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ABSTRACT

Multimodal large language models (MLLMs) have shown promising advancements
in general visual and language understanding. However, the representation of
multimodal information using MLLMs remains largely unexplored. In this work,
we introduce a new framework, E5-V, designed to adapt MLLMs for achieving
universal multimodal embeddings. Our findings highlight the significant potential
of MLLMs in representing multimodal inputs compared to previous approaches.
By leveraging MLLMs with prompts, E5-V effectively bridges the modality gap
between different types of inputs, demonstrating strong performance in multimodal
embeddings even without fine-tuning. We propose a single modality training ap-
proach for E5-V, where the model is trained exclusively on text pairs. This method
demonstrates significant improvements over traditional multimodal training on
image-text pairs, while reducing training costs by approximately 95%. Addition-
ally, it eliminates the need for costly multimodal training data collection. Extensive
experiments across four types of tasks demonstrate the effectiveness of E5-V. As a
universal multimodal model, E5-V not only achieves but often surpasses state-of-
the-art performance in each task, despite being trained on a single modality.

1 INTRODUCTION

With the development of MLLMs, there is an increasing need for embedding models to represent
multimodal inputs. Although CLIP Radford et al. (2021) shows impressive results in text-image
retrieval by aligning visual and language representations with contrastive learning, it struggles to
represent interleaved visual and language inputs. Moreover, the text encoder of CLIP demonstrates a
low capacity for understanding complicated text Zhang et al. (2024). To achieve universal multimodal
representation, some works Wei et al. (2023); Zhou et al. (2024) continue to train CLIP on interleaved
image-text data, while collecting such data can be challenging and may require GPT-4 to synthesize
data Zhou et al. (2024) or manualy annotated.

Recent works demonstrate Wang et al. (2023); Jiang et al. (2023) that scaling up the size of text
embedding models leads to better performance. However, replicating this scaling approach for
universal multimodal embeddings poses significant challenges and expenses, which arises from the
unstable for scaling CLIP and the complexity of collecting extensive multimodal datasets Sun et al.
(2023). Nevertheless, previous works like adapting CLIP to universal multimodal embeddings still
has shortcomings, such as poor language understanding, limited real-world knowledge, and shallow
fusion of visual and linguistic information.

In this work, we introduce a new framework, called E5-V, to directly adapt MLLMs instead of
CLIP like models for achieving universal multimodal embeddings. There are several advantages to
representing multimodal information with MLLMs: First, benefiting from interleaved visual and
language training, MLLMs can initially learn to represent multimodal information according to
their meanings with prompt. Second, MLLMs are capable of representing interleaved visual and
language inputs to handle tasks like composed image retrieval. Third, MLLMs have stronger language
understanding and reasoning capabilities compared to CLIP.

However, since MLLMs are not initially trained with contrastive learning to represent inputs as
embeddings, it can be challenging for them to represent multimodal inputs as well as CLIP, which
performs contrastive learning on large-scale text-image pairs. In this work, we propose a prompt-
based representation method to adapt MLLMs for multimodal embeddings inspired by Jiang et al.
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Figure 1: 2D visualization of multimodal embeddings and token embeddings in MLLM. Words
correspond to the tokens in MLLM, and dots represent the multimodal embeddings. Our method
unifies different multimodal embeddings from MLLM into the same space corresponding to their
meanings without fine-tuning.

(2023). By explicitly instructing MLLMs to represent multimodal inputs into words in Figure 1,
this method initially unifies multimodal embeddings into the same space, which directly remove the
modality gap Liang et al. (2022) in multimodal embeddings.

By unifying multimodal embeddings into the same space, MLLMs are able to achieve robust
multimodal embedding performance through single modality training with only on text inputs. This
eliminates the need for expensive multimodal training data collection. By focusing solely on text
data, we can remove other components, such as the visual encoder, in the MLLMs during training
and decrease the input size, significantly reducing the training cost. Compared to multimodal training,
we observe training solely on text pairs even help MLLMs better represent multimodal inputs than
image-text pairs, and find text pairs can be more effective in contrastive learning than image-text
pairs.

To validate the effectiveness of E5-V, we conduct experiments on various tasks: text-image retrieval,
composed image retrieval, sentence embeddings, and image-image retrieval. By comparing E5-V
with the strong baselines of each task, we demonstrate the effectiveness of E5-V in representing mul-
timodal information, which achieves competitive performance on all tasks as a universal multimodal
embeddings model trained on text pairs only.

Our contributions are as follows:

• We study how to achieve universal multimodal embeddings by leveraging MLLMs. By
designing prompts to project multimodal inputs into the same embedding spaces, we show
that MLLMs can represent multimodal inputs correctly even without fine-tuning.

• We introduce a new framework, E5-V, to adapt MLLMs for achieving universal multi-
modal embeddings. With single modality training on text pairs, E5-v even achieves better
multimodal embeddings than image-text pairs.

• Extensive experiments on text-image retrieval and composed image retrieval tasks demon-
strate the effectiveness of E5-V in representing multimodal information. E5-V successfully
transfers single modality representation capabilities to multimodal embeddings by following
task-specific prompts that were not included in the training data.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

With the success of LLMs, there is a trend to extend LLMs to handle multimodal information,
called MLLMs. MLLMs, such as BLIP Li et al. (2023), KOSMOS Huang et al. (2024), LLaMA-
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Adapter Gao et al. (2023), and LLaVA Liu et al. (2024c;b;a), show promising progress in multimodal
information understanding and reasoning. To achieve this, a typical MLLM is composed of an LLM,
a modality encoder, and a projector to connect them. The modality encoder projects raw multimodal
inputs into vectors to connect with LLMs Yin et al. (2023).

One efficient method Gao et al. (2023); Liu et al. (2024c) is to directly use a pretrained LLM and a
pretrained modality encoder, such as CLIP Radford et al. (2021). To achieve this, LLaVA uses two
training stages. The first stage aligns the text and image with image-text pairs by only training the
projector between LLM and modality encoder, and the second stage fine-tunes the model on a visual
instruction dataset, which ensure it can follow complex instructions like LLM, such as represent the
multimodal inputs in our work.

While the impressive performance of MLLMs in understanding multimodal information and in-
struction following, the representation of multimodal information using MLLMs remains largely
unexplored. Although recent studies Wang et al. (2023); Jiang et al. (2023) have shown advancements
in embedding texts with LLMs and scaling up has demonstrated improved performance in text repre-
sentation, a significant challenge persists: the batch sizes requires to train multimodal embeddings
models such as CLIP is signficantly larger than text embeddings models. For example, CLIP requires
a batch size of 32k samples with contrastive learning, while the text embedding models such as
E5 Wang et al. (2023) only requires a batch size of 2k samples. Limited by the size of MLLMs, it can
be very challenging to use the similar batch size like CLIP to train robust multimodal embeddings
models.

2.2 MULTIMODAL EMBEDDINGS

CLIP Radford et al. (2021), as a pioneering work on multimodal embeddings, has been widely used in
subsequent works. CLIP uses separate encoders for image and text by aligning them with contrastive
learning on large-scale image-text pairs. Despite its strong performance in text-image retrieval, CLIP
has several limitations due to its internal framework. The text encoder of CLIP has a low capacity for
understanding complicated text because it is pretrained on short image captions, which also limits
CLIP’s performance on long text retrieval Zhang et al. (2024). Additionally, due to the use of separate
encoders, CLIP struggles to represent interleaved visual and language inputs, such as in composed
image retrieval Liu et al. (2021); Wu et al. (2021).

To achieve universal multimodal embeddings, several works, such as UNIIR Wei et al. (2023),
fine-tune CLIP with a fusion model to integrate visual and language information. Other works, like
VISTA Zhou et al. (2024) or UniVL-DR Liu et al. (2022), feed the text embedding models with CLIP
outputs to incorporate visual information. However, this approach can harm the original text-image
retrieval performance of CLIP and makes it difficult for the text embedding models to understand
visual information using only contrastive learning. As a result, these methods show poor zero-shot
performance on composed image retrieval tasks. Moreover, these methods require large interleaved
training data to achieve universal multimodal embeddings. Collecting such high-quality interleaved
pairs for performing contrastive learning is more challenging than gathering image-text pairs or text
pairs. This process can require complex annotation and sometimes even synthesizing data from
GPT-4 Zhou et al. (2024).

3 E5-V

3.1 UNIFYING MULTIMODAL EMBEDDINGS

Previous works Liang et al. (2022) have demonstrated the existence of a modality gap between
text and image embeddings in multimodal models like CLIP Radford et al. (2021), which can nega-
tively impact the performance of multimodal embeddings. Similarly, we observe this phenomenon
when using MLLMs to represent multimodal inputs.

We visualize the distribution of multimodal embeddings from MLLM in Figure 3a following Liang
et al. (2022). For implementation, we use the last token embeddings of LLaVA-NeXT-8B Li et al.
(2024) to represent the images and captions of COCO. The embeddings are obtained directly from
MLLM without fine-tuning and visualized with PCA. Compared to CLIP, although MLLM represents
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Figure 2: Single modality training in E5-V. By unifying multimodal representations into the same
embedding space with prompts, E5-V improves multimodal embeddings using only contrastive
learning on text pairs. During training, we remove the modality encoder and projector in MLLM.

the image and text with the same encoder, the multimodal embeddings from MLLM show a clear
modality gap between text and image embeddings.

(a) w/o our method (b) w/ our method

Figure 3: Distribution of image embeddings and
text embeddings from MLLM without and with
our representation method.

To unify multimodal embeddings, we propose
a prompt-based representation method with
MLLMs inspired by previous text embedding
work Jiang et al. (2023). The key idea is to
explicitly instruct MLLMs to represent the mul-
timodal inputs into words. We can use prompts
like <text> \n Summary of the above sentence
in one word: to represent the text and <image>
\n Summary above image in one word: to repre-
sent the image. We notice these prompts directly
remove the modality gap between text and
image embeddings, as shown in Figure 3b. For
the design of the prompts, it has two parts: the
first part is about extracting the meaning of the
multimodal inputs, and the second part is about
compressing the meaning into the next token
embeddings and unifying the multimodal embeddings by using in one word:. Specifically, the
embeddings of image and caption about a plane in Figure 1 will have a close distance to the token
embeddings of “Plane”, “Air”, “Flying” and “Above”, which represent multimodal inputs based on
the corresponding meaning instead of their modality. By removing modality gap, it also allows
MLLMs to represent interleaved inputs for tasks like composed image retrieval. We demonstrate that
our method significantly improves MLLM performance on multimodal retrieval tasks in Table 6.

3.2 SINGLE MODALITY TRAINING

By unifying multimodal embeddings, we propose single modality training for multimodal embeddings,
as shown in Figure 2. By removing modality gap in the embeddings, we can transfer the single
modality representation capabilities to multimodal embeddings by training on text pairs only. In this
way, our method is trained without any visual or interleaved inputs and no longer relies on multimodal
training data, which can be difficult to collect.

To achieve it, E5-V trains MLLMs with contrastive learning on text pairs. Since there are no visual
inputs during training, we remove the modality encoder and projector and only remain the LLM
of MLLM. For the training data, we simply use sentence pairs from NLI datasets following Gao
et al. (2021), which have no relation to the multimodal tasks. Each sentence pair (xi, x

+
i , x

−
i ) has a
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positive sentence x+
i and a negative sentence x−

i for the input sentence xi. We use the prompt <text>
\n Summary above sentence in one word: to embed the sentence pairs into (hi,h

+
i ,h

−
i ). The training

objective is following:

L = − log
ecos(hi,h

+
i )/τ∑N

j=1

(
ecos(hi,h

+
j )/τ + ecos(hi,h

−
j )/τ

) (1)

where τ is the temperature hyperparameter and N is the batch size in contrastive learning. Com-
pared to multimodal training, we find that single modality training achieves better performance on
multimodal retrieval tasks while significantly reducing training cost, as shown in Table 7.

4 EXPERIMENTS

We evaluate E5-V on four tasks: text-image retrieval, composed image retrieval, sentence embeddings,
and image-image retrieval to demonstrate the effectiveness of E5-V in representing multimodal
information. All tasks are evaluated in a zero-shot setting with the same model without additional
fine-tuning on specific datasets.

For the backbone of E5-V, we use LLaVA-NeXT-8B Li et al. (2024), which builds on LLaMA-3
8B Gao et al. (2023), with a frozen CLIP ViT-L as the visual encoder. For the training data, we
use NLI sentence pairs from Gao et al. (2021), with around 273k sentence pairs. We fine-tune the
LLM of LLaVA-NeXT-8B with 1000 steps and 768 batch size. To save the GPU memory, we use
QLoRA Dettmers et al. (2024) and gradient checkpointing with DeepSpeed ZeRO-2. For the prompts
in training, we use <text> \n Summary above sentence in one word:, where <text> is the placeholder
for the input sentence, and use the last token embeddings to represent the embeddings for contrastive
learning. We also report the performance with other MLLMs in Appendix C.

4.1 TEXT-IMAGE RETRIEVAL

We first benchmark E5-V on text-image retrieval with Flickr30K Young et al. (2014) and COCO Lin
et al. (2014) to evaluate zero-shot image retrieval and zero-shot text retrieval performance. For the
baselines, we select the following text-image retrieval models: CLIP with ViT-B and ViT-LRadford
et al. (2021), BLIP with ViT-LLi et al. (2022), and the large CLIP model EVA-02-CLIP with 5B
parameters Sun et al. (2023). All baselines are trained with contrastive learning on large-scale
image-text pairs using separate visual and language encoders, while cannot represent interleaved
visual and language inputs. For the prompt used in text-image retrieval tasks, we use the following
prompts to represent image and text inputs, respectively:

Text prompt:
<text>
Summary above sentence in on word:

Image prompt:
<image>
Summary above image in one word:

We report Recall@K (R@K) for K=1, 5, 10 with image retrieval and text retrieval in Table 1. Com-
pared to strong baselines, E5-V, as a universal multimodal embeddings model, achieves competitive
performance on both the Flickr30K and COCO datasets.

Compared to EVA-02-CLIP, which uses a 4.4B visual encoder with contrastive learning on large-scale
image-text pairs Sun et al. (2023), E5-V shows a better ability for zero-shot image retrieval, while it is
only trained on text pairs with contrastive learning. It is worth noting that E5-V uses the same visual
encoder as CLIP ViT-L and keeps it frozen during training. Although E5-V shares the same visual
encoder with CLIP, referring to the same way to encode visual inputs, E5-V demonstrates significantly
better performance than CLIP on both the Flickr30K and COCO datasets for image retrieval and text
retrieval tasks. Specifically, in image retrieval tasks, E5-V outperforms CLIP ViT-L by 12.2% on
Flickr30K and 15.0% on COCO with Recall@1.

E5-V shows a strong ability to transfer single modality representation capabilities to multimodal
embeddings by following task-specific prompts that were not included in the training data. It also

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

seamlessly integrates visual and language information into the same embedding space with prompts.
For unseen prompt in training, E5-V can successfully follow it like “Summary the above image in
one word:” to represent the image according to its semantics.

image retrieval text retrieval

Method Flickr30K COCO Flickr30K COCO

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Contrastive Learning on image-text pairs

CLIP ViT-B 58.8 83.3 89.8 30.5 56.0 66.8 77.8 95.0 98.2 51.0 74.9 83.5
BLIP ViT-L 70.0 91.2 95.2 48.4 74.4 83.2 75.5 95.1 97.7 63.5 86.5 92.5
CLIP ViT-L 67.3 89.0 93.3 37.0 61.6 71.5 87.2 98.3 99.4 58.1 81.0 87.8
EVA-02-CLIP 5B 78.8 94.2 96.8 51.1 75.0 82.7 93.9 99.4 99.8 68.8 87.8 92.8

Contrastive Learning only on text pairs

E5-V 79.5 95.0 97.6 52.0 76.5 84.7 88.2 98.7 99.4 62.0 83.6 89.7

Table 1: Zero-shot text-image retrieval performance on Flickr30K and COCO.

4.2 COMPOSED IMAGE RETRIEVAL

To understand the effectiveness of E5-V in representing interleaved visual and language inputs, we
evaluate it on composed image retrieval tasks with two popular datasets: FashionIQ Wu et al. (2021)
and CIRR Liu et al. (2021). This task focuses on retrieving images based on interleaved inputs,
which requires the model to retrieve target images based on modified reference images, where the
modification is described in the text. For FashionIQ, it contains three subtypes of fashion products:
Dress, Shirt and Toptee. Given a picture of a fashion product and a modification corresponding to the
style, the model needs to retrieve the target image that matches the modification. For CIRR, it extend
FashionIQ on real-life images, which has more diverse images and modifications.

We compare E5-V with several zero-shot image-composed baselines: Pic2Word Saito et al. (2023),
Context-I2W Tang et al. (2024), LinCIR Gu et al. (2024), the LLM-based method CIReVL Karthik
et al. (2023), and the current state-of-the-art method iSEARLE-XL Agnolucci et al. (2024). For a
fair comparison, we report the results of all baseline models using the large visual encoder CLIP
ViT-L, as in E5-V. Note that the E5-V also freezes visual encoder same as other baselines. These
baselines are designed exclusively for zero-shot composed image retrieval tasks and can not apply to
other tasks. Most of the baselines are not end-to-end embedding interleaved inputs, which introduce
complex pipelines like textual inversion. For example, CIReVL requires captioning an image first,
generating the target image caption based on LLMs, and then retrieving the target image based on
the caption. However, E5-V can directly represent the interleaved visual and language inputs with
prompts without any textual inversion.

To represent the interleaved inputs for E5-V, we use the following prompts for FashionIQ and CIRR.
For FashionIQ, which requires the model to mainly represent the style of the fashion product, we can
directly let E5-V represent the style of the corresponding fashion products. Since the evaluation of
FashionIQ is split into three subtypes, including Dress, Shirt, and Toptee, we can also provide the
subtype information in the prompts. For CIRR, we can directly let E5-V modify the image based on
the modification described in the text and then represent the modified image in one word. Although
these prompts are unseen during training and have a complex format, E5-V can still correctly represent
the interleaved inputs, even in specific domains like fashion products.

Composed image prompt for FashionIQ:
<image> change the style of this shirt/dress/toptee to <text>
Describe this modified shirt/dress/toptee in one word based on its
style:

Image prompt for FashionIQ:
<image>
Describe this shirt/dress/toptee in one word based on its style:
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Composed image prompt for CIRR:
<image> modify this image with <text>
Describe modified image in one word:
Image prompt for CIRR:
<image>
Describe this image in one word:

Recall@K

Method K=1 K=5 K=10 K=50

Pic2Word 23.90 51.70 65.30 87.80
Context-I2W 25.60 55.10 68.50 89.80
LinCIR 25.04 53.25 66.68 –
CIReVL 24.55 52.31 63.92 86.34
iSEARLE-XL 25.40 54.05 67.47 88.92

E5-V 33.90 64.12 75.88 93.54

Table 2: Zero-shot composed image retrieval per-
formance on CIRR.

We report the composed image retrieval perfor-
mance of CIRR and FashionIQ on Table 2 and 3.
All methods use CLIP ViT-L as the visual en-
coder. The results of other baselines are directly
from their original papers. Following previous
works, we report Recall@K for K=1, 5, 10, and
50 on CIRR test set with their test evaluation
server, and report Recall@K for K=10, 50 on
three subsets of FashionIQ. For the settings of
E5-V, we use original E5-V without additional
fine-tuning on specific datasets and tricks like
textual inversion. E5-V directly represents the
interleaved inputs and image inputs with above
prompts and uses the last token embeddings to
represent the multimodal embeddings.

Compared to zero-shot composed image retrieval baselines, E5-V achieves significant improvements
on both the CIRR and FashionIQ datasets without using techniques like textual inversion or annotation.
Specifically, E5-V outperforms the current state-of-the-art method iSEARLE-XL by 8.50% on
Recall@1 and 10.07% on Recall@5 on CIRR. For FashionIQ, E5-V outperforms by 2.56% on
Recall@10 and 4.24% on Recall@50 compared to iSEARLE-XL, which demonstrates the great
ability of E5-V understanding the interleaved visual and language inputs and representing them
correctly.

Method Shirt Dress Toptee Average

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

Pic2Word 26.20 43.60 20.00 40.20 27.90 47.40 24.70 43.70
Context-I2W 29.70 48.60 23.10 45.30 30.60 52.90 27.80 48.93
LinCIR 29.10 46.81 20.92 42.44 28.81 50.18 26.28 46.49
CIReVL 29.47 47.40 24.79 44.76 31.36 53.65 28.55 48.57
iSEARLE-XL 31.80 50.20 24.19 45.12 31.72 53.29 29.24 49.54

E5-V 36.36 56.43 23.75 47.45 35.29 57.47 31.80 53.78

Table 3: Zero-shot composed image retrieval performance on FashionIQ.

4.3 IMAGE-IMAGE RETRIEVAL

By unifying multimodal representations into the same embedding space with prompts, E5-V demon-
strates a strong ability to understand text through visual input and represent it accurately. To validate
this, we designed an image-image retrieval task based on Flickr30K and COCO, referred to as
I2I-Flickr30K and I2I-COCO. We rendered all textual captions in the datasets as images and used
the embeddings of these images as the caption embeddings. The detailed implementation of text
rendering can be found in Appendix A. For the prompts of E5-V, we simply used the image prompt
in text-image retrieval tasks to represent images.

We report the results of CLIP, BLIP, EVA-02-CLIP, and E5-V in Table 4. Compared to text-
image retrieval tasks, we notice that the performance of baselines drops significantly on image-
image retrieval tasks, which indicates the difficulty of understanding text through visual input and
representing it accurately. Due to separate visual and language encoders, these models struggle
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to understand the textual information via images by using their visual encoders. However, E5-V
correctly represents text through visual input and shows outstanding results on these two datasets.

image retrieval text (render as image) retrieval

Method I2I-Flickr30K I2I-COCO I2I-Flickr30K I2I-COCO

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

BLIP ViT-L 3.3 9.5 14.2 1.1 3.4 5.4 9.0 22.1 31.1 4.2 11.4 16.7
CLIP ViT-L 3.8 10.8 16.1 1.5 4.4 6.6 27.7 52.7 63.9 10.9 24.9 33.2
EVA-02-CLIP 5B 18.8 37.8 46.9 6.3 16.0 22.9 42.3 71.0 81.4 17.2 35.9 46.6

E5-V 67.8 89.2 93.6 41.2 66.7 76.2 79.5 95.2 97.8 51.6 76.8 84.9

Table 4: Zero-shot image-image retrieval performance on I2I-Flickr30K and I2I-COCO.

4.4 SENTENCE EMBEDDINGS

Since E5-V is trained on text pairs, it also shows strong performance in representing textual inputs.
We evaluate E5-V on the sentence embedding tasks using 7 STS tasks. Compared to other sentence
embedding methods, including SimCSE-RoBERTa Gao et al. (2021), PromptRoBERTa Jiang et al.
(2022), and LLM-based methods such as SGPT Muennighoff (2022), ST5-Enc Ni et al. (2021), and
PromptEOL Jiang et al. (2023), E5-V, as a universal multimodal model, achieves the best performance
on the STS tasks in Table 5, demonstrating its strong ability to represent textual inputs according to
their semantics.

Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SimCSE-RoBERTa 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
PromptRoBERTa 76.75 85.93 82.28 86.69 82.80 86.14 80.04 82.95
SGPT 74.28 85.35 79.21 85.52 82.54 85.50 79.53 81.70
ST5-Enc 80.10 88.75 84.70 88.86 85.17 86.77 80.39 84.96
PromptEOL 79.16 90.22 85.40 88.99 86.25 88.37 81.51 85.70

E5-V 80.03 89.94 85.67 89.09 85.89 87.88 83.51 86.00

Table 5: Sentence embeddings performance on STS tasks.

5 DISCUSSION

5.1 EFFECT OF THE REPRESENTATION METHOD

To validate the effectiveness of our prompt representation method, we compare it with two other
methods: 1) Last: using the last token embeddings of the input as the multimodal embeddings,
and 2) Prompt: using the same prompt as our methods, but removing in one word: in prompt. We
report the performance of these methods with and without fine-tuning in Table 6. For the fine-tuning,
we fine-tune each method with corresponding prompts on sentence pairs with contrastive learning
following the same training settings as E5-V.

Our method shows significant improvements on all tasks compared to the Last and Prompt. For
the setting without fine-tuning, we observe that our method can directly leverage the MLLM to
represent the multimodal embeddings. However, other methods cannot represent the multimodal
inputs properly. We also find that these methods have a large modality gap between image and
text embeddings, as shown in Appendix B. For the setting with fine-tuning, we also observe the
performance gap between our method and other methods. Although Prompt uses same template
with our method and just removes in one word: in it, it still shows significant performance drop
compared to our method especially on tasks with visual inputs. One possible reason may be the
modality gap limit it to transfer the single modality representation capabilities learned on text
inputs to multimodal embeddings.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method Flickr30K COCO CIRR FashionIQ I2I-Flickr30K I2I-COCO STS. Avg.

Without fine-tuning

Last 8.9/4.1 4.6/3.3 7.4 3.4 3.0/5.1 0.6/1.8 58.5 9.2
Prompt 22.4/5.5 8.9/1.3 1.2 1.9 3.7/7.3 0.4/3.6 57.5 10.3
Our 82.8/90.4 60.3/67.4 38.4 32.4 67.0/75.4 41.8/49.3 75.8 61.9

With fine-tuning

Last 91.8/94.6 69.8/73.7 31.6 16.6 79.4/90.7 53.2/64.2 84.1 68.2
Prompt 93.5/96.6 74.6/77.0 62.3 32.0 85.4/92.7 62.4/70.5 85.1 75.6
Our 95.0/98.7 76.5/83.6 66.6 53.8 89.2/95.2 66.7/76.8 86.0 80.7

Table 6: Effect of the representation method on different tasks. We report Recall@50 for FashionIQ,
Spearmans correlation for STS tasks and Recall@5 for other tasks. For CIRR, we report the results
on the validation set.

5.2 EFFECT OF SINGLE MODALITY TRAINING

We also compare single modality training with multimodal training. For multimodal training, we
train the MLLM on 558K text-image pairs from CC3M using the same training settings and prompts
as single modality training. We report the performance of single modality training and multimodal
training on different tasks in Table 7. We find that MLLM achieves better multimodal embeddings
with single modality training. Even on the image-text retrieval tasks, where multimodal training uses
similar training data, single modality training still shows better performance. For other tasks, we
notice that multimodal training cannot represent the interleaved inputs in FashionIQ and CIRR, or
text inputs in STS well, which leads to a performance drop compared to single modality training.
Moreover, single modality training is more efficient by removing the visual encoder and only uses 32
max tokens for text inputs, significantly reducing the training time compared to multimodal training.
Single modality training only takes 1.5 hours on 32 V100 GPUs, while multimodal training takes
34.9 hours under same environment.

Training Flickr30K COCO CIRR FashionIQ I2I-Flickr30K I2I-COCO STS. Avg.time
Multimodal training 34.9h 93.5/97.8 76.0/83.1 35.5 30.8 84.2/93.0 64.1/73.4 72.7 73.1
Single modality training 1.5h 95.0/98.7 76.5/83.6 66.6 53.8 89.2/95.2 66.7/76.8 86.0 80.7

Table 7: Effect of single modality training on different tasks. We measure the training time on 32
V100 GPUs.

5.3 ZERO-SHOT INSTRUCTION FOLLOWING ABILITY ON MULTIMODAL EMBEDDINGS

We find an interesting ability of E5-V to represent inputs based on fully zero-shot instructions.
Although E5-V is trained on text inputs with the static prompt, it can correctly represent visual
and interleaved inputs based on unseen prompts. These prompts can be more detailed and specific
based on the tasks. For example, in FashionIQ, a specific domain dataset about fashion products,
we can design specific prompts to let E5-V embed the image based on their styles. Moreover, the
interaction between visual and language inputs in E5-V can also be more detailed, such as change
the style of this shirt to. Compared to other methods, which simply fuse the visual
and language inputs, E5-V provides a more nuanced and specific approach.

6 CONCLUSION

In this work, we propose E5-V, a MLLM based universal multimodal model that can represent
interleaved visual and language inputs accurately. E5-V uses the prompt based representation method
to unify multimodal representations into the same embedding space without additional fine-tuning or
tricks. With single modality training, E5-V achieves strong performance on various tasks, including
text-image retrieval, composed image retrieval, image-image retrieval, and sentence embeddings. We
also conduct extensive ablation studies to validate the effectiveness of our method.
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A IMPLEMENTATION OF TEXT RENDERING IN IMAGE-IMAGE RETRIEVAL

We introduce the implementation of text rendering in image-image retrieval tasks. We use the PIL
library to render the text as an image by using the Arial font with 40 pixels font size and 800×400
resolution. To fit the long text, we also automatically break the text into multiple lines to fit the image
size. We provide a example of rendering text as image in Figure 4.

Figure 4: An example of rendering text as image with text “A man in a black shirt rides an elephant
as a man walks near it down a street.”

The python code is shown below:
from PIL import Image, ImageDraw, ImageFont
def create_text_image(text):

image_width=800
image_height=400
font_path="arial.ttf"
font_size=40
background_color=(255, 255, 255)
text_color=(0, 0, 0)

image = Image.new(’RGB’, (image_width, image_height), color=
background_color)

draw = ImageDraw.Draw(image)
font = ImageFont.truetype(font_path, font_size)

# padding
max_text_width = image_width - 40

# Break line based on length
lines = []
words = text.split()
while words:

line = ’’
while words and draw.textlength(line + words[0], font=font) <=

max_text_width:
line += (words.pop(0) + ’ ’)

lines.append(line)

# Calculate the position for the text
total_text_height = sum(draw.textbbox((0, 0), line, font=font)[3] -

draw.textbbox((0, 0), line, font=font)[1] for line in lines)
text_x = 20
text_y = (image_height - total_text_height) // 2
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# Add text to image
for line in lines:

draw.text((text_x, text_y), line, font=font, fill=text_color)
text_y += draw.textbbox((0, 0), line, font=font)[3] - draw.

textbbox((0, 0), line, font=font)[1]

return image

B DISTRUIBUTION OF IMAGE AND TEXT EMBEDDINGS WITH DIFFERENT
REPRESENTATION METHODS

We visualize the distribution of multimodal embeddings from MLLM with three different representa-
tion methods: Last, Prompt, and Our. The embeddings are directly from LLaVA-NeXT-8B without
fine-tuning on any specific dataset. Our method removes modality gap between image and text
embeddings, which is shown in Figure 5. The prompt for each method is following:

Text prompt in Last:
<text>

Image prompt in Last:
<image>

Text prompt in Prompt:
<text>
Summary above sentence:

Image prompt in Prompt:
<image>
Summary above image:

Text prompt in Our:
<text>
Summary above sentence in on word:

Image prompt in Our:
<image>
Summary above image in one word:

(a) Last (b) Prompt (c) Our

Figure 5: Distribution of image embeddings and text embeddings with different representation
methods.
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C MULTIMODAL EMBEDDINGS WITH DIFFERENT MLLMS

We also evaluate the performance of E5-V with different MLLMs, including Phi3, LLaVA 1.6,
and LLaVA-NeXT in Table 8. Despite the different LLM in each MLLM, E5-V also show strong
performance with same prompts. Among these MLLMs, LLaVA-NeXT shows the best performance
with fine-tuning benfit from the high capacity of LLM.

Method Flickr30K COCO CIRR FashionIQ I2I-Flickr30K I2I-COCO STS. Avg.

Without fine-tuning

Phi3 80.0/89.9 55.3/70.3 43.7 31.5 71.7/83.8 46.3/61.3 72.1 64.2
LLaVA 1.6 (Mistral) 80.5/89.8 59.1/70.8 28.3 33.4 53.8/78.8 41.8/55.4 73.5 60.5
LLaVA-NeXT (LLaMA 3) 82.8/90.4 60.3/67.4 38.4 32.4 67.0/75.4 41.8/49.3 75.8 61.9

With fine-tuning

Phi3 93.0/96.9 71.5/81.1 58.4 48.1 89.3/95.5 65.1/77.1 85.2 78.3
LLaVA 1.6 (Mistral) 94.6/97.4 74.9/83.1 68.9 50.1 86.5/93.0 65.9/73.4 84.9 79.3
LLaVA-NeXT (LLaMA 3) 95.0/98.7 76.5/83.6 66.6 53.8 89.2/95.2 66.7/76.8 86.0 80.7

Table 8: Performance of E5-V with different MLLMs on different tasks.

14


	Introduction
	Related Work
	Multimodal Large Language Models
	Multimodal Embeddings

	E5-V
	Unifying Multimodal Embeddings
	Single Modality Training

	Experiments
	Text-Image Retrieval
	Composed Image Retrieval
	Image-Image Retrieval
	Sentence Embeddings

	Discussion
	Effect of the Representation Method
	Effect of Single Modality Training
	Zero-shot Instruction Following Ability on Multimodal Embeddings

	Conclusion
	Implementation of Text Rendering in Image-Image Retrieval
	Distruibution of Image and Text Embeddings with Different Representation Methods
	Multimodal Embeddings with Different MLLMs

