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ABSTRACT

Transformer-based large sequence models have recently been extended from lan-
guage to time-series to capture long-range dependencies and heterogeneous dy-
namics. However, unlike language, time-series lack a natural dictionary for prin-
cipled tokenization: existing large sequence models often resort to fixed-length
tokens or patches for computational efficiency. This design can obscure regime
changes, expend attention on low-information tokens, and restrict the effective
context length. We address this limitation with Boundary-aware tokenization,
which initiates new tokens only at predicted regime changes in the time-series,
analogous to how spaces delimit words in language. At its core, the model inte-
grates an unsupervised boundary detector to form variable-length chunks, an intra-
chunk fusion module to derive chunk-level token embeddings, and a smoothing
module to stabilize training, before passing the resulting tokens to Transformer-
based modules. We further add a gating refinement that fuses fixed- and variable-
length representations before the forecasting decoder, enabling adaptive selection
during pre-training based on data patterns. This design directly addresses event-
driven regime changes, while remaining robust in stationary regimes. Across di-
verse benchmarks, our method reduces forecasting error by 10.5% on average,
with learned chunks aligned with true regime boundaries. We also show that the
model adaptively reverts to fixed-length tokenization in stationary time-series.

1 INTRODUCTIONN

Many real-world time-series are not deterministic ODE systems, where trajectories can be fully re-
covered from initial conditions. Instead, they are shaped by external events, e.g., stock prices react-
ing to market shocks (Long et al., 2024) or electricity demand spiking under extreme weather (Xiao
et al., 2023). Such event-driven patterns create high-impact regime changes that remain challenging
for traditional forecasters (Oliveira & Ramos, 2024). While recent efforts adapt Transformer-based
large sequence models to capture long-range dependencies and heterogeneous dynamics (e.g., In-
former (Zhou et al., 2021), FEDformer (Zhou et al., 2022), PatchTST (Nie et al., 2022)), these strong
models still allocate tokens uniformly: either every step becomes a token or fixed-length patches are
used (Ansari et al., 2024; Garza et al., 2023; Jin et al., 2023). Such fixed-length tokenization allo-
cates equal capacity to quiescent spans and sharp transitions, misaligning representation with events:
in solar ramps, ICU alarms, or EV fast-charging spikes, rare but critical transitions are underempha-
sized, while redundant intervals dominate the token budget.

Across modalities, tokenization choices strongly bias downstream behavior (Hwang et al., 2025;
Singh & Strouse, 2024). We argue that time-series deserve the same dictionary privilege that ben-
efited language, such as the carefully engineered BPE vocabulary (Sennrich et al., 2015). Unlike
language, where a finite dictionary can capture most patterns, time-series lack such a predefined
vocabulary. This calls for a learned front-end that adaptively groups time steps into tokens where
information concentrates, rather than relying on fixed-length tokenization chosen merely for compu-
tational efficiency. This motivates our boundary-aware Boundary-aware tokenization, which creates
new tokens only at predicted regime changes in the time-series, analogous to how spaces delimit
words in language.

To realize this idea, our architecture integrates three key modules. (i) Boundary detector: an unsu-
pervised predictor that leverages local embedding dynamics to identify regime changes, segmenting
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the sequence into variable-length chunks aligned with event boundaries. This design is inspired by
recent advances in dynamic tokenization for natural language (Hwang et al., 2025), but is adapted
to the unique structure of time-series. (ii) Chunk-level embedding: within each chunk, a mixture-
of-experts (Masoudnia & Ebrahimpour, 2014) fusion combines complementary statistics (mean,
boundary, min/max, and attention pooling) into a compact token representation enriched with po-
sitional metadata. (iii) Chunk smoothing: a causal exponential moving average refines chunk em-
beddings using boundary confidences, blending uncertain transitions while preserving sharp regime
shifts. These event-aware tokens are then processed by causal Transformers (Vaswani et al., 2017) to
capture long-range dependencies. To restore predictions to the original resolution, a cross-attention
decoder aligns future time queries with past chunk representations. The resulting Boundary-aware
Tokenization Large Signal Model (BT-LSM) that concentrates capacity where dynamics change,
preserves accuracy at evaluation, and decodes from a compact event-level sequence.

Not all data patterns benefit from variable-length tokenization. To address this, we introduce a gat-
ing refinement that safely combines fixed-length and variable-length strategies. Both representations
are retained, and a lightweight gate adaptively selects or fuses them during training based on data
patterns. This design ensures robustness: in stationary or coarse-grained regimes, the model natu-
rally reverts to fixed-length behavior (as in PatchTST Nie et al. (2022)), while in bursty or irregular
regimes, the gate activates variable-length adjustments to capture critical transitions (see Section 4.4
for empirical validation).

Our contributions are summarized as follows:

• We propose Boundary-aware Tokenization Large Signal Model (BT-LSM) for time-series, intro-
ducing a lightweight unsupervised boundary detector and mixture-of-experts chunk embeddings.
Our boundary-aware model allocates tokens adaptively to event-driven transitions, avoiding uni-
form waste. We also show a resampling-invariance theorem of such tokenization process.

• We design a gating refinement that adaptively fuses fixed-length and variable-length representa-
tions, ensuring robustness across data regimes and yielding performance comparable to strong
fixed-length baselines in stationary settings. In Section 4.4, we show that BT-LSM adaptively
reverts to fixed-length tokenization in stationary time-series.

• We demonstrate that BT-LSM achieves over 10.5% lower forecasting error at matched compute
budgets across diverse benchmarks, including energy, power, and traffic data. It addresses bursty,
event-driven regime changes where uniform tokenization fails.

2 RELATED WORK

Transformer-based models for time-series. Transformer architectures have recently emerged as
the dominant backbone for long-horizon time-series forecasting. Informer (Zhou et al., 2021) in-
troduced ProbSparse attention to scale self-attention to longer sequences. FEDformer (Zhou et al.,
2022) combined frequency-domain decomposition with Transformer blocks to improve efficiency
and robustness. PatchTST (Nie et al., 2022) borrowed ideas from vision Transformers by segment-
ing time-series into fixed-size patches treated as tokens. Beyond forecasting, models such as Aut-
oformer (Wu et al., 2021), Reformer (Kitaev et al., 2020), and TimesNet (Wu et al., 2022) further
extended Transformer-based design for multi-scale temporal patterns. Despite their architectural di-
versity, they inherit NLP-style fixed tokenization for computation efficiency. Our work is the first to
address event-driven tokenization with native-grid fidelity under resampling-invariance guarantees.

Beyond fixed-length tokenization. Several approaches have attempted to move beyond uniform
tokenization. Some rely on signal decomposition or segmentation: for example, SIMTSeg (Bao
et al., 2024) and U-Time (Perslev et al., 2019) learn boundaries via supervised segmentation, but
require external labels or domain-specific priors. Other methods employ adaptive discretization of
time or values, such as neural segmentation models in speech (Wang et al., 2017; Chung et al.,
2016), or dynamic tokenization in NLP (Hwang et al., 2025). However, these designs are either tied
to supervised tasks, or inherit discretization heuristics rather than addressing forecasting directly.
Closest to our work are efforts treating time-series as “language” (Ansari et al., 2024; Garza et al.,
2023; Jin et al., 2023), yet they typically adopt fixed-length or handcrafted tokenization borrowed
from NLP pipelines. In contrast, our approach introduces a Boundary-aware tokenization tailored to
forecasting: an unsupervised boundary detector aligned with local dynamics.
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3 METHOD

Problem setup. We study multivariate time series forecasting, a fundamental task in machine
learning with wide applications in domains such as energy (Heidrich et al., 2020; Lara-Benı́tez
et al., 2020), finance (Wu et al., 2020; Zeng et al., 2023), and healthcare (Morid et al., 2023; Song
et al., 2024). Let x1:T = [x1,x2, . . . ,xT ]

⊤ ∈ RT×D denote an input sequence of length T , where
each observation xt ∈ RD is a D-dimensional vector. The goal is to forecast the next H future
steps. Throughout, we assume a causal setting: the predictor at time t may only depend on the past
observations x1:t−1.
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mean(·)

Figure 1: Model architecture of BT-LSM.

As illustrated in Figure. 1, our framework consists of five stages. (i) An embedding and boundary
detection stage projects raw observations x1:T into latent vectors e1:T and predicts event bound-
aries using a boundary detector, which segments the sequence into variable-length chunks. (ii) A
chunk-level embedding stage aggregates within-chunk embeddings into chunk tokens zm through a
mixture-of-experts fusing strategy (boundary, attention, mean, and max-norm pooling), augmented
with chunk length and position metadata. (iii) A chunk-level sequence modeling stage processes
the resulting chunk tokens with a stack of causal Transformer decoder blocks, followed by a causal
EMA-based smoothing module that stabilizes transitions across uncertain boundaries and ensures
differentiability. (iv) A gating refinement stage fuses the variable-length representations with a
parallel fixed-length tokenization stream, enabling adaptive selection between the two to yield per-
formance comparable to strong fixed-length baselines in stationary settings. (v) Finally, a cross-
attention decoding stage uses Fourier embeddings of future time steps as queries, with the smoothed
chunk tokens as keys and values, to generate the final step-level forecasts x̂T+1:T+H .

3.1 BT-LSM ARCHITECTURE

Embedding layer for enhanced representational capacity. We first normalize all training se-
quence data x1:T+H to zero mean and unit variance to stabilize optimization and make features
comparable across dimensions. For input sequence x1:T , each observation xt ∈ RD is projected into
a high-dimensional latent representation: et = Wxxt ∈ RDe , t = 1, . . . , T, where Wx ∈ RDe×D

is a learnable linear projection. This embedding layer serves two purposes: (i) it unifies heteroge-
neous input features into a shared latent space, and (ii) it expands the representational capacity
(De ≫ D), enabling downstream modules to capture higher-order temporal dependencies more
effectively (Vaswani et al., 2017; Bai et al., 2018).

Boundary detector for event-driven segmentation. A key challenge in time-series modeling is
that many real-world sequences exhibit event-based patterns, where natural segment boundaries
carry semantic meaning, such as in physiological signals or regime shifts in sensor and financial
data (Perslev et al., 2019; Monteiro & Costa, 2023). Unlike natural language, where a pre-defined
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dictionary of tokens provides a well-established segmentation, fixed-length tokenization in time
series may inadvertently merge heterogeneous regimes into a single token. For example, a fixed-
length window that straddles an event transition may fuse pre- and post-event dynamics, thereby
blurring meaningful information. To overcome this limitation, we introduce a boundary prediction
module that adaptively infers token boundaries aligned with the intrinsic structure of the sequence.
Our design is inspired by recent advances in dynamic tokenization for natural language (Hwang
et al., 2025), but is tailored to the time-series domain. In contrast to prior neural segmentation
approaches such as U-Time (Perslev et al., 2019) and SIMTSeg (Bao et al., 2024), which classify
each time point into segments or rely on downstream supervision, our method explicitly leverages
first- and second-order variations of learned embeddings as local signals for boundary detection.

Concretely, given the embedding sequence e1:T , we compute three temporal signals to capture local
dynamics: the velocity vt = et+1 − et ∈ RDe , the acceleration at = vt+1 − vt ∈ RDe , and the
energy change ∆Et = ∥et+1∥2 − ∥et∥2 ∈ R. Each quantity is projected into a latent space via
learnable matrices Wv,Wa,WE , combined additively, and passed through a sigmoid activation
to yield a boundary probability as in Eq. (1). Here, pt quantifies the likelihood that position t
corresponds to a meaningful boundary. Following Hwang et al. (2025), we obtain a hard boundary
decision via bt = 1{pt ≥ 0.5}, where 1{·} denotes the indicator function. We additionally enforce
b1 = 1 to guarantee a boundary at the beginning of the sequence.

pt = Sigmoid(Wvvt +Waat +WE∆Et) , pt ∈ (0, 1). (1)

A technical challenge arises because bt is obtained through a non-differentiable thresholding op-
eration, for which ∂bt/∂pt = 0 almost everywhere. To preserve trainability, we adopt a straight-
through estimator (STE) (Bengio et al., 2013): during the forward pass we use the discrete bt, while
during the backward pass we approximate the gradient as ∂bt/∂pt ≈ 1. Consequently, the loss
gradient with respect to pt reduces to ∂L

∂pt
= ∂L

∂bt
, allowing gradients to flow continuously through

pt during training while retaining discrete boundary decisions at inference.

Chunk-level embedding based on Mix-of-Experts fusing. Once boundaries are predicted, we
segment the sequence into contiguous chunks, where each chunk corresponds to the subsequence
between two boundaries. Let M denote the total number of chunks. Specifically, chunk m spans
from t(m) to t(m+1), with t(m) denoting the start index of chunk m and t(M+1) = T ensuring
full coverage of the sequence. Unlike fixed-length tokens, these variable-length chunks preserve
event-level semantics in time-series data.

Each chunk m contains a variable number of time steps, represented by embeddings et(m):t(m+1) . To
obtain a single chunk-level embedding zm, we employ a mixture-of-experts (MoE) strategy (Ma-
soudnia & Ebrahimpour, 2014) that combines four complementary fusion mechanisms. (1) The
boundary embedding is defined as zboundary

m = et(m) , preserving the representation at the regime
transition. (2) The attention pooling is given by zattn

m =
∑

t∈Cm
αtet, where αt = softmax(w⊤et),

adaptively weighting embeddings by their learned relevance. (3) The mean pooling computes
zmean
m = 1

t(m+1)−t(m)

∑t(m+1)

t=t(m) et, capturing the average trend within the chunk. (4) The max pool-
ing is defined as zmax

m = argmaxet, t∈[t(m),t(m+1)] ∥et∥2, selecting the most dominant embedding to
highlight the most informative time step. These expert outputs are combined via a learnable gating
mechanism in Eq. (2), where {gk} are softmax-normalized mixture weights and {γk} are trainable
parameters. This MoE formulation adaptively balances local statistics, boundary sensitivity, and
attention-driven fusion within each chunk.

zMoE
m =

∑
k∈{mean,boundary,max,attn}

gk z
k
m, gk =

exp(γk)∑
j exp(γj)

, (2)

Finally, to encode structural information, we concatenate two metadata to each fused embedding:
the chunk length (t(m+1) − t(m)) and the start position t(m). These provide the model with explicit
knowledge of where the chunk occurs in the sequence and how long it spans. The resulting chunk
representation has dimensionality Dz = De + 2: zm =

[
zMoE
m ∥ (t(m+1) − t(m)) ∥ t(m)

]
∈ RDz .

Chunk-level causal Transformer for long-range dependency modeling. To capture long-range
dependencies across chunks, we process the sequence of chunk tokens z1:M with a stack of L
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causal Transformer decoder blocks. The initial hidden state for each chunk is set directly from its
embedding: h0

m = zm. For ℓ = 1, . . . , L, we apply pre-norm residual updates:

h̃ℓ
m = hℓ−1

m +MHAℓ

(
LN(hℓ−1

≤m)
)
, hℓ

m = h̃ℓ
m + FFNtanh,ℓ

(
LN(h̃ℓ

m)
)
, (3)

where MHAℓ is masked (causal) multi-head self-attention, LN denotes LayerNorm, and FFNtanh,ℓ

is a position-wise feed-forward network with a tanh nonlinearity. The top-layer state hL
m is mapped

to a prediction through a lightweight feed-forward projection: ẑm = FFNout
(
hL
m

)
∈ RDz .

Chunk smoothing for stable boundary transitions. In the boundary prediction module, discrete
chunk decisions were obtained from the hard thresholded variables bm. To better leverage the under-
lying uncertainty, we refine chunk representations using the soft boundary likelihoods pm. Specif-
ically, let {p̃m}Mm=1 denote the downsampled boundary confidences (with p̃m = psm at predicted
start indices sm). We then apply a causal exponential moving average (EMA) (Hwang et al., 2025)
to produce boundary-aware latent states:

z̄m = (1− p̃m) z̄m−1 + p̃m ẑm, m = 2, . . . ,M, z̄1 = ẑ1. (4)

Intuitively, high-confidence boundaries (p̃m ≈ 1) allow the new chunk embedding ẑm to pass
through with little mixing, while uncertain boundaries (p̃m ≈ 0) blend more smoothly with the
preceding state z̄m−1. This parameter-free, strictly causal smoothing mechanism stabilizes transi-
tions across chunk boundaries during training (See Sec. 4.3 for an ablation study comparing models
with and without chunk smoothing).

Gating refinement for fixed- and variable-length fusion. Not all time-series benefit equally from
variable-length tokenization, which is primarily designed for event-driven dynamics. To ensure ro-
bustness, we introduce a gating module that fuses both representations: a variable-length represen-
tation z̄var

m from Eq. (4), and a fixed-length representation z̄fix
m obtained through the same pipeline

under a fixed-length tokenization strategy. The final chunk representation is produced by a mixture-
of-experts gate: z̄m =

∑
k∈{var,fix} gkz̄

k
m, where {gk} are softmax-normalized mixture weights

and {γk} are trainable parameters. This formulation allows the model to adaptively interpolate be-
tween fixed- and variable-length representations on a per-chunk basis, preserving the strong baseline
behavior of fixed-length tokenization in stationary regimes while exploiting boundary-aware repre-
sentations in bursty or irregular regimes.

Cross-attention decoder for step-level forecasting. We forecast future observations by align-
ing chunk-level representations with target time queries. We first encode the horizon of interest
T+1 : T+H using Fourier time embeddings (Vaswani et al., 2017): qτ = FourierEmbed(τ), τ =
T+1, . . . , T+H, which serve as the queries in a cross-attention layer. These embeddings provide
a continuous representation of future time points, enabling the model to generalize across arbitrary
prediction horizons. The smoothed chunk-level embeddings {z̄m}Mm=1 are used as both keys and
values. Formally, the cross-attention decoder computes hτ = MHA

(
qτ , {z̄m}Mm=1, {z̄m}Mm=1

)
,

where MHA(·) denotes multi-head attention (MHA). Intuitively, each future time step τ attends
to past chunks in proportion to their learned temporal relevance. Finally, the attention out-
put is mapped through a lightweight feed-forward layer to produce the predicted observation:
x̂τ = FFNout(hτ ), τ = T +1, . . . , T +H. This design allows the decoder to directly condition
predictions on temporally localized, event-aware chunk representations while maintaining flexibil-
ity to extrapolate across variable-length horizons.

Batch computation via padding. While variable-length chunks provide stronger representational
power for capturing event-based structure in time-series data, they introduce a practical challenge:
unlike fixed-length tokens, variable-length chunks cannot be directly processed in parallel batches.
To address this, we adopt a padding-and-masking strategy. Specifically, we pad the number of
chunks in each sequence to a maximum Mmax, determined by the largest number of chunks in
the batch, and pad the time steps within each chunk to a maximum length lmax. Zero values are
used for padding, and binary masks indicate positions that correspond to padded (non-informative)
entries. This enables the model to recover full batch parallelism while preserving the semantics of
variable-length chunking.
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Training loss. The training objective combines forecasting accuracy with boundary and continuity
regularization: L = Lpred+λboundaryLboundary+λcontLcont, whereLpred = 1

H

∑H
h=1 ∥xT+h−x̂T+h∥22,

Lboundary =
(

1
T

∑T
t=1 bt− 1

κ

)2

, and Lcont = ∥x̂T+1−xT ∥22. Here Lpred enforces accurate multi-step
forecasting, Lboundary constrains the expected boundary rate to the target compression κ, and Lcont
discourages discontinuities at the forecast interface. Appendix C details the full training procedure.

Invariance to intra-chunk resampling. In many real-world time-series, sampling rates are het-
erogeneous (e.g., sensor-dependent) or irregular (e.g., due to missing data). If the chunk-level em-
bedding were sensitive to the number of points observed within a chunk, then simple re-sampling or
interpolation could distort the learned dynamics and destabilize forecasting. Hence, it is desirable
that once chunk boundaries are fixed, the resulting chunk-level embedding and the model’s fore-
casts, remain unchanged under any re-sampling inside the chunk. Formally, such a re-sampling can
be expressed as a monotone time warp that stretches or compresses the points within a chunk while
preserving its endpoints. In Theorem 1, we establish that BT-LSM satisfies this invariance, with
proof in Appendix D.

Theorem 1 (Invariance to intra-chunk resampling). Let ϕm : [t(m), t(m+1)]→ [t(m), t(m+1)] be any
monotone time warp with fixed endpoints, and define the warped embeddings ẽ(t) := e(ϕm(t)) for
t ∈ [t(m), t(m+1)]. Then, under Assumption 1 (content-only experts) and Assumption 2 (bounded
embeddings), the resulting chunk representation is unchanged: z̃m = zm, and consequently the
model’s forecasts remain identical: ˜̂xT+1:T+H = x̂T+1:T+H .

4 NUMERICAL RESULTS

Dataset. We evaluate our model and other cutting-edge methods on seven diverse datasets: (1)
Building Addison et al. (2019) with ASHRAE building energy and temperature data, (2) Spain Ko-
lasniwash (2019) with four years of national electricity and weather data, (3) Consumption Fedeso-
riano (2022) with 52,416 ten-minute records from Tetouan city including meteorology features, (4)
Residential Sri Polu (2019) with hourly household usage and weather in Houston, (5) Solar AI Mav-
erick (2023) with renewable energy and temperature data, (6) ETT Zhou et al. (2021) with hourly
transformer temperature series (ETTh1, ETTh2), and (7) Traffic Lai et al. (2018) with freeway oc-
cupancy data. For all datasets, we split sequences by week and train models to forecast the next 24
hours from historical inputs, with additional horizons (12/48) reported in Appendix F.1.

Experimental setup. All experiments were conducted on an HPC cluster with NVIDIA A100
GPUs (80 GB), using Python 3.9 and PyTorch implementations of all baselines (Informer Zhou et al.
(2021), Contiformer Chen et al. (2023), ODE-RNN (Rubanova et al., 2019) RNN-∆t (Che et al.,
2018) PatchTST (Nie et al., 2022) Chronos (Ansari et al., 2024) GPT (Radford et al., 2019)) and our
proposed method. Each baseline was configured following its canonical design. Our model BT-LSM
was instantiated with width 128, six self-attention layers, eight heads, and a maximum of 50 chunks.
Optimization used AdamW with cosine annealing and gradient clipping. Further implementation
details, hardware specifications, and training schedules are provided in Appendix B.

4.1 DEMONSTRATION OF VARIABLE-LENGTH CHUNKING

BT-LSM converts dense sequences into compact, event-aligned token streams. As shown in Fig-
ure 2, boundaries in univariate series concentrate near spikes and regime shifts, while in multivariate
traffic they synchronize across dimensions to isolate shared peaks. Appendix E further shows that
in Spanish/Building Energy & Temp, boundaries align with cycle inflections and forecast onsets; in
bursty Solar and Consumption, chunks contract around spikes and expand in quiescent spans; and in
Residential Temp, plateaus compress into stable chunks with a single step-change break. These be-
haviors confirm that the boundary detector implicitly acts as an event detector, synchronizing tokens
with ramps, spikes, and alarms, which underpins the performance gains in Table 1.
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Figure 2: In (a) univariate time-seires and (b) multivariate traffic data, the boundary detector in BT-
LSM aligns tokens with spikes, inflection points, or regime changes, showing that the model learns
event-synchronous tokenization.

Table 1: Performance comparison across datasets (all values in ×10−3).
Load Energy Temperature Traffic

Method #Para Spanish Residential Solar Building Consumption Spanish Solar Building Consumption Residential

RNN-∆t 0.33M 15.92± 2.23 13.57± 3.03 19.53± 4.17 8.93± 1.27 5.42± 0.78 10.94± 1.55 6.43± 0.91 17.83± 2.47 9.84± 1.39 19.86± 5.59 19.78± 1.12

ODE-RNN 0.53M 18.89± 2.66 12.93± 3.23 13.07± 4.36 9.53± 1.31 5.83± 0.83 11.63± 1.64 6.83± 0.96 19.04± 2.68 10.64± 1.49 12.04± 5.89 17.40± 0.40

Informer 2.05M 16.27± 1.97 10.07± 2.43 18.04± 3.39 8.23± 0.99 5.03± 0.61 10.43± 1.26 6.13± 0.75 16.53± 1.97 9.23± 1.12 18.07± 4.57 13.23± 0.32

ContiFormer 1.85M 7.13± 0.87 12.54± 1.52 18.23± 2.19 4.23± 0.51 2.63± 0.32 5.93± 0.72 3.43± 0.42 10.13± 1.23 5.23± 0.63 14.49± 2.83 14.23± 0.32

GPT 19.05M 9.13± 1.08 14.18± 1.68 15.04± 2.54 5.13± 0.62 3.13± 0.38 6.83± 0.83 3.93± 0.48 11.53± 1.39 6.13± 0.74 16.13± 3.14 11.23± 0.42

Chronos 46.15M 14.63± 1.76 9.63± 2.25 14.03± 3.14 3.66± 0.92 2.63± 0.56 4.53± 0.35 5.63± 0.68 7.53± 0.87 4.63± 1.05 12.28± 4.24 10.12± 0.31

PatchTST 0.61M 7.57± 0.92 13.23± 1.57 13.53± 1.35 4.53± 0.55 2.83± 0.35 6.23± 0.75 3.63± 0.44 10.73± 1.29 5.53± 0.67 12.63± 1.97 10.99± 0.91

Ours 0.90M 3.97± 0.24 7.73± 0.47 12.83± 0.78 2.64± 0.16 1.61± 0.10 3.74± 0.22 2.15± 0.13 6.27± 0.38 3.23± 0.19 11.87± 0.89 9.12± 0.31

4.2 EVENT-BASED TIME SERIES FORECASTING

Many real-world signals are governed not by smooth periodicity but by abrupt event-triggered
changes, such as demand surges, equipment failures, or shifts in external conditions. As shown
in Figure 3, the Spanish energy data exhibits sudden jumps and plateaus that standard forecasters
often overshoot or smooth out. BT-LSM addresses this challenge by leveraging dynamic chunking:
boundaries are placed at regime changes, allowing forecasts to condition on tokens that explicitly
encode the transition. This produces trajectories that remain close to the target path, with smoother
dynamics and tighter uncertainty bands compared to step-by-step autoregressive models like GPT,
which tend to drift and inflate variance. While strong baselines such as Chronos remain competitive
in overall accuracy, BT-LSM consistently yields more stable predictions around event boundaries,
demonstrating the advantage of aligning tokenization with event-driven structure.

RNN-∆t

Informer

Chronos

ContiFormer GPT

PatchTSTODE-RNN

Ours

Time Step Time Step Time Step Time Step 

Va
lu

es
Va

lu
es

Figure 3: Comparison of forecasting in Spanish Energy dataset.

Furthermore, Figure. 4 illustrates similar challenges in ETT dataset (we show the MULL sequence
as an example). ETT dataset exhibits sudden jumps and plateaus that standard forecasters struggle to
capture. Our model handles such regimes more effectively by relying on dynamic chunking. When
an event occurs, the boundary detector places a new chunk at the transition, allowing the subsequent
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forecast to condition on a token that explicitly encodes the change. This yields forecasts that remain
close to the target trajectory even after sharp jumps, with narrow uncertainty bands around event
transitions. Compared to baselines, the predictions are less biased and avoid drift, demonstrating the
benefit of aligning tokens with event boundaries rather than fixed-length segments.

InformerOurs ContiFormer GPT

Chronos PatchTSTODE-RNNRNN-∆t

Time Step Time Step Time Step Time Step 

Va
lu

es
Va

lu
es

Figure 4: Comparison of forecasting in ETTh2 MULL data.

Although strong models like Chronos still show competitive accuracy, our approach better reflects
the event-driven nature of the data, delivering forecasts that are both adaptive to sudden regime
shifts and stable across horizons. This event-aware capability is a core advantage of boundary-based
tokenization over fixed-step or patch-based alternatives. Full performance in ETT dataset accross
baselines is shown in Figure 5.

Figure 5: Forecast error on the ETT benchmark (values scaled by ×10−3). Left: ETTh1; right:
ETTh2. Each group shows the seven targets (HUFL, HULL, MUFL, MULL, LUFL, LULL, OT).

4.3 ABLATION STUDY

Ablation of model components. Figure 6
shows forecasting error when modules are re-
moved. We observe that dropping the bound-
ary detector and reverting to fixed-length to-
kens sharply increases error. It confirms that
our gains stem from detecting regime changes,
not just extra parameters. Removing MoE fu-
sion degrades accuracy by discarding comple-
mentary within-chunk statistics, while disabling
EMA smoothing destabilizes boundaries. Fi-
nally, eliminating the gating refinement reduces
robustness in stationary regimes, though with a
smaller impact. This gating refinement ensures
the event-driven path is used only when needed,
yielding a safety property.

Figure 6: Results in ablation studies.

Fixed-Length vs. Dynamic Chunking. To further isolate the effect of variable-length tokeniza-
tion, we keep the architecture and training schedule unchanged (MoE fusion, EMA smoothing,
decoder, optimizer, seeds) and replace the boundary detector with fixed non-overlapping windows
of length M ∈{5, 10, 20}.
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The token budget is matched to the dynamic model by
capping to the same Mmax and masking surplus to-
kens; no other hyperparameters are altered. Table 2
reports forecasting MSE (×10−3) on two representa-
tive datasets. Very short windows (M = 5) underfit
longer dependencies, while long windows (M = 20)
blend across regime changes; M = 10 is the strongest
fixed baseline but still lags behind dynamic chunking,
which compresses stationary spans and allocates more
tokens around events.

Table 2: Fixed-length vs. dynamic chunk-
ing (MSE ×10−3).

Method Spanish
Energy

Residential
Temp

Fixed-5 5.48 4.98
Fixed-10 4.58 4.31
Fixed-20 4.97 4.74
Dynamic 3.97 3.73

4.4 AUTOMATIC ADAPTATION BETWEEN FIXED- AND VARIABLE-LENGTH TOKENS

Our model provides two tokenization paths that
share the same backbone: a variable-length tok-
enization path guided by the boundary detector
and chunk-level MoE fusion, and a fixed-length
tokenization path that partitions the sequence into
constant-size chunks. A learned gate (gvar, gfix) ∈
[0, 1] blends the two representations, enabling the
model to adaptively balance stable fixed-length to-
kens with event-synchronous variable-length to-
kens. As shown in Figure 7, the gate tracks local
regime: when the input is stationary (e.g., smooth
cycles), gfix > gvar, steering the model toward the
fixed-length path to preserve short-range statistics
and reduce variance. In contrast, when the signal
exhibits spikes, steps, or abrupt regime changes,
gvar > gfix, shifting weight to the variable-length
path, where the boundary head inserts cuts around
events and the MoE aggregates event-aware chunk
statistics.

<latexit sha1_base64="ja77VpSY4VcIzYKTxvkNCRX4fL0=">AAACF3icbZDLSgMxFIYz9VbrbdSlm2ARXEiZkVp1IRTduKxgL9AOJZNm2tDMheRMaRn6Fm58FTcuFHGrO9/GtB1EWw8Efr7/HE7O70aCK7CsLyOztLyyupZdz21sbm3vmLt7NRXGkrIqDUUoGy5RTPCAVYGDYI1IMuK7gtXd/s3Erw+YVDwM7mEUMccn3YB7nBLQqG0Wuu2kBWwIyYDI8RhfYatgFUsn+Id7fJjyy7Ni28xrf1p4UdipyKO0Km3zs9UJaeyzAKggSjVtKwInIRI4FWyca8WKRYT2SZc1tQyIz5STTO8a4yNNOtgLpX4B4Cn9PZEQX6mR7+pOn0BPzXsT+J/XjMG7cBIeRDGwgM4WebHAEOJJSLjDJaMgRloQKrn+K6Y9IgkFHWVOh2DPn7woaqcFu1Qo3RXz5es0jiw6QIfoGNnoHJXRLaqgKqLoAT2hF/RqPBrPxpvxPmvNGOnMPvpTxsc3Ikqd/g==</latexit>

gvar = 0.046, gfix = 0.954
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gvar = 0.737, gfix = 0.263

Figure 7: Adaptive tokenization via gating.

5 CONCLUSION, LIMITATION, AND FUTURE WORK

We present Boundary-aware Tokenization (BT-LSM), a dynamic chunking framework that detects
regime changes and forms event-aligned tokens for time-series forecasting. Across datasets, the
advantage of variable-length token emerges where event-driven dynamics occur, whether explicit
(alarms, ramps) or implicit (irregular timestamps, hidden bursts). As a result, BT-LSM show con-
sistently improved forecasting accuracy while remaining robust in stationary regimes due to the
gating refinement. This confirms our framing as an event-driven forecaster with safety guarantees,
rather than just another patching model. Limitations include sensitivity of boundary detection to
hyperparameters, added training complexity from gating, and untested robustness under extremely
noisy or highly irregular real-world signals; scalability to very long sequences also remains con-
strained by padding and masking. Future work includes incorporating weak supervision or domain
knowledge to guide boundaries, extending to hierarchical or multi-resolution chunking, scaling to
foundation-style pretraining, and exploring applications in generative modeling and causal analysis
of event-driven systems.
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A APPENDIX: USAGE OF LLM

In preparing this work, we leveraged Large Language Models (LLMs) as auxiliary tools for drafting,
editing, and refining the manuscript. LLMs assisted in improving clarity, consistency, and presenta-
tion of technical content, and also supported organizational tasks such as summarizing experiment
logs, formatting tables, and suggesting consistent terminology across sections. Importantly, all sci-
entific ideas, modeling, and experiments remain fully original to the authors; LLMs were not used
to design the methodology, but rather to streamline the process of communicating our findings more
clearly and efficiently.

B APPENDIX: ENVIRONMENT SETUP

We evaluate our model and other cutting-edge methods using diverse datasets. Specifically, we have:
(1) Building Addison et al. (2019). It’s a dataset consisting of several buildings’ energy consumption
and temperature data from the American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE). (2) Spain Kolasniwash (2019). This dataset contains 4 years of electrical
consumption, generation, pricing, and weather data for Spain. (3) Consumption Fedesoriano (2022).
The data consists of 52, 416 observations of energy consumption on a 10-minute window for Tetouan
city located in the north of Morocco. Meteorology data (such as weather, temperature, etc.) is also
included. (4) Residential Sri Polu (2019). The data set contains hourly power usage in kWh from
January 2016 to August 2020 in Houston, Texas, USA. A historical weather report is also contained.
(5) Solar AI Maverick (2023) is a renewable energy (i.e., negative loads) dataset, including solar
data, temperature, date information, etc. (6) ETT (Electricity Transformer Temperature) datasets
Zhou et al. (2021) are collected from two different electric transformers labeled with 1 and 2, and
each of them use a resolution of 1 hour denoted with h. Thus, in total we have two ETT datasets:
ETTh1, and ETTh2. (7) Traffic dataset Lai et al. (2018) records the road occupancy rates from
different sensors on San Francisco freeways. For all datasets, we follow a consistent preprocessing
pipeline: sequences are split by weeks, and models are trained to forecast the next 24 hours based
on historical inputs within the same week. This setup ensures comparability across domains while
aligning with practical forecasting needs. To further assess robustness, we also evaluate alternative
prediction lengths (e.g., 12 and 48 hours) and report these results in the Appendix F.1.

We conducted all experiments on a high-performance computing cluster designed for large-scale AI
and time-series research. Compute nodes were equipped with NVIDIA A100 GPUs with 80 GB
memory (CUDA 12.7) and dual AMD EPYC 7413 processors with 48 CPU cores at 3.6 GHz, run-
ning Linux (kernel 4.18). Each job used GPUs with sufficient memory to accommodate multi-step
horizon forecasting and larger model variants. All baselines (PatchTST, GPT, Informer, Contformer,
Chronos) and our method were implemented in Python 3.9 with PyTorch. Development and debug-
ging were performed in PyCharm to ensure reproducibility and streamlined iteration.

B.1 OPTIMIZATION AND SCHEDULE.

We train with AdamW using a learning rate of 1e-4 and weight decay of 1e-5. Global gradient norm
clipping is set to 1.0. The learning rate follows Cosine Annealing with Warm Restarts, using an ini-
tial restart period of 20 epochs and a multiplier of 2 for subsequent cycles, with a minimum learning
rate of 1e-6. Mini-batches of size 16 are used for both training and evaluation. The autoregressive
chunk decoder is trained with teacher forcing.

Training protocol and checkpointing. Models are trained for 500 epochs. After each epoch,
we evaluate on the validation loader and persist the best checkpoint to disk based on the lowest
validation loss. Before final evaluation and visualization, we reload the best checkpoint and switch
the model to evaluation mode. Autograd anomaly detection is enabled during development for
debugging, and gradients are clipped before each optimizer step.

B.2 BASELINE MODELS.

ODE-RNN (Rubanova et al., 2019). We adapt the ODE-RNN baseline to our forecasting pipeline.
The model uses an LSTMCell encoder with hidden width dmodel = 256 to process the observed
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sequence, followed by continuous-time evolution of the hidden state via a neural ODE solver
(Dormand-Prince, dopri5) with step size ∆t = 0.1. The ODE function is parameterized by a
two-layer MLP with hidden expansion 2 × dmodel and tanh activation. At each forecast step, the
hidden state is integrated forward in continuous time, and two linear heads map it to predictive
parameters: a mean head and a log-variance head (output dimension cout = 1). The decoder op-
erates autoregressively, feeding the predicted mean back into the LSTMCell to refine future states.
Dropout and attention modules are not used, in line with the original ODE-RNN design. Under this
configuration, the ODE-RNN has approximately 2.1M parameters, which is comparable in scale to
our Informer baseline.

RNN-∆t (Che et al., 2018). We consider a recurrent baseline that explicitly incorporates elapsed
time between observations. The model augments each input xt with its corresponding time gap ∆tt,
computed from the observation mask, and processes them jointly through an LSTMCell of hidden
width dmodel = 256. Context encoding proceeds step by step over the input window, with masked
values replaced by zeros and ∆tt tracking the time since last observation. During autoregressive
forecasting, the time gap grows deterministically by one unit per step, reflecting the absence of
new observations, and is concatenated with the previous prediction before being fed back into the
LSTMCell. Two nonlinear heads project the hidden state into per-step Gaussian parameters (mean
and log-variance, cout = 1), enabling Gaussian NLL training as in our other baselines. No attention
or convolutional modules are used. This RNN-∆t baseline has roughly 2.0M parameters, making it
comparable in size to the Informer and ODE-RNN models.

InformerZhou et al. (2021). We use the official Informer implementation (Zhou et al., 2021) as
an encoder–decoder Transformer with ProbSparse self-attention, value+positional+time (“timeF”,
hourly) embeddings, and the standard distilling pathway (1D convolution + activation + max-pool)
between encoder blocks to halve the sequence length before deeper layers. Our configuration mirrors
common practice and our code wrapper: encoder depth elayers = 2, decoder depth dlayers = 1, model
width dmodel = 256, nheads = 8, feed-forward width dff = 512, GELU activations, and dropout
= 0.1. The decoder consumes the last label len observations concatenated with horizon
zero placeholders, and a linear projection maps each forecast step to two channels (mean and log-
variance; c out=2), enabling Gaussian NLL training consistent with our baseline interface. Under
this setup, the Informer baseline has roughly 2.05M parameters in our experiments.

ContiFormer Chen et al. (2023). ContiFormer extends Transformers to irregularly sampled data
by working directly in continuous time. Given observations {(xi, ti)}, each layer constructs contin-
uous key/value trajectories by evolving latent states with an ODE between events, while the query
is a time-continuous function q(t) obtained by spline interpolation through the discrete query em-
beddings. The core module is continuous-time multi-head attention (CT-MHA), which replaces the
discrete dot-product with a scaled inner product

∫
q(τ)·k(τ) dτ over time, producing representations

at arbitrary timestamps. A reparameterization yields a parallelizable implementation that preserves
Transformer-style layer norms and position-wise feed-forward blocks. In our experiments, we use a
lightweight encoder-decoder stack with elayers = 2 and dlayers = 1, hidden width dmodel = 256, and
nheads = 8, resulting in approximately 2.1M trainable parameters. While ContiFormer is designed
for irregular sequences with missing or asynchronous measurements, our datasets are sampled at reg-
ular hourly intervals; thus, the irregularity-aware modules are not strictly necessary but still provide a
principled mechanism for continuous-time forecasting. This design highlights how continuous-time
attention can unify sequence modeling across both regularly and irregularly sampled domains.

PatchTST (Nie et al., 2022). PatchTST is a Transformer-based architecture for time series fore-
casting that tokenizes inputs into non-overlapping patches and applies self-attention over patch em-
beddings. We consider two usage modes. In the zero-shot setting, we load the official pretrained
weights (ibm-granite/granite-timeseries-patchtst) and directly apply the model
to our datasets without gradient updates. This tests the out-of-distribution generalization ability of
pretrained time-series Transformers. In the fine-tuned setting, we adapt the pretrained model to
each dataset using our training pipeline. We explore multiple finetuning strategies: updating all
weights (full), training only the regression head (head), or introducing a lightweight mean–variance
calibrator (adapter). Unless otherwise noted, we report results with the full finetuning strategy.
The forecaster outputs per-step Gaussian parameters (mean and log-variance, cout = 1) for consis-
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tency with our baseline interface. The fine-tuned model contains roughly 20M parameters, making
it significantly larger than our recurrent baselines but still feasible to train within our experimental
setup.

Chronos (Ansari et al., 2024). Chronos is a pretrained family of sequence-to-sequence forecast-
ers based on Transformer backbones T5 (amazon/chronos-t5-small). The model outputs
predictive quantiles, which we convert into Gaussian parameters (mean and log-variance) for consis-
tency with our evaluation framework. We adopt the fine-tuned setting, where a lightweight dataset-
specific calibrator rescales the predicted mean and shifts the variance estimates while keeping the
pretrained Chronos backbone frozen. This provides efficient adaptation with negligible computa-
tional overhead and improves dataset alignment. Chronos models typically contain tens of millions
of parameters (depending on the variant), but the calibration layer adds only a few hundred addi-
tional parameters, making fine-tuning fast and stable.

GPT (Radford et al., 2019). We adapt the original GPT architecture for time series forecasting,
preserving the exact structure used in language modeling. Specifically, we employ a stack of masked
self-attention blocks with residual connections, layer normalization, and GELU activations, identical
to GPT-2. The model projects scalar time-series inputs into the embedding space, adds learnable
positional embeddings, and autoregressively generates the next horizon of values. At each step, a
linear head outputs Gaussian parameters (mean and log-variance) for training with negative log-
likelihood. We experiment with multiple GPT-2 configurations ranging from small variants (∼10M
parameters) up to the 355M parameters. This setup ensures that our results reflect the direct transfer
of GPT-style Transformer architectures to the time-series domain, without introducing architectural
modifications.

B.3 BT-LSM MODEL CONFIGURATION.

Unless otherwise stated, we instantiate BT-LSM with model width 128, forecasting horizon 24 steps,
and a maximum of 50 chunks per sequence. Raw inputs of dimension 1 are linearly projected to the
model width and combined with positional encodings, followed by a gated feed-forward encoder.
Chunk boundaries are produced by an adaptive detector in hybrid mode with a boundary ratio of 0.05
and a minimum chunk length of 3. Per-chunk representations are formed by a Mixture-of-Experts
layer with five experts (Mean, First-Token, Max, Min, and Attention) under soft gating with temper-
ature 1.0. Inter-chunk temporal dependencies are modeled with a GPT-2 causal decoder configured
as gpt2-tiny and a context budget equal to the maximum chunk count. An exponential-moving-
average smoother (alpha 0.3) refines decoded chunk embeddings. A cross-attention upsampler with
8 heads maps chunk-level latents back to horizon-length latents. The prediction head outputs both
mean and log-variance for heteroscedastic forecasting.

BT-LSM introduces adaptive tokenization into Transformer-style forecasters by segmenting the in-
put sequence into variable-length chunks. The input sequence x ∈ RL×din is first embedded by a
linear projection (din → dmodel) and sinusoidal positional encoding, followed by a two-layer feed-
forward encoder with hidden size 2dmodel and GELU activations. Unless otherwise stated, we use
dmodel = 128.

A dedicated adaptive Boundary Detector then selects chunk boundaries. This module employs
three parallel temporal convolutions with kernel sizes {3, 5, 7} and output width dmodel/2, whose
features are concatenated and projected through a two-layer perceptron to yield boundary scores.
Learned scores are combined with normalized velocity, curvature, and energy-change cues using
three trainable scalar weights. A ratio constraint ensures approximately ⌊L · ρ⌋ boundaries (with
ρ = 0.07 by default), subject to a minimum spacing of 3–5 steps. The output consists of soft
probabilities (for visualization) and hard binary masks (for chunk construction).

Boundaries are converted into chunk-level tensors by the chunk embedding, which collects subse-
quences into padded arrays [B,Mmax, ℓmax, dmodel] and records lengths, masks, and spans. Each
chunk is then compressed into a single vector by the chunking MoE. The MoE consists of five par-
allel experts: (i) mean pooling, (ii) max pooling, (iii) min pooling, (iv) first-token selection, and (v)
single-query attention with h = 4 heads. Expert outputs are mixed by a router that maps simple
chunk statistics (mean, first, last) through a two-layer perceptron, producing a softmax distribution
over experts.
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Chunk embeddings are processed autoregressively by a causal decoder with N = 6 self-attention
layers, each containing h = 8 heads and hidden size dmodel = 128. Residual connections, layer
normalization, and two-layer feed-forward sub-blocks (hidden size 4dmodel) follow the standard
Transformer design. To reduce high-frequency instability between adjacent chunks, we apply a
lightweight Chunking Smoothing layer. This module maintains a running exponential moving
average with a learnable smoothing factor α ∈ (0, 1), applied sequentially across valid chunk posi-
tions, while leaving padded slots untouched.

For horizon forecasting, we employ a CrossAttention Decoder. It maintains a bank of H learnable
queries (one per prediction step), augmented with sinusoidal positional encodings. Queries attend to
the memory of chunk embeddings via multi-head cross-attention (h = 8, hidden size dmodel = 128),
followed by a two-layer feed-forward refinement block. This stage produces decoded latents of
shape [B,H, dmodel] and attention maps [B,H,Mmax].

In the end, it maps each decoded latent into probabilistic forecasts. Two parallel three-layer MLP
heads (hidden size dmodel/2 with GELU activations) output the predictive mean and log-variance,
respectively. Log-variance is clamped to [−10, 2] for numerical stability.

The complete model integrates embedding, boundary detection, chunk creation, MoE compression,
autoregressive decoding, EMA smoothing, cross-attentive upsampling, and probabilistic prediction.
In its standard configuration (dmodel = 128, N = 6 decoder layers, h = 8). Importantly, unlike plain
Transformers, the architecture always incorporates adaptive boundary detection and expert-guided
chunk compression, ensuring that forecasts are structured by dynamically learned temporal units
rather than fixed-length patches.

C ALGORITHM OF BT-LSM

Algorithm 1 The Training of Boundary-aware Tokenization Large Signal Model (BT-LSM)

Require: Observed sequence x1:T , horizon H , target boundary-rate 1/κ, hyperpaprameters
λboundary, λcont

Ensure: Predictions x̂T+1:T+H , loss L
1: Embed: e1:T ← LinearProj(x1:T )
2: Boundary probs: p1:T−1 ← σ

(
w⊤

v (∆e) +w⊤
a (∆

2e) +w⊤
E (∆∥e∥)

)
3: Hard boundaries (STE): b1←1; bt←1{pt ≥ 0.5} (backprop: ∂bt/∂pt ≈ 1)
4: Chunks: get start indices {t(m)}Mm=1 from {bt}; set t(M+1)←T
5: MoE fuse per chunk: for each m, compute mean, boundary, max-norm, attention pools; gate

and fuse→ zMoE
m

6: Add metadata: ℓm ← t(m+1)−t(m); zm ← [ zMoE
m ∥ ℓm ∥ t(m) ]

7: (Batching) Pad {zm} across sequences; build masks
8: Chunk Transformer: ẑ1:M ← CausalDecoderBlocks({zm})
9: Smoothing (EMA): z̄1← ẑ1; z̄m←(1−p̃m)z̄m−1 + p̃mẑm

10: Gating refinement: fuse z̄var
m , z̄fix

m→ z̄m
11: Cross-attention decode: for τ = T+1:T+H ,

qτ←FourierEmbed(τ); hτ←MHA(qτ , z̄1:M , z̄1:M ); x̂τ←FFN(hτ )

12: Loss: L ← 1
H

∑H
h=1 ∥xT+h − x̂T+h∥22 + λboundary

(
1
T

∑T
t=1 bt − 1

κ

)2

+ λcont∥x̂T+1 − xT ∥22
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D DISCUSSION AND PROOF OF THEOREM 1

Time warp. Consider a (strictly) increasing, continuously differentiable bijection ϕm :
[t(m), t(m+1)] → [t(m), t(m+1)] with ϕm

(
t(m)

)
= t(m) and ϕm

(
t(m+1)

)
= t(m+1). Define the

time-warped signal and embedding within the chunk by x̃(t) := x
(
ϕm(t)

)
and ẽ(t) := e

(
ϕm(t)

)
.

Boundaries and chunk endpoints are unchanged by construction.
Assumption 1 (No intra-chunk position features). Within-chunk experts depend only on e(t) (con-
tent) and not on the absolute index t (except for the designated boundary expert at t(m)).
Assumption 2 (Bounded embeddings). e(t) is measurable and bounded on [t(m), t(m+1)]; α(t) =
exp(w⊤e(t)) is integrable and strictly positive.
Theorem 1 (Invariance to intra-chunk resampling). Under Assumptions 1-2, for any monotone time
warp ϕm as above, each expert output is invariant:

z̃mean
m = zmean

m , z̃boundarym = zboundarym , z̃max
m = zmax

m , z̃attnm = zattnm .

Consequently, z̃MoE
m = zMoE

m and the concatenated token z̃m = [ z̃MoE
m ∥Lm∥t(m) ] equals zm.

Therefore the full model outputs are invariant: ˜̄zm = z̄m for all m, and ˜̂xT+1:T+H = x̂T+1:T+H .

Proof. We prove expertwise invariance.

Mean. By change of variables u = ϕm(t) with du = ϕ′
m(t) dt and ϕm bijective,

z̃mean
m =

1

Lm

∫ t(m+1)

t(m)

ẽ(t) dt =
1

Lm

∫ t(m+1)

t(m)

e(u)
du

ϕ′
m(ϕ−1

m (u))

(⋆)
=

1

Lm

∫ t(m+1)

t(m)

e(u) du = zmean
m ,

where (⋆) uses the standard change-of-variables identity: integrating e(ϕm(t)) w.r.t. dt is identical
to integrating e(u) w.r.t. du over the same interval; the Jacobian cancels because the bounds map to
the same endpoints.

Boundary. z̃boundarym = ẽ(t(m)) = e(ϕm(t(m))) = e(t(m)) = zboundarym .

Max-norm exemplar. The map t 7→ ∥ẽ(t)∥2 = ∥e(ϕm(t))∥2 is a reparameterization of the same
curve {∥e(u)∥2 : u ∈ [t(m), t(m+1)]}; hence its maximum value and argmax point (pulled back by
ϕ−1
m ) are unchanged. Thus the selected embedding equals the original maximizer’s embedding, so

z̃max
m = zmax

m .

Attention. Numerator and denominator transform with the same Jacobian:

z̃attnm =

∫
exp(w⊤e(ϕm(t))) e(ϕm(t)) dt∫

exp(w⊤e(ϕm(t))) dt
=

∫
exp(w⊤e(u)) e(u) du∫

exp(w⊤e(u)) du
= zattnm .

Thus all experts are invariant. MoE fusion with fixed gates preserves equality. The appended meta-
data (Lm, t(m)) is boundary-defined and thus unchanged. Hence z̃m = zm for all m.

Downstream, the chunk Transformer and EMA smoothing are functions of the sequence {zm} only
(with causal masks), so their outputs coincide: ˜̄zm = z̄m. Finally, the cross-attention decoder
uses identical queries (Fourier embeddings of T+1:T+H) and identical keys/values {z̄m}, hence
produces the same x̂T+1:T+H .

Remark 1 (What would break invariance?). Including intra-chunk positional features (e.g., per-
step sinusoidal encodings inside experts), or using density-dependent normalizations not cancelling
under change of variables, would violate Assumption 1 and can break invariance.
Corollary 1 (Discrete implementation: robustness and rate). Suppose each chunk m is sampled
on grids {ti} and {t̃j} before and after a time warp, with maximal spacings ∆m and ∆̃m. If
e(t) is Lipschitz on [t(m), t(m+1)] and attention scores are bounded, then the discrete Riemann-sum
implementations of the four experts are consistent and satisfy∥∥z̃km − zkm

∥∥ ≤ Ck ·max{∆m, ∆̃m}, k ∈ {mean,boundary,max,attn},
for constants Ck depending on Lipschitz and curvature bounds. Consequently, the end-to-end out-
puts satisfy ∥˜̂xT+1:T+H − x̂T+1:T+H∥ ≤ O(maxm max{∆m, ∆̃m}).
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Implications. The result shows BT-LSM is exactly invariant to any monotone reparameterization
within chunks (in the continuous formulation) and is robust in the discrete setting with an error
controlled by sampling resolution. Practically, as long as (i) boundaries are stable, (ii) experts
use content-only statistics (no intra-chunk positional encodings), and (iii) attention is normalized,
forecasts are insensitive to intra-chunk resampling/warping.

E ADDITIONAL EXAMPLES OF FORECASTING RESULTS

Spanish
Energy

Solar
Energy

Building
Energy

Residential
Energy

Consumption
Energy

Spanish
Temp

Residential
Temp

Consumption
Temp

Building
Temp

Solar
Temp

:  Different Chunks

Figure 8: Qualitative results on five datasets (left block) and their Temperature counterparts (right
block). Boundaries align with inflections, spikes, or regime changes, while plateaus yield long,
stable chunks.
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Figure 9: ETT benchmark breakdown. For each target in ETTh1 and ETTh2 (HUFL, HULL,
MUFL, MULL, LUFL, LULL, OT). The left panel shows the forecast (mean in red with ±1 std;
blue historical; green target) and the right panel shows the learned chunk segmentation (shaded).
The model places boundaries at step changes and sharp transitions, yielding event-synchronous
tokens.

F COMPLETE MSE RECORDS OF ETT DATASET

Table 3: Performance comparison on ETTh1 and ETTh2 datasets (all values in ×10−3).

ETTh1 ETTh2

Method #Para HUFL HULL MUFL MULL LUFL LULL OT HUFL HULL MUFL MULL LUFL LULL OT

RNN-∆t 0.33M 20.04± 2.28 10.82± 1.22 21.43± 2.42 10.21± 1.12 16.53± 1.83 7.24± 0.81 3.52± 0.38 7.21± 0.79 8.12± 0.90 14.83± 1.63 4.46± 0.09 3.13± 0.34 0.86± 0.09 5.23± 0.57

ODE-RNN 0.53M 22.11± 2.46 11.63± 1.28 23.18± 2.57 11.84± 1.30 17.92± 1.98 7.93± 0.87 3.89± 0.42 7.94± 0.86 8.92± 0.97 16.34± 1.81 5.81± 0.12 3.47± 0.38 0.94± 0.10 5.94± 0.66

Informer 2.05M 18.72± 2.05 9.41± 1.04 18.71± 2.04 9.82± 1.08 14.31± 1.56 6.27± 0.70 3.21± 0.35 10.54± 1.19 11.17± 1.26 21.03± 2.36 8.51± 0.18 4.92± 0.54 1.31± 0.14 8.21± 0.90

ContiFormer 1.85M 16.43± 1.80 8.54± 0.94 16.42± 1.78 8.63± 0.94 12.74± 1.38 5.59± 0.62 2.84± 0.31 9.07± 1.01 9.82± 1.09 18.41± 2.02 7.36± 0.15 4.17± 0.46 1.08± 0.12 7.10± 0.78

GPT 19.05M 15.47± 1.26 7.92± 0.67 15.31± 1.24 7.83± 0.65 11.93± 0.98 5.02± 0.41 2.61± 0.22 5.62± 0.48 6.41± 0.55 11.62± 0.97 4.16± 0.08 2.41± 0.21 0.66± 0.05 4.23± 0.36

Chronos 46.15M 16.52± 1.40 8.12± 0.69 16.08± 1.36 8.24± 0.71 12.31± 1.05 5.21± 0.44 2.72± 0.24 6.29± 0.53 7.02± 0.60 12.53± 1.07 6.10± 0.12 2.73± 0.24 0.73± 0.06 4.82± 0.41

PatchTST 0.61M 15.82± 1.33 8.01± 0.68 15.72± 1.32 8.03± 0.68 12.10± 1.03 5.08± 0.43 2.65± 0.23 7.11± 0.62 7.63± 0.67 13.73± 1.21 7.09± 0.14 3.01± 0.27 0.80± 0.07 5.31± 0.47

Ours 0.90M 13.90± 0.38 7.56± 0.32 14.38± 0.42 7.14± 0.29 11.31± 0.36 4.79± 0.16 2.40± 0.12 5.15± 0.19 5.96± 0.21 10.54± 0.40 3.94± 0.17 2.05± 0.08 0.59± 0.03 3.73± 0.16

F.1 MULTI-HORIZON FORECASTING RESULTS

To evaluate robustness across different forecasting horizons, we extend our experiments on the ETT
benchmark to include prediction lengths of 12, 24, and 48 steps. Table 4 reports the mean squared
error (MSE×10−3) across horizons. We observe that while all models degrade with longer horizons,
our BT-LSM consistently maintains lower error. At shorter horizons (12 steps), all strong baselines
perform competitively, but as the horizon increases to 48 steps, the performance gap widens, with
BT-LSM showing the best stability. This confirms that boundary-aware tokenization not only aligns
with event-driven structure but also offers robustness across varying prediction lengths, a critical
property in practical forecasting scenarios.
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Table 4: Multi-horizon forecasting results on ETTh1 and ETTh2 (MSE ×10−3).

Method ETTh1 ETTh2

H=12 H=24 H=48 H=12 H=24 H=48

RNN-∆t 9.62 17.92 24.34 10.15 21.86 29.41
ODE-RNN 10.21 20.89 27.73 9.92 19.40 26.62
PatchTST 5.54 9.57 14.41 5.22 12.99 17.84
ContiFormer 5.12 9.13 13.56 5.05 16.23 21.32
Chronos 4.91 10.63 9.14 4.84 12.12 17.67
BT-LSM (ours) 4.37 5.97 8.48 4.29 11.12 15.06

G TRAINING AND INFERENCE EFFICIENCY

Besides forecasting accuracy, computational efficiency is also important for practical deployment.
We report both the average training time per epoch and the inference latency per test sequence
(in milliseconds). As shown in Table 5, our BT-LSM achieves lower inference latency than large
baselines such as Chronos and GPT, while remaining competitive in training time compared to
lightweight fixed-length models. This demonstrates that boundary-aware chunking not only im-
proves accuracy but also reduces compute overhead.

Table 5: Training and inference efficiency comparison. Training time measured per epoch; inference
latency per sequence (ms).

Method #Params (M) Train Time (s/epoch) Inference Latency (ms)

RNN-∆t 0.33 12.4 2.3
ODE-RNN 0.53 18.7 4.1
PatchTST 0.61 26.5 8.9
ContiFormer 1.85 34.2 7.3
GPT 19.05 112.6 20.5
Chronos 46.15 158.3 24.7
BT-LSM (ours) 0.90 29.8 4.7

G.1 ZERO-SHOT GENERALIZATION TO TRAFFIC DATA

To further evaluate generalization ability, we conduct a zero-shot experiment: models are pretrained
on all datasets except Traffic, and then directly evaluated on the Traffic dataset without fine-tuning.
This setting simulates practical scenarios where models are deployed in unseen domains. Table 6
reports the mean squared error (MSE ×10−3) across model scales. We find that larger models
generally achieve better zero-shot accuracy, but our BT-LSM maintains strong performance even at
small scale (0.9M parameters), outperforming conventional baselines of similar size.

Table 6: Zero-shot forecasting on Traffic dataset (pretrained on other datasets). MSE reported in
×10−3.

Model Size of BT-LSM Params (M) Zero-Shot MSE

Small 0.9 12.3
Medium 10 9.8
Large 50 7.6
XL 124 6.1
XXL 355 5.4
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