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Abstract

Pronunciation dictionaries are indispensable001
for applications in speech synthesis and lan-002
guage learning, providing word pronuncia-003
tions across diverse languages. Grapheme-to-004
Phoneme (G2P) models are pivotal in creating005
these dictionaries. However, variations in pro-006
nunciation can arise due to language, context,007
dialect, and acoustic conditions, potentially in-008
troducing inaccuracies. To address this, we009
introduce an approach to refine G2P model out-010
puts by utilizing an alignment and weighting011
algorithm to integrate results from an acous-012
tic phone recognizer across several high and013
low-resource languages.014

1 Introduction015

Pronunciation dictionaries are imperative for a016

wide variety of tasks such Text-to-Speech (TTS),017

Automatic Speech Recognition (ASR), Language018

learning applications and many more. Oftentimes,019

pronunciation dictionaries in these tasks are either020

hand-crafted, requiring domain or language exper-021

tise, or acquired automatically using G2P models.022

However, problems arise in low-resource settings023

where acquiring and training on appropriate data is024

difficult. To address this, methods such as data aug-025

mentation (Ryan and Hulden, 2020, Hauer et al.,026

2020, Zhao et al., 2022) and zero-shot prediction027

(Zhu et al., 2022, Li et al., 2022) are employed to028

improve performance.029

Another method for creating pronunciation dic-030

tionaries involves using acoustic data to recognize031

phonemes. This approach is particularly useful032

for unseen or out-of-vocabulary words and helps033

account for dialectal variations. Li et al. (2020)034

trained a universal phone recognition model, while035

Xu et al. (2021) and Siminyu et al. (2021) fine-036

tuned pretrained models to predict phonemes in037

unseen languages.038

Efforts have also been made to combine G2P039

and phone recognition models in low-resource set-040

tings. Garg et al. (2024) employs self-supervised 041

learning to create training lexicons for G2P models 042

to improve TTS, while Ribeiro et al. (2023) uses 043

acoustic models to learn out-of-vocabulary words 044

and retrain G2P models. Additionally, Route et al. 045

(2019) adopts a multimodal approach by training 046

the G2P model to learn audio features as a separate 047

task. 048

These methods primarily use acoustic informa- 049

tion as part of the training data for G2P models. 050

This might pose an issue when the acoustic mod- 051

els do not perform well due to noise in the speech 052

segments or a sub-par performance of the model 053

as a whole. In this paper, we adapt a method to 054

integrate the output pronunciations of the G2P and 055

phone recognition models (Aquino et al., 2019) 056

using suitable alignment and weighting strategies, 057

taking into account any sub-par performance of the 058

acoustic model. Section 2 outlines the problem 059

statement, the algorithm, and the overall system 060

flow. Section 3 provides details of the dataset and 061

models used, and Section 4 presents results for the 062

entire dataset as well as a few examples. 063

2 Methodology 064

In this section, we formally define the task and 065

detail the system flow and algorithm used to com- 066

bine the outputs of the G2P and phone recognition 067

models. 068

2.1 Problem Statement 069

Given a sample of <word, audio>, where word is 070

a single word with the orthography of any of the 071

included languages and audio is its corresponding 072

spoken segment, the objective is to determine the 073

most precise pronunciation of the given sample. 074

2.2 System Flow 075

We create a dataset of <word, audio> pairs across 076

120 languages from Wiktionary. The details of 077
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the dataset are mentioned in Section 3.1. Using078

this dataset, we train an elementary ASR system to079

predict phones using the Kaldi speech recognition080

toolkit (Povey et al., 2011) and a G2P model as a081

weighted finite state transducer. Each of the afore-082

mentioned models generates their top-k predic-083

tions, which are subsequently aligned and weighted084

to determine the optimal pronunciation sequence.085

2.3 Needleman–Wunsch algorithm086

The Needleman–Wunsch algorithm (Needleman087

and Wunsch, 1970) is a dynamic programming al-088

gorithm used to solve the problem of global se-089

quence alignment. It is primarily used to align090

amino acids or nucleotide sequences in the field091

of bioinformatics. Given 2 sequences X =092

x1x2 . . . xn and Y = y1y2 . . . ym, a substitution093

matrix S where Sxi,yj denotes the score for align-094

ing characters xi and yj , and a gap penalty d, we095

aim to find aligned sequences X ′ and Y ′ of equal096

length such that the alignment score is maximized.097

Thus, given an alignment matrix A, the score for098

the alignment of characters ai and bj is given by099

the following recurrence relation100

Ai,j =


Ai−1,j−1 + Sxi,yi aligned
Ai,j−1 + d gap in X
Ai−1,j + d gap in Y

(1)101

In the context of aligning pronunciations, xi and102

yj are phones in the International Phonetic Alpha-103

bet (IPA) and Sxi,yj denotes the similarity between104

xi and yj . This similarity metric is computed with105

PyPhone (Zhang, 2018), a Python package that de-106

termines the distance between phonemes using 21107

weighted features for each phoneme, differentiating108

between vowels and consonants.109

Given the top-k pronunciations from the phone110

recognition and the G2P models, we first align the111

k pronunciations for each model using the Needle-112

man–Wunsch algorithm, ensuring each pronunci-113

ation attains the same length by introducing gaps114

as necessary. We then compute a probability dis-115

tribution for all the phones at each position. Con-116

sequently, each model produces a list of <phone,117

probability>, which are subsequently aligned in118

the same manner to identify the most probable119

phone at each position.120

We must also consider the performance of the121

phone recognizer and weight its phones accord-122

ingly. Our goal is to enhance the output of the123

G2P model without degrading or overpowering it. 124

Therefore, if the probability p of the phone recog- 125

nizer’s predicted phone falls below a certain thresh- 126

old, we reduce the weight w of that phone in the 127

recombination process. For our experiments, we 128

set the weighting scheme as 129

w =


1 if p > 0.5

0.5 if 0.5 ≤ p < 0.2

0.2 if p ≤ 0.2

(2) 130

3 Experimental Setup 131

3.1 Dataset 132

We compiled a dataset consisting of <word, 133

pronunciation, audio> entries using the lat- 134

est Wikimedia dump dated May 2, 2024. The 135

entire Wikimedia dump contains approximately 136

10M words across over 4, 500 languages. Among 137

these, only about 162, 000 words across 120 lan- 138

guages have associated pronunciations and audio 139

files. Within this, 20 languages have less that 140

100 samples and 50 languages have less than 10 141

samples, highlighting the scarcity of data for low- 142

resource languages. Each speech utterance aver- 143

ages 1.4 seconds in duration, as they consist of sin- 144

gle words, resulting in a total of 62 hours of speech 145

in the dataset. All pronunciations are provided in 146

the IPA format, and the corresponding speech seg- 147

ments are originally stereo sampled at 44.1 kHz, 148

subsequently down-sampled to single-channel, 16 149

kHz. 150

3.2 Models 151

Phone Recognizer. We extracted MFCC acous- 152

tic features, computed cepstral mean and variance 153

normalization (CMVN) and used it to train a HMM- 154

GMM acoustic model to directly predict phones 155

instead of the orthographic representation of the 156

word, thereby eliminating any extra errors intro- 157

duced by the transformation. We used the SRILM 158

toolkit to train a 6-gram Language model. Then, 159

we bootstrapped the model with mono-phone train- 160

ing using 10, 000 samples. Subsequently, we per- 161

formed tri-phone training passes using ∆ and ∆∆ 162

features. We then carried out speaker-independent 163

training using linear discriminative analysis (LDA) 164

and maximum likelihood linear transform (MLLT). 165

Finally, we performed speaker adaptive training 166

with constrained maximum likelihood linear re- 167

gression (fMLLR) and computed phone-level align- 168

ments for the corresponding speech segments. 169
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G2P. Phonetisaurus (Hansen, 2020), imple-170

mented as a Python package, is employed to train a171

G2P model using a weighted finite state transducer172

framework. The training lexicon is the same as that173

used for the Kaldi phone recognizer.174

3.3 Metrics175

We evaluate the performance of our method using176

the following metrics, applied to the predictions of177

the G2P and phone recognition models as well as178

their optimal combination.179

Phone Error Rate (PER). After aligning the180

predicted and ground-truth pronunciations, we cal-181

culate the sum of insertion, deletion, and substitu-182

tion errors, and then divide this total by the length183

of the aligned sequence.184

Cost-based Phone Error Rate (C-PER). This185

metric is similar to PER, where insertions and dele-186

tions receive equal penalties. However, substitu-187

tions are penalized according to the similarity be-188

tween the involved phonemes. Specifically, substi-189

tutions between vowel pairs are penalized at half190

the rate compared to substitutions involving conso-191

nants.192

Average Phone Rank of Truth (PhR) . This193

metric calculates the average rank of the correctly194

identified phone among all possible predictions195

at that position in the sequence. If no phone is196

correctly predicted, the rank for that position is197

arbitrarily set to a higher value. A lower value,198

approaching 0, indicates that the phone had the199

highest probability at that position and therefore200

was the top choice.201

4 Results202

Figure 1 illustrates the change in PER of the G2P203

model when used independently versus with the204

phone recognizer (a positive change indicates that205

the combination performed better than G2P) across206

32, 000 utterances and 76 languages. Our method207

outperforms the standalone G2P model by 8.5%208

on average for all high-resource languages (lan-209

guages with more than 3, 000 samples in the train-210

ing set). For medium- and low-resource languages,211

our method also performs better on average.212

For most high-resource languages, the G2P and213

phone recognition models perform similarly, but214

their combination yields better results. This demon-215

strates the effectiveness of our method (and by ex-216

tension, recombination and weighting algorithms)217

in enhancing pronunciations.218

However, our dataset includes a long tail of low- 219

resource languages with fewer than 10 samples in 220

the training set. For some of these languages, nei- 221

ther the G2P nor the phone recognition models per- 222

form well, resulting in sub-optimal performance of 223

our method. To address this, we weight the outputs 224

of the phone recognizer as described in Section 225

2.3. This approach prevents the degradation of the 226

G2P output due to poor performance on speech 227

segments. Additionally, this weighting helps in 228

situations where the phone recognizer lacks confi- 229

dence in its output due to noise or other challenging 230

acoustic conditions, regardless of the language. 231

Tables 1, 2 and 3 display the ground-truth (GT) 232

pronunciation of a specific word along with the 233

predictions of the combination, G2P and phone 234

recognition models as the 1st, 2nd and 3rd rows 235

respectively. 236

Word Lang GT
Document Occitan dukymen
Output PER C-PER PhR

1 dukymEn 14 0 1.0
2 dOkymEnt 38 14 2.12
3 tödukym ;En 33 23 2.2

Table 1: Pronunciation of the word Document from the
Occitan language with metrics.

Table 1 illustrates that a multilingual G2P model 237

alone may not perform optimally for languages 238

like Occitan, where the "o" in Document is pho- 239

netically represented as "u" instead of "O". While 240

this distinction may not be evident in the orthogra- 241

phy, the phone recognizer identifies it in the spoken 242

utterance and assigns a probability of 0.8 to "u", 243

whereas the G2P model assigns a probability of 244

only 0.5 to "O". Additionally, the C-PER is 0, de- 245

spite a substitution error at position 5 between "E" 246

and "e". This highlights that while the pronuncia- 247

tion may not be flawless, such low-cost errors are 248

acceptable and sufficiently accurate, especially for 249

low-resource languages. 250

In Table 2, the G2P model predicts the first 251

phone of УАШЪО as "U" instead of "w", despite 252

the remainder of the pronunciation being correct. 253

Similar to Table 1, the phone recognizer confi- 254

dently assigns a probability of 0.7 to the phone 255

"w", even though its other phones have probabili- 256

ties of 0.4. This is indicated by the PhR score of 257

3.17, which shows that the correct phone has the 258

3rd-highest probability on average among all other 259
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Figure 1: PER improvement compared to G2P after recombination across 76 languages, identified by their ISO-639-
3 codes. Languages are sorted left to right based on their sample counts in the dataset.

Word Lang GT
УАШЪО Adyghe wa:Swa

Output PER C-PER PhR
1 waSwa 25 1 0.17
2 Ua:Swa 25 25 0.5
3 wax 80 61 3.17

Table 2: Pronunciation of the word УАШЪО from the
Adyghe language with metrics.

phones across all positions in the sequence.260

Word Lang GT
ПАЎСТАННЕ Belarusian pauflstan

j:E
Output PER C-PER PhR

1 pauflstan
j:E 0 0 0

2 pauflstan
j:E 0 0 0

3 poUustanj:iE 44 14 1.56

Table 3: Pronunciation of the word ПАЎСТАННЕ
from the Belarusian language with metrics.

In Table 3, the output from the phone recognizer261

does not influence the output from the G2P model.262

This occurs because all the phones generated by263

G2P have probabilities close to 1, whereas the264

phones that differ according to the acoustic model265

have much lower probabilities. Consequently, we266

reduce the weight of the phone recognizer, result-267

ing in minimal incorporation of its phones in the268

final pronunciation. This situation exemplifies a269

scenario where the phone recognizer performs in-270

adequately and thus should not diminish the perfor-271

mance of the G2P model.272

5 Limitations 273

Given that our phone recognizer is a basic HMM- 274

GMM model, we experience relatively high PER, 275

especially for consonants. Although our alignment 276

and weighting algorithm effectively ignores these 277

erroneous phones when merging the output with 278

that of the G2P model, a more advanced univer- 279

sal phone recognizer would be beneficial in cases 280

where the G2P model also misidentifies consonants. 281

Additionally, our dataset contains a long tail of lan- 282

guages with fewer than 10 samples in the training 283

set, resulting in subpar few-shot performance for 284

some low-resource languages. Employing neural 285

models for both G2P and phone recognition could 286

potentially enhance the overall performance of the 287

method across most languages. 288

6 Conclusion 289

In this work, we introduce a method that leverages 290

an acoustic phone recognition model to enhance 291

G2P pronunciations. We created our dataset by 292

scraping Wiktionary, collecting data for over 100 293

languages and 160,000 words. Our approach im- 294

proves performance for high-resource languages, 295

achieving an average PER reduction of 8.5%, and 296

performs reasonably well for medium- and low- 297

resource languages. This demonstrates that com- 298

bining G2P and ASR outputs using effective align- 299

ment and weighting strategies can improve pro- 300

nunciations, accommodating variations across lan- 301

guages and dialects. This method facilitates the 302

creation of pronunciation dictionaries for a wide 303

range of languages using only basic orthography 304

and single-word spoken utterances. 305
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