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Abstract

Pronunciation dictionaries are indispensable
for applications in speech synthesis and lan-
guage learning, providing word pronuncia-
tions across diverse languages. Grapheme-to-
Phoneme (G2P) models are pivotal in creating
these dictionaries. However, variations in pro-
nunciation can arise due to language, context,
dialect, and acoustic conditions, potentially in-
troducing inaccuracies. To address this, we
introduce an approach to refine G2P model out-
puts by utilizing an alignment and weighting
algorithm to integrate results from an acous-
tic phone recognizer across several high and
low-resource languages.

1 Introduction

Pronunciation dictionaries are imperative for a
wide variety of tasks such Text-to-Speech (TTS),
Automatic Speech Recognition (ASR), Language
learning applications and many more. Oftentimes,
pronunciation dictionaries in these tasks are either
hand-crafted, requiring domain or language exper-
tise, or acquired automatically using G2P models.
However, problems arise in low-resource settings
where acquiring and training on appropriate data is
difficult. To address this, methods such as data aug-
mentation (Ryan and Hulden, 2020, Hauer et al.,
2020, Zhao et al., 2022) and zero-shot prediction
(Zhu et al., 2022, Li et al., 2022) are employed to
improve performance.

Another method for creating pronunciation dic-
tionaries involves using acoustic data to recognize
phonemes. This approach is particularly useful
for unseen or out-of-vocabulary words and helps
account for dialectal variations. Li et al. (2020)
trained a universal phone recognition model, while
Xu et al. (2021) and Siminyu et al. (2021) fine-
tuned pretrained models to predict phonemes in
unseen languages.

Efforts have also been made to combine G2P
and phone recognition models in low-resource set-

tings. Garg et al. (2024) employs self-supervised
learning to create training lexicons for G2P models
to improve TTS, while Ribeiro et al. (2023) uses
acoustic models to learn out-of-vocabulary words
and retrain G2P models. Additionally, Route et al.
(2019) adopts a multimodal approach by training
the G2P model to learn audio features as a separate
task.

These methods primarily use acoustic informa-
tion as part of the training data for G2P models.
This might pose an issue when the acoustic mod-
els do not perform well due to noise in the speech
segments or a sub-par performance of the model
as a whole. In this paper, we adapt a method to
integrate the output pronunciations of the G2P and
phone recognition models (Aquino et al., 2019)
using suitable alignment and weighting strategies,
taking into account any sub-par performance of the
acoustic model. Section 2 outlines the problem
statement, the algorithm, and the overall system
flow. Section 3 provides details of the dataset and
models used, and Section 4 presents results for the
entire dataset as well as a few examples.

2 Methodology

In this section, we formally define the task and
detail the system flow and algorithm used to com-
bine the outputs of the G2P and phone recognition
models.

2.1 Problem Statement

Given a sample of <word, audio>, where word is
a single word with the orthography of any of the
included languages and audio is its corresponding
spoken segment, the objective is to determine the
most precise pronunciation of the given sample.

2.2 System Flow

We create a dataset of <word, audio> pairs across
120 languages from Wiktionary. The details of



the dataset are mentioned in Section 3.1. Using
this dataset, we train an elementary ASR system to
predict phones using the Kaldi speech recognition
toolkit (Povey et al., 2011) and a G2P model as a
weighted finite state transducer. Each of the afore-
mentioned models generates their top-k predic-
tions, which are subsequently aligned and weighted
to determine the optimal pronunciation sequence.

2.3 Needleman—Wunsch algorithm

The Needleman—Wunsch algorithm (Needleman
and Wunsch, 1970) is a dynamic programming al-
gorithm used to solve the problem of global se-
quence alignment. It is primarily used to align
amino acids or nucleotide sequences in the field
of bioinformatics. Given 2 sequences X =
1Ty ...xn and Y = y1y2...Ym, a substitution
matrix S where S, ,,. denotes the score for align-
ing characters x; and y;, and a gap penalty d, we
aim to find aligned sequences X’ and Y of equal
length such that the alignment score is maximized.
Thus, given an alignment matrix A, the score for
the alignment of characters a; and b; is given by
the following recurrence relation

Az;lyjfl + Sﬂﬁi,yi aligned
Aij= Aij1+d gapinX (1)
Aij+d gapin Y

In the context of aligning pronunciations, x; and
y; are phones in the International Phonetic Alpha-
bet (IPA) and S, ,,. denotes the similarity between
x; and y;. This similarity metric is computed with
PyPhone (Zhang, 2018), a Python package that de-
termines the distance between phonemes using 21
weighted features for each phoneme, differentiating
between vowels and consonants.

Given the top-k pronunciations from the phone
recognition and the G2P models, we first align the
k pronunciations for each model using the Needle-
man—Wunsch algorithm, ensuring each pronunci-
ation attains the same length by introducing gaps
as necessary. We then compute a probability dis-
tribution for all the phones at each position. Con-
sequently, each model produces a list of <phone,
probability>, which are subsequently aligned in
the same manner to identify the most probable
phone at each position.

We must also consider the performance of the
phone recognizer and weight its phones accord-
ingly. Our goal is to enhance the output of the

G2P model without degrading or overpowering it.
Therefore, if the probability p of the phone recog-
nizer’s predicted phone falls below a certain thresh-
old, we reduce the weight w of that phone in the
recombination process. For our experiments, we
set the weighting scheme as

1 ifp>05
w=1<¢05 if0.5<p<0.2 (2)
0.2 ifp<0.2

3 Experimental Setup
3.1 Dataset

We compiled a dataset consisting of <word,
pronunciation, audio> entries using the lat-
est Wikimedia dump dated May 2, 2024. The
entire Wikimedia dump contains approximately
10M words across over 4, 500 languages. Among
these, only about 162, 000 words across 120 lan-
guages have associated pronunciations and audio
files. Within this, 20 languages have less that
100 samples and 50 languages have less than 10
samples, highlighting the scarcity of data for low-
resource languages. Each speech utterance aver-
ages 1.4 seconds in duration, as they consist of sin-
gle words, resulting in a total of 62 hours of speech
in the dataset. All pronunciations are provided in
the IPA format, and the corresponding speech seg-
ments are originally stereo sampled at 44.1 kHz,
subsequently down-sampled to single-channel, 16
kHz.

3.2 Models

Phone Recognizer. We extracted MFCC acous-
tic features, computed cepstral mean and variance
normalization (CMVN) and used it to train a HMM-
GMM acoustic model to directly predict phones
instead of the orthographic representation of the
word, thereby eliminating any extra errors intro-
duced by the transformation. We used the SRILM
toolkit to train a 6-gram Language model. Then,
we bootstrapped the model with mono-phone train-
ing using 10, 000 samples. Subsequently, we per-
formed tri-phone training passes using A and AA
features. We then carried out speaker-independent
training using linear discriminative analysis (LDA)
and maximum likelihood linear transform (MLLT).
Finally, we performed speaker adaptive training
with constrained maximum likelihood linear re-
gression (fMLLR) and computed phone-level align-
ments for the corresponding speech segments.



G2P. Phonetisaurus (Hansen, 2020), imple-
mented as a Python package, is employed to train a
G2P model using a weighted finite state transducer
framework. The training lexicon is the same as that
used for the Kaldi phone recognizer.

3.3 Maetrics

We evaluate the performance of our method using
the following metrics, applied to the predictions of
the G2P and phone recognition models as well as
their optimal combination.

Phone Error Rate (PER). After aligning the
predicted and ground-truth pronunciations, we cal-
culate the sum of insertion, deletion, and substitu-
tion errors, and then divide this total by the length
of the aligned sequence.

Cost-based Phone Error Rate (C-PER). This
metric is similar to PER, where insertions and dele-
tions receive equal penalties. However, substitu-
tions are penalized according to the similarity be-
tween the involved phonemes. Specifically, substi-
tutions between vowel pairs are penalized at half
the rate compared to substitutions involving conso-
nants.

Average Phone Rank of Truth (PhR) . This
metric calculates the average rank of the correctly
identified phone among all possible predictions
at that position in the sequence. If no phone is
correctly predicted, the rank for that position is
arbitrarily set to a higher value. A lower value,
approaching 0, indicates that the phone had the
highest probability at that position and therefore
was the top choice.

4 Results

Figure 1 illustrates the change in PER of the G2P
model when used independently versus with the
phone recognizer (a positive change indicates that
the combination performed better than G2P) across
32,000 utterances and 76 languages. Our method
outperforms the standalone G2P model by 8.5%
on average for all high-resource languages (lan-
guages with more than 3, 000 samples in the train-
ing set). For medium- and low-resource languages,
our method also performs better on average.

For most high-resource languages, the G2P and
phone recognition models perform similarly, but
their combination yields better results. This demon-
strates the effectiveness of our method (and by ex-
tension, recombination and weighting algorithms)
in enhancing pronunciations.

However, our dataset includes a long tail of low-
resource languages with fewer than 10 samples in
the training set. For some of these languages, nei-
ther the G2P nor the phone recognition models per-
form well, resulting in sub-optimal performance of
our method. To address this, we weight the outputs
of the phone recognizer as described in Section
2.3. This approach prevents the degradation of the
G2P output due to poor performance on speech
segments. Additionally, this weighting helps in
situations where the phone recognizer lacks confi-
dence in its output due to noise or other challenging
acoustic conditions, regardless of the language.

Tables 1, 2 and 3 display the ground-truth (GT)
pronunciation of a specific word along with the
predictions of the combination, G2P and phone
recognition models as the 1st, 2nd and 3rd rows
respectively.

Word Lang GT
Document Occitan dukymen
Output PER C-PER PhR
1 dukymen 14 0 1.0
dokyment 38 14 2.12
3 trdukym 'en 33 23 2.2

Table 1: Pronunciation of the word Document from the
Occitan language with metrics.

Table 1 illustrates that a multilingual G2P model
alone may not perform optimally for languages
like Occitan, where the "0" in Document is pho-
netically represented as "u" instead of "5". While
this distinction may not be evident in the orthogra-
phy, the phone recognizer identifies it in the spoken
utterance and assigns a probability of 0.8 to "u",
whereas the G2P model assigns a probability of
only 0.5 to "o". Additionally, the C-PER is 0, de-
spite a substitution error at position 5 between "¢"
and "e". This highlights that while the pronuncia-
tion may not be flawless, such low-cost errors are
acceptable and sufficiently accurate, especially for
low-resource languages.

In Table 2, the G2P model predicts the first
phone of YAIITHO as "uv" instead of "w", despite
the remainder of the pronunciation being correct.
Similar to Table 1, the phone recognizer confi-
dently assigns a probability of 0.7 to the phone
"w", even though its other phones have probabili-
ties of 0.4. This is indicated by the PhR score of
3.17, which shows that the correct phone has the
3rd-highest probability on average among all other
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Figure 1: PER improvement compared to G2P after recombination across 76 languages, identified by their ISO-639-
3 codes. Languages are sorted left to right based on their sample counts in the dataset.

Word Lang GT
VAIII'BO  Adyghe wa:["a
QOutput PER C-PER PhR
1 wafVa 25 1 0.17
va:Va 25 25 0.5
3 wax 80 61 3.17

Table 2: Pronunciation of the word YAIII'BO from the
Adyghe language with metrics.

phones across all positions in the sequence.

Word Lang GT
ITAYCTAHHE Belarusian paustan’:e
Output PER C-PER PhR
1 paustan’:e 0 0 0
pagstanjxs 0 0 0
3 pouustaniiie 44 14 1.56

Table 3: Pronunciation of the word ITAVCTAHHE
from the Belarusian language with metrics.

In Table 3, the output from the phone recognizer
does not influence the output from the G2P model.
This occurs because all the phones generated by
G2P have probabilities close to 1, whereas the
phones that differ according to the acoustic model
have much lower probabilities. Consequently, we
reduce the weight of the phone recognizer, result-
ing in minimal incorporation of its phones in the
final pronunciation. This situation exemplifies a
scenario where the phone recognizer performs in-
adequately and thus should not diminish the perfor-
mance of the G2P model.

5 Limitations

Given that our phone recognizer is a basic HMM-
GMM model, we experience relatively high PER,
especially for consonants. Although our alignment
and weighting algorithm effectively ignores these
erroneous phones when merging the output with
that of the G2P model, a more advanced univer-
sal phone recognizer would be beneficial in cases
where the G2P model also misidentifies consonants.
Additionally, our dataset contains a long tail of lan-
guages with fewer than 10 samples in the training
set, resulting in subpar few-shot performance for
some low-resource languages. Employing neural
models for both G2P and phone recognition could
potentially enhance the overall performance of the
method across most languages.

6 Conclusion

In this work, we introduce a method that leverages
an acoustic phone recognition model to enhance
G2P pronunciations. We created our dataset by
scraping Wiktionary, collecting data for over 100
languages and 160,000 words. Our approach im-
proves performance for high-resource languages,
achieving an average PER reduction of 8.5%, and
performs reasonably well for medium- and low-
resource languages. This demonstrates that com-
bining G2P and ASR outputs using effective align-
ment and weighting strategies can improve pro-
nunciations, accommodating variations across lan-
guages and dialects. This method facilitates the
creation of pronunciation dictionaries for a wide
range of languages using only basic orthography
and single-word spoken utterances.
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