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ABSTRACT

Despite tremendous successes achieved, object detection models confront the vul-
nerability to adversarial attacks. Even with imperceptible adversarial perturbations
in images, they probably yield erroneous detection predictions, posing a threat
to various realistic applications, e.g., medical diagnosis and automatic driving.
Although some existing methods can improve the adversarial robustness of de-
tectors, they still suffer from the detection robustness bottleneck: the significant
performance degradation on clean images and the limited robustness on adversarial
images. In this paper, we conduct empirically a comprehensive investigation on
what’s wrong with the robustness of object detectors in four different seminal
architectures, i.e., two-stage, one-stage, anchor-free, and Transformer-based de-
tectors, inspiring more research interest on this task. We also devise a Detection
Confusion Matrix (DCM) and Classification-Ablative Validation (ClsAVal) for
further detection robustness analyses. We explore underlying factors that account
for robustness bottleneck. It is empirically demonstrated that robust detectors have
reliable localization robustness and poor classification robustness. The classifi-
cation module easily mis-classifies the foreground objects into the background.
Furthermore, Robust Derformable-DETR suffers from a poor classification and
localization robustness. Our source codes, trained models, and detailed experiment
results will be publicly available.

1 INTRODUCTION

With numerous breakthroughs in recent years, deep neural networks (DNNs) have built a series
of milestones in the computer vision community He et al. (2016); Chen et al. (2018a); Ge et al.
(2021). Nevertheless, with millions of model parameters, they are verified to be easily fooled to
generate completely wrong predictions under slight and imperceptible image perturbations Szegedy
et al. (2014). Many recent works are devoted to exploring the model robustness with adversarial
perturbations crafted by attack models including FGSM Goodfellow et al. (2015), PGD Madry et al.
(2018), AdvGAN Xiao et al. (2018), Carlini and Wagner Attack (C&W) Carlini & Wagner (2017).
However, those mainly focus on the image classification task. The robustness of object detectors is
quite under-explored.

Object detectors not only identify which categories objects belong to (classification), but also
recognize where objects exactly are (localization). Inevitably, detection models suffer from more
complex and challenging adversarial robustness from classification and localization, exposing more
possibilities of being attacked. A few recent approaches Xie et al. (2017); Wei et al. (2019); Sarkar
et al. (2017); Chen et al. (2018b) have been proposed to attack the state-of-the-art object detectors.
Though those methods achieve successful attacks on Faster RCNN and SSD object detectors, it is
not trivial to defense attacks to ensure the adversarial robustness for object detectors. Generally, few
works are devoted to adversarially-robust object detectors. Three early attempts are MTD Zhang &
Wang (2019), CAWT Chen et al. (2021) and RobustDet Dong et al. (2022), which are derived from
the one-stage SSD detector.

Nevertheless, existing robust detection methods present a typical detection robustness bottleneck
on both clean images and adversarial images for object detection: a significant performance decline
on clean images and the limited performance on adversarial images. As demonstrated in Fig. 1,
on one hand, robust object detectors (MTD and CWAT) only obtain about 22%∼37% mAP on
adversarial images! On the other hand, robust object detectors (MTD and CWAT) suffer from the
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Figure 1: Robustness for image classification models and object detection models. “STD" is the standard
model (non-robust), i.e., ResNet in classification and SSD in detection. Acls and Aloc denote the attacks for
classification and localization in detection.

performance decrease by nearly 30% mAP on clean images (77.49% mAP for standard SSD vs.
48% mAP for MTD, 51.3% mAP for CWAT)! Instead, this is not an intuitive phenomenon, because
the robust classification models (e.g., TRADES Zhang et al. (2019), IRGD Gowal et al. (2021)) have
a small amount of the performance decline on clean images while gaining the robustness, as shown
in Fig. 1. A same thing for those classification and detection methods is adversarial training to ensure
the robustness, but this problem occurs notably in object detection. Therefore, it is worthy of more
attention to exploring what’s wrong with the robustness of object detectors.

In this paper, rather than proposing a specific solution for robust object detectors as usual, we specifi-
cally aim to make an initial attempt to investigate the robustness of object detectors systematically
and comprehensively as possible as we can, paving a way for future works that are inspired to
essentially mitigate the detection robustness bottleneck. The involved object detectors cover four
seminal object detectors with different structures, i.e., the two-stage, one-stage and anchor-free and
Transformer-based detectors. Specifically, we devise a novel Detection Confusion Matrix (DCM) in
object detection to analyze the classification and localization in detail and Classification-Ablative
Validation (ClsAVal) for detection robustness analysis. Four robust object detectors with adversarial
training present the similar robustness bottleneck aforementioned, which is mainly attributed to the
inferior classification robustness, i.e., the mis-classification of the foreground as the background in
the classification module, with less confusion among foreground categories. Besides, in Deformable-
DETR, both the robustness of classification and localization is poor, unlike SSD, Faster RCNN, and
YOLOX with reliable localization robustness and poor classification robustness.

2 ADVERSARIAL ROBUSTNESS OF OBJECT DETECTORS

With the remarkable learning capability of deep neural networks, three representative series of deep
learning based object detectors are prevalent, leading the recent research on object detection. They
are two-stage, one-stage, anchor-free and Transformer-based object detectors. In our work, we will
empirically investigate the adversarial robustness of those three types of detectors. Concretely, Faster
RCNN Ren et al. (2015) (two-stage), SSD Liu et al. (2016) (one-stage), YOLOX Ge et al. (2021)
(anchor-free) and Deformable-DETR Zhu et al. (2021) (Transformer-based) are selected. In this
section, adversarial training for robust object detection will be firstly described and then empirical
analyses on detection robustness will be elaborated. For SSD, Faster RCNN and YOLOX, we use
PASCAL VOC Everingham et al. (2015) dataset for analysis. For Deformable-DETR, MS-COCO Lin
et al. (2014) is adopted, since it is unable to successfully train Deformable-DETR on PASCAL VOC
using the official code. (However, we still provide successful training results on VOC dataset using
MMDetection codes in the supplementary material.)

2.1 PRELIMINARIES

Object detection can be regarded as a multi-task learning for classification and localization. Formally,
a detection model f is parameterized by θ, which consists of a backbone fb and two headers of
classification Hcls and localization Hloc. Given an input image x ∈ D, two headers yield probabilistic
confidence and the predicted localization for each bounding box, respectively. After Non-Maximum
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Figure 2: Performance of non-robust and robust detectors with different architectures on clean images
and adversarial images. (Best viewed zoomed in color.)

Suppression (NMS) and filtering1, the object detector f outputs N detected bounding boxes b̂k
(k = 1, ..., N ) with the confidence sk ∈ RC+1 over C object categories and the background. In the
training phase, the objective function integrates the classification loss Lcls and localization loss Lloc

to be optimizedly minimized:
min
θ

E(x,{yi,bi})∼DLcls(s = Hcls(fb(x)), {yi, bi}) + Lloc(b̂ = Hloc(fb(x)), {yi, bi}), (1)

where yi is the category label of Ground-Truth (GT) bounding box bi.

Existing attack methods for object detectors are essentially cast as attacking by using variants of
individual classification or localization task losses or their combinations Xie et al. (2017); Wei et al.
(2019); Liu et al. (2019); Chen et al. (2018b). Following those detection attack works, we denote the
attack against the classification as Acls and the attack against the localization as Aloc, respectively.

Acls(x) = argmax
x̄∈Sx

Lcls(Hcls(fb(x̄)), {yi, bi}),

Aloc(x) = argmax
x̄∈Sx

Lloc(Hloc(fb(x̄)), {yi, bi}),
(2)

where x̄ is the adversarial image of x, and Sx =
{
x̄ ∩ [0, 255]cwh | ∥x̄− x∥∞ ≤ ϵ

}
is the adversarial

image space centered on clean images x with perturbation budget of ϵ = 8. Accordingly, the objective
function for robust object detection is formulated as

min
θ

E(x,{yi,bi})∼DLcls(Hcls(fb(A(x))), {yi, bi}) + Lloc(Hloc(fb(A(x))), {yi, bi}), (3)

where A represents the attack in the adversarial training. Ideally, a robust object detector should
not only have promising localization robustness and classification robustness, but also present a
remarkable performance on clean images.

2.2 EMPIRICAL ANALYSES ON DETECTION ROBUSTNESS

In this section, we empirically explore the adversarial robustness for four series of state-of-the-art
detection models. Our attack in the adversarial training involves simultaneously classification and
localization attacks in this paper, e.g., MTD Zhang & Wang (2019). We adopt the similar experimental
setup of attacks and criteria as MTD. We evaluate detection models under the attack Lcls and Lloc

using the PGD-20 (ϵ = 8), and use the mean Average Precision (mAP) as the robustness evaluation
metric. The performance evaluation on the non-robust and robust models with different detection
structures is shown in Fig. 2.

1) Non-robust models on clean and adversarial images: The standard non-robust models have a
remarkable detection performance over 60% mAP on clean images. But, all of them have extremely
poor results on adversarial attacks which is lower than 10% mAP.

2) Robust models on clean and adversarial images: Robust detectors have limited robustness to
adversarial attacks achieving lower than 40% mAP in the best case and only 10% in the worst case.
Meanwhile, they have a performance decrease on clean images compared with non-robust models.

3) Robust models vs. non-robust models on clean images: Compared with the non-robust model,
robust detectors suffer from a significant degradation by 15% mAP drops on average, and even by up
to 30% at most. Deformable-DETR also has about 25% mAP drop on COCO.

1It specifically represents the process of filtering bounding boxes whose scores are large than the threshold
for final detection results in detectors.
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Figure 3: Illustration of Detection Confusion Matrix.
4) Robust models vs. non-robust models on adversarial images: Robust models can maintain a certain
detection ability on adversarial images which has about 20% mAP improvement, while non-robust
models hardly detect correctly objects on adversarial images (lower than 10% mAP).

5) Robust models resistant to classification attack and localization attack: The performance on Acls

adversarial image is generally lower than those of Aloc, indicating the robustness of the classification
module is commonly weaker than that of the localization module. Compared with Faster R-CNN, SSD
has a smaller robustness gap between the classification and localization modules. The performance of
YOLOX on clean images is better than SSD, but its robustness on the classification module is weaker
than that of SSD. The robustness gap of YOLOX between the classification and localization module is
similar to the two-stage detector.

3 WHAT’S WRONG WITH THE ROBUSTNESS OF OBJECT DETECTORS?

In this section, we first devise Detection Confusion Matrix and Classification-Ablative Validation in
object detection for detailed analyses, and then mainly analyze the robustness in classification and
localization, taking one-stage SSD for example.

3.1 PRELIMINARIES

Detection Confusion Matrix (DCM). Considering that adversarial images would be easily mis-
identified as any other category, it matters that we figure out what the detection confusion is among
different object categories due to adversarial attacks. Accordingly, we resort to the confusion matrix
which intuitively indicates the detection performance for each category and the confusion between
different categories. However, what is responsible for the detection performance evaluation involves
classification categories, classification confidences, and the regression localization of bounding boxes.
Thus, the conventional confusion matrix for classification improperly suits object detection. In our
work, we devise Detection Confusion Matrix to diagnose object detection, which indicates the
confusion of detection results among different categories and their localization.

Those detected bounding boxes after Non-maximum Suppression (NMS) are considered for calculat-
ing DCM. Those whose IOU with all the GTs is lower than Tiou are regarded as its true category
being assigned to background. Otherwise, the true category of a detected bounding box bi can be
assigned to a certain object category. Tiou is the IOU acceptable threshold (it is 0.5 in this paper).
Once the matching between GT and the predicted bounding box is determined, we can calculate
DCM via this information, shown in Fig. 3.

Specifically, a detection confusion matrix M has the size of (1 + C)× (1 + C), whose items are
named cells. In each cell, it simultaneously contains the category confusion and the IOU distribution.
1) For the category confusion, in a cell (m,n), Mconf

m,n represents the sum of confidences of the
bounding boxes whose true category is cm but predicted to be category cn. As per routine of mAP,
we assign the true bounding box and the true category to the predicted bounding box based on its IOU
value with GT boxes. All the GT bounding boxes in an image are denoted as B and all the predicted
bounding boxes as B̂. bi ∈ B is the GT bounding box with the largest IOU with a predicted bounding
box b̂k ∈ B̂. If IOU(b̂k, bi) >= Tiou, then b̂k matches with bi and the true category of b̂k is also
the category of bi; otherwise, b̂k does not match any GT bounding box and its true category is cbg.
Thus the set of all predicted bounding boxes with the true category cm can be indicated as: B̂(cm),
then the category confusion is defined as: Mconf

m,n =
∑

b̂k∈B̂(cm,cn)
sk, where B̂(cm, cn) ⊂ B̂(cm)

is the subset of B̂(cm) whose predicted category is cn but the true category is cm.

2) For the IOU distribution, in a cell (m,n), Miou
m,n represents the distribution of IOU values for the

bounding boxes whose true category is cm but predicted to cn. In this distribution, x-axis is the IOU
value, and y-axis is the percentage of the number of bounding boxes in the corresponding interval. It
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Figure 4: Classification-Ablative Validation. Based on the conventional detection process, the output
of the current model classification module is replaced with the output of a reliable model classification
module, to eliminate the impact of the classification module and evaluate the localization module
performance individually.

is defined as Miou
m,n = histb̂k∈B̂(cm,cn)

(IOU(b̂k, bi)), where bi is the GT bounding box matching

b̂k and hist(·) is the histogram operation.

Classification-Ablative Validation (ClsAVal). To independently evaluate the robustness of the
localization module, we propose the ClsAVal method. To eliminate the impact of the classification
module on the results, it assumes that each proposal has a reliable classification score (this can be
provided by a reliable detector).

Given a detection model M , its detected object set is O(x). After applying NMS and filtering, the
reserved boxes with their indexes idx will be recorded: Õ(x) = {(b̂k, sk), k ∈ idx}. To diagnose
the localization robustness of M , it resorts to another model MR, whose performance on ẋ is better
than M on x and its detected object set is ÕR(x) = {(b̂Rk , sRk ), k ∈ idxR}, where x and ẋ are
from the same image but with or without certain manipulation (e.g. adversarial perturbation). Two
validation modes are defined, shown in Fig. 4. 1) ClsAVal Ridx: directly use the indexes idxR of ẋ to
select the bounding boxes on x: ÕR

Ridx
(x) = {(b̂k, sk)|k ∈ idxR}. At this time, the selected boxes

are assigned with correct indexes for positions, but their scores are still from M . This indicates what
scores M predicts for the boxes in those correct positions. 2) ClsAVal Rall: If the selected boxes are
assigned with correct indexes for positions and meanwhile their scores are also from MR on ẋ, then
the selected bounding boxes on x are ÕR

Rall
(x) = {(b̂k, sRk )|k ∈ idxR}, to eliminate the interference

of the classification module. ClsAVal Rall reflects the localization predicted by M for those that are
at correct positions. Suppose ẋ and MR are the clean image and the standard model, respectively; x
and M are their adversarial and robust counterparts, respectively. If M produces similar boxes to
MR, it means that M is robust in localization; otherwise, it is non-robust in localization.

3.2 ROBUSTNESS IN CLASSIFICATION AND LOCALIZATION

As demonstrated in Sec. 2.2, robust detection models have limited robustness on adversarial images,
and degenerate significantly on clean images. That is, existing robust object detectors often have an
unsatisfactory performance on both adversarial and clean images. One reason is likely that robust
models have difficulties to collaboratively learning clean images and adversarial images together.
That indicates that those models have serious conflicts between learning clean images and adversarial
images in the adversarial training. Thus, they have to compromise a trade-off between the accuracy (on
clean images) and adversarial robustness (on adversarial images), leading to the performance sacrifice,
especially on clean images. We will elaborately investigate this problem in the following.

(a) Are robust detectors really poor in localization?
Compared with image classification, object detection models has one more regression branch for
localizing objects. Accordingly, a problem arises: does the conflict in object detection mainly exist in
the regression subtask for object localization? We will first explore whether the localization is the
“chief criminal" that is responsible for the poor robustness in detection. Accordingly, it is necessary
to eliminate the interference of the classification module to verify the robustness of the localization
module independently. Two possible cases can be considered to explain this issue.

1) The error of the localization result may be due to the poor robustness of the localization module
itself, which gives the wrong bounding boxes.
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Figure 5: Robustness analyses with Detection Confusion Matrix for standard and robust SSD models2.
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Figure 6: (a)(b): Classification-Ablative Validation for standard and robust SSD and Faster R-CNN
models. “Vanilla” means the standard outputs of the model. (c): Classification-Ablative Validation
for RPN in standard and robust Faster R-CNN.

2) The classification module yields wrong scores so that the NMS module selects the bounding boxes
at wrong positions that do not contain correct objects.

In order to figure out which factor dominates the error of prediction results, we verify the localization
robustness via the proposed ClsAVal. This has a premise that standard detectors can select bounding
boxes at correct positions on clean images. As shown in Fig. 6(a), the performance of robust SSD
under adversarial attacks is limited: not only the confidence for many objects are quite low, but the
bounding box also has a large deviation. However, via Ridx validation, under either classification
attack Acls or localization attack Aloc, those boxes (produced by robust models) at correct positions
do not deviate much from the detected boxes on clean images by standard SSD. But the confidences
for these bounding boxes that should be correct are extremely low and thus wrongly recognized as
the background. Compared with Ridx validation results of the standard SSD model under Aloc, it
can be seen that the localization module of the detector has indeed gained a good robustness through
adversarial training. It means that the model is not due to the poor robustness of the localization
module itself, but the classification module with poor robustness that gives the wrong confidence of
the bounding box, which makes the subsequent module select wrong bounding boxes.

(b) What’s wrong with the classification robustness?
To analyze the classification robustness, we employ the Detection Confusion Matrix to inspect the
detection results of robust models. This aims to not only summarize the classification and localization
performance for each category but also analyze how confused the detector is for classification and
localization among all the categories. Fig. 5 prodives DCM results for standard SSD and robust SSD.

1) The adversarial attack enforces the standard detection model to easily mis-classify foreground
objects into the background.

2) The robust model trained by adversarial training also tends to mis-classify foreground objects into
the background for detection on both clean images and adversarial images.

In Fig. 5, compared to the results of the standard model on the clean images, standard and robust
models on Acls and Aloc adversarial images have a large number of bounding boxes that are incorrectly
predicted into the background. Besides, robust models on clean images also have similar results. This
reasonably explains that the insufficient classification robustness is mainly attributed to the prediction

2Best viewed zoomed in color. And we also provide clearer versions of Fig.5-8 in our supplementary.
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STD Robust

Figure 7: Robustness analyses with Detection Confusion Matrix for standard and robust Faster RCNN.

confusion between foregrounds and the background. Furthermore, these correctly classified objects
have larger IOUs, demonstrating that the localization in detectors has higher robustness to some extent.

3) The poor performance of robust models is due to the mis-classification of the classification module,
which leads to selecting bounding boxes at wrong positions, rather than the poor robustness of the
localization model itself.

In Fig. 5, under Rall, the standard SSD model and robust SSD are enable to locate objects on Acls or
Aloc adversarial images, which is similar to the results on clean images. Under Ridx, robust SSD
yields low confidences for those boxes that should be correct, but it is still better than the standard
model. Despite the limited robustness, its ability to distinguish objects in the classification module has
deteriorated. Overall, it demonstrates that both standard and robust SSD present a reliable localization
robustness on adversarial images; however, the conflict of learning together clean and adversarial
images seriously affects the classification robustness, which leads to the mis-classification of the
foreground into the background.

4 ROBUSTNESS IN DETECTORS WITH DIFFERENT ARCHITECTURES

In this section, we will further explore the robustness bottleneck for other three detectors with
different architectures including two-stage Faster-RCNN, anchor-free YOLOX and Transformer-
based Deformable-DETR.

4.1 ROBUSTNESS IN TWO-STAGE DETECTOR

Two-stage detectors require NMS for both stages to filter the detection bounding boxes based on the
prediction results of their own classification modules. For the the ClsAVal validation, the first stage
uses Rall validations. Rall and Ridx are adopted for the second stage.

Robustness Analyses on Faster RCNN. As demonstrated by Ridx validation in Fig. 6, standard
Faster RCNN cannot accurately detect objects with adversarial perturbations even if the correct
bounding box is given. This can draw a conclusion that Faster RCNN itself has poor localization and
classification robustness, unlike the standard SSD that presents good localization robustness even
without adversarial training. Robust Faster RCNN also suffers from the robustness bottleneck. But,
the locations of detected objects highly accurately for both attacks of Acls or Aloc, demonstrated by
Ridx and Rall in Fig. 6.

With DCMs under either the attack of Acls or Aloc in Fig. 7, standard and robust Faster RCNN
models mis-classify many foreground objects as the background. From the DCM of Rall validation,
the robust model shows remarkable performance no matter what kind of attack is used. This further
supports the conclusion that the decline in model performance is not due to the poor robustness of
the localization module itself. From the DCM of Ridx validation, Faster RCNN also incorrectly
classifies most of the correct bounding boxes as the background. Thus, two-Stage detectors also
inevitably suffers from robustness bottlenecks.

Robustness in Region Proposal Network (RPN). The localization results in the second stage depend
on the proposal selected by the localization results of RPN. Therefore, we also analyze the robustness
in RPN. The unrectified bounding boxes in the first stage are considered. In Fig. 6, the standard
model in the first stage can already give fairly accurate bounding boxes on the clean images. But
the validation of Rall and Ridx indicates that the robust model does not show strong localization
robustness at this stage. Under adversarial attacks, the bounding boxes at the correct positions have a
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Figure 8: Robustness analyses with Detection Confusion Matrix for standard and robust YOLOX.

large localization deviation. Even so, it still has correct objects in the bounding boxes, so the second
stage is able to rectify the bounding boxes.

4.2 ROBUSTNESS IN ANCHOR-FREE DETECTOR

According to the previous analyses, the robustness bottleneck of object detectors is mainly attributed
to the mis-classification of the foreground into the background with poor classification robustness.
The localization module has a reliable robustness. So, what if we can decide whether the bounding
box is the background at the localization branch? Is the problem of the robustness bottleneck likely
to be solved? To verify this hypothesis, we further validate these problems in YOLOX together with
its detection robustness.

YOLOX proposes the decouple head which uses regression features in the localization branch to
determine whether there is an object inside the bounding box. It multiplies the Sigmoid outputs
(scores) of Hcls and Hobj as the final score instead of Softmax. It has two scores from Hcls and Hobj

and thus has three manners for the ClsAVal validation: Rall considers both scores; Robj considers
the outputs of Hobj ; Rconf replace only the outputs of Hcls.

Since YOLOX does not directly give the confidence that the object belongs to the background, we
set the confidence of the background to: cbg = 1 − max(Hcls(Fcls(f(x)) × Hobj(Floc(f(x)))).
From the results of DCM in Fig. 8, robust YOLOX also has limited robustness performance under
adversarial attacks. It still tends to mis-classify objects into the background. This is similar to SSD
and Faster RCNN, indicating that placing the module of deciding whether the bounding box contains
foreground objects into the localization branch cannot alleviate the robustness bottleneck. According
to Rall, the robust YOLOX can correctly locate objects with robust localization and is hardly affected
by the non-robustness of Hobj .

Since the final confidence of YOLOX consists of both Hcls and Hobj , we also explore which part is
dominantly responsible for the limited robustness. In Fig. 8, with results of Rall and Ridx that the
object detector has small conflicts in the localization module with reliable robustness. With results
of Robj , if the model can correctly distinguish the foreground from the background, it can give the
object higher confidence. With results of Rconf , even if the classification module classifies all the
objects correctly, the detector still regards objects as the background finally. The conflict among
foreground classes is much weaker than the conflict between foreground and background classes.

4.3 ROBUSTNESS IN TRANSFORMER-BASED DETECTOR

We analyze the robustness of Deformable-DETR on MS-COCO Lin et al. (2014). Transformer-based
detector has a fixed number of object queries responsible for predicting different objects, but the
correspondence between GTs and the bounding box predicted by each object query will change with
learning. Here we assume that object queries of the same model are responsible for the same objects
under an image with different perturbations. In this way, Rall and Ridx under different models
using their respective results on clean images. Deformable-DETR uses a Sigmoid to predict the
category, similar to YOLOX. So we use a similar method to assign the background class confidence:
cbg = 1−max(Hcls(f(x))).
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Figure 9: Robustness analyses with Detection Confusion Matrix for standard and robust Deformable-
DETR models.

We select objects in COCO whose category is the same as the VOC dataset to calculate DCMs. From
DCM results in Fig. 9, the standard model not only mis-classifies a large number of foreground
objects into the background, but also a lot of confusion exists among foreground categories. Under
Rall, the model identifies numerous objects into the background, which indicates that the standard
Transformer-based detector is poor for localization robustness. The bounding boxes at the correct
positions has a large deviation, which makes it unable to match the correct true bounding boxes.

DCM of the robust detector on clean images shows that, although it achieve 34.8% mAP, the category
confusion is very serious. The robust detector also tends to mis-classify foreground objects as the
background under Acls and Aloc attacks, and even some objects are not recognized at all. From the
results of Rall and Ridx, even if the bounding boxes at the correct positions are given, regardless of
what the class scores are, the model still has a poor performance. This indicates that the robustness of
the localization module in the Transformer-based detector is as poor as the classification module, and
the conflict is also serious. The Transformer-based detector has worse robustness than CNN-based
detectors. Its detection robustness bottleneck is not only closely related with the classification but
also with the localization.

5 SUMMARY AND CONCLUSION

Existing methods present a detection robustness bottleneck: a significant performance decline on
clean images and a limited performance on adversarial images. In this paper, we aim to make an initial
attempt to comprehensively investigate the adversarial robustness of four seminal object detectors
with different architectures, including the one-stage, two-stage, anchor-free, and Transformer-based
detectors. With the proposed Detection Confusion Matrix and Classification-Ablative Validation,
there are mainly three conclusive analyses:

1) For adversarial attacks, standard and robust detectors tend to mis-classify foreground objects
into the background instead of confusion among foreground categories, which is different from the
adversarial robustness in image classification.

2) Robust object detectors with different architectures via adversarial training present the robustness
bottleneck. For CNN-based detectors, the main reason is that the classification module confuses the
foreground and the background so that detectors select the bounding boxes at the wrong positions.
The localization module itself has reliable localization robustness. In the Transformer-based detector,
its classification robustness and localization robustness are poor.

3) The localization module is highly robust, but determining whether the object belongs to the
foreground or the background in the localization branch cannot alleviate the conflict between them.
Adversarial attacks for detection models with various structures will seriously confuse the foreground
and the background.

To break the detection robustness bottleneck, one crucial research topic is how to alleviate the mis-
classification of the foreground objects into the background. Especially, the label-assignment routine
for object detection regards both bounding boxes that fully contain background and those that contain
partial foreground as background; only those that precisely contain objects are labeled as foreground.
Thus, fooling the detector just needs to successfully attack part of the foreground, which may create
the learning conflicts in adversarial training. Besides, among those detectors, Transformer-based
Deformable-DETR presents inferior robustness, which is worthy of further considerations. Our work
is expected to inspire more researches on the adversarial robustness for object detection in the future.
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