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Abstract

The rapid shift from stateless large language models (LLMs) to autonomous, goal-
driven agents raises a central question: When is agentic Al truly necessary? While
agents enable multi-step reasoning, persistent memory, and tool orchestration,
deploying them indiscriminately leads to higher cost, complexity, and risk.

We present STRIDE (Systematic Task Reasoning Intelligence Deployment Evalua-
tor), a framework that provides principled recommendations for selecting between
three modalities: (i) direct LLM calls, (ii) guided Al assistants, and (iii) fully
autonomous agentic AI. STRIDE integrates structured task decomposition, dy-
namism attribution, and self-reflection requirement analysis to produce an Agentic
Suitability Score, ensuring that full agentic autonomy is reserved for tasks with
inherent dynamism or evolving context.

Evaluated across 30 real-world tasks spanning SRE, compliance, and enterprise
automation, STRIDE achieved 92% accuracy in modality selection, reduced un-
necessary agent deployments by 45%, and cut resource costs by 37%. Expert
validation over six months in SRE and compliance domains confirmed its practical
utility, with domain specialists agreeing that STRIDE effectively distinguishes
between tasks requiring simple LLM calls, guided assistants, or full agentic au-
tonomy. This work reframes agent adoption as a necessity-driven design decision,
ensuring autonomy is applied only when its benefits justify the costs.

1 Introduction

Recent advances have transformed Al from simple stateless LLM calls to sophisticated autonomous
agents, enabling richer reasoning, tool use, and adaptive workflows. While this progression unlocks
significant value in domains such as site reliability engineering (SRE), compliance, and automation,
it also introduces substantial trade-offs in cost, complexity, and risk. A central design challenge
emerges: when agents are truly necessary, and when are simpler alternatives sufficient?

We distinguish three modalities: (i) LLM calls, providing single-turn inference without memory
or tools, which is ideal for straightforward query-response scenarios; (ii) Al assistants, which
handle guided multi-step workflows with short-term context and limited tool access that is suitable
for structured processes requiring human oversight; and (iii) Agentic AI, which autonomously
decomposes tasks, orchestrates tools, and adapts with minimal oversight, which is necessary for
complex, dynamic environments requiring independent decision-making. Table|l|contrasts these
modalities.

Current practice often overuses agentic Al, deploying autonomous systems even when simpler
modalities would suffice. This tendency leads to unnecessary cost, complexity, and risk, particularly
in enterprise contexts where reliability and governance are critical. A principled framework for
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Table 1: Comparison of Al Modalities

Attribute LLM Call Al Assistant Agentic AI
Reasoning Depth Shallow Medium Deep
Tool Needs Single Single/Multiple Multiple
State Needs None Ephemeral Persistent
Risk Profile Low Medium High

Use Case Example Exchange rate lookup Summarize meeting notes  Plan 5-day travel itinerary

36 deciding when agents are truly necessary has been missing, leaving design-time choices largely
37 intuition-driven rather than evidence-based. While agentic Al unlocks transformative value in
38 domains like SRE, compliance verification, and complex automation, deploying it indiscriminately
39 carries risks:

40 * Overengineering: using agents for simple queries wastes compute and developer effort.
41 * Security & compliance risks: uncontrolled tool use and API calls may leak sensitive data.
42 * System instability: recursive loops and unbounded workflows degrade reliability.

43 We propose STRIDE, a novel framework for necessity assessment at design time: systematically
44 deciding whether a given task should be solved with an LLM call, an Al assistant, or agentic AL
45 STRIDE analyzes task descriptions across four integrated analytical dimensions:

46 * Structured Task Decomposition: Tasks are decomposed into a directed acyclic graph
47 (DAG) of subtasks, systematically breaking down objectives to reveal inherent complexity,
48 interdependencies, and sequential reasoning requirements that distinguish simple queries
49 from multi-step challenges.

50 * Dynamic Reasoning and Tool-Interaction Scoring: STRIDE quantifies reasoning depth
51 together with tool dependencies, external data access, and API requirements, identifying
52 when sophisticated orchestration beyond basic language processing is necessary.

53 * Dynamism Attribution Analysis: Using a True Dynamism Score (TDS), the framework
54 attributes variability to models, tools, or workflow sources, clarifying when persistent
55 memory and adaptive decision-making are required.

56 * Self-Reflection Requirement Assessment: Assesses need for error recovery and meta-
57 cognition, and integrates all factors into an Agentic Suitability Score (ASS) that guides the
58 choice of LLM call, assistant, or agent.

59 This unified methodology ensures that Al solution selection is not an ad-hoc judgment call, but a
60 structured, repeatable process that balances capability requirements with efficiency, cost, and risk
61 management. Just as scaling laws have guided model development by quantifying performance as a
62 function of parameters and data, we argue that analogous principles are needed for environmental
63 and task scaling. Not every task requires autonomy: simple queries map to LLM calls, structured
64 processes to guided assistants, and only dynamic, evolving workflows demand full agentic Al
65 STRIDE introduces such a structured scaling perspective for modality selection.

66 Strategic Integration and Impact: STRIDE acts as a “shift-left” decision tool— i.e., it moves
67 critical choices from deployment time to the design phase—embedding modality selection into early
68 workflows. This prevents over-engineering, avoids under-provisioning, and provides defensible
69 criteria for balancing capability, efficiency, computational cost, and risk.

70 * We introduce STRIDE, the first design-time framework for Al modality selection, shifting
71 decisions left in the pipeline.

72 * We define a novel quantitative Agentic Suitability Score with dynamism attribution, bal-
73 ancing autonomy benefits against cost and risk.

74 * We evaluate STRIDE on 30 real-world tasks across SRE Jha et al.| [2025]], compliance,
75 and enterprise automation, demonstrating reduced agentic over-deployment by 45% while
76 improving expert alignment by 27%.
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Beyond efficiency, this framing directly supports responsible Al deployment. By preventing over-
engineering, STRIDE reduces unnecessary surface area for errors, governance failures, and hidden
costs, while ensuring that truly complex tasks receive the level of autonomy they demand.

2 Related Work

Recent advances have expanded Al from simple LLM calls to guided assistants and adaptive agentic
systems. While assistants follow structured workflows, agents plan and make inference-time decisions
in dynamic environments. This shift has driven research into task complexity, reasoning depth, and
self-reflection, but few works address the design-time question of when agents are truly needed.
Related work such as AgentBoard (Chang et al.|[2024]] benchmarks multi-turn agent evaluation via
task decomposition and error taxonomy, aligning with STRIDE’s scoring. COPPER |Bo et al.|[2024]]
introduces self-reflection via counterfactual rewards in multi-agent settings, reinforcing the role of
reflection analysis in STRIDE. While frameworks address components of intelligent execution |Ye
and Jaques| [Kapoor et al.|[2024], few offer a systematic methodology for selecting the appropriate Al
modality at design time.

Benchmarks for agent performance. A growing body of benchmarks evaluates how well agents
perform specific tasks. AgentBench Xu et al.| [2025]], ITBench [Jha et al.|[2025]], and ToolBench
Qin et al.|[2025] stress-test multi-tool reasoning and environment interaction. SWE-Bench Jimenez
et al.| [2023]] focuses on software engineering workflows, while Gorilla [Patil et al.|[2024] evaluates
large-scale tool invocation. HuggingGPT [Shen et al.|[2023]] and ReAct|Yao et al.[[2023]] integrate tool
usage and reasoning traces to improve robustness. These works emphasize performance measurement
after deployment. By contrast, STRIDE addresses the orthogonal but complementary question of
necessity at design time: before deploying agents, can we predict whether a task truly requires them?

Task complexity and modality selection. Prior studies classify tasks for LLMs, assistants, or
agents: agents excel at workflow decomposition but risk loops IBM| [2025]]; small LMs suit repetitive
subtasks |Belcak et al.| [2025]], |Greyling, Cobus| [2025]]; and governance risks remain a concern
McKinsey & Company| [2025]]. STRIDE formalizes these intuitions into a scoring framework that
balances reasoning depth, tool needs, and state requirements.

Task decomposition, Self-reflection and adaptive reasoning. Decomposition is central: graph-
based metrics support evaluation (Gabriel et al.|[2024]]; TDAG automates subtasks |Crispino et al.
[2025]]; and tool-calling studies quantify volatility from nested or parallel use Masterman [2024]],
factors we incorporate in the True Dynamism Score. Reflection has been explored in ARTIST |Plaat
et al.|[2025]] and MTPO Wu et al.[[2025]]. We instead treat reflection as a necessity criterion rather
than a performance add-on.

Industry and patents. Frameworks such as Llamalndex, Google ADK, and CrewAl Llamalndex
[2025] enable modular workflows, while patents from Anthropic and OpenAl|Zhang et al.[[2024],
AFP|[2025] describe autonomous travel and compliance. STRIDE differs by focusing on design-time
necessity assessment, embedding explainability and risk-awareness into early choices.

While prior work evaluates agent capabilities post-deployment, no framework automates modality
selection at design time. STRIDE fills this gap with task complexity scoring, variability attribution,
drift monitoring, and persona-specific recommendations, uniquely addressing the question of whether
agents are needed at all and transforming solution selection into a structured, evidence-based
discipline.

3 Methodology

In this section, we present our end-to-end framework, STRIDE (Systematic Task Reasoning Intel-
ligence Deployment Evaluator), for assessing whether a task requires the deployment of agentic
Al an Al assistant, or a stateless LLM call. STRIDE systematically evaluates task complexity,
reasoning depth, tool dependencies, dynamism of task, and self-reflection requirements to provide a
quantitative recommendation. Figure|l|illustrates the workflow
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Figure 1: Overview of STRIDE, a five-stage framework for determining the necessity of Agentic
Al, AI assistants, or LLM calls. Stage 1: Task decomposition into subtasks with dependency
graph construction. Stage 2: Dynamic reasoning and tool-interaction scoring. Stage 3: Dynamism
attribution (model/tool/workflow). Stage 4: Self-reflection requirement analysis. Stage 5: Aggregated
suitability inference with persona-aware recommendations.

3.1 System Overview

STRIDE analyzes task descriptions, inputs/outputs, and tool dependencies to recommend the appro-
priate Al modality. This process comprises producing an Agentic Suitability Score (ASS) for each
subtask. This score is then aggregated to guide the final modality recommendation:

» Task Decomposition: Breaks tasks into a DAG of subtasks to expose dependencies.

* Reasoning & Tool Scoring: Quantifies reasoning depth, tool reliance, and API orchestration
requirements.

* Dynamism Analysis: Attributes variability across model, tool, and workflow sources using
a True Dynamism Score (TDS) to determine whether adaptive agentic reasoning is needed.

* Self-Reflection Assessment: Detects when iterative correction is required and integrates all
factors into an Agentic Suitability Score (ASS) to give final recommendation.

3.2 Task Decomposition & Representation

In this stage, STRIDE transforms free-form task descriptions into structured, actionable subtasks using
a fine-tuned LLM with specialized prompting. The system identifies key action verbs (like "search,"
"validate," "analyze") and target nouns (such as "flights," "budget," "data") to create meaningful work
units. To illustrate with a practical example, if the initial task is "Plan a 5-day travel itinerary", the
Task Decomposition phase would generate subtasks like "Search Flights", "Find Hotels", "Budget
Planning", and "Activity Research".

The system automatically discovers relationships between subtasks through 1) Temporal Analysis:
Recognizing sequence requirements ("search flights before booking hotels"), 2) Data Flow Tracking:
Identifying when one subtask’s output feeds into another ("Search Flights" results inform "Budget
Alerts"), and 3) Semantic Role Labeling: Mapping precise input/output relationships.

STRIDE creates a directed acyclic graph (DAG) where each subtask node contains, 1) Historical
Patterns: "Search Flights" appears as the starting point in 85% of travel planning tasks, 2) Tool
Recommendations: Proven integrations for similar subtasks, and 3) Performance Insights: Success
rates and optimization guidance from past executions. By converting ambiguous requests into precise,
interconnected subtasks, STRIDE establishes the foundation for intelligent automation decisions. This
structured approach ensures no critical dependencies are missed while enabling parallel execution
where possible. Let T = {s1,s9,...,5,} represent the extracted subtasks, organized in graph
G = (T, E) where edges E capture both ordering constraints and data dependencies between tasks.

3.3 Dynamic Reasoning & Tool Assessment
For each subtask s;, STRIDE computes an Agentic Suitability Score (ASS) that objectively measures
whether the subtask benefits from autonomous agent capabilities:
ASS(s;) = wy - R(s) +wy - T'(s) + ws - S(s) +w, - p(s), (1)
where:
* R(s) = Reasoning depth (0 = Shallow; simple lookup or direct response, 1 = Medium;

requires comparison or basic inference, 2 = Deep; multi-step analysis or complex decision-
making),
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* T'(s) =tool need (0 = None; no external tools required, 1 = Single; single tool integration, 2
= Multiple; multiple tool orchestration needed),

* S(s) = state/memory requirement (0 = None; stateless operation, 1 = Ephemeral; single
session, 2 = Persistent;),

* p(s) = Risk Score (compliance violations, computational Overhead, infinite loop potential).

The weighting system (w,., w;, ws, w,) adapts to different task domains: Reasoning-Heavy Tasks:
w,) prioritizes complex multi-step tasks (e.g., w, = 0.4 for itinerary planning) Tool-Intensive
Workflows: (w;) emphasizing tasks requiring multiple tools (e.g., w; = 0.3 for API-heavy workflows)
Context-Dependent Operations: (ws) accounting for persistent context needs (e.g., w, = 0.2 for
multi-turn interactions) Risk-Sensitive Applications: (w,), penalizing high-risk operations (e.g.,
w, = 0.1 for compliance tasks)

STRIDE continuously refines these weights through grid search optimization on labeled historical
task data, then refines via reinforcement learning from deployment outcomes and expert feedback
integration for domain-specific calibration. This scoring mechanism prevents over-engineering simple
tasks with complex agentic Al solutions, while ensuring that sophisticated problems receive appropri-
ate autonomous capabilities. The result is precise resource allocation and optimal performance across
diverse task types.

3.4 Dynamism Attribution

Variability alone does not justify implementing Al agents. For instance, a task like *"Generate a
random greeting message"* may produce different outputs each time due to model stochasticity
(model-induced variability), but it can be handled effectively by a stateless LLM with temperature
adjustments—no agentic autonomy is required. STRIDE distinguishes:

* Model-induced variability, stems from Al model limitations, including prompt ambiguity
(unclear prompts causing inconsistent outputs) and stochastic randomness (probabilistic
models producing different results from identical inputs). This variability typically resolves
through improved prompt engineering, temperature controls, or deterministic sampling
rather than requiring agentic capabilities.

* Tool-induced variability, arises from external dependencies, including API volatility (chang-
ing response formats, rate limits, downtime) and dynamic tool responses (varying data based
on real-time conditions). These challenges typically require robust error handling, retry
mechanisms, and adaptive response parsing rather than autonomous agent decision-making.

» Workflow-induced variability, involves systemic execution complexity, including conditional
branching (different inputs triggering varied decision trees) and environmental changes
(system load, user context, data availability altering optimal paths). This category most
strongly indicates agentic solution needs, as it requires dynamic decision-making and
adaptive planning that benefit from autonomous reasoning capabilities.

By distinguishing sources of variability, STRIDE avoids over-engineering and activates agentic Al
only when autonomous reasoning materially improves task outcomes.
The True Dynamism Score (TDS) isolates workflow-driven variability:

TDS(s;) = a-W(s) + 8- V(s) —v- M(s), )

where W (s) is workflow variability, V' (s) tool volatility, and M (s) model instability. A high TDS
implies that autonomy and adaptivity are required.

3.5 Self-Reflection Assessment

Self-reflection is required when subtasks involve mid-execution decision points or validation of
nondeterministic tools.

Mid-execution decision points occur when workflows cannot be fully predetermined and require
dynamic evaluation during execution. Al Agents implement procedural mechanisms to incorporate
tool responses mid-process, while Agentic Al introduces recursive task reallocation and cross-agent
messaging for emergent decision-making Sapkota et al.|[2025]]. These situations arise when initial
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Algorithm 1 STRIDE Scoring & Modality Inference

Require to Input: Task description 7, knowledge base K, thresholds 6, . . .
Ensure to Output: Modal suggestion § € {LLM_CALL, AT_ASSISTANT, AGENTIC_AI}
: Decompose 7 into subtasks T' = {s1, ..., s,} and build DAG G
: for each subtask s € T' do
Compute R(s),T(s),S(s), p(s) and derive ASS(s)
Compute W (s), V(s), M (s) and derive TDS(s)
Evaluate C(s), N(s), V(s) to derive SR(s)
end for
. Aggregate features into task profile xp
: Return § = arg max,, f(xr;K)

PRIL AR

conditions change unexpectedly, multi-step processes reveal information influencing subsequent
actions, or quality checkpoints require evaluating whether intermediate outputs meet success criteria.
The Reflexion framework demonstrates how agents reflect on task feedback and maintain reflective
text in episodic memory to improve subsequent decision-making [Shinn et al.|[2023]], with studies
showing significant problem-solving performance improvements (p < 0.001) Renze and Guven
[2024].

Validation of nondeterministic tools becomes critical when working with external systems producing
variable outputs. LLM-powered systems present challenges where outputs are unpredictable, requiring
custom validation frameworks. This includes API responses with different data structures, LLM-
generated content requiring accuracy evaluation, and web scraping tools exhibiting behavior changes
due to evolving website structures. Neural network instability can lead to disparate results, requiring
rigorous validation through adversarial robustness testing.

Without self-reflection, agents risk propagating errors, making incorrect assumptions about tool
outputs, or failing to adapt when strategies prove insufficient. Self-reflection enables task coherence
and reliability in dynamic environments. STRIDE encodes this as a decision rule:

SR(s) = 1(TDS(s) > 6 A (C(s) V N(s) VV(s))),

where C'(s) = conditional branches, N (s) = nondeterministic tools, V' (s) = mid-execution validation,
and 0 = dynamism threshold. If SR(s) = 1, reflection hooks (e.g., error recovery, re-planning, ReAct)
are triggered.

3.6 Intelligent Recommendation Engine

Finally, STRIDE aggregates features from sub-

tasks into a task profile x7 and queries a knowl-

edge base K of historical patterns. A classifier

f produces the final modality: [ seaonrugns |  search Atractions | [ Fmarores |

fleri ).

o ] ) , Figure 2: Toy decomposition DAG for “Plan 5-day
with justification tailored to the user’s persona trave] itinerary.” Each subtask is scored separately

(e.g., developers receive tool configurations, and orchestrated by STRIDE.
managers receive architectural summaries).

7 = arg max
me&{LLM,Assistant, Agent}

Figure 2] illustrates a toy DAG for a travel-planning task, showing how STRIDE decomposes tasks
into subtasks for scoring and routing. To clarify the STRIDE workflow, Algorithm [T]outlines the
end-to-end scoring and modality inference process, from task decomposition to final recommendation.
This structured scoring-to-classification pipeline ensures that agentic Al is deployed only when
justified by objective complexity, resource trade-offs, and dynamism.

4 Experiments & Results

We evaluated STRIDE across 30 real-world tasks spanning SRE, enterprise automation, legal com-
pliance, and customer support. The objective was to test whether STRIDE reliably distinguishes
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Table 2: Quantitative results of STRIDE compared to baselines across 30 tasks.

Method Accuracy (%) Over-engg Reduction (%) Resource Savings (%)
Naive Agent 333 0 0

Heuristic Threshold 68.0 27.5 18.2
STRIDE (ours) 92.0 45.3 37.1

between LLM calls, assistants, and agents, minimizing over-engineering while ensuring accurate,
cost-efficient design-time decisions. While modest in size, our task set emphasizes depth over breadth,
demonstrating STRIDE’s value in real-world settings. Across all 30 tasks, STRIDE achieved 92%
accuracy, reduced unnecessary agent deployments by 45%, and delivered 37 % lower compute/API
usage compared to always deploying agents. These results demonstrate that principled design-time
selection yields tangible efficiency gains compared to intuition-driven deployment. We compared
STRIDE against two baselines. The Naive Agent baseline always deployed agentic Al regardless
of task complexity, providing an upper bound on cost but no efficiency. The Heuristic Threshold
baseline deployed agents only when reasoning depth > 2 and tool requirements > 2, but often failed
on borderline cases where task dynamism or reflection was the deciding factor. STRIDE consistently
outperformed both approaches.

4.1 Illustrative Use Cases

To ground these aggregate results, we highlight representative tasks where STRIDE discriminates be-
tween simple lookups, medium-complexity assistance, and fully autonomous agent workflows. These
cases illustrate how STRIDE’s scoring pipeline translates into practical deployment recommendations.

LLM Call Example: Currency Lookup. “What is the exchange rate between USD and EUR
today?” This task requires shallow reasoning (0-hop), a single API call, and no state persistence.
STRIDE assigned a low True Dynamism Score (0.10) and recommended LLM_CALL. This minimized
cost and latency, avoiding unnecessary orchestration overhead while retaining accuracy.

Al Assistant Example: Meeting Summarization. “Summarize today’s team meeting notes and
suggest action items.” This task requires medium reasoning depth (1-hop), a summarization tool, and
ephemeral state. STRIDE produced a TDS of 0.35 and recommended AI_ASSISTANT, reflecting that
autonomy is unnecessary but structured guidance improves usability. Deploying a fully autonomous
agentic Al for this task would have added unnecessary computation and orchestration overhead
without improving the outcome, since an Al assistant sufficed.

Agentic Al Example: Travel Planning. “Plan a 5-day travel itinerary with hotels, attractions, and
budget alerts.” This task demands multi-hop reasoning, persistent state, and multiple API integrations
(flights, hotels, maps). STRIDE assigned a TDS of 0.78 and correctly recommended AGENTIC_AT.
Experts validated that dynamic replanning is essential in such workflows due to evolving constraints
and interdependencies.

SRE Example: Kubernetes Incident Analysis. “Analyze Kubernetes change events and correlate
them with active alerts to identify the root cause of an ongoing incident.” This high-stakes task
requires deep reasoning, multiple tool integrations (Kubernetes API, alerting system, causal analysis),
and persistent state tracking. STRIDE scored a TDS of 0.85 and recommended AGENTIC_AI. Domain
experts confirmed that incident resolution often requires iterative exploration and adaptive strategies
that static assistants cannot provide.

Compliance Verification Example. “Evaluate a set of documents for legal compliance, flagging
any non-compliant sections and suggesting corrections.” This task involves deep reasoning, persistent
state, and multiple specialized tools (legal database, document parser, compliance checker). STRIDE
assigned a TDS of 0.80 and recommended AGENTIC_AI, reflecting the high compliance risks and
iterative refinements required. Experts noted that assistants often fail to capture edge cases in
regulatory contexts.



Table 3: Representative task evaluations. RD = Reasoning Depth, TN = Tool Needs, SN = State
Needs, TDS = True Dynamism Score.

Task RD TN SN TDS Risk Recommendation
Currency lookup 0 1 0 0.10 Low LLM_CALL
Meeting summarization 1 1 1 0.35 Medium Al ASSISTANT
Travel itinerary planning 2 2 2 078 High AGENTIC_AI
Kubernetes incident analysis 2 2 2 085 High AGENTIC_AI
Legal compliance verification 2 2 2 0.80 High AGENTIC_AI

Table 4: Ablation study of STRIDE components. Accuracy, over-engineering reduction, and resource
savings are reported.

Configuration Accuracy (%) Over-engg Reduction (%) Resource Savings (%)
Full STRIDE 92.0 45.3 371
w/o Task Decomposition 83.0 35.2 28.0
w/o True Dynamism Score 80.0 33.0 26.5
w/o TDS Weighting 81.3 32.0 25.4
w/o Self-Reflection 76.0 29.5 22.8
w/0o Human-in-the-loop 85.7 37.1 28.6

286 4.2 Why STRIDE Works: Ablation Study

287 To understand why STRIDE performs well, we conducted ablation experiments by removing core
283 components. As Table[d]shows, each element contributes significantly. Removing task decomposition
289 reduced accuracy by 9%, showing that subtask structure is essential for modeling dependencies.
290 Without the True Dynamism Score, accuracy fell by 12%, as STRIDE struggled to distinguish
291 borderline tasks like meeting summarization versus compliance verification. The largest drop came
292 from removing self-reflection, which reduced accuracy to 76%, underscoring its role in handling
293 mid-execution corrections and adaptive reasoning.

294 Human-in-the-loop validation also played a role: omitting expert feedback reduced alignment with
295 domain judgments, demonstrating the value of incorporating expert calibration into design-time
296 recommendations.

207 4.3 Robustness and Human Validation

298 Beyond aggregate numbers, we tested robustness across domains. STRIDE achieved 95% accuracy
290 in SRE, 91% in compliance, 89% in automation, and 93% in customer support (Figure [3). This
300 consistency suggests that STRIDE generalizes well across heterogeneous real-world tasks without
301 overfitting to any specific domain. Errors primarily arose in borderline scenarios, such as multi-
302 document summarization, where dynamism was underestimated. Notably, STRIDE sometimes
303 recommended assistants when experts preferred agents, but never the reverse—avoiding costly
304 over-engineering mistakes.

305 Expert validation further confirmed STRIDE’s recommendations. In 78% of cases, experts fully
sos agreed, 15% showed partial agreement (e.g., suggesting an assistant instead of an agent for borderline
so7 tasks), and only 7% disagreed (Figure[d). This resulted in a 27 % improvement in expert alignment
sos compared to the Heuristic Threshold baseline. Feedback from engineers and compliance officers
so9 improved STRIDE through better task decomposition, adjusted TDS weights, and persona-aware
10 outputs tailored to developers and managers (Table[5). Our robustness validation was not a one-off
311 annotation exercise, but the result of extended collaboration with subject matter experts. For the
312 SRE domain, three Kubernetes incident response experts engaged with STRIDE iteratively over
313 a six-month period (March—August 2025), providing feedback on decomposition, reflection, and
314 dynamism scoring. In the compliance domain, two legal verification experts participated in a shorter
315 but focused engagement of 1-2 months (May-June 2025), helping calibrate task scoring against
s16 regulatory criteria. This sustained, multi-month collaboration ensured that STRIDE’s assessments
317 aligned with the nuanced realities of enterprise practice.



318

319
320
321
322
323
324

325
326
327

329
330

331

332
333
334
335
336

338

339

341
342

100 —95—7 a----93

e 50
80 - a
S
. 60| a
=
§ 40 s @ Full Agreement
< %0 [ Partial Agreement
w O Disagreement
O ! T N !
. S
%@ N O °
o ® & S
Figure 3: Domain-wise accuracy of STRIDE Figure 4: Expert agreement with STRIDE
across 30 tasks. recommendations.
Table 5: Summary of Human-in-the-Loop Feedback and System Improvements.
Feedback Area Improvements Made

Task Decomposition Enhanced LLM-driven decomposition to better capture subtask depen-
dencies.

Dynamism Analysis  Adjusted weights in the True Dynamism Score to better separate model-,
tool-, and workflow-induced variability.

Knowledge Base Expanded task patterns and historical performance metrics for SRE and
compliance tasks.

4.4 Discussion and Limitations

STRIDE reduces the costs, risks, and misaligned expectations of unnecessary agents. By shifting
selection to design time, it prevents over-engineering, ensures autonomy only where required, and
reframes adoption from intuition-driven to structured decision process that directly translates into
lower compute/API expenditure and reduced operational costs. At the same time, we acknowl-
edge limitations. STRIDE’s scoring functions are heuristic by design, striking a balance between
interpretability and generality.

Finally, STRIDE complements existing benchmarks, such as AgentBench, SWE-Bench, and Tool-
Bench. While those benchmarks evaluate how well agents perform after deployment, STRIDE focuses
on whether agents are needed at all before deployment. This creates opportunities for integration:
STRIDE could serve as a design-time filter that guides which tasks should be benchmarked with
agents, or as a planning tool embedded into enterprise Al workflows. Together, these directions
position STRIDE as both a practical engineering aid and a guardrail for responsible Al deployment.

5 Conclusion

We introduced STRIDE (Systematic Task Reasoning Intelligence Deployment Evaluator), a frame-
work for systematically determining when tasks require agentic Al, Al assistants, or simple LLM
calls. STRIDE integrates five analytical dimensions — structured task decomposition, dynamic
reasoning and tool-interaction scoring, dynamism attribution analysis, self-reflection requirement
assessment, and agentic suitability inference. In evaluating 30 real-world enterprise tasks, STRIDE
reduced unnecessary agent deployments by 45%, improved expert alignment by 27% and cut resource
costs by 37%, directly mitigating over-engineering risks and containing compute costs.

Looking ahead, we will extend evaluation beyond the 30 tasks to include multimodal tasks (vi-
sion/audio), integrate reinforcement learning for weight tuning, and validate STRIDE at enterprise
scale. These extensions will further strengthen its role as a practical guardrail for responsible Al
deployment.
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