
imagination training framework that help with systematic generalization. Thus, we address the
following question: Does training on imagined situations improve generalization on new unseen
situations composed of known training concepts? To do so, we propose a number of baselines
and model variations that specifically measure the importance of, on the one hand, object-centric
inductive biases in the representations and/or the execution and, on the other hand, the compositional
imagination framework that we propose.

Baselines. In order to verify whether object-centric representations are enough for systematic gen-
eralization to emerge we consider a baseline where we remove the selection bottleneck and the
mechanism that operate on slots is thus monolithic. This corresponds to the No Selection baseline
in Table 1. We additionally consider variations where the controller backbone to encode images in
the support set is either CNN-based or the same slot attention network than the executor.

Split No Selection No Imagination With Imagination
Full Slot Att. CNN/Slot Att. Full Slot Att. CNN/Slot Att. Full Slot Att.

Val In-D 98.9 ± 0% 98.3 ± 0.5% 98.6 ± 0.5% 94.8 ± 0.5% 95.4 ± 3.4%
Test OOD 20.4 ± 5.7% 13.1 ± 5.4% 34.9 ± 11.8% 36.8 ± 19.8% 58.6 ± 25.1%

Table 1: Accuracies on queries of the validation and OOD test set. Baselines are specified by their
controller/executor backbones (Slot Att. = Slot Attention). Results are averaged over five random
seeds.

Results The results in Table 1 and Figure 2 indicate that (1) object-centric representations are not
enough to obtain systematic generalization in a simple visual reasoning task and that the modularity
of the mechanisms that operate on slots is important; (2) our proposed compositional imagination
framework helps to generate scenarios that were not seen during training and leads to better system-
atic generalization of the model. On the other hand, we do observe a large variance in terms of OOD
performance. One hypothesis is that during imagination programs are sampled in a uniform way
and are not conditioned on the support set at hand. This unconditioned sampling may lead to invalid
programs that the controller cannot infer. How to sample valid program constitutes an interesting
future research direction. We provide qualitative results on the selectivity patterns of the proposed
method in Appendix A.

5 CONCLUSION

We have introduced a new compositional imagination framework to improve the performance of
machine learning models in analogical reasoning tasks. We leverage object-centric representations
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to decompose problems into a series of objects, properties, and transformations. Once learned, we
re-assemble these factors in novel ways, generating new unseen problems on which the model is
further trained. We obtain encouraging results on a simplified version of ARC that we will make
publicly available to facilitate further research on this challenging benchmark. Future research will
focus on multi-step reasoning tasks as well as adapting the model to the original ARC benchmark.
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A SORT-OF-ARC

We introduce Sort-of-ARC, a toy version of ARC that shares the same input space and presents
a series of simpler problems. Currently, all the images in Sort-of-ARC are of size 20 × 20, each
containing 3 objects of size 3×3. We list them in Figure 3. Each object is defined by a shape, a color
and position. There are 16 different shapes and 10 different colors in addition to the background
color. The positions are sampled so that none of the objects initially overlap with each other. Each
support set is composed of 5 input/output pairs and the model is trained to predict the output of a
single query image.

Each episode is constructed by sampling at random a condition and a transformation. The conditions
can be either on the shape index or on the color whereas the transformations correspond to simple
translations in one of the four cardinal directions. To avoid data points where the output is the same
as the input, when generating an episode, we make sure that the condition is satisfied for at least one
object of each input image of the support set.

Figure 3: List of object shapes present in the dataset

B QUALITATIVE RESULTS

Figure 4 shows the attention maps on the learned conditions and transformations given different
input programs. For each ground-truth program (defined by a ground truth condition and transfor-
mation) we report, for each partitioned condition (resp. transformation) their proportion of having
the maximum probability of being selected.The sparse pattern indicates a clear selectivity for each
of the different conditions and transforms (both in distribution and out-of-distribution) depending
on the ground-truth program despite some overlaps.

C MODEL AND TRAINING DETAILS

The model is trained on 10000 episodes. We distinguish between two phases during training: dur-
ing the first phase the model is trained on episodes coming from the training set only and on dur-
ing the second phase, imagined episodes are added and the model is trained to predict the condi-
tion/transformation that sampled to produce these episodes. In order for the imagination loss (Lim)
to be informative enough, we observed that it helped to wait for a few epochs before introducing it,
hence the two phases. The imagination loss is introduced after 300 epochs and the corresponding
coefficient in increased linearly from 0 to 10 during 200 epochs.

During both phases the model is trained to reconstruct both the query outputs (Lquery) and the outputs
of each input of the support set (Lsupport). We also include some auxiliary loss Lrecto train the
perception part of the model to reconstruct images X from encoded slots H before any update such
that Lrec = CrossEntropyLoss(X, decode(encode(X))) with H = encode(X).

The total loss is thus expressed as :

L = Lquery + Lsupport + αrecLrec + αimLim.
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Figure 4: Selection maps. For each ground truth condition (resp. transformation) we report the
probability of each condition (resp. transformation) embedding of being selected. Ground truth
indices are reported on the y axis and partitioned embedding indices on the x axis.

Following recommendations to train the slot attention model [20], we use a linear learning rate
warmup from 1−6 to 1−4 over the first 10 epochs. The overall pseudo-code is described in Figure 1
and a sketch of the model is described in Figure 5.

C.1 MODEL VARIATIONS

Controller The controller is composed of a perception backbone than can either be CNN or slot
attention-based [20]. The perception backbone is then followed by a transformer encoder [29] and a
mean average to aggregate the information from all the elements of the support set.

For the CNN-based backbone, each image (input and output) is independently encoded using a
simple CNN. For each pair in a support set we also encode the difference between the output and the
input. The input, output and difference embeddings are then concatenated to form the representation
of the I/O that will then be processed by the transformer encoder.

For the slot-based backbone, the slot attention module is shared with the perception part of the ex-
ecutor. The input of each I/O pair of a support set is first encoded into a set of slots Hin (starting
from random slots) and the output is encoded into a set of output slots Hout using the same slot
attention module but starting from the input slots Hin. The input and output slots are then concate-
nated in a slot-wise manner Hpair = [Hin,Hout] and an I/O pair is represented by a vector zs using
a weighted sum of each slot contribution such that:

zs =
∑

i=1..K

wih
s
i ,

with the slot-wise importance weight wi = fimportance(H
pair
i ) and the slot-wise contribution hs

i =

fcontribution(H
pair
i ) where both fimportance and fcontribution are parametrized with simple MLPs. Each

I/O representation of the support set will also be processed by the transformer encoder to get a final
support episode representation z that will be given to the Executor.

10
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Algorithm 1 Model pseudo-code
1: Initialize all parameters
2: Set max iters and warmup iters
3: for it ≤ max iters do
4: # Controller Block
5: {X,Y}, {xq,yq} ∼ D ▷ Sample support set and a query from the dataset
6: z = Controller(X,Y) ▷ Obtain program instructions
7: H = Slot Attention(xq) ▷ Extract slots
8: # Executor block
9: (c, cprob), (p,pprob) = Selection(z) ▷ Infer neural program

10: function UPDATE(H, c, p)
11: αk = MLPpres([hk, c]) ▷ Predict the presence of each slot for input update
12: h̃k = MLPupdate([hk,p]) ▷ Obtain update for each slot
13: hnew

k = hk + αk ∗ h̃k ▷ Update slots according to presence
14: return Hnew

15: end function
16: Hnew

k = Update(H, z)
17: o = Decode(Hnew) ▷ Decode updated slots
18: Lrec = cross entropy(o,yq) ▷ Compute reconstruction loss
19: # Imagination
20: if it ≥ warmup iters then
21: ic, ip ∼ U(1, Nc), U(1, Np) ▷ Randomly sample a neural program
22: o

ic,ip
i = Update(Hi, cic ,pip) ▷ Imagine new support outputs by applying the randomly

sampled program to the original inputs
23: {X, Ŷ} = {xi,o

ic,ip
i }i=1..N ▷ Build a new support set with imagined outputs

24: zic,ip = Controller(X, Ŷ) ▷ Obtain program instructions
25: c

ic,ip
prob ,p

ic,ip
prob = Selection(zic,ip) ▷ Infer randomly sampled neural program

26: Lim = − log(c
ic,ip
prob )ic − log(p

ic,ip
prob )ip ▷ Compute imagination loss

27: Ltotal = Lrec + Lim ▷ Add imagination loss to reconstruction loss
28: else
29: Ltotal = Lrec

30: end if
31: end for

No selection For the baseline without any selection bottleneck the slots are still updated in an
entity-centric manner but this time the output of the controller z is directly given to the updating
module such that, following the same notations introduced previously, a slot hi is updated as :

hnew
i = hi + g(hi, z),

with g parametrized by a simple MLP.
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Figure 5: Model architecture
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