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Efficient Training for Multilingual Visual Speech Recognition:
Pre-training with Discretized Visual Speech Representation

Anonymous Authors

ABSTRACT
This paper explores sentence-levelmultilingual Visual Speech Recog-
nition (VSR) that can recognize different languages with a single
trained model. As the massive multilingual modeling of visual data
requires huge computational costs, we propose a novel training
strategy, processing with visual speech units. Motivated by the
recent success of the audio speech unit, we propose to use a visual
speech unit that can be obtained by discretizing the visual speech
features extracted from the self-supervised visual speech model.
Through analysis, we verify that the visual speech units mainly
contain viseme information while suppressing non-linguistic infor-
mation. By using the visual speech units as the inputs of our system,
we propose to pre-train a VSR model to predict corresponding text
outputs on multilingual data constructed by merging several VSR
databases. As both the inputs (i.e., visual speech units) and out-
puts (i.e., text) are discrete, we can greatly improve the training
efficiency compared to the standard VSR training. Specifically, the
input data size is reduced to 0.016% of the original video inputs. In
order to complement the insufficient visual information in speech
recognition, we apply curriculum learning where the inputs of the
system begin with audio-visual speech units and gradually change
to visual speech units. After pre-training, the model is finetuned
on continuous features. We set new state-of-the-art multilingual
VSR performances by achieving comparable performances to the
previous language-specific VSR models, with a single trained model.

CCS CONCEPTS
• Human-centered computing→ Accessibility technologies;
• Computing methodologies → Computer vision problems;
Speech recognition.

KEYWORDS
Visual Speech Recognition, Lip Reading, Multilingual VSR

1 INTRODUCTION
These days, speech processing technologies havemade great progress
in diverse applications such as speech recognition [22, 27, 59, 65],
speech synthesis [10, 32, 50, 72, 76], and speech translation [30, 31,
34, 42]. Now, it is easy to find a speech processing model that can
proficiently handle approximately 100 languages [1, 62]. However,
multilingualism has been mainly explored for audio-based speech
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processing systems [44, 68], while visual-based speech processing
systems are still tied to developing monolingual systems [37, 48, 75].
There are two reasons for the lagging development of visual-based
speech processing systems: 1) The high dimensionality of visual
data compared to audio puts a challenge in training a large-scale
model with massive multilingual data. Compared to the same length
of audio, visual data requires about six times larger bits [35] in a
standard visual speech recognition process [47]. Moreover, the re-
quirement of encoding spatial information using two-dimensional
convolutions also increases the computation costs of visual speech
processing compared to its counterpart. 2) The low quantity of
labeled data in visual speech processing systems presents a for-
midable obstacle to technology development. In contrast to the
tremendous amount of publicly available audio-text data [61], a
very limited number of video-text data are available, especially for
non-English [37].

In this paper, we explore themultilingualism of visual speech pro-
cessing, especially in speech recognition [5, 14, 46, 49, 54]. Hence,
our objective is to devise a multilingual Visual Speech Recognition
(VSR) method that can recognize different languages with a single
trained model. In order to mitigate the challenges in visual speech
processing, we propose a novel strategy, processing with visual
speech units. The audio speech unit [41] is a discretized represen-
tation of an extracted speech feature from a self-supervised speech
model [6, 28]. It contains phonemic content [66] while suppressing
the other speech characteristics (e.g., speaker information) and can
be employed as pseudo text. As it is the discretized signal of the
original signal, the data size can be significantly reduced [8, 35].
Motivated by this, we propose to employ visual speech units, the
quantized representation of the visual speech feature, in training
multilingual VSR. As a result, one video frame having 61,952 bits
(i.e., based on a grayscale image with 88 × 88 size) can be expressed
with one visual speech unit which can be represented with just 10
bits. With the huge data size reduction, 0.016% compared to the
original, we can boost the training more than 10 times faster than
the standard VSR training. Through analysis, we validate that the
visual speech unit contains viseme information, the visual counter-
part of phoneme, while suppressing non-linguistic characteristics.
Hence, enabling visual speech modeling even by using the visual
speech units.

Specifically, we employ AV-HuBERT [64], a self-supervised vi-
sual speech model, to extract our visual speech units. We newly
train the AV-HuBERT model on 5,512 hours of multilingual audio-
visual data composed of nine languages, given that the original
AV-HuBERT was trained solely on English audio-visual data. To
differentiate between the English-only trained and multilingual-
trained AV-HuBERT models, we denote the latter as mAV-HuBERT.
With the mAV-HuBERT, we can correctly capture the multilingual
viseme information into our visual speech unit. Then, we propose
to pre-train an encoder-decoder model by setting its inputs with

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the visual speech units and the outputs with the corresponding
text, forming a unit-to-unit translation framework (i.e., translation
between discrete tokens) [34]. Moreover, inspired by the recent
successes of VSR that leverage audio modal information to com-
plement limited visual data [23, 36, 63, 64, 77], we propose to use
curriculum learning with a gradual increase in task difficulty using
audio modality. Concretely, our unit-to-unit pre-training is initi-
ated with audio-visual inputs and then gradually changed to visual
inputs. With this curriculum learning, the model can find the op-
timization points stable and achieve higher performance with the
complementary multi-modal information. To mitigate the compara-
tively small amount of public visual-text paired data, we utilize the
recently proposed automatic labels of [45] and [75] where the text
labels are obtained by their automatic labeling processes. Finally,
the pre-trained model is finetuned with continuous input features
to maximize the VSR performances.

The major contributions can be summarized as follows:
• To the best of our knowledge, this is the first work explor-
ing sentence-level multilingual VSR with a single trained
model. The proposed VSR model can recognize five different
languages using a single model, whereas previous methods
required training separate models for each language.

• We propose to employ visual speech units as inputs to pre-
train the multilingual VSR model, thereby establishing dis-
crete inputs and outputs (i.e., text). With this, we can dras-
tically reduce the computational costs and accelerate the
pre-training time by about 10 times compared to the stan-
dard training.

• Through analysis, we verify that the visual speech unit
mainly holds the viseme information while suppressing non-
linguistic features, enabling VSR training even by employing
discretized inputs.

• We set new state-of-the-art multilingual VSR performances
by achieving comparable performances with the multiple
previous monolingual VSR methods.

2 RELATEDWORK
2.1 Visual Speech Recognition (VSR)
Visual Speech Recognition (VSR) aims to predict the spoken words
from silent lip movements video. Early works [15, 53, 55, 67] fo-
cused on word-level VSR by using CNN [24] and the RNN [11, 26].
Large-scale lip-reading sentence datasets [3, 13] have boosted the
development of sentence-level VSR. By employing Transformer [69]
architecture, [2] proposed a powerful sentence-level end-to-end
VSR model. Moreover, the integration of the hybrid CTC/Attention
objective [56, 70] into VSR, greatly improved the recognition per-
formances. Recent VSR technologies [7, 45, 47, 60] also employed
transformer-variant architectures and improved the VSR perfor-
mances. For advanced training strategies, many researchers try to
reduce the gap between visual and audio modalities. They [4, 36,
38, 46, 63, 74, 77] studied how to effectively transfer audio knowl-
edge into the VSR model by using knowledge distillation [25] and
memory network [71]. However, these previous VSR approaches
have mainly developed for high-resource languages, English and
Mandarin [43]. VSR for different languages, especially low VSR re-
source languages, has only been addressed recently [37, 48, 75, 79].

In particular, a recent approach [75] proposed the labeled data for
low VSR resource languages using automatic labeling processes.

This paper is the first work exploring sentence-level multilingual
VSR with a single model. To mitigate the huge computational costs
in training the multilingual VSR model, we propose to pre-train
the model with discrete inputs and outputs by using visual speech
units. To complement the low amount of video-text data, we bring
the automatic labels of [45, 75] and propose curriculum learning
that utilizes audio modality to provide rich speech information.

2.2 Audio speech unit
Audio speech unit [41] is the discretized speech representation of
self-supervised speech models such as HuBERT [28], Wav2Vec2.0
[6], andWavLM [9]. It is possible to suppress non-linguistic features
and mainly keep the linguistic contents by selecting proper layers
to extract the speech features [41, 57]. By using the speech unit
as pseudo text, Textless Natural Language Processing becomes
possible [29, 34, 42, 51, 58]. Moreover, speech units have promising
potential to be used in multi-modal processing as they greatly
reduce the data size [8, 35, 52].

Motivated by this, we propose to employ a visual speech unit
which is the quantized representation of visual speech features
extracted from the self-supervised visual speech model [64]. We
analyze the characteristics of visual speech units and show that
the visual speech unit contains mainly viseme information while
suppressing the other characteristics.

3 METHOD
The objective of this paper is to develop a multilingual VSR model,
so that multiple languages can be recognized by using a single
trained model. To mitigate the large computational costs in devel-
oping visual speech processing systems, we propose visual speech
units which are discretized representations of visual speech features
encoded by a self-supervised speech model.

3.1 Multilingual Visual Speech Unit Extraction
Audio speech units [41] can be obtained by clustering the speech
features of a self-supervised speech model such as HuBERT [28].
Analogous to audio speech units, we propose to employ visual
speech units, which can be obtained by quantizing the visual speech
features derived from a pre-trained visual speech model. In order
to get visual speech units, we choose AV-HuBERT [64] for the
self-supervised visual speech model, which is well-known for its
discriminative visual speech features. However, AV-HuBERT is pre-
trained on English-only audio-visual data, which deviates from our
primary objective of achieving multilingualism. Hence, we initially
train a multilingual variant of AV-HuBERT (mAV-HuBERT) to en-
sure the accurate incorporation of multilingual viseme information
into the final visual speech units. To this end, we train the model
on 5,512 hours of multilingual dataset composed of 9 languages
(En, Es, It, Fr, Pt, De, Ru, Ar, El) by merging LRS2 [13], LRS3 [3],
VoxCeleb2 [12], and AVSpeech [21]. As VoxCeleb2 and AVSpeech
do not have language identities, we obtain the language identity of
each utterance by using a pre-trained language identifier of Whis-
per [62], to select the data. For the prediction target of the masked
prediction of mAV-HuBERT, we use clusters of speech features
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2881691 76

Audio Speech Unit

82 31 71 54 14

2687524 3

Embedding Embedding

cat
Progressive Masking

Linear

Transformer Encoder

Language Embedding +

Transformer Decoder Previous
Prediction

Input Video

mAV-HuBERT

Je serai poète et 
toi poésie

Output Text

Transformer Encoder

Language Embedding +

Transformer Decoder Previous
Prediction

𝓜𝓜 𝑓𝑓𝑎𝑎𝑓𝑓𝑣𝑣

𝑔𝑔

Figure 1: Illustration of the proposed multilingual VSR framework. (a) Visual speech units are obtained by quantizing the
visual speech features extracted from mAV-HuBERT. (b) The Transformer encoder-decoder model is pre-trained with discrete
inputs and outputs. The task difficulty is gradually increased by using progressive masking M. Pre-training commences with
audio-visual speech units as inputs, and these inputs gradually transition to visual speech units through progressive masking
of the audio speech units. (c) After pre-training the model with discrete inputs and outputs, it is finetuned with continuous
features to boost the VSR performances.

obtained from a pre-trained multilingual HuBERT [28, 42]. We use
the target size of 1,000 and train the model for 350k steps with one
iteration. Through analysis we confirm that mAV-HuBERT is more
suitable for multilingual speech modeling than the English-only
trained AV-HuBERT in Sec. 4.3.1.

With the pre-trained mAV-HuBERT, we extract the visual speech
unit by clustering (i.e., quantizing) the output visual speech features,
as shown in Fig. 1(a). Please note that AV-HuBERT can extract both
audio-only features and visual-only features through its modality
dropout. Hence, we only use the visual inputs to extract the visual
speech units. For the token size of the visual speech unit, we use
1,000 so that each visual speech unit can be represented with just
10 bits. Please note that one video frame having grayscale and 88
× 88 size (i.e., the standard for visual speech recognition) requires
61,952 bits [47, 64]. Therefore, we can reduce the data size to 0.016%
compared to the raw visual inputs, which enables us to greatly
increase the training batch size and accelerate the training speed by
removing the visual front-end (e.g., 2D CNNs). We analyze the effi-
ciency of visual speech units by comparing them with the standard
raw inputs in Sec. 4.3.2.

3.2 Pre-training: Visual Speech Unit to Text
Translation

By representing all training video data into visual speech units, we
can significantly reduce the data size, enabling efficient training
of a VSR model on large-scale multilingual data. Based on this
key concept, we propose to pre-train our model to predict text by
setting the inputs with visual speech units. Therefore, now the
inputs and outputs are both discrete, which is illustrated in Fig. 1(b).
As the visual speech units mainly contain linguistic information,
we can pre-train the model to construct the knowledge of visual

speech modeling even by using discrete inputs. We analyze the
information contained in the visual speech units and validate how
it can be worked, in Sec. 4.3.3.

Nevertheless, translating visual speech units directly into output
text from scratch is challenging for the model in identifying optimal
solutions. Since visual information contains scarce speech informa-
tion [36, 63, 77] compared to audio, training the model directly to
perform visual-to-text conversion might be hard to find the solution.
To mitigate this, we bring the motivation from the recent success
of VSR, which utilizes auxiliary audio information during training
[4, 38, 48, 63, 64, 74, 77]. Specifically, we initiate the pre-training
with audio-visual speech units where both audio speech units and
visual speech units are utilized as inputs, similar to [19, 64]. Then,
we gradually masked out the audio speech units as the pre-training
progressed, resulting in the final training stage exclusively utilizing
visual speech units as inputs. Therefore, the model can easily find
the optimization points through this curriculum learning, with the
aid of complementary audio speech information. Concretely, the
embeddings of the visual speech units 𝑓𝑣 ∈ R𝑇×𝐷 and audio speech
units 𝑓𝑎 ∈ R𝑇×𝐷 are concatenated as, 𝑔 = M(𝑓𝑎) ⊕ 𝑓𝑣 , where 𝑇 is
the sequence length, 𝐷 is the dimension of embedding, ⊕ repre-
sents concatenation operation in the embedding dimension, and
𝑔 ∈ R𝑇×2𝐷 is the concatenated feature.M(·) is a masking function
that randomly masks out 𝑝% of frames from the input sequence.
We progressively increase the 𝑝 from 0 to 100 as the pre-training
progresses so that the transition from audio-visual inputs to visual
inputs can be made. The effectiveness of this curriculum learning
using input transition from audio-visual to visual can be found in
Sec. 4.3.4.

Then, we reduce the embedding dimension of the concatenated
feature 𝑔 using a linear layer. Here, we provide the language infor-
mation by providing the language embedding which will be added



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: Dataset used for pre-training mAV-HuBERT and training the multilingual VSR model. Audio-visual data is utilized for
mAV-HuBERT, while video-text data is utilized for the multilingual VSR model (i.e., for both pre-training and finetuning).

Train Data for mAV-HuBERT

Datasets Number of Video
/ Hours Languages

LRS2 142,157 / 223 En
LRS3 150,498 / 433 En

mTEDx 181,034 / 285 Es, Fr, It, Pt
VoxCeleb2 834,375 / 1,739 En, Es, It, Fr, Pt, De, Ru, Ar, El
AVSpeech 1,575,755 / 2,832 En, Es, It, Fr, Pt, De, Ru, Ar, El

Total 2,883,819 / 5,512 En, Es, It, Fr, Pt, De, Ru, Ar, El

Train Data for multilingual VSR

Datasets Number of Video
/ Hours Languages

- - -
LRS3 150,498 / 433 En

mTEDx 181,034 / 285 Es, Fr, It, Pt
VoxCeleb2 742,147 / 1,539 En, Es, It, Fr, Pt
AVSpeech 1,272,065 / 2,288 En, Es, It, Fr, Pt

Total 2,505,858 / 4,545 En, Es, It, Fr, Pt

to the feature, following [16]. Finally, through the Transformer
encoder-decoder architecture, we translate the visual inputs into
the output text in an auto-regressive manner. The objective function
of our learning problem can be represented as follows,

L = −
𝑆∑︁
𝑠=1

log 𝑃 (𝑦𝑠 |X, 𝑦<𝑠 ), (1)

where 𝑦𝑠 is the text annotation for current step 𝑠 and 𝑦<𝑠 is the
previous outputs, X is the input speech units, and 𝑆 is the length of
the text. For multilingual training, we use five languages (En, Pt, Es,
Fr, It) by merging LRS3 [3], mTEDx [20], automatic labels for En
of [45], and automatic labels for Pt, Es, Fr, and It of [75], forming
4,545 hours of data. We summarize the dataset statistics in Table 1.

3.3 Finetuning: Multilingual Visual Speech
Recognition

Even though we can directly perform multilingual VSR with the
pre-trained model with discrete inputs, it is hard to outperform the
model using continuous features. This is expected, as information
is lost during the quantization process. However, as the pre-trained
model has already learned how to model the multilingual visual
pronunciation and generate languages, the finetuning with the con-
tinuous features is straightforward and more effective than direct
training of the multilingual VSR model from scratch. For finetun-
ing, we detach the unit embedding and linear layers, and attach the
pre-trained mAV-HuBERT, as illustrated in Fig. 1(c). The model is
trained end-to-end with the same objective function and training
data as the pre-training. In Sec. 4.3.5, we analyze the performances
of multilingual VSR using the single proposed model and multiple
previous monolingual models.

4 EXPERIMENT
4.1 Dataset
Lip Reading Sentences 2 (LRS2) [13] is one of the largest English
datasets for VSR. The dataset consists of 223 hours of training data
collected from British TV shows.

Lip Reading Sentences 3 (LRS3) [3] is a popular English VSR
database. It has about 430 hours of video, and each video clip is
collected from TED and TEDx. We evaluate the English VSR per-
formances on LRS3.

Multilingual TEDx (mTEDx) [20] is a multilingual dataset
originally proposed for speech recognition and translation. The
dataset provides 8 languages collected from TEDx talks. As the
dataset also provides the video links of original talks, we download
the video online. We remove the unavailable videos for VSR by
referring to [48]. We use four languages, Spanish (Es), Italian (It),
French (Fr), and Portuguese (Pt) for training and evaluating the
developed VSR model, following [37, 48, 75].

VoxCeleb2 [12] is amultilingual audio-visual dataset for speaker
recognition [33]. This dataset has over 1 million utterances and con-
tains 6,112 celebrities. For mAV-HuBERT training, we use the data
corresponding to the following 9 languages, English (En), Spanish
(Es), Italian (It), French (Fr), Portuguese (Pt), German (De), Russian
(Ru), Arabic (Ar), and Greek (El), by identifying the language iden-
tity using Whisper [62]. For VSR training, as the dataset does not
provide text annotations, we use the automatic labels of [45] for
En, and [75] for Es, It, Fr, and Pt.

Audio Visual Speech Dataset (AVSpeech) [21] is a large-
scale audio-visual speech dataset. AVSpeech contains roughly 290k
YouTube videos, and the total duration of these videos is 4700 hours.
Since the dataset does not provide text annotations, we use the same
strategy with the VoxCeleb2, using 9 languages for mAV-HuBERT
and automatic labels for VSR.

4.2 Implementation Details
Preprocessing. The video is resampled to 25 fps. We detect the
facial landmarks using RetinaFace [17], crop mouth regions using
96 × 96 sizes of bounding box, and convert them into grayscale.
For data augmentation, we randomly crop the video into 88 × 88
and horizontally flip it during training. The audio is resampled
to 16kHz. In order to obtain the audio speech unit, we feed the
audio into a multilingual trained HuBERT [28, 42] and cluster the
extracted features with 1,000 token size. Finally, the audio speech
unit is resampled to 25 fps to align with the sampling rate of the
visual inputs. For the text, we construct one multilingual dictionary
with 1,000 subword units by using SentencePiece tokenizer [40].

Architecture. The mAV-HuBERT has the same architecture as
the AV-HuBERT [64] large configuration and only differs in pre-
training data. For visual speech unit-to-text translation, the model
is composed of two unit embedding layers, one linear layer, one
language embedding layer, 6 transformer encoders, and 6 trans-
former decoders. Each unit embedding layer embeds 1,000 tokens
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Table 2: Comparisons between English AV-HuBERT and the
multilingual AV-HuBERT in multilingual VSR. English (En)
is validated on LRS3 and other languages (Es, It, Fr, Pt) are
validated on mTEDx databases.

Method Finetune Datasets
WER (%)

En Es It Fr Pt

AV-HuBERT [64] LRS3, mTEDx 28.0 75.9 74.0 75.5 79.6

mAV-HuBERT (Ours) LRS3, mTEDx 33.7 54.3 59.1 63.0 58.8

Table 3: Efficiency comparisons between previous VSR
method and the proposed method. All numbers are mea-
sured using the same CPU and GPU (RTX 3090 24GB) en-
vironments. Test Acc means the subword-level prediction
accuracy without beam search decoding.

Method Input Batch Size
(Tot. Frames)

Train Iter.
Time (sec)

Tot. Train
Time (hrs)

Test
Acc (%)

Standard VSR Video 1,000 1.58 52.5 82.1
Pre-training Speech Unit 6,000 0.88 6.6 72.2
Finetuning Video 1,000 1.68 34.9 82.2

into 1,024 dimensions and the linear layer reduces the concate-
nated 2,048 dimensions into 1,024. The language token is embedded
into a 1,024-dimensional feature by the language embedding layer.
Each transformer layer has an embedding dimension of 1024, a
feed-forward dimension of 4096, and 16 heads.

Training. For training mAV-HuBERT, we follow the original
AV-HuBERT [64] and train it with the masked prediction task. For
the prediction target, we use 1,000 clusters extracted from multilin-
gual trained HuBERT [28, 42]. We train the model for 350k steps
using 64 3090 RTX GPUs. For pre-training the proposed model
(i.e., visual speech unit-to-text translation), we train the model for
11 epochs with a tri-stage learning rate scheduler and 32 GPUs.
For the progressive masking M(·), we set 𝑝 as 0 for the first 10%
of training. From 10% to 70% of training, we linearly increase the
masking ratio 𝑝 from 0 to 100. After 70% of training, 𝑝 is set to 100
so that only visual speech units are used. We finetune the model
with the continuous features for 8 epochs using 32 GPUs. For all
experiments, the Adam optimizer [39] is used. For beam search
decoding, we use a beam width chosen from {20, 25, 30, 35} and
a length penalty of 0. The detailed training configuration can be
found in the supplementary.

4.3 Experimental Results
4.3.1 Effectiveness of mAV-HuBERT inModelingMultilingual Speech.
Before extracting the visual speech units by using SSL visual speech
models, we need to confirmwhichmodel is best suitable for ourmul-
tilingual VSR purposes. Therefore, we compare the performances of
English-trained AV-HuBERT and multilingual-trained AV-HuBERT
(mAV-HuBERT). To this end, we finetune the pre-trained mAV-
HuBERT and AV-HuBERT on 5 languages (i.e., En, Es, It, Fr, Pt) by
merging LRS3 and mTEDx databases. The multilingual VSR perfor-
mances of the two models are shown in Table 2. The results show
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Figure 2: Finetuning efficiency comparison between the pro-
posed pre-training scheme and without the pre-training.

that when performing multilingual VSR with a single model, the
mAV-HuBERT is much more effective than the English-only trained
AV-HuBERT. Specifically, for Es, It, Fr, and Pt, the mAV-HuBERT
outperforms the AV-HuBERT with large margins of over 10%WERs.
For English, English-only trained AV-HuBERT achieves better per-
formance, and this tendency is also observed in Radford et al. [62];
Increasing language diversity without scaling the model size, the
performances for major languages can be lower than the monolin-
gual model. As the mAV-HuBERT shows better performances in
modeling multilingual visual speech, we extract the visual speech
unit by using the mAV-HuBERT.

4.3.2 Efficiency Comparison between Visual Speech Units and Raw
Inputs. To confirm the efficiency of using visual speech units in-
stead of raw videos as inputs, we compare the batch size, training
iteration time, and total training time between the standard VSR
method that uses raw video as inputs and the proposed method.
Table 3 shows the comparison results. By using the visual speech
units as inputs in pre-training, we can increase the batch size six-
fold and reduce the training iteration time by approximately half.
Consequently, we can expedite training by a factor of about 12 com-
pared to previous VSR training methods. The total training time for
pre-training the model for 11 epochs amounts to 6.6 hours, whereas
the conventional VSR model requires 52.5 hours for 8 epochs of
training. Furthermore, when fine-tuning the pre-trained model,
we can achieve better performance compared to the standard VSR
model, with just 5 epochs of fine-tuning taking 34.9 hours. As a
result, we can greatly boost training time even if considering both
the pre-training and finetuning stages, compared to the standard
VSR training. To see this more intuitive, we examine the subword-
level accuracy changes during fine-tuning, comparing the proposed
method with the model without pre-training. Fig. 2 shows the learn-
ing curve of the two models. After the proposed pre-training, the
finetuning on the continuous features is effective so that we can
achieve better performance even with much fewer epochs than the
model without pre-training. It’s worth noting that we can signifi-
cantly reduce the pre-training time with the proposed method; 1
epoch requires just 0.6 hours in pre-training, whereas the standard
VSR training demands 6.6 hours for 1 epoch.

4.3.3 Analyzing Visual Speech Units. To understand which infor-
mation is held by the visual speech units, we analyze them using
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Figure 3: Visualization of speech units. Each boundary represents a single unit and the same color represents the same phoneme
or phoneme family. (a) Audio speech unit. (b) Visual speech unit.

Table 4: Speaker verification results (EER) comparisons using different input representations.

Raw audio Audio Feature Visual Feature Audio speech unit Visual speech unit

2.38% 14.96% 19.42% 28.84% 32.74%

1) phoneme mapping visualization [66] and 2) speaker recognition.
Firstly, following [66], we visualize the phonetic information of
the audio speech unit and visual speech unit which are obtained
from mAV-HuBERT. Therefore, only audio inputs are used to ex-
tract audio speech units and video inputs for visual speech units.
We set the cluster centroid as each row of the weight of the final
layer of mAV-HuBERT (i.e., classifier for 1,000 units), so that the
same boundary can be obtained for different modalities. Fig. 3 dis-
plays the visualization results of the 200 units out of 1,000 that
appeared most frequently. We can confirm that each unit in both
the audio speech units and visual speech units contains distinc-
tive linguistic information (i.e., phoneme or viseme). By comparing
the audio speech unit and visual speech unit, we can find that the
homophenes which refer to the different pronunciations having
the same lip movement (e.g., name, tame, dame) are confusingly
represented in visual speech units [38]. For example, some units
representing ‘n’ in audio speech units are changed to ‘d’ or ‘t’
in visual speech units. Moreover, we can find that compared to
audio speech units, more visual speech units are pointing to the
vowel (i.e., blue-colored area), which shows the ambiguity of lip
movements compared to the audio modality. These are the natural
results reflecting the characteristics of different speech modalities,
and should not be taken as an indication of the inadequacy of the
visual modality in speech modeling. In addition, we visualize some
video frames corresponding to each visual speech unit in Fig. 4,
illustrating that similar lip movements are consistently mapped
to the same index regardless of pose variations and speakers. For
example, the 648-th visual speech unit represents lip frames related
to the viseme ‘a’, and the 912-th visual speech unit corresponds to
the viseme ‘o’. Through the visualization, we can confirm that our
visual speech units contain the linguistic information, the viseme,
which enables us to pre-train the model to build the knowledge of
visual speech modeling.

Secondly, we analyze how much degree the speech units contain
non-linguistic information through speaker recognition. To this end,
we use raw audio speech, audio/visual speech features extracted
from mAV-HuBERT, and audio/visual speech units as inputs to
perform the speaker recognition. For the model, we utilize a pre-
trained speaker recognition model of [18] and train the model with
different inputs. To match the input size with the model, we use one
additional embedding layer for both audio speech units and visual
speech units. When we use the speech features from mAV-HuBERT,
we utilize one additional linear layer for both audio speech features
and visual speech features. For training, we utilize data less than
20 seconds in VoxCeleb2 [12] dev set. The speaker verification is
performed on the test data of VoxCeleb2 having less than 20 seconds,
where each test sample is assigned one positive sample and one
negative sample. Therefore, 27,816 positive pairs and negative pairs
are utilized respectively, thus random prediction yields 50% EER.

The speaker verification results (Equal Error Rate; EER) are
shown in Table 4. When we use raw audio as input, the system
can almost perfectly distinguish the input speakers with 2.38% EER.
When we use the features of the pre-trained mAV-HuBERT, the
verification performance is dropped to 14.96% and 19.42% on audio
and visual modalities, respectively. This shows that the masked
prediction of AV-HuBERT [64] forces the model to learn linguistic
information while somewhat discarding the speaker information.
Finally, when we discretize the speech features of mAV-HuBERT
and obtain the speech units, we can greatly suppress the speaker
information. The performance is dropped to 28.84% by using the au-
dio speech unit and 32.74% by using the visual speech unit. Through
the above two experiments, we can confirm that the quantization
process averages out the speaker effects (i.e., non-linguistic informa-
tion) in the speech representations while maintaining the content.
This enables us to build a speech representation model by using
speech units as input.
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Figure 4: Example frames corresponding to each visual speech unit. The numbers indicate the classes of visual speech units.

Table 5: The effectiveness of each proposed component (WER,
%). By substituting each component from the full model, we
evaluate their effectiveness in multilingual VSR.

Method En Es It Fr Pt
Proposed Method 24.4 42.7 49.7 55.2 50.6
− Unit Pretraining 24.3 45.1 52.1 56.2 51.1
− Curriculum 25.2 46.3 52.5 55.8 50.6
− Finetuning 37.5 68.1 70.3 76.3 74.0

4.3.4 Effectiveness of Each Proposed Component. To confirm the
effectiveness of each proposed component, we substitute each com-
ponent from the proposed method. The ablation results are shown
in Table 5. The performance of ‘−Unit Pretraining’ is obtained by
directly finetuning the mAV-HuBERT on the multilingual video-
text without using visual speech units. In this case, the overall VSR
performances are dropped especially for non-English languages.
Moreover, we require more training times compared to the pro-
posed method as shown in Table 3. When we do not utilize curricu-
lum learning (i.e., ‘−Curriculum’), the performance dramatically
decreases and even shows worse performances than the without
pre-training method in some languages. This shows that directly
performing the visual speech unit to text translation from scratch
is challenging to the model in finding the optimal points. Therefore,
the proposed curriculum learning is crucial when learning from
the visual speech units. These results also coincide with the previ-
ous methods utilizing multi-modal complementary in VSR training
[4, 38, 63, 64, 73, 77]. Finally, when we directly performmultilingual
VSR with the pre-trained model (i.e., with visual speech units), over-
all performances are decreased as fine information is lost during the
quantization process. Therefore, finetuning with the continuous

Table 6: Multilingual VSR performance (WER, %) compar-
isons. As there is no priorwork that can performmultilingual
VSR with a single model, we train AV-HuBERT to perform
multilingual VSR.

Method En Es It Fr Pt

AV-HuBERT [64] 23.3 51.2 54.8 61.0 55.3

Proposed Method 24.4 42.7 49.7 55.2 50.6

features for a few epochs should be performed to maximize the
pre-trained knowledge.

4.3.5 Multilingual Visual Speech Recognition with a Single Trained
Model. We validate the effectiveness of the proposed multilingual
VSR method by comparing it with 1) the multilingual VSR model
and 2) the monolingual VSR model. Since there is no prior work ex-
ploring multilingual VSR with a single model, we train AV-HuBERT
[64] to perform multilingual VSR and set it as our baseline. More-
over, since the previous non-English VSR methods are language-
specific, we compare the performance of our model with multiple
monolingual models.

Comparison with multilingual VSR method. Table 6 shows
the performance comparison results of multilingual VSR methods.
Both the AV-HuBERT and the proposed method are finetuned on
4,545 hours of multilingual video-text paired data. The proposed
method outperforms the AV-HuBERT for all languages except Eng-
lish. In particular, the proposed method demonstrates significantly
improved performance for Es, It, Fr, and Pt, with gains of more
than 4% WERs. For the high-resource language En, the proposed
method achieves similar performance with AV-HuBERT but slightly
falls behind. Considering multilingualism, the results confirm that
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Table 7: VSR performance comparisons with the previous VSR methods. Please note that the proposed method utilizes a single
model while the other methods utilize multiple models. Best and second-best scores are bolded and underlined.

Language Method Pre-training
Data (hrs)

Language-specific
Training Data (hrs)

Monolingual
Model

Single
Multilingual

Model
WER(%)

En

Ma et al. [48] - 1,459 ✓ 31.5
Prajwal et al. [60] - 2,676 ✓ 30.7
AV-HuBERT [64] 1,759 433 ✓ 28.6
VATLM [78] 1,759 433 ✓ 28.4

Haliassos et al. [23] 1,759 433 ✓ 27.8
AKVSR [73] 1,759 433 ✓ 27.6

Auto-AVSR [45] - 3,448 ✓ 20.5

Proposed Method 5,512 - ✓ 24.4

Es

Ma et al. [48] 1,459 87 ✓ 56.3
Kim et al. [37] 3,448 72 ✓ 56.9
Yeo et al. [75] 3,448 384 ✓ 45.7

Proposed Method 5,512 - ✓ 42.7

It

Ma et al. [48] 1,459 46 ✓ 57.4
Kim et al. [37] 3,448 46 ✓ 59.7
Yeo et al. [75] 3,448 152 ✓ 51.8

Proposed Method 5,512 - ✓ 49.7

Fr

Ma et al. [48] 1,459 100 ✓ 66.2
Kim et al. [37] 3,448 85 ✓ 64.9
Yeo et al. [75] 3,448 331 ✓ 58.3

Proposed Method 5,512 - ✓ 55.2

Pt

Ma et al. [48] 1,459 99 ✓ 61.5
Kim et al. [37] 3,448 82 ✓ 58.6
Yeo et al. [75] 3,448 420 ✓ 47.9

Proposed Method 5,512 - ✓ 50.6

the proposed VSR framework using visual speech units is much
more effective in building multilingual VSR models by achieving
new state-of-the-art performances. It is also worth noting that the
proposed method is more efficiently trainable with the proposed
pre-training strategy as discussed in Sec. 4.3.2.

Comparison with monolingual VSR method. Here, we com-
pare the proposedmultilingual VSR performances with the previous
state-of-the-art monolingual VSR methods. Please note that the pro-
posed method utilizes a single trained model across the languages,
while different methods utilize multiple language-specific VSR mod-
els. The results are shown in Table 7. By comparing with the recent
state-of-the-art method [75], we outperform it in 3 languages Span-
ish (Es), Italian (It), and French (Fr), by 3.0%, 2.1%, and 3.1% WER,
respectively. In the English VSR, our method achieves 24.4% WER
while the current previous method [45] achieves 20.5% WER. As
discussed in Radford et al. [62], the performance of high-resource
languages can be further improved by scaling the model size to
accommodate the diversity of languages. As a result, the proposed
multilingual VSR model achieves the best score in Es, It, and Fr,
and the second-best score in En and Pt with a single-trained model.
Through the comparisons, we can confirm not only the computa-
tion efficiency but also the effectiveness of the proposed method

in multilingual VSR by outperforming and achieving comparable
results with the previous language-specific VSR methods.

5 CONCLUSION
In this paper, we proposed an efficient multilingual VSR method
using a single model. Specifically, we proposed to use visual speech
units for pre-training a VSR model to mitigate the huge computa-
tional loads in building massive multilingual visual speech model-
ing. With the proposed strategy, we can greatly reduce the data size
and effectively pre-train the VSR model on large-scale multilingual
VSR databases. By analyzing the visual speech unit, we validated it
contains linguistic information and enables visual speech model-
ing using discrete inputs. To complement visual speech informa-
tion with audio, we proposed curriculum learning by gradually
increasing the task difficulty. Finally, by finetuning the model on
continuous features, we set new state-of-the-art multilingual VSR
performances by achieving comparable VSR performances with the
previous language-specific VSR models. To the best of our knowl-
edge, this is the first work exploring the multilingual VSR and
employing visual speech units as inputs of VSR systems.
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