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ABSTRACT

We present a two-step hybrid reinforcement learning (RL) policy that is designed
to generate interpretable and robust hierarchical policies on the RL problem with
graph-based input. Unlike prior deep reinforcement learning policies parameterized
by an end-to-end black-box graph neural network, our approach disentangles the
decision-making process into two steps. The first step is a simplified classification
problem that maps the graph input to an action group where all actions share a sim-
ilar semantic meaning. The second step implements a sophisticated rule-miner that
conducts explicit one-hop reasoning over the graph and identifies decisive edges in
the graph input without the necessity of heavy domain knowledge. This two-step
hybrid policy presents human-friendly interpretations and achieves better perfor-
mance in terms of generalization and robustness. Extensive experimental studies
on four levels of complex text-based games have demonstrated the superiority of
the proposed method compared to the state-of-the-art.

1 INTRODUCTION

Recent years have witnessed the rapid developments of deep reinforcement learning across various
domains such as mastering board games (Silver et al., 2016) playing video games (Mnih et al.,
2015), etc. The larger and complicated architecture of deep RL models empowered the capabilities of
resolving challenging tasks while brought in significant challenges of interpreting the decision making
process of those complex policies (Puiutta & Veith, 2020). This trade-off between performance and
interpretability becomes an inevitable issue when DRL is applied to high stakes applications such
as health care (Rudin, 2019). In this work, we focus on graph-based interpretable reinforcement
learning (Zambaldi et al., 2018; Waradpande et al., 2020) as the graph representation is expressive in
various domains including drug discovery (Patel et al., 2020), visual question answering (Hildebrandt
et al., 2020), and embodied AI (Chaplot et al., 2020; Huang et al., 2019), etc. Another benefit of
studying graph-based RL is that the graph structure can provide natural explanations of the decision-
making process without the necessity of introducing new programms (Verma et al., 2018) or heavy
domain knowledge (Bastani et al., 2018) for interpretation. Prior works in interpretable RL (Verma
et al., 2018; Madumal et al., 2020; Liu et al., 2018) either works on restricted policy class (Liu et al.,
2018) that leads to downgraded performance, or the interpretablility (Shu et al., 2017; Zambaldi
et al., 2018) is limited. Another common issue of interpretable RL is that the provided explanation is
generally difficult to comprehend for non-experts (Du et al., 2019).

To resolve the challenges mentioned above, we propose a novel two-step hybrid decision-making
process for general deep RL methods with graph input. Our approach is inspired by the observation
of human decision-making. When confront complicated tasks that involve expertise from multiple
domains, we typically identify which domain of expert we would like to consult first and then search
for specific knowledge to solve the problem. Recognizing the scope of the problem significantly
reduces the search space of downstream tasks, which leads to a more simplified problem compared
to finding the solution in all domains directly. As an analogy of this procedure, we disentangle a
complicated deep RL policy into a classification the problem for problem type selection and rule miner.
The classification establishes a mapping from complex graph input into an action type, which handles
high-order logical interactions among node and edge representations with graph neural network. The
rule miner conducts explicit one-hop reasoning over the graph and provides user-friendly selective
explanations (Du et al., 2019) by mining several decisive edges. This two-step decision making
is essential not only for providing interpretability, but also for generalization and robustness. It
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is intuitive to see that the simplified classification is easier to achieve better generalization and
robustness than the original complicated RL policy. Furthermore, the rule miner identifying key
edges in the graph is much more robust to the noisy perturbations on the irrelevant graph components.

In summary, our contributions are three folds: 1) We formalize an interpretable deep RL problem
based on graph input; 2) We propose a two-step decision-making framework that achieves far better
performance in terms of generalization and robustness, and provides human-friendly interpreta-
tions. 3) Experiments on several text-based games (Côté et al., 2018) demonstrated that the proposed
approach achieves a new state-of-the-art performance for both generalization and robustness.

2 A GENERAL FRAMEWORK FOR TWO-STEP HYBRID DECISION MAKING

In this section, we first describe our problem setting including key assumptions and a general
framework that formulates the decision-making process in a two-step manner.

We consider a discrete time Markov Decision Process (MDP) with a discrete state space S and the
action space A is finite. The environment dynamics is denoted as P = {p(s′|s, a),∀s, s′ ∈ S, a ∈ A}.
Given an action set A and the current state st ∈ S , our goal is to learn a policy π that select an action
at ∈ A to maximize the long-term reward Eπ[

∑T
i=1 r(si, ai)]. Assume we are able to group the

actions into several mutual exclusive action types (Ak) according to its semantic meanings. More
concretely, the k-th action type Ak = {a1k, ..., ank} denotes a subset of actions in original action space
Ak ⊆ A. Then we have A1, A2, .., AK ⊆ A, Ai ∩ Aj = ∅(i ̸= j),∪K

i=1Ai = A. It is worth noting
that the number of action type K is usually way smaller than original actions (K ≪ |A|).
Let the policy π = ⟨fp, fs⟩ represented by a hybrid model that consists of action pruner fp and action
selector fs. The action pruner is used to prune all available action candidates to a single action type,
i.e., fp(si) = k, where k is the index of chosen action type and Ak ∈ {A1, A2, .., AK}. Then the
action selector is used to select a specific action given the action type chosen by the action pruner,
i.e., fs(si, Ak) = ai, where ai ∈ Ak and k = fp(si).

Intuitively, this design intends to disentangle different phases in decision-making process to two dif-
ferent modules. On one hand, determining the action type typically involves high-order relationships
and needs a model with strong expressive power, then neural network is a good candidate in this
regard. On the other hand, selecting an action within a specific action type can resort to rule-based
approaches, which is essential in providing strong intrepretability, generalizability and robustness.

Figure 1 shows the overall pipeline of our two-step hybrid decision making. The agent will receive
a state si at each time step i. At time step i, we will first call the action pruner fp(si) to select the
action type Ai. Then the rule-based action selector fs(si, Ai) will take as inputs the current state si
and the action type Ai given by action pruner to select the specific action to be executed in this step.

3 TWO-STEP HYBRID POLICY FOR TEXT-BASED GAMES WITH GRAPH INPUT

In this section, we instantiate our proposed framework in the setting of text-based games (Côté et al.,
2018) with graph input. In text-based games, the agent receives a knowledge graph (as shown in
Figure 3) that describes the current state of the environment and the task to be completed, e.g., the
task can be represented by several edges like (“potato”, “needs”, “diced”). Our goal is to learn a
policy that maps the input knowledge graph to an action from the provided action set A. Each action
aj ∈ A is a short sentence, e.g., “take apple from fridge”.

In this setting, we use graph neural networks (GNNs) as the action pruner fp, and a rule-based model
as the action selector fs. We will elaborate the details of the action pruner and the action selector in
Sec 3.1 and Sec 3.2, respectively.

Training the GNN-based action pruner and the rule-based action selector by reinforcement learning
is nontrivial since the whole pipeline is not end-to-end differential. Therefore, we propose to learn
both models separately from a demonstration dataset, and the demonstration dataset can be obtained
by a trained reinforcement learning agent. This process is inspired by existing works like (Bastani
et al., 2018; Sun et al., 2018; Mu et al., 2020), where policies trained by reinforcement learning can
be refactorized into other forms. The demonstration dataset is denoted as D = {(si, π(si), ki)}Ni=1,
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where ki is the index of the action type. In addition, we split the demonstration dataset based on
the action types to get K subset of the original demonstration dataset, {D1,D2, ...,DK}, where
Dk = {si, π(si), ki|ki = k}. We elaborate the details of demonstration preparation in Sec B.1.

3.1 GNN-BASED ACTION PRUNER

The action pruner needs to output an action type based on the input knowledge graph, so it is
essentially a classifier. Given the demonstration dataset D = {(si, ki)}Ni=1 obtained in the last
step, we want to train a classifier fp(s; θ) = k, where k ∈ {1, 2, ...,K} is the index of action type.
This is a conventional classification problem which can be solved by minimizing cross entropy loss:
θ = argminθ −

∑
i

∑K
j=1 k

j
i log(f

j
θ (si)), where fθ(si) outputs a probability distribution over the K

action types, f j
θ (si) denotes the j-th action type’s probability. kji ∈ {0, 1} denotes denotes whether

the action type j was chosen in the demonstration dataset at state i.

3.2 RULE-BASED ACTION SELECTOR

3.2.1 ABSTRACT SUPPORTING EDGE SETS

When the input is a knowledge graph, the action is naturally strongly correlated with some critical
edges. For example, (“potato”, “needs”, “diced”) and (“potato”, “in”, “player”) can lead to the action
“dice potato”. We refer those decisive edges correlating to an action as the supporting edge set of
this action. Since we have grouped actions by their semantic meanings, actions within each action
type are actually supported by similar edges. For example, “dice potato” is supported by (“potato”,
“in”, “player”), and “dice apple” is supported by (“apple”, “in”, “player”). As mentioned in Sec B.2,
each action type comes with an action template like “dice object”. Based on the action template,
we can perform some sorts of abstraction. For example, given an input knowledge graph labeled
with action “dice apple”, we can replace all the “apple” appearing in the graph edges and the action
with an abstract name “object”. Then we can say the action “dice object” is essentially supported by
(“object”, “in”, “player”), where the two “object” should be instantiated by the same word. Under
this kind of abstraction, different actions within the same action type can share a same abstract
supporting edge set which contains edges with abstract names.

The abstract supporting edge set indicates the decisive edges for an action type, and it can be
instantiated for each specific action. For example, to check whether the action “dice apple” should
be executed, the abstract edge (“object”, “in”, “player”) will be instantiated to edge (“apple”, “in”,
“player”). Then, the existence of (“apple”, “in”, “player”) in input knowledge graph becomes an
evidence for selecting the action “dice apple”. We aim at finding an abstract supporting edge set for
each action type, and it will be used during inference.

3.2.2 MINE ABSTRACT SUPPORTING EDGE SETS FROM DEMONSTRATIONS

Finding the abstract supporting edge set for each action type is actually a rule mining process. There
are several off-the-shelf rule miners like FP-Growth (Han et al., 2004), Apriori (Agrawal et al., 1994),
Eclat (Zaki, 2000), etc. , but they are not designed for knowledge graphs. Thus, we propose a simple
yet effective rule miner for our setting to discover the supporting edge sets.

To find the Abstract Supporting Edge set ASE(Ak) for each action type Ak, we designed a numerical
statistic that is intended to reflect the importance of an edge when taking an action a ∈ A, and
this numerical statistic is inspired by tf-idf (Rajaraman & Ullman, 2011). Formally, for action
type Ak, we have a subset of demonstration dataset Dk = {si} (ignoring πi here). Under the
abstraction mentioned above, we can count the edge frequency for every (abstract) edge e in Dk:
freqk(e) = |{si|si∈Dk,e∈si}|

|Dk| . Similarly, we can also count the edge frequency for the entire

demonstration dataset: freq(e) = |{si|si∈D,e∈si}|
|D| .

Finally, we can define an importance score of an edge w.r.t to the action type Ak: Ik(e) = freqk(e) ·
log( 1

freq(e) ), where the term freqk(e) is similar to the term-frequency (tf), and the term log( 1
freq(e) )

is similar to the inverse document frequency (idf).
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Then we can get the ASE(Ak) by selecting the edges with the importance higher than a threshold,
i.e., ASE(Ak) = {e|Ia(e) > τ}, where τ is a hyperparameter shared across all action types.

3.2.3 INFERENCE BASED ON SUPPORTING EDGES

During inference, we use the supporting edge sets to score each action within the action type provided
by action pruner, and select the action with the highest score. Fig. 2 shows a concrete example of
using supporting edge set to score an action. Firstly, the action pruner outputs an action type based on
the input KG (knowledge graph), and we can retrieve the abstract supporting edge set of this action
type. Secondly, given an action within the action type, we can instantiate the abstract supporting edge
set to a specific supporting edge set by replacing the abstract names with the concrete words based on
the action, e.g, (“object”, “in”, “player”) will be instantiated to (“potato”, “in”, “player”) if the action
is “cook potato with oven”. Finally, we compare the input KG with the supporting edge set of each
action to find which supporting edge set is best covered by the input KG. The number of overlapped
edges between the supporting edge set and the input KG will be regarded as the score of the action.

Formally, the inference process of our rule-based action selector can be described as follows
fs(s,A) = argmaxa∈A |s ∩ SE(a)|, where SE(a) is the supporting edge set associated with action
a, which is obtained by instantiating the abstract supporting edge set of action type A.

State

NN-based
Action Pruner

Action Type

Rule-based
Action Selector

Action

Figure 1: General
framework of the two-
step hybrid decision
making.

Input Knowledge Graph
-----------------------------------

[player, at, kitchen]
[potato, needs, roasted]
[fridge, is, open]
[potato, in, player]

Action Pruner

Abstract Supporting Edge Set
------------------------------------------
[object, needs, cooking_method]

[object, in, player]

Action Type
----------------------

cook

Supporting Edge Set
---------------------------------
[potato, needs, roasted]
[potato, in, player]

Action
----------------------------
cook potato with oven

Action Score
----------------------

2

Figure 2: An example of using supporting edge set to score an action. Based
on the knowledge graph, the action pruner first predict the action type (e.g.,
cook) that needs to be taken at current state, then instantiate the abstract
supporting edge set to a concrete supporting edge set. Comparing the input
knowledge graph with the supporting edge set, we can compute action score
for each action and select the action with highest score accordingly.

4 EXPERIMENTS

4.1 DATASET SETUP

We evaluate our method on TextWorld (Côté et al., 2018), which is a framework for designing text-
based interactive games. More specifically, we use the TextWorld games generated by GATA (Ad-
hikari et al., 2020). In these games, the agent is asked to cook a meal according to given recipes. It
requires the agent to navigate among different rooms to locate and collect food ingredients specified
in the recipe, process the food ingredients appropriately, and finally cook and eat a meal.

The state received by the agent is a knowledge graph describing all the necessary information about
the game. All the nodes and edges in the knowledge graph are represented in text. Figure 3 shows a
partial example of input knowledge graph. The actions are also represented in text. Note that the
number of available actions vary from state to state, so most of of existing network architecture used
deep reinforcement learning cannot be directly used here.

The games have four different difficulty levels, and each difficulty level contains 20 training, 20
validation, and 20 test environments, which are sampled from a distribution based on the difficulty
level. The higher the difficulty levels are, the more complicated recipe will be and the more rooms
food ingredients will be distributed among. Statistics of the games are shown in Table 2. For
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evaluating model generalizability, we select the top-performing agent on validation sets and report its
test scores; all validation and test games are unseen in the training set.

4.2 RESULTS

We demonstrate the advantages of our method from three different perspectives: interpretability,
generalization, and robustness.

4.2.1 INTERPRETABILITY

The interpretablity of our two-step policy is two-fold: 1) the transparent two-step decision making
process; 2) the rule-based models make decisions in a way which is easy to interpret by human.

Table 3 shows some representative rules discovered by our rule miners. We observed that all of the
four discovered abstract supporting edges are indeed prerequisites of the “cut” actions. In particular,
the abstract supporting edge (“object”, “needs”, “verb passive”) is a crucial prerequisite for the agent
to select the correct verb in the “cut” actions. For example, if the input knowledge graph contains the
edge (“potato”, “needs”, “sliced”), then the action “slice potato with knife” will get one more score
than others because this edge is in the supporting edge set of action “slice potato with knife”.

Since we clearly see the rule-based model makes decisions based on these rules, it is not hard to check
whether this model works in a correct way. In this way, the agent can certainly select the correct “cut”
action even in unseen test environments.

4.2.2 GENERALIZATION
Training Test

Difficulty 1 2 3 4 1 2 3 4

GATA-GTF 98.6 58.4 95.6 36.1 83.8 53 33.3 23.6
Vanilla RL 100 100 98.3 100 83.8 68 50 30.9

Ours 100 100 100 65.5 100 100 51.7 49.7

Table 1: Evaluation results on both training environments and test envi-
ronment in TextWorld. The numbers show the agent’s normalized scores.

We compare with two
baselines: GATA-GTF
and vanilla RL. GATA-
GTF is a variant from
GATA (Adhikari et al.,
2020), and it uses the
same ground-truth graph
input as us. GATA-GTF
processes the input graphs by relational graph convolutional networks (R-GCNs) (Schlichtkrull et al.,
2018), and the whole pipeline is trained by DQN (Mnih et al., 2015). Vanilla RL is essentially the
same method with GATA-GTF, but implemented by ourselves. With better implementation and
hyperparameter tuning, it performs better than the implementation released by the GATA authors.
And vanilla RL also serves as the teacher policy used to generate demonstrations for our method.

Table 1 shows the normalized scores of different methods on both training and test environment in
TextWorld. The result of GATA-GTF is obtained from its paper. In all the environments, our agent
achieves better generalization performance the vanilla RL (which is our RL teacher) and GATA-GTF
baselines. Our agent can generalize pretty well to the unseen test environments in all difficulty levels,
while the performance of GATA-GTF and vanilla RL performs poorly in unseen test environments.

4.2.3 ROBUSTNESS

As mentioned above, our method also aims at robustness. To evaluate the robustness of our models,
we add different levels of noises to input knowledge graphs and regard the performance of the agents
under noisy inputs. In this paper, we define the noise on a knowledge graph as adding additional
edges to the graph or dropping existing edges in the graph. The formal definition can be found in F.1.

Table 4 shows the performance of vanilla RL and our method under noisy input graphs generated
in the above mentioned way. Note that we test robustness in training environments instead of test
environments, because the performance of both agents in test environments are not good enough and
examining robustness of poor-performed agents does not make too much sense.

We observed that in difficulty level 1, both agents are very robust under the noisy inputs. However,
in difficulty level 2 & 3 & 4, the performance of the RL agents are hurts a lot by the input noises,
especially in the difficulty level 4. In contrast, the agents obtained by our method are still performs
pretty good and the performance drops significantly less than the RL agents.
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A RELATED WORKS

A.1 INTERPRETABLE RL

Instead of using deep RL as a black box, researchers also worked on making deep RL more inter-
pertable. (Mott et al., 2019; Zambaldi et al., 2018) introduce some sorts of attention mechanisms
into policy networks and explain decision making process by analyzing attention weights. (Verma
et al., 2018) combines program synthesis and PIDs in classic control to solve continuous control
problems, while keep the decision making interpretable by explicitly writing the program. Combining
symbolic planning and deep RL has similar effects, like (Lyu et al., 2019). Tree-based policies
(Bastani et al., 2018) are favorable in interpretable RL, since they are more human-readable and
easy to verify. However, many existing works of interpretable RL sacrifices the performance for the
interpretability. In contrast, our method achieves even better generalization and robustness while
providing interpretability.

A.2 HIERARCHICAL RL

Hierarchical RL focuses on decomposing a long-horizon tasks into several sub-tasks, and applying a
policy with hierarchical structure to solve the task. (Vezhnevets et al., 2017; Frans et al., 2018) try to
solve generic long-horizon tasks with a two-level policy, where a high-level policy will generate a
latent sub-goal for low-level policies, or directly select a low-level policy, and the low-level policy is
responsible for generating the final action. In some robot locomotion tasks, people usually manually
define the choices of sub-goals to boost the performance and lower the learning difficulty, like
(Nachum et al., 2018; Levy et al., 2018). Our two-step hybrid policy is reminiscent of the two-level
policy architecture in hierarchical RL. However, the high-level policy in hiereachical RL is mainly
used to generate a sub-goal while the action pruner in our hybrid policy is used to reduce the number
of action candidates. And the motivations of our method and hierarchical RL are also different:
hierarchical RL targets at decomposing a long-horizon tasks into several pieces, but our method
focuses on interpertability, generalizability and robustness.

A.3 REFACTORING POLICY

Given a trained neural network-based policies, one may want to refactor the policy into another
architecture, so as to improve the generalizibility or interpretablity. And this refactoring processs is
usually done by imitation learning. The desired architectures of the new policy can be decision tree
(Bastani et al., 2018), symbolic policy (Landajuela et al., 2021), a mixture of program and neural
networks (Sun et al., 2018), or graph neural networks (Mu et al., 2020). In our method, we also use
similar techniques to refactor a reinforcement learning policy into a two-step hybrid policy.

A.4 COMBINE NEURAL NETWORKS WITH RULE-BASED MODELS

Neural networks and rule-based models excel at different aspects, and many works have explored
how to bring them together, like (Chiu et al., 1997; Goodman et al., 1990; Ray & Chakrabarti, 2020;
Okajima & Sadamasa, 2019; Greenspan et al., 1992). Therefore various ways to combine neural
networks with rule-based models. For example, (Wang, 2019) combines them in a ”horizontal”
way, i.e., some of the data are assigned to rule-based models while the others are handled by neural
networks. In contrast, our work combines neural networks and rule-based models in a ”vertical” way,
i.e., the two models collaborate to make decisions in a two-step manner.

B PREPARING DATASETS FOR LEARNING TWO-STEP HYBRID POLICY

B.1 DEMONSTRATION ACQUISITION

Given a set of interactive training environments, the goal of this step is to obtain a demonstration
dataset, which contains state-action pairs from a policy achieving high reward in the training environ-
ment. Specifically, we target at generating a demonstration dataset D = {(si, π(si))}Ni=1, where si
is the input state (a knowledge graph in our cases) from the training environments, and π(si) is the
output of demonstration policy on the state si. The representation of π(si) is flexible: it can be an
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action, the logits, or any latent representation, which indicates the demonstration action distribution.
This dataset will be used for learning our two-step hybrid policy.

We refer the policy used to generate demonstration as teacher policy. It can be obtained in any
way, as long as it provides reasonable and good supervision on how to solve the task in the training
environments, and it is not necessary to have strong interpretablity, generaliziabilty or robustness.
Therefore, deep reinforcement learning is a great tool to learn such a policy.

After obtained the teacher policy, we use it to interact with the training environments to collect states
and label them with the output of the teacher policy. During the interaction, we add action noise
to perturb the state distribution in demonstration dataset. A more diversified state distribution is
beneficial to the performance of our two-step hybrid approach.

B.2 ACTION GROUPING AND DEMONSTRATION SPLITS

As mentioned above, the action pruner is responsible for selecting the correct type of actions for the
current state, so that the action candidates will be pruned to a smaller set. Then, a rule-based model
will work on this specific action type to select the action to be executed. Therefore, we needs to label
each state with the action type. Since the action for each state is already in the dataset, we just need
to convert each action into an action type. In other words, we need to group all possible actions into
several action types.

In text-based games, each action is a short sentence with semantic meaning, e.g., “take apple from
fridge”. Intuitively, we can group the actions by their semantic meaning. For example, if the actions
are “take apple from fridge”, “slice potato with knife”, “dice cheese with knife”, “cook carrot with
oven”, and “cook onion with stove”, we can group them into three types: “take” actions, “cut” actions,
and “cook” actions. And we make sure all the actions with the same action type follow the same
template, e.g., the template of “take” action can be written as “take object from receptacle”, where
object and receptacle can be instantiated by appropriate words.

Grouping actions by semantic meanings also aligns with our motivation: 1) After we obtained K
group of actions, we substantially alleviate the workload of neural networks from learning a policy
that maps states to an action in a varying size and high-dimensional action space to a simplified
classification with a much smaller number of classification categories. This simplification could
greatly reduces the sample-complexity. 2) Furthermore, this step also eliminates the search space to
enable a feasible candidates set for the rule-miner.

Formally, given a dataset D = {(si, π(si))}Ni=1, we will generate an action type for each state,
policy output (si, π(si)) pair. The action type ki is determined by ki = h(π(si)), where h(π(si))
is a domain-specific function which takes the semantic meaning of the action into consideration.
As a result of the clustering process, we will get a new demonstration dataset with action types
D = {(si, π(si), ki)}Ni=1. In addition, we can also split the demonstration dataset based on the
action types to get K subset of the original demonstration dataset, {D1,D2, ...,DK}, where Dk =
{si, π(si)|h(π(si)) = k}.

C DATASET SETUP

Difficulty
Level

Recipe
Size

Number of
Locations

Need
Cut

Need
Cook

Number of
Action Candidates

Number of
Objects

1 1 1 Yes No 11.5 17.1
2 1 1 Yes Yes 11.8 17.5
3 1 9 No No 7.2 34.1
4 3 6 Yes Yes 28.4 33.4

Table 2: TextWorld games statistics (averaged across all games within a difficulty level). The games
and statistics are generated by (Adhikari et al., 2020).

10



Under review at the ICLR 2022 workshop on Objects, Structure and Causality

Orange bell
pepper

uncut

is
is

Cookbook

part_of

Fridge

in

closed

is

White
onion

part_of in

Yellow bell
pepper

fried diced

nee
ds need

s

uncut

raw

is

fried

in

needs

ne
ed
s

is

raw

is

Figure 3: Visualization of a part of an input knowledge graph in TextWorld.

D IMPLEMENTATION DETAILS

D.1 PROCESS KNOWLEDGE GRAPHS BY GNNS

Graph neural networks (GNNs) serve as backbone networks in both our RL teacher policy and the
action pruner in our two-step hybrid policy. More specifically, we use Relational-GCN to take edge
attributes into consideration.

The relations and nodes of the input knowledge graphs are initially represented in text (words or
short sentences). We use fastText (Mikolov et al., 2017), pre-trained on Common Crawl, to convert
each token to an embedding, and then average all the token embeddings to obtain the mean fastText
embedding of the entire text string. These mean fastText embeddings are pre-computed and fixed
during training. For each relation and node, we append their corresponding mean fastText embedding
with a trainable embedding vector. The concatenated embeddings are then used as the numerical
representation of each relation and node, which are further passed through GNNs to get the latent
embedding of the entire input knowledge graph.

D.2 DEMONSTRATION ACQUISITION

To collect demonstration dataset, we first train a teacher policy by DQN (Mnih et al., 2015) in the
training environments, which can converge to a near-optimal solution. To adopt variable number of
available actions, we let the policy network take the state and an available action as input and output
a score for this action. And we can select the action with maximum score as the final output.

The trained teacher policy is used to collect 300K samples through the interaction with the envi-
ronment, and label them with the taken actions, as illustrated in Sec B.1. When collecting the
demonstration dataset, we use ϵ-greedy exploration strategy to increase the diversity of states.

E INTERPRETABLITY RESULTS
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Action Type: Cut Example Action

Action verb object with knife slice potato with knife

Discovered
Supporting

Edges

Head Relation Tail Importance Head Relation Tail

object in player 1.7004 potato in player
object needs verb passive 1.6659 potato needs sliced
object part of cookbook 1.0058 potato part of cookbook
object is uncut 0.9837 potato is uncut

Table 3: Discovered abstract supporting edges of the “cut” action type in difficulty level 1 of
TextWorld environments. The importance of each edge is computed by the metric mentioned in
Sec 3.2.2. The right column gives an example action and the corresponding supporting edge set,
which is obtained by instantiating the abstract supporting edge set. The underlined words are abstract
names for some certain words. For example, “verb” in action can be instantiated to “slice”, “dice” or
“chop”, and “verb passive” can be instantiated to “sliced”, “diced” or “chopped” accordingly.

F ROBUSTNESS RESULTS

F.1 FORMAL DEFINITION OF NOISES ON INPUT KNOWLEDGE GRAPH

Formally, we add noise at (k, p)-level to input knowledge graph in the following way:

1. Add edges: ⌈k ∗ |E|⌉ additional edges will be randomly generated and added to the graph,
where E is the edge set of the graph. For each edge hi, ti, ri, head node hi and tail node ti
are sampled from Vall and relation ri is sampled from Rall, where Vall means the set of all
possible nodes and Rall is the set of all possible relations.

2. Drop edges: ⌈p ∗ |E|⌉ edges will be dropped from the graph. Note that only original edges
will be dropped, and the randomly added edges will not be dropped.

F.2 QUANTITATIVE RESULTS

Noise Difficulty

1 2 3 4

Add Drop RL Ours RL Ours RL Ours RL Ours

0.2 0 100(0%) 100(0%) 100(0%) 100(0%) 96(-1%) 98(-1%) 38(-61%) 64(-1%)
0.2 0.03 100(0%) 96(-3%) 81(-19%) 98(-1%) 80(-18%) 98(-1%) 41(-58%) 51(-21%)
0.2 0.06 100(0%) 92(-7%) 93(-6%) 82(-18%) 86(-11%) 93(-6%) 44(-55%) 41(-36%)
0.4 0 100(0%) 100(0%) 85(-15%) 100(0%) 65(-33%) 91(-8%) 19(-80%) 58(-11%)
0.4 0.03 100(0%) 100(0%) 77(-23%) 90(-9%) 71(-27%) 91(-8%) 20(-79%) 53(-18%)
0.4 0.06 100(0%) 96(-3%) 78(-22%) 83(-16%) 65(-33%) 96(-3%) 19(-80%) 49(-24%)
0.6 0 100(0%) 100(0%) 85(-15%) 100(0%) 76(-22%) 93(-6%) 8(-91%) 59(-9%)
0.6 0.03 100(0%) 97(-2%) 75(-25%) 83(-16%) 61(-37%) 86(-13%) 9(-90%) 39(-39%)
0.6 0.06 100(0%) 91(-8%) 76(-24%) 80(-20%) 60(-38%) 96(-3%) 10(-89%) 46(-29%)

Table 4: Robustness analysis of our method and vanilla RL baseline. We evaluate the performance
of agents on training environments under different noise levels, e.g., “add 0.2 drop 0.03” means
we randomly add 20% additional edges while randomly dropping 3% existing edges in graph. The
numbers out of parentheses are normalized scores and the numbers in parentheses are relative
performance change comparing to the performance without input noise. The bold numbers indicate
which method performs better in each setting.
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