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Abstract

The rapid shift from stateless large language models (LLMs) to autonomous, goal-1

driven agents raises a central question: When is agentic AI truly necessary? While2

agents enable multi-step reasoning, persistent memory, and tool orchestration,3

deploying them indiscriminately leads to higher cost, complexity, and risk.4

We present STRIDE (Systematic Task Reasoning Intelligence Deployment Evalua-5

tor), a framework that provides principled recommendations for selecting between6

three modalities: (i) direct LLM calls, (ii) guided AI assistants, and (iii) fully7

autonomous agentic AI. STRIDE integrates structured task decomposition, dy-8

namism attribution, and self-reflection requirement analysis to produce an Agentic9

Suitability Score, ensuring that full agentic autonomy is reserved for tasks with10

inherent dynamism or evolving context.11

Evaluated across 30 real-world tasks spanning SRE, compliance, and enterprise12

automation, STRIDE achieved 92% accuracy in modality selection, reduced un-13

necessary agent deployments by 45%, and cut resource costs by 37%. Expert14

validation over six months in SRE and compliance domains confirmed its practical15

utility, with domain specialists agreeing that STRIDE effectively distinguishes16

between tasks requiring simple LLM calls, guided assistants, or full agentic au-17

tonomy. This work reframes agent adoption as a necessity-driven design decision,18

ensuring autonomy is applied only when its benefits justify the costs.19

1 Introduction20

Recent advances have transformed AI from simple stateless LLM calls to sophisticated autonomous21

agents, enabling richer reasoning, tool use, and adaptive workflows. While this progression unlocks22

significant value in domains such as site reliability engineering (SRE), compliance, and automation,23

it also introduces substantial trade-offs in cost, complexity, and risk. A central design challenge24

emerges: when agents are truly necessary, and when are simpler alternatives sufficient?25

We distinguish three modalities: (i) LLM calls, providing single-turn inference without memory26

or tools, which is ideal for straightforward query-response scenarios; (ii) AI assistants, which27

handle guided multi-step workflows with short-term context and limited tool access that is suitable28

for structured processes requiring human oversight; and (iii) Agentic AI, which autonomously29

decomposes tasks, orchestrates tools, and adapts with minimal oversight, which is necessary for30

complex, dynamic environments requiring independent decision-making. Table 1 contrasts these31

modalities.32

Current practice often overuses agentic AI, deploying autonomous systems even when simpler33

modalities would suffice. This tendency leads to unnecessary cost, complexity, and risk, particularly34

in enterprise contexts where reliability and governance are critical. A principled framework for35
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Table 1: Comparison of AI Modalities
Attribute LLM Call AI Assistant Agentic AI
Reasoning Depth Shallow Medium Deep
Tool Needs Single Single/Multiple Multiple
State Needs None Ephemeral Persistent
Risk Profile Low Medium High
Use Case Example Exchange rate lookup Summarize meeting notes Plan 5-day travel itinerary

deciding when agents are truly necessary has been missing, leaving design-time choices largely36

intuition-driven rather than evidence-based. While agentic AI unlocks transformative value in37

domains like SRE, compliance verification, and complex automation, deploying it indiscriminately38

carries risks:39

• Overengineering: using agents for simple queries wastes compute and developer effort.40

• Security & compliance risks: uncontrolled tool use and API calls may leak sensitive data.41

• System instability: recursive loops and unbounded workflows degrade reliability.42

We propose STRIDE, a novel framework for necessity assessment at design time: systematically43

deciding whether a given task should be solved with an LLM call, an AI assistant, or agentic AI.44

STRIDE analyzes task descriptions across four integrated analytical dimensions:45

• Structured Task Decomposition: Tasks are decomposed into a directed acyclic graph46

(DAG) of subtasks, systematically breaking down objectives to reveal inherent complexity,47

interdependencies, and sequential reasoning requirements that distinguish simple queries48

from multi-step challenges.49

• Dynamic Reasoning and Tool-Interaction Scoring: STRIDE quantifies reasoning depth50

together with tool dependencies, external data access, and API requirements, identifying51

when sophisticated orchestration beyond basic language processing is necessary.52

• Dynamism Attribution Analysis: Using a True Dynamism Score (TDS), the framework53

attributes variability to models, tools, or workflow sources, clarifying when persistent54

memory and adaptive decision-making are required.55

• Self-Reflection Requirement Assessment: Assesses need for error recovery and meta-56

cognition, and integrates all factors into an Agentic Suitability Score (ASS) that guides the57

choice of LLM call, assistant, or agent.58

This unified methodology ensures that AI solution selection is not an ad-hoc judgment call, but a59

structured, repeatable process that balances capability requirements with efficiency, cost, and risk60

management. Just as scaling laws have guided model development by quantifying performance as a61

function of parameters and data, we argue that analogous principles are needed for environmental62

and task scaling. Not every task requires autonomy: simple queries map to LLM calls, structured63

processes to guided assistants, and only dynamic, evolving workflows demand full agentic AI.64

STRIDE introduces such a structured scaling perspective for modality selection.65

Strategic Integration and Impact: STRIDE acts as a “shift-left” decision tool— i.e., it moves66

critical choices from deployment time to the design phase—embedding modality selection into early67

workflows. This prevents over-engineering, avoids under-provisioning, and provides defensible68

criteria for balancing capability, efficiency, computational cost, and risk.69

• We introduce STRIDE, the first design-time framework for AI modality selection, shifting70

decisions left in the pipeline.71

• We define a novel quantitative Agentic Suitability Score with dynamism attribution, bal-72

ancing autonomy benefits against cost and risk.73

• We evaluate STRIDE on 30 real-world tasks across SRE Jha et al. [2025], compliance,74

and enterprise automation, demonstrating reduced agentic over-deployment by 45% while75

improving expert alignment by 27%.76
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Beyond efficiency, this framing directly supports responsible AI deployment. By preventing over-77

engineering, STRIDE reduces unnecessary surface area for errors, governance failures, and hidden78

costs, while ensuring that truly complex tasks receive the level of autonomy they demand.79

2 Related Work80

Recent advances have expanded AI from simple LLM calls to guided assistants and adaptive agentic81

systems. While assistants follow structured workflows, agents plan and make inference-time decisions82

in dynamic environments. This shift has driven research into task complexity, reasoning depth, and83

self-reflection, but few works address the design-time question of when agents are truly needed.84

Related work such as AgentBoard Chang et al. [2024] benchmarks multi-turn agent evaluation via85

task decomposition and error taxonomy, aligning with STRIDE’s scoring. COPPER Bo et al. [2024]86

introduces self-reflection via counterfactual rewards in multi-agent settings, reinforcing the role of87

reflection analysis in STRIDE. While frameworks address components of intelligent execution Ye88

and Jaques, Kapoor et al. [2024], few offer a systematic methodology for selecting the appropriate AI89

modality at design time.90

Benchmarks for agent performance. A growing body of benchmarks evaluates how well agents91

perform specific tasks. AgentBench Xu et al. [2025], ITBench Jha et al. [2025], and ToolBench92

Qin et al. [2025] stress-test multi-tool reasoning and environment interaction. SWE-Bench Jimenez93

et al. [2023] focuses on software engineering workflows, while Gorilla Patil et al. [2024] evaluates94

large-scale tool invocation. HuggingGPT Shen et al. [2023] and ReAct Yao et al. [2023] integrate tool95

usage and reasoning traces to improve robustness. These works emphasize performance measurement96

after deployment. By contrast, STRIDE addresses the orthogonal but complementary question of97

necessity at design time: before deploying agents, can we predict whether a task truly requires them?98

Task complexity and modality selection. Prior studies classify tasks for LLMs, assistants, or99

agents: agents excel at workflow decomposition but risk loops IBM [2025]; small LMs suit repetitive100

subtasks Belcak et al. [2025], Greyling, Cobus [2025]; and governance risks remain a concern101

McKinsey & Company [2025]. STRIDE formalizes these intuitions into a scoring framework that102

balances reasoning depth, tool needs, and state requirements.103

Task decomposition, Self-reflection and adaptive reasoning. Decomposition is central: graph-104

based metrics support evaluation Gabriel et al. [2024]; TDAG automates subtasks Crispino et al.105

[2025]; and tool-calling studies quantify volatility from nested or parallel use Masterman [2024],106

factors we incorporate in the True Dynamism Score. Reflection has been explored in ARTIST Plaat107

et al. [2025] and MTPO Wu et al. [2025]. We instead treat reflection as a necessity criterion rather108

than a performance add-on.109

Industry and patents. Frameworks such as LlamaIndex, Google ADK, and CrewAI LlamaIndex110

[2025] enable modular workflows, while patents from Anthropic and OpenAI Zhang et al. [2024],111

AFP [2025] describe autonomous travel and compliance. STRIDE differs by focusing on design-time112

necessity assessment, embedding explainability and risk-awareness into early choices.113

While prior work evaluates agent capabilities post-deployment, no framework automates modality114

selection at design time. STRIDE fills this gap with task complexity scoring, variability attribution,115

drift monitoring, and persona-specific recommendations, uniquely addressing the question of whether116

agents are needed at all and transforming solution selection into a structured, evidence-based117

discipline.118

3 Methodology119

In this section, we present our end-to-end framework, STRIDE (Systematic Task Reasoning Intel-120

ligence Deployment Evaluator), for assessing whether a task requires the deployment of agentic121

AI, an AI assistant, or a stateless LLM call. STRIDE systematically evaluates task complexity,122

reasoning depth, tool dependencies, dynamism of task, and self-reflection requirements to provide a123

quantitative recommendation. Figure 1 illustrates the workflow124
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Figure 1: Overview of STRIDE, a five-stage framework for determining the necessity of Agentic
AI, AI assistants, or LLM calls. Stage 1: Task decomposition into subtasks with dependency
graph construction. Stage 2: Dynamic reasoning and tool-interaction scoring. Stage 3: Dynamism
attribution (model/tool/workflow). Stage 4: Self-reflection requirement analysis. Stage 5: Aggregated
suitability inference with persona-aware recommendations.

3.1 System Overview125

STRIDE analyzes task descriptions, inputs/outputs, and tool dependencies to recommend the appro-126

priate AI modality. This process comprises producing an Agentic Suitability Score (ASS) for each127

subtask. This score is then aggregated to guide the final modality recommendation:128

• Task Decomposition: Breaks tasks into a DAG of subtasks to expose dependencies.129

• Reasoning & Tool Scoring: Quantifies reasoning depth, tool reliance, and API orchestration130

requirements.131

• Dynamism Analysis: Attributes variability across model, tool, and workflow sources using132

a True Dynamism Score (TDS) to determine whether adaptive agentic reasoning is needed.133

• Self-Reflection Assessment: Detects when iterative correction is required and integrates all134

factors into an Agentic Suitability Score (ASS) to give final recommendation.135

3.2 Task Decomposition & Representation136

In this stage, STRIDE transforms free-form task descriptions into structured, actionable subtasks using137

a fine-tuned LLM with specialized prompting. The system identifies key action verbs (like "search,"138

"validate," "analyze") and target nouns (such as "flights," "budget," "data") to create meaningful work139

units. To illustrate with a practical example, if the initial task is "Plan a 5-day travel itinerary", the140

Task Decomposition phase would generate subtasks like "Search Flights", "Find Hotels", "Budget141

Planning", and "Activity Research".142

The system automatically discovers relationships between subtasks through 1) Temporal Analysis:143

Recognizing sequence requirements ("search flights before booking hotels"), 2) Data Flow Tracking:144

Identifying when one subtask’s output feeds into another ("Search Flights" results inform "Budget145

Alerts"), and 3) Semantic Role Labeling: Mapping precise input/output relationships.146

STRIDE creates a directed acyclic graph (DAG) where each subtask node contains, 1) Historical147

Patterns: "Search Flights" appears as the starting point in 85% of travel planning tasks, 2) Tool148

Recommendations: Proven integrations for similar subtasks, and 3) Performance Insights: Success149

rates and optimization guidance from past executions. By converting ambiguous requests into precise,150

interconnected subtasks, STRIDE establishes the foundation for intelligent automation decisions. This151

structured approach ensures no critical dependencies are missed while enabling parallel execution152

where possible. Let T = {s1, s2, . . . , sn} represent the extracted subtasks, organized in graph153

G = (T,E) where edges E capture both ordering constraints and data dependencies between tasks.154

3.3 Dynamic Reasoning & Tool Assessment155

For each subtask si, STRIDE computes an Agentic Suitability Score (ASS) that objectively measures156

whether the subtask benefits from autonomous agent capabilities:157

ASS(si) = wr ·R(s) + wt · T (s) + ws · S(s) + wρ · ρ(s), (1)

where:158

• R(s) = Reasoning depth (0 = Shallow; simple lookup or direct response, 1 = Medium;159

requires comparison or basic inference, 2 = Deep; multi-step analysis or complex decision-160

making),161
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• T (s) = tool need (0 = None; no external tools required, 1 = Single; single tool integration, 2162

= Multiple; multiple tool orchestration needed),163

• S(s) = state/memory requirement (0 = None; stateless operation, 1 = Ephemeral; single164

session, 2 = Persistent;),165

• ρ(s) = Risk Score (compliance violations, computational Overhead, infinite loop potential).166

The weighting system (wr, wt, ws, wρ) adapts to different task domains: Reasoning-Heavy Tasks:167

wr) prioritizes complex multi-step tasks (e.g., wr = 0.4 for itinerary planning) Tool-Intensive168

Workflows: (wt) emphasizing tasks requiring multiple tools (e.g., wt = 0.3 for API-heavy workflows)169

Context-Dependent Operations: (ws) accounting for persistent context needs (e.g., ws = 0.2 for170

multi-turn interactions) Risk-Sensitive Applications: (wρ), penalizing high-risk operations (e.g.,171

wρ = 0.1 for compliance tasks)172

STRIDE continuously refines these weights through grid search optimization on labeled historical173

task data, then refines via reinforcement learning from deployment outcomes and expert feedback174

integration for domain-specific calibration. This scoring mechanism prevents over-engineering simple175

tasks with complex agentic AI solutions, while ensuring that sophisticated problems receive appropri-176

ate autonomous capabilities. The result is precise resource allocation and optimal performance across177

diverse task types.178

3.4 Dynamism Attribution179

Variability alone does not justify implementing AI agents. For instance, a task like *"Generate a180

random greeting message"* may produce different outputs each time due to model stochasticity181

(model-induced variability), but it can be handled effectively by a stateless LLM with temperature182

adjustments—no agentic autonomy is required. STRIDE distinguishes:183

• Model-induced variability, stems from AI model limitations, including prompt ambiguity184

(unclear prompts causing inconsistent outputs) and stochastic randomness (probabilistic185

models producing different results from identical inputs). This variability typically resolves186

through improved prompt engineering, temperature controls, or deterministic sampling187

rather than requiring agentic capabilities.188

• Tool-induced variability, arises from external dependencies, including API volatility (chang-189

ing response formats, rate limits, downtime) and dynamic tool responses (varying data based190

on real-time conditions). These challenges typically require robust error handling, retry191

mechanisms, and adaptive response parsing rather than autonomous agent decision-making.192

• Workflow-induced variability, involves systemic execution complexity, including conditional193

branching (different inputs triggering varied decision trees) and environmental changes194

(system load, user context, data availability altering optimal paths). This category most195

strongly indicates agentic solution needs, as it requires dynamic decision-making and196

adaptive planning that benefit from autonomous reasoning capabilities.197

By distinguishing sources of variability, STRIDE avoids over-engineering and activates agentic AI198

only when autonomous reasoning materially improves task outcomes.199

The True Dynamism Score (TDS) isolates workflow-driven variability:200

TDS(si) = α ·W (s) + β · V (s)− γ ·M(s), (2)

where W (s) is workflow variability, V (s) tool volatility, and M(s) model instability. A high TDS201

implies that autonomy and adaptivity are required.202

3.5 Self-Reflection Assessment203

Self-reflection is required when subtasks involve mid-execution decision points or validation of204

nondeterministic tools.205

Mid-execution decision points occur when workflows cannot be fully predetermined and require206

dynamic evaluation during execution. AI Agents implement procedural mechanisms to incorporate207

tool responses mid-process, while Agentic AI introduces recursive task reallocation and cross-agent208

messaging for emergent decision-making Sapkota et al. [2025]. These situations arise when initial209
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Algorithm 1 STRIDE Scoring & Modality Inference

Require to Input: Task description τ , knowledge base K, thresholds θ, . . .
Ensure to Output: Modal suggestion ŷ ∈ {LLM_CALL, AI_ASSISTANT, AGENTIC_AI}

1: Decompose τ into subtasks T = {s1, . . . , sn} and build DAG G
2: for each subtask s ∈ T do
3: Compute R(s), T (s), S(s), ρ(s) and derive ASS(s)
4: Compute W (s), V (s),M(s) and derive TDS(s)
5: Evaluate C(s), N(s), V (s) to derive SR(s)
6: end for
7: Aggregate features into task profile xT

8: Return ŷ = argmaxm f(xT ;K)

conditions change unexpectedly, multi-step processes reveal information influencing subsequent210

actions, or quality checkpoints require evaluating whether intermediate outputs meet success criteria.211

The Reflexion framework demonstrates how agents reflect on task feedback and maintain reflective212

text in episodic memory to improve subsequent decision-making Shinn et al. [2023], with studies213

showing significant problem-solving performance improvements (p < 0.001) Renze and Guven214

[2024].215

Validation of nondeterministic tools becomes critical when working with external systems producing216

variable outputs. LLM-powered systems present challenges where outputs are unpredictable, requiring217

custom validation frameworks. This includes API responses with different data structures, LLM-218

generated content requiring accuracy evaluation, and web scraping tools exhibiting behavior changes219

due to evolving website structures. Neural network instability can lead to disparate results, requiring220

rigorous validation through adversarial robustness testing.221

Without self-reflection, agents risk propagating errors, making incorrect assumptions about tool222

outputs, or failing to adapt when strategies prove insufficient. Self-reflection enables task coherence223

and reliability in dynamic environments. STRIDE encodes this as a decision rule:224

SR(s) = 1(TDS(s) ≥ θ ∧ (C(s) ∨N(s) ∨ V (s))) ,

where C(s) = conditional branches, N(s) = nondeterministic tools, V (s) = mid-execution validation,225

and θ = dynamism threshold. If SR(s) = 1, reflection hooks (e.g., error recovery, re-planning, ReAct)226

are triggered.227

3.6 Intelligent Recommendation Engine228

Figure 2: Toy decomposition DAG for “Plan 5-day
travel itinerary.” Each subtask is scored separately
and orchestrated by STRIDE.

Finally, STRIDE aggregates features from sub-229

tasks into a task profile xT and queries a knowl-230

edge base K of historical patterns. A classifier231

f produces the final modality:232

ŷ = arg max
m∈{LLM,Assistant,Agent}

f(xT ;K), (3)

with justification tailored to the user’s persona233

(e.g., developers receive tool configurations,234

managers receive architectural summaries).235

Figure 2 illustrates a toy DAG for a travel-planning task, showing how STRIDE decomposes tasks236

into subtasks for scoring and routing. To clarify the STRIDE workflow, Algorithm 1 outlines the237

end-to-end scoring and modality inference process, from task decomposition to final recommendation.238

This structured scoring-to-classification pipeline ensures that agentic AI is deployed only when239

justified by objective complexity, resource trade-offs, and dynamism.240

4 Experiments & Results241

We evaluated STRIDE across 30 real-world tasks spanning SRE, enterprise automation, legal com-242

pliance, and customer support. The objective was to test whether STRIDE reliably distinguishes243
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Table 2: Quantitative results of STRIDE compared to baselines across 30 tasks.
Method Accuracy (%) Over-engg Reduction (%) Resource Savings (%)
Naive Agent 33.3 0 0
Heuristic Threshold 68.0 27.5 18.2
STRIDE (ours) 92.0 45.3 37.1

between LLM calls, assistants, and agents, minimizing over-engineering while ensuring accurate,244

cost-efficient design-time decisions. While modest in size, our task set emphasizes depth over breadth,245

demonstrating STRIDE’s value in real-world settings. Across all 30 tasks, STRIDE achieved 92%246

accuracy, reduced unnecessary agent deployments by 45%, and delivered 37% lower compute/API247

usage compared to always deploying agents. These results demonstrate that principled design-time248

selection yields tangible efficiency gains compared to intuition-driven deployment. We compared249

STRIDE against two baselines. The Naive Agent baseline always deployed agentic AI regardless250

of task complexity, providing an upper bound on cost but no efficiency. The Heuristic Threshold251

baseline deployed agents only when reasoning depth ≥ 2 and tool requirements ≥ 2, but often failed252

on borderline cases where task dynamism or reflection was the deciding factor. STRIDE consistently253

outperformed both approaches.254

4.1 Illustrative Use Cases255

To ground these aggregate results, we highlight representative tasks where STRIDE discriminates be-256

tween simple lookups, medium-complexity assistance, and fully autonomous agent workflows. These257

cases illustrate how STRIDE’s scoring pipeline translates into practical deployment recommendations.258

LLM Call Example: Currency Lookup. “What is the exchange rate between USD and EUR259

today?” This task requires shallow reasoning (0-hop), a single API call, and no state persistence.260

STRIDE assigned a low True Dynamism Score (0.10) and recommended LLM_CALL. This minimized261

cost and latency, avoiding unnecessary orchestration overhead while retaining accuracy.262

AI Assistant Example: Meeting Summarization. “Summarize today’s team meeting notes and263

suggest action items.” This task requires medium reasoning depth (1-hop), a summarization tool, and264

ephemeral state. STRIDE produced a TDS of 0.35 and recommended AI_ASSISTANT, reflecting that265

autonomy is unnecessary but structured guidance improves usability. Deploying a fully autonomous266

agentic AI for this task would have added unnecessary computation and orchestration overhead267

without improving the outcome, since an AI assistant sufficed.268

Agentic AI Example: Travel Planning. “Plan a 5-day travel itinerary with hotels, attractions, and269

budget alerts.” This task demands multi-hop reasoning, persistent state, and multiple API integrations270

(flights, hotels, maps). STRIDE assigned a TDS of 0.78 and correctly recommended AGENTIC_AI.271

Experts validated that dynamic replanning is essential in such workflows due to evolving constraints272

and interdependencies.273

SRE Example: Kubernetes Incident Analysis. “Analyze Kubernetes change events and correlate274

them with active alerts to identify the root cause of an ongoing incident.” This high-stakes task275

requires deep reasoning, multiple tool integrations (Kubernetes API, alerting system, causal analysis),276

and persistent state tracking. STRIDE scored a TDS of 0.85 and recommended AGENTIC_AI. Domain277

experts confirmed that incident resolution often requires iterative exploration and adaptive strategies278

that static assistants cannot provide.279

Compliance Verification Example. “Evaluate a set of documents for legal compliance, flagging280

any non-compliant sections and suggesting corrections.” This task involves deep reasoning, persistent281

state, and multiple specialized tools (legal database, document parser, compliance checker). STRIDE282

assigned a TDS of 0.80 and recommended AGENTIC_AI, reflecting the high compliance risks and283

iterative refinements required. Experts noted that assistants often fail to capture edge cases in284

regulatory contexts.285
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Table 3: Representative task evaluations. RD = Reasoning Depth, TN = Tool Needs, SN = State
Needs, TDS = True Dynamism Score.

Task RD TN SN TDS Risk Recommendation
Currency lookup 0 1 0 0.10 Low LLM_CALL
Meeting summarization 1 1 1 0.35 Medium AI_ASSISTANT
Travel itinerary planning 2 2 2 0.78 High AGENTIC_AI
Kubernetes incident analysis 2 2 2 0.85 High AGENTIC_AI
Legal compliance verification 2 2 2 0.80 High AGENTIC_AI

Table 4: Ablation study of STRIDE components. Accuracy, over-engineering reduction, and resource
savings are reported.

Configuration Accuracy (%) Over-engg Reduction (%) Resource Savings (%)
Full STRIDE 92.0 45.3 37.1
w/o Task Decomposition 83.0 35.2 28.0
w/o True Dynamism Score 80.0 33.0 26.5
w/o TDS Weighting 81.3 32.0 25.4
w/o Self-Reflection 76.0 29.5 22.8
w/o Human-in-the-loop 85.7 37.1 28.6

4.2 Why STRIDE Works: Ablation Study286

To understand why STRIDE performs well, we conducted ablation experiments by removing core287

components. As Table 4 shows, each element contributes significantly. Removing task decomposition288

reduced accuracy by 9%, showing that subtask structure is essential for modeling dependencies.289

Without the True Dynamism Score, accuracy fell by 12%, as STRIDE struggled to distinguish290

borderline tasks like meeting summarization versus compliance verification. The largest drop came291

from removing self-reflection, which reduced accuracy to 76%, underscoring its role in handling292

mid-execution corrections and adaptive reasoning.293

Human-in-the-loop validation also played a role: omitting expert feedback reduced alignment with294

domain judgments, demonstrating the value of incorporating expert calibration into design-time295

recommendations.296

4.3 Robustness and Human Validation297

Beyond aggregate numbers, we tested robustness across domains. STRIDE achieved 95% accuracy298

in SRE, 91% in compliance, 89% in automation, and 93% in customer support (Figure 3). This299

consistency suggests that STRIDE generalizes well across heterogeneous real-world tasks without300

overfitting to any specific domain. Errors primarily arose in borderline scenarios, such as multi-301

document summarization, where dynamism was underestimated. Notably, STRIDE sometimes302

recommended assistants when experts preferred agents, but never the reverse—avoiding costly303

over-engineering mistakes.304

Expert validation further confirmed STRIDE’s recommendations. In 78% of cases, experts fully305

agreed, 15% showed partial agreement (e.g., suggesting an assistant instead of an agent for borderline306

tasks), and only 7% disagreed (Figure 4). This resulted in a 27% improvement in expert alignment307

compared to the Heuristic Threshold baseline. Feedback from engineers and compliance officers308

improved STRIDE through better task decomposition, adjusted TDS weights, and persona-aware309

outputs tailored to developers and managers (Table 5). Our robustness validation was not a one-off310

annotation exercise, but the result of extended collaboration with subject matter experts. For the311

SRE domain, three Kubernetes incident response experts engaged with STRIDE iteratively over312

a six-month period (March–August 2025), providing feedback on decomposition, reflection, and313

dynamism scoring. In the compliance domain, two legal verification experts participated in a shorter314

but focused engagement of 1–2 months (May-June 2025), helping calibrate task scoring against315

regulatory criteria. This sustained, multi-month collaboration ensured that STRIDE’s assessments316

aligned with the nuanced realities of enterprise practice.317
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Figure 3: Domain-wise accuracy of STRIDE
across 30 tasks.

78%

15%

7%

Full Agreement
Partial Agreement
Disagreement

Figure 4: Expert agreement with STRIDE
recommendations.

Table 5: Summary of Human-in-the-Loop Feedback and System Improvements.
Feedback Area Improvements Made
Task Decomposition Enhanced LLM-driven decomposition to better capture subtask depen-

dencies.
Dynamism Analysis Adjusted weights in the True Dynamism Score to better separate model-,

tool-, and workflow-induced variability.
Knowledge Base Expanded task patterns and historical performance metrics for SRE and

compliance tasks.

4.4 Discussion and Limitations318

STRIDE reduces the costs, risks, and misaligned expectations of unnecessary agents. By shifting319

selection to design time, it prevents over-engineering, ensures autonomy only where required, and320

reframes adoption from intuition-driven to structured decision process that directly translates into321

lower compute/API expenditure and reduced operational costs. At the same time, we acknowl-322

edge limitations. STRIDE’s scoring functions are heuristic by design, striking a balance between323

interpretability and generality.324

Finally, STRIDE complements existing benchmarks, such as AgentBench, SWE-Bench, and Tool-325

Bench. While those benchmarks evaluate how well agents perform after deployment, STRIDE focuses326

on whether agents are needed at all before deployment. This creates opportunities for integration:327

STRIDE could serve as a design-time filter that guides which tasks should be benchmarked with328

agents, or as a planning tool embedded into enterprise AI workflows. Together, these directions329

position STRIDE as both a practical engineering aid and a guardrail for responsible AI deployment.330

5 Conclusion331

We introduced STRIDE (Systematic Task Reasoning Intelligence Deployment Evaluator), a frame-332

work for systematically determining when tasks require agentic AI, AI assistants, or simple LLM333

calls. STRIDE integrates five analytical dimensions — structured task decomposition, dynamic334

reasoning and tool-interaction scoring, dynamism attribution analysis, self-reflection requirement335

assessment, and agentic suitability inference. In evaluating 30 real-world enterprise tasks, STRIDE336

reduced unnecessary agent deployments by 45%, improved expert alignment by 27% and cut resource337

costs by 37%, directly mitigating over-engineering risks and containing compute costs.338

Looking ahead, we will extend evaluation beyond the 30 tasks to include multimodal tasks (vi-339

sion/audio), integrate reinforcement learning for weight tuning, and validate STRIDE at enterprise340

scale. These extensions will further strengthen its role as a practical guardrail for responsible AI341

deployment.342
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