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Abstract

Ensembling is a popular method used to im-
prove performance as a last resort. However,
ensembling multiple models finetuned from a
single pretrained model has been not very effec-
tive; this could be due to the lack of diversity
among ensemble members. This paper pro-
poses Multi-Ticket Ensemble, which finetunes
different subnetworks of a single pretrained
model and ensembles them. We empirically
demonstrated that winning-ticket subnetworks
produced more diverse predictions than dense
networks, and their ensemble outperformed the
standard ensemble on some tasks.

1 Introduction

Ensembling (Levin et al., 1989; Domingos, 1997)
has long been an easy and effective approach to im-
prove model performance by averaging the outputs
of multiple comparable but independent models.
Allen-Zhu and Li (2020) explain that different mod-
els obtain different views for judgments, and the
ensemble uses complementary views to make more
robust decisions. A good ensemble requires diverse
member models. However, how to encourage diver-
sity without sacrificing the accuracy of each model
is non-trivial (Liu and Yao, 1999; Kirillov et al.,
2016; Rame and Cord, 2021).

The pretrain-then-finetune paradigm has become
another best practice for achieving state-of-the-art
performance on NLP tasks (Devlin et al., 2019).
The cost of large-scale pretraining, however, is
enormously high (Sharir et al., 2020); This often
makes it difficult to independently pretrain multi-
ple models. Therefore, most researchers and prac-
titioners only use a single pretrained model, which
is distributed by resource-rich organizations.

This situation brings up a novel question to en-
semble learning: Can we make an effective en-
semble from only a single pre-trained model?
Although ensembles can be combined with the
pretrain-then-finetune paradigm, an ensemble of

Figure 1: When finetuning from a single pretrained
model (left), the models are less diverse (center). If
we finetune different sparse subnetworks, they become
more diverse and make the ensemble effective (right).

models finetuned from a single pretrained model
is much less effective than that using different pre-
trained models from scratch in many tasks (Raffel
et al., 2020). Naïve ensemble offers limited im-
provements, possibly due to the lack of diversity of
finetuning from the same initial parameters.

In this paper, we propose a simple yet effective
method called Multi-Ticket Ensemble, ensembling
finetuned winning-ticket subnetworks (Frankle and
Carbin, 2019) in a single pretrained model. We
empirically demonstrate that pruning a single pre-
trained model can make diverse models, and their
ensemble can outperform the naïve dense ensemble
if winning-ticket subnetworks are found.

2 Diversity in a Single Pretrained Model

In this paper, we discuss the most standard way of
ensemble, which averages the outputs of multiple
neural networks; each has the same architecture
but different parameters. That is, let f(x;θ) be the



output of a model with the parameter vector θ given
the input x, the output of an ensemble is fM(x) =∑

θ∈M f(x;θ)/|M|, where M = {θ1, ...,θ|M|}
is the member parameters.

2.1 Diversity from Finetuning
As discussed, when constructing an ensem-
ble fM by finetuning from a single pretrained
model multiple times with different random seeds
{s1, ..., s|M|}, the boost in performance tends to
be only marginal. In the case of BERT (Devlin
et al., 2019) and its variants, three sources of diver-
sities can be considered: random initialization of
the task-specific layer, dataset shuffling for stochas-
tic gradient descent (SGD), and dropout. However,
empirically, such finetuned parameters tend not to
be largely different from the initial parameters, and
they do not lead to diverse models (Radiya-Dixit
and Wang, 2020). Of course, if one adds signifi-
cant noise to the parameters, it leads to diversity;
however, it would also hurt accuracy.

2.2 Diversity from Pruning
To make models ensuring both accuracy and di-
versity, we focus on subnetworks in the pretrained
model. Different subnetworks employ different
subspaces of the pre-trained knowledge (Radiya-
Dixit and Wang, 2020; Zhao et al., 2020; Cao et al.,
2021); this would help the subnetworks to acquire
different views, which can be a source of desired di-
versity1. Also, in terms of accuracy, recent studies
on the lottery ticket hypothesis (Frankle and Carbin,
2019) suggest that a dense network at initialization
contains a subnetwork, called the winning ticket,
whose accuracy becomes comparable to that of the
dense one after the same training. Interestingly,
the pretrained BERT also has a winning ticket for
finetuning on downstream tasks (Chen et al., 2020).
Thus, if we can find diverse winning tickets, they
can be good ensemble members with the two desir-
able properties: diversity and accuracy.

3 Subnetwork Exploration

We propose a simple yet effective method, multi-
ticket ensemble, which finetunes different subnet-
works instead of dense networks. Because it could
be a key how to find subnetworks, we explore three
variants based on iterative magnitude pruning.

1Some concurrent and recent studies also investigate sub-
networks for effective ensemble (Durasov et al., 2021; Havasi
et al., 2021) for training-from-scratch settings of image recog-
nition.
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tasks using the BERT in this paper, the same problem hap-
pens in other settings generally. In the results by Raffel et al.
(2020), we found that this happened on almost all the tasks of
GLUE (Wang et al., 2018), SuperGLUE (Wang et al., 2019),
SQuAD (Rajpurkar et al., 2016), summarization, and machine
translations using the T5 models.
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Figure 2: Overview of iterative magnitude pruning.
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of 30%-pruning sub-networks, where M = 139

{FINE(✓s1 � ms1,30%, s1), ..., FINE(✓s|M| � 140
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the iterative magnitude pruning, and demonstrate059

that the structurally diversified sub-networks lead060

to stronger ensembles.061

2 Diversity of Finetuning from a Single062

Pretrained Model063

In this paper, we discuss the most standard way064

of ensembling, which averages the outputs of mul-065

tiple neural networks. If we use models with the066

same architecture, e.g., BERT, but with different067

parameters, the parameters of the member models068

are represented as M = {✓1, ...,✓|M|}. Let x and069

f(x;✓) be an input and the output by f with pa-070

rameter ✓ respectively, the output of their ensemble071

is as follows: fM(x) =
P

✓2M f(x;✓)/|M|.072

As discussed in the introduction, even if we con-073

struct ensemble fM by finetuning multiple models074

from a single pretrained model with different ran-075

dom seeds {s1, ..., s|M|}, the performance boost076

tends to be marginal. The source of diversities077

in the finetuned BERTs are the following random-078

nesses in the finetuning process: (1) random ini-079

tialization of the task-specific output layer, (2)080

dataset shuffling for stochastic gradient descent081

(SGD), and (3) dropout noise. However, empiri-082

cally, they do not necessarily lead to diverse mod-083

els, as Radiya-Dixit and Wang (2020) reported the084

finetuned parameters could not be far away.085

For diversifying models more, we propose to086

introduce a novel randomness, (4) pruning of the087

pretrained model before each finetuning. We ex-088

pect that, during finetuning, each sub-network ac-089

quires different views using different sub-spaces of090

the pretrained knowledge. This idea has two chal-091

lenges: the diversity and the accuracy of the sub-092

networks. Recent studies on the lottery ticket hy-093

pothesis (Frankle and Carbin, 2019) suggest that a094

dense neural network at an initialization contains a095

sub-network, called winning ticket, whose accuracy096

becomes comparable with that of the dense network097

after the same training steps. A pretrained BERT098

also has sparse sub-networks (e.g., 50%), which099

can achieve the same accuracy with the entire net-100

work when finetuning on downstream tasks (Chen101

et al., 2020). However, it is still unclear how di-102

verse winning tickets exist and how to find them103

tasks using the BERT in this paper, the same problem hap-
pens in other settings generally. In the results by Raffel et al.
(2020), we found that this happened on almost all the tasks of
GLUE (Wang et al., 2018), SuperGLUE (Wang et al., 2019),
SQuAD (Rajpurkar et al., 2016), summarization, and machine
translations using the T5 models.
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Figure 2: Overview of iterative magnitude pruning.
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Figure 2: Overview of iterative magnitude pruning (Sec-
tion 3.1). We can also use regularizers during finetuning
to diversify pruning (Section 3.2).

3.1 Iterative Magnitude Pruning

We employ iterative magnitude pruning (Frankle
and Carbin, 2019) to find winning tickets for sim-
plicity. Other sophisticated options are left for fu-
ture work. Here, we explain the algorithm (refer
to the paper for details). The algorithm explores
a good pruning mask via rehearsals of finetuning.
First, it completes a finetuning procedure of an ini-
tialized dense network and identifies the parameters
with the 10% lowest magnitudes as the targets of
pruning. Then, it makes the pruned subnetwork and
resets its parameters to the originally-initialized
(sub-)parameters. This finetune-prune-reset pro-
cess is repeated until reaching the desired pruning
ratio. We used 30% as pruning ratio.

3.2 Pruning with Regularizer

We discussed that finetuning with different random
seeds did not lead to diverse parameters in Sec-
tion 2.1. Therefore, iterative magnitude pruning
with different seeds could also produce less diverse
subnetworks. Thus, we also explore means of di-
versifying pruning patterns by enforcing different
parameters to have lower magnitudes. Motivated
by this, we experiment with a simple approach, ap-
plying an L1 regularizer (i.e., magnitude decay) to
different parameters selectively depending on the
random seeds. Specifically, we explore two policies
to determine which parameters are decayed and
how strongly they are, i.e., the element-wise coef-
ficients of the L1 regularizer, ls ∈ R≥0

|θ|. During
finetuning (for pruning), we add a regularization
term τ ||θs⊙ ls||1 with a positive scalar coefficient
τ into the loss of the task (e.g., cross entropy for
classification), where ⊙ is element-wise product.
This softly enforces various parameters to have a
lower magnitude among a set of random seeds and
could lead various parameters to be pruned.



Active Masking To maximize the diversity of
the surviving parameters of member models, it is
necessary to prune the surviving parameters of the
random seed s1 when building a model with the
next random seed s2. Thus, during finetuning with
seed s2, we apply the L1 regularizer on the first
surviving parameters. Likewise, with the follow-
ing seeds s3, s4, ..., si, ..., s|M|, we cumulatively
use the average of the surviving masks as the reg-
ularizer coefficient mask. Let msj ∈ {0, 1}|θ| be
the pruning mask indicating surviving parameters
from seed sj , the coefficient mask with seed si is
lsi =

∑
j<imsj/(i− 1). We call this affirmative

policy as active masking.

Random Masking In active masking, each co-
efficient mask has a sequential dependence on the
preceding random seeds. Thus, the training of en-
semble members cannot be parallelized. There-
fore, we also experiment with a simpler and paral-
lelizable variant, random masking, where a mask
is independently and randomly generated from a
random seed. With a random seed si, we gener-
ate the seed-dependent random binary mask, i.e.,
ls = mrand

si ∈ {0, 1}|θ|, where each element is
sampled from Bernoulli distribution and 0’s proba-
bility equals to the target pruning ratio.

4 Experiments

We evaluate the performance of ensembles us-
ing four finetuning schemes: (1) finetuning with-
out pruning (BASELINE), (2) finetuning of lottery-
ticket subnetworks found with the naïve iterative
magnitude pruning (BASE-LT), and (3) with L1 reg-
ularizer by the active masking (ACTIVE-LT) or (4)
random masking (RANDOM-LT). We also compare
with (5) BAGGING-based ensemble, which trains
dense models on different random 90% training
subsets. We use the GLUE benchmark (Wang et al.,
2018) as tasks. The implementation and settings
follow Chen et al. (2020)2 using the Transform-
ers library (Wolf et al., 2020) and its bert-base-
uncased pretrained model. We report the average
performance using twenty different random seeds.
Ensembles are evaluated using exhaustive combina-
tions of five members. We also perform Student’s
t-test for validating statistical significance3. Note

2We found a bug in Chen et al. (2020)’s implementation
on GitHub, so we fixed it and experimented with the correct
version.

3Note that not all evaluation samples satisfy independence
assumption.

MRPC STS-B
single ens. diff. single ens. diff.

BASELINE 83.48 84.34 +0.86 88.35 89.04 +0.69
(BAGGING) 82.87 84.19 +1.32 88.17 88.84 +0.68
BASE-LT 83.84 84.98 +1.14 88.37 89.16 +0.79
ACTIVE-LT 83.22 84.60 +1.38 88.39 89.32 +0.94
RANDOM-LT 83.53 85.05 +1.52 88.49 89.35 +0.86

Table 1: The performances (single, ens.) and the im-
provements by ensembling (diff.). Italic indicates that
the value is significantly larger than that of BASELINE.
Bold-italic indicates significantly larger than that of both
BASELINE and BASE-LT. Underline indicates the best.

Figure 3: Comparison of the performances and the num-
ber of ensemble members on MRPC (left) and STS-B
(right). They are represented as the relative gain com-
pared with BASELINE’s accuracy.

that, while the experiments focus on using BERT,
we believe that the insights would be helpful to
other pretrain-then-finetune settings in general4.

4.1 Accuracy

We show the results on MRPC (Dolan and Brock-
ett, 2005) and STS-B (Cer et al., 2017) in Table 1.
Multi-ticket ensembles (*-LT) outperform BASE-
LINE and BAGGING significantly (p < 0.001). This
result supports the effectiveness of multi-ticket en-
semble. Note that the improvements of *-LT are
attributable to ensembling (diff.) rather than to any
performance gains of the individual models (sin-
gle). We also plot the improvements (ens. values
relative to BASELINE) as a function of the number
of ensemble members on MRPC and STS-B in Fig-
ure 3. This also clearly shows that while the single
models of *-LT have accuracy similar to BASE-
LINE, the gains appear when ensembling them.
While multi-ticket ensemble works well even with
the naive pruning method (BASE-LT), RANDOM-LT

and ACTIVE-LT achieve the better ensembling ef-
fect on average; this suggests the effectiveness of
regularizers. Interestingly, RANDOM-LT is simpler
but more effective than ACTIVE-LT.

4Raffel et al. (2020) reported that the same problem hap-
pened on almost all tasks (GLUE (Wang et al., 2018), Super-
GLUE (Wang et al., 2019), SQuAD (Rajpurkar et al., 2016),
summarization, and machine translation) using the T5 model.



When Winning Tickets are Less Accurate
Does multi-ticket ensemble work well on any
tasks? The answer is no. To enjoy the benefit
from multi-ticket ensemble, we have to find diverse
winning-ticket subnetworks sufficiently compara-
ble to their dense network. When winning tickets
are less accurate than the baseline, their ensem-
bles often fail to outperform the baseline’s ensem-
ble. It happened to CoLA (Warstadt et al., 2019),
QNLI (Rajpurkar et al., 2016), SST-2 (Socher et al.,
2013), MNLI (Williams et al., 2018); the naive it-
erative magnitude pruning did not find comparable
winning-ticket subnetworks (with or sometimes
even without regularizers)567. Note that, even in
such a case, RANDOM-LT often yielded a higher
effect of ensembling (diff.), while the degradation
of single models canceled out the effect in total,
and BAGGING also failed to improve. More so-
phisticated pruning methods (Blalock et al., 2020;
Sanh et al., 2020) or tuning will find better winning-
ticket subnetworks and maximize the opportunities
for multi-ticket ensemble in future work.

4.2 Diversity of Predictions

As an auxiliary analysis of behaviors, we show
that each subnetwork produces diverse predic-
tions. Because any existing diversity scores do
not completely explain or justify the ensemble per-
formance8, we discuss only rough trends in five
popular metrics of classification diversity; Q statis-
tic (Yule, 1900), ratio errors (Aksela, 2003), neg-
ative double fault (Giacinto and Roli, 2001), dis-
agreement measure (Skalak, 1996), and correlation
coefficient (Kuncheva and Whitaker, 2003). See
Kuncheva and Whitaker (2003); Cruz et al. (2020)
for their summarized definitions. As shown in Ta-
ble 2, in all the metrics, winning-ticket subnetworks
(*-LT) produced more diverse predictions than the

5Although some studies (Prasanna et al., 2020; Chen et al.,
2020; Liang et al., 2021) reported that they found winning-
ticket subnetworks on these tasks, our finding did not contra-
dict it. Their subnetworks were often actually a little worse
than their dense networks, as well as we found. Chen et al.
(2020) defined winning tickets as subnetworks with perfor-
mances within one standard deviation from the dense networks.
Prasanna et al. (2020) considered subnetworks with even 90%
performance as winning tickets.

6For example, comparing BASELINE with RANDOM-
LT of pruning ratio 20%, their average values of
single/ensemble/difference are 91.38/91.93/+0.55 vs.
91.09/91.90/+0.81 on SST-2.

7This also happens to experiments with roberta-base while
multi-ticket ensemble still works well on MRPC.

8Finding such a convenient diversity metric itself is still a
challenge in the research community (Wu et al., 2021).

Q↓ R↑ ND↑ D↑ C↓
BASELINE 0.96 0.72 -0.12 0.09 0.69
BASE-LT 0.93 1.00 -0.11 0.10 0.62
ACTIVE-LT 0.94 0.94 -0.11 0.11 0.62
RANDOM-LT 0.94 0.94 -0.11 0.10 0.63

Table 2: Diversity metrics on MRPC. The signs, ↓ and
↑, indicate that the metric gets lower and higher when
the predictions are diverse. Q = Q statistic, R = ratio
errors, ND = negative double fault, D = disagreement
measure, C = correlation coefficient.

Figure 4: Overlap ratio of pruning masks msi between
different seeds on MRPC. The lower (yellower) the
value is, the more dissimilar the two masks are.

baseline using the dense networks (BASELINE).

4.3 Diversity of Subnetwork Structures

We finally revealed the diversity of the subnetwork
structures on MRPC. We calculated the overlap
ratio of two pruning masks, which is defined as
intersection over union, IoU =

|mi∩mj |
|mi∪mj | (Chen

et al., 2020). In Figure 4, we show the overlap ra-
tio between the pruning masks for the five random
seeds, i.e., {ms1 , ...,ms5}. At first, we can see
that ACTIVE-LT and RANDOM-LT using the regu-
larizers resulted in diverse pruning. This higher
diversity could lead to the best improvements by
ensembling, as discussed in Section 4.1. Secondly,
BASE-LT produced surprisingly similar (99%) prun-
ing masks with different random seeds. However,
recall that even BASE-LT using the naïve iterative
magnitude pruning performed better than BASE-
LINE. This result shows that even seemingly small
changes in structure can improve the diversity of
predictions and the performance of the ensemble.

5 Conclusion

We raised a question on difficulty of ensembling
large-scale pretrained models. As an efficient rem-
edy, we explored methods to use subnetworks in
a single model. We empirically demonstrated that
ensembling winning-ticket subnetworks could out-
perform the dense ensembles via diversification
and indicated a limitation too.
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A The Setting of Fine-tuning

We follow the setting of Chen et al. (2020)’s im-
plementation; epoch: 3, initial learning rate: 2e-5
with linear decay, maximum sequence length: 128,
batch size: 32, dropout probability: 0.1. This is one
of the most-used settings for finetuning a BERT;
e.g., the example of finetuning in the Transformers
library (Wolf et al., 2020) uses the setting9.

We did not prune the embedding layer, following
Chen et al. (2020); Prasanna et al. (2020). The
coefficient of L1 regularizer, τ , is decayed using
the same scheduler as the learning rate. We tuned
it on MRPC and used it for other tasks.

B The Learning Rate Scheduler of Chen
et al. (2020)

Our implementation used in the experiments are de-
rived from Chen et al. (2020)’s implementation10.
However, we found a bug in Chen et al. (2020)’s im-
plementation on GitHub. Thus, we fixed it and ex-
perimented with the correct version. In their imple-
mentation, the learning rate schedule did not follow
the common setting and the description mentioned
in the paper; ‘We use standard implementations
and hyperparameters [49]. Learning rate decays
linearly from initial value to zero’. Specifically, the
learning rate with linear decay did not reach zero
but was at significant levels even at the end of the
finetuning. Our implementation corrected it so that
it did reach zero as specified in their paper and in
the common setting.

C The Combinations of Ensembles

In the experiments, we first prepared twenty ran-
dom seeds and split them into two groups, each
of which trained ten models. For stabilizing the
measurement of the result, we exhaustively eval-
uated all the possible combinations of ensembles
(i.e., depending on the number of members, 10C2,
10C3, 10C4, 10C5 patterns, respectively) among the
ten models for each group, and averaged the re-
sults with the two groups. The performance of the
members is also averaged over all the seeds.

9https://github.com/
huggingface/transformers/blob/
7e406f4a65727baf8e22ae922f410224cde99ed6/
examples/pytorch/text-classification/
README.md#glue-tasks

10https://github.com/VITA-Group/
BERT-Tickets

MRPC STS-B
single ens. diff. single ens. diff.

BASELINE 87.77 88.47 +0.70 89.52 90.00 +0.48
(BAGGING) 87.64 88.12 +0.49 89.34 89.91 +0.54
BASE-LT 87.72 88.25 +0.53 89.71 90.07 +0.36
ACTIVE-LT 87.39 88.51 +1.12 88.46 89.50 +1.04
RANDOM-LT 87.86 89.26 +1.40 88.41 89.39 +0.98

Table 3: The performances (single, ens.) and the im-
provements by ensembling (diff.) of RoBERTa-base
models.

D The Results with RoBERTa

We simply conducted supplementary experiments
with RoBERTa (Liu et al., 2019) (robeta-base
model), although optimal hyperparameters were
not searched well. The results were similar to the
cases of base-base-uncased. The patterns can be
categorized into the three. First, multi-ticket en-
sembles worked well with roberta on MRPC, as
shown in Table 3. Secondly, accurate winning-
ticket subnetworks were not found on CoLA and
QNLI. Although the effect of ensembleing was im-
proved after pruning, each single model got worse
and the final ensemble accuracy did not outper-
form the dense baseline. Thirdly, although accurate
winning-ticket subnetworks were found on STS-B
and SST-2, regularizations worsened single-model
performances. While this case also improved the
effect of ensembling, the final accuracy did not
outperform the baseline. These experiments fur-
ther emphasized the importance of development of
more sophisticated pruning methods without sac-
rifice of model performances in the context of the
lottery ticket hypothesis.

E Related Work

Some concurrent studies also investigate the usage
of subnetworks for ensembles. Gal and Ghahra-
mani (2016) is a pioneer to use subnetwork en-
semble. A trained neural network with dropout
can infer with many different subnetworks, and
their ensemble can be used for uncertainty estima-
tion, which is called MC-dropout. Durasov et al.
(2021) improved the efficiency of MC-dropout by
exploring subnetworks. Zhang et al. (2021) (un-
published) experimented with an ensemble of sub-
networks of different structures and initialization
when trained from scratch, while the improvements
possibly could be due to regularization of each sin-
gle model. Havasi et al. (2021) is a similar but more
elegant approach, which does not explicitly identify
subnetworks. Instead, it trains a single dense model
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with training using multi-input multi-output infer-
ence; the optimization can implicitly find multiple
disentangled subnetworks in the dense model dur-
ing optimization from random initialization. These
studies support our assumption that different sub-
networks can improve ensemble by diversity.

Some other directions for introducing diversity
exist, while most are unstable. Promising direc-
tions are to use entropy (Pang et al., 2019) or adver-
sarial training (Rame and Cord, 2021). Although
they required complex optimization processes, they
improved the robustness or ensemble performance
on small image recognition datasets.

Recently, concurrent work (Sellam et al., 2022;
Tay et al., 2022) provide multiple BERT or T5 mod-
els pretrained from different seeds or configurations
for investigation of seed or configuration depen-
dency using large-scale computational resources.
Further research with the models and such com-
putational resources will be helpful for more solid
comparison and analysis.

Note that no prior work tackled the problem of
ensembles from a pre-trained model. Framing the
problem is one of the contributions of this paper.
Secondly, our multi-ticket ensemble based on ran-
dom masking enables an independently paralleliz-
able training while existing methods require a se-
quential processing or a grouped training procedure.
Finally, multi-ticket ensemble can be combined
with other methods, which can improve the total
performance together.


