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ABSTRACT

Large language models (LLMs) demonstrate remarkable emergent abilities to per-
form in-context learning across various tasks, including time series forecasting.
This work investigates LLMs’ ability to estimate probability density functions
(PDFs) from data observed in-context; such density estimation (DE) is a funda-
mental task underlying many probabilistic modeling problems. We leverage the
Intensive Principal Component Analysis (InPCA) to visualize and analyze the
in-context learning dynamics of LLaMA-2 models. Our main finding is that these
LLMs all follow similar learning trajectories in a low-dimensional InPCA space,
which are distinct from those of traditional density estimation methods like his-
tograms and Gaussian kernel density estimation (KDE). We interpret the LLaMA
in-context DE process as a KDE with an adaptive kernel width and shape. This
custom kernel model captures a significant portion of LLaMA’s behavior despite
having only two parameters. We further speculate on why LLaMA’s kernel width
and shape differs from classical algorithms, providing insights into the mechanism
of in-context probabilistic reasoning in LLMs.

1 INTRODUCTION

Modern Large Language Models (LLMs) showcase surprising emergent abilities that they were not
explicitly trained for (Brown et al., 2020; Dong et al., 2024), such as learning from demonstrations
(Si et al., 2023) and analogies in natural language (Hu et al., 2023). Such capacity to extract patterns
directly from input text strings, without relying on additional training data, is generally referred to as
in-context learning (ICL).

Recently, LLMs have been shown to achieve competitive performance on various mathematical
problems, including time-series forecasting (Gruver et al., 2024), inferring physical rules from
dynamical systems (Kantamneni et al., 2024; Liu et al., 2024), and learning random languages
(Bigelow et al., 2024). To solve these tasks, an LLM must possess some capacity for probabilistic
modeling — the ability to infer conditional or unconditional probability distribution structures by
collecting relevant statistics from in-context examples (Akyürek et al., 2024).

We investigate LLMs’ ability to perform density estimation (DE), which involves estimating the
probability density function (PDF) from data observed in-context. Our core experiment is remarkably
straightforward. As illustrated in Figure 1, we prompt LLaMA-2 models (Touvron et al., 2023) with a
series of data points {Xi}ni=1 sampled independently and identically from an underlying distribution
p(x). We then observe that the LLaMA’s predicted PDF, p̂n(x), for the next data point gradually
converges to the ground truth as the context length n (the number of in-context data points) increases.1

To interpret the internal mechanisms (Olsson et al., 2022; Bietti et al., 2023; Dai et al., 2023; von
Oswald et al., 2023) underlying an LLM’s in-context DE process, we leverage Intensive Principal
Component Analysis (InPCA) (Teoh et al., 2020; Quinn et al., 2019; Mao et al., 2024) to embed the
estimated PDF at each context length {P̂n} in probability space (Figure 2). These visualizations
reveal that the in-context DE process of these models all follow similar low-dimensional paths, which

1Our prompts consist purely of comma-delimited multi-digit numbers, without any natural language instruc-
tions.
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are distinct from those of traditional density estimation methods like histograms and Gaussian kernel
density estimation (KDE).

By studying the geometric features of these in-context DE trajectories, we identify a strong bias
towards Gaussianity, which we argue is a telltale feature of kernel-based density estimation (Rosenblat,
1956; Wand & Jones, 1994; Silverman, 2018). This observation inspires us to model LLaMA in-
context DE process as a kernel density estimator with adaptive kernel. Despite having only two
parameters, kernel shape and width, this bespoke KDE model captures LLaMA’s in-context learning
trajectories with high precision.

= 
  

rescaled x 

!̂($) !($) 

rescaled x 

Figure 1: In-context density estimation experiment. LLaMA-2 is prompted with 200 numbers sampled
from p(x) (left in red) (Appendix A.9), and predicts the PDF p̂(x) (right in blue) for the next number.

Main contributions.
1. We introduce a framework for probing an LLM’s ability to estimate unconditioned PDFs

from in-context data.
2. We apply InPCA to analyze the low-dimensional geometric features of LLaMA-2’s in-

context density estimation trajectories.
3. We interpret LLaMA-2’s in-context DE algorithm as a form of adaptive kernel density

estimation, providing evidence for a dispersive induction head mechanism (Olsson et al.,
2022; Akyürek et al., 2024).

2 BACKGROUND

In-context learning of stochastic dynamical systems. Gruver et al. (2024) pioneered LLM-based
time-series prediction by prompting LLMs with time-series data serialized as comma-delimited,
multi-digit numbers. They observed competitive predictions for future states encoded as softmax
probabilities. Their data serialization scheme proved simple yet effective, allowing for easy log-
likelihood evaluation of predicted next numbers. It has since become a common prompting method
(Jin et al., 2024; Requeima et al., 2024; Zhang et al., 2024; Liu et al., 2024) for evaluating LLMs’
numerical abilities.

Building on this prompting technique, Liu et al. (2024) tested LLMs’ ability to in-context learn the
transition rules of various stochastic and chaotic dynamical systems. They introduced a recursive
algorithm, termed Hierarchy-PDF, to extract an LLM’s predicted PDF for the next data point based
on histories observed in-context: p̂(xt|X0, . . . , Xt−1). This allowed them to rigorously compare
the predicted PDF against the ground-truth transition probability p(xt|xt−1). Our work leverages
the data serialization technique proposed by Gruver et al. (2024) and extracts LLMs’ probabilistic
predictions using the Hierarchy-PDF algorithm introduced by Liu et al. (2024).

Density Estimation. DE (Izenman, 1991) is a long-standing statistical problem with both classical
(Silverman, 2018; Rosenblat, 1956; Scott, 1979; Lugosi & Nobel, 1996; Parzen, 1962) and modern
machine-learned based solutions (Papamakarios et al., 2021; Sohl-Dickstein et al., 2015). It underlies
the learning of more complex stochastic processes. For example, in the first-order Markov process
studied in (Liu et al., 2024; Bigelow et al., 2024; Zekri et al., 2024), the transition probability
p(xt|xt−1) has to be estimated in-context. This can be viewed as a conditional density estimation
problem, where for each possible value of xt−1, one needs to estimate the density of xt. In other
words, learning a Markov process involves performing multiple density estimations; one for each
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conditioning state. Our current focus on unconditional density estimation thus serves as a stepping
stone towards understanding these more complex learning tasks.
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Figure 2: Visualization pipeline of LLaMA’s in-context density estimation process. (a) Data
points are independently sampled from a ground truth distribution (Gaussian in this example), then
serialized as comma-delimited, two-digit numbers to prompt LLaMA-2 models. (b) Hierarchy-
PDF extracts LLaMA’s estimated density function p̂n at each context length n. (c) InPCA reveals
low-dimensional structures in density estimation trajectories, capturing 91% of pairwise Hellinger
distances in 2 dimensions. Visual guides: gray - uniform PDF representing maximal ignorance, deep
blue - ground truth PDF, and pink - 1D submanifold of centered Gaussians with variances ranging
from ∞ to 0. All three LLaMA-2 models exhibit similar DE trajectories, geometrically bounded
between the geodesic and the Gaussian sub-manifold.
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3 METHODOLOGY

Here, we explain how we prompt a LLaMA-2 model to perform density estimation over in-context
data, and how we extract and analyze its in-context learning trajectories with InPCA. Our methodology
consists of 5 steps, the first 3 of which are illustrated in Fig. 2.

1. Sampling and prompt generation. Starting from a ground-truth probability density function
p(x), we generate a series of independent samples from it X0, . . . , Xt−1. Consistent with Gruver
et al. (2024), we then serialize and tokenize this series into a text string consisting of a sequence of
comma-delimited, 2-digit numbers, forming a prompt that looks like “6 1 , 4 2 , 5 9 , . . . , 8 1 , 3 2 , 5
8 , ” (Figure 2 (a)).

2. Extracting estimated densities with Hierarchy-PDF. Upon prompting with such a text string, we
read out LLaMA’s softmax prediction over the next token, yielding probabilities for 10 tokens (0-9)2,
creating a coarse, 10-bin PDF spanning x ∈ (0, 100). We then read out the next token, which refines
one of the tens bins by further dividing it into 10 ones bins. This process is repeated recursively 10
times, until all bins are refined, yielding a predicted PDF for the next state p(xt), which is a discrete
PDF object consisting of 10N bins, where N is the number of digits used in representing each
number.3 We interpret the extracted PDF p̂(xt) as the LLM’s estimation of the ground-truth p(x).

3. Visualizing DE trajectories with InPCA. When there are very few in-context data, LLaMA’s
estimated p̂0(x) is close to a uniform distribution over the domain (0, 100), showing a state of neutral
ignorance, which is a reasonable Bayesian prior (Xie et al., 2022). However, as the number of in-
context data (n) increases, LLaMA gathers more information about the underlying distribution. As a
result, the estimated p̂n(x) gradually converges to the ground truth p(x) (Figure 2 (b)). The series of
estimated PDFs p̂0(x), p̂1(x), ..., p̂n(x) over context length n forms what we term the "in-context
DE trajectory". These trajectories, we argue, offer important clues about how LLaMA-2 performs
in-context learning.

However, with our 2-digit representation, each p̂(x) is a vector living in a 99-dimensional space4,
making direct analysis of the trajectory challenging. We therefore use InPCA to embed these PDF
objects into a low-dimensional Euclidean space (Figure 2 (c)), and then analyze their geometric
features.5

4. Comparing with classical DE algorithms. To interpret the low-dimensional geometric features
revealed by InPCA, we embed the DE trajectories of well-known algorithms — specifically, kernel
density estimator (KDE) and Bayesian histograms — in the same two-dimensional (2D) space.
Surprisingly, we find that the DE trajectories of LLaMA-2, KDE, and Bayesian histograms are
simultaneously embeddable in this same low-dimensional subspace. Moreover, the DE trajectories of
LLaMA-2 are geometrically bounded between those of KDE and Bayesian histograms.

5. Explaining LLaMA-2 with bespoke KDE. We observe that LLaMA’s in-context DE trajectories
consistently remain close to those of KDE, suggesting that LLaMA might be employing a kernel-like
algorithm, internally. To investigate this hypothesis, we optimize a KDE algorithm with fitted kernel
parameters (using only two parameters).

We now provide a detailed explanation of how to apply InPCA to analyze in-context DE trajectories.
We will also introduce two classical DE algorithms that serve as insightful comparisons.

3.1 INPCA VISUALIZATION

To visualize the density estimation (DE) trajectories of various algorithms in a lower-dimensional
space, we employ Intensive Principal Component Analysis (InPCA) (Quinn et al., 2019; Mao et al.,
2024; Teoh et al., 2020). Given a set of PDFs {pi}mi=1, InPCA aims to embed them as points {Pi}mi=1

in a lower-dimensional space Rd (d ≪ m), such that the Euclidean distances between embedded

2The logits of all other tokens are ignored.
3We use the Hierarchy-PDF algorithm (Liu et al., 2024), which performs this recursive search efficiently for

transformers.
4102 − 1, where the −1 dimension is from the normalization constraint that

∫
p(x)dx = 1.

5The idea of using InPCA to visualize the training dynamics of machine learning systems has been explored
in Quinn et al. (2019); Mao et al. (2024), which is further discussed in Appendix A.2
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points closely approximate the statistical distances between the corresponding PDFs:

∥Pi − Pj∥2 ≈ D(pi, pj), ∀i, j ∈ {1, . . . ,m}, (1)

where D(·, ·) is a chosen statistical distance measure between PDFs. In this work, we choose D(·, ·)
to be the Hellinger distance (Hellinger, 1909), defined as:

D2
Hel(pi, pj) =

1

2

∫ ∣∣∣pi(x)1/2 − pj(x)
1/2

∣∣∣2 dx. (2)

The Hellinger distance is ideal for visualizing our PDF trajectories for the following reasons6: 1) it
locally agrees with the KL-divergence (Liese & Vajda, 2006), a non-negative measure commonly
used in training modern machine learning systems, including LLMs (Touvron et al., 2023), and 2)
it is symmetric and satisfies the triangle inequality, making it a proper distance metric suitable for
geometric analysis (Quinn et al., 2019; Teoh et al., 2020).

Having chosen an appropriate distance measure, we proceed with InPCA involving three steps:

1. Calculate the Hellinger distance between each pair of PDFs, D2
Hel(pi, pj). This results in a

pairwise distance matrix D ∈ Rm×m, whose Dij entry equals D2
Hel(pi, pj).

2. Obtain a “centered” matrix W = − 1
2LDL, where Lij = δij − 1/m. This step is closely

related to multi-dimensional scaling (MDS) (Chen et al., 2007).
3. Perform the eigenvalue decomposition W = UΣUT . The diagonal entries in Σ, sorted in

descending order, represent the eigenvalues of W . The embedding coordinates for the PDFs
are given by UΣ1/2, where the columns of U are the corresponding eigenvectors.

The eigenvalues in Σ represent the amount of variance explained by each dimension in the embedded
probability space. The cumulative fraction of total variance captured with an increasing number of
dimensions is shown in Fig. 2 (c). In our main experiments, approximately 90% of the Hellinger
distance variance can be captured in just two dimensions, enabling faithful 2D visualization of the
DE trajectories.

3.2 CLASSICAL DE ALGORITHMS

Kernel density estimation. Kernel Density Estimation (KDE) is a non-parametric method for
estimating the probability density function of a random variable based on a finite data sample. Given
n samples X1, X2, . . . , Xn drawn from some distribution with an unknown density function f , the
kernel density estimator p̂h(x) is a function over the support of x defined as:

p̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (3)

where K is the kernel function and h > 0 is the bandwidth (smoothing parameter). The kernel
function K is typically chosen to be a symmetric probability density function, such as the Gaussian
kernel K(u) = 1√

2π
e−

1
2u

2

. We discuss other kernel shapes in Appendix A.7.2.

The optimal bandwidth schedule is a central object of study in classical KDE literature (Appendix A.7).
By analyzing the Asymptotic Mean Integrated Squared Error (AMISE) (Equation 15), researchers
have derived a widely accepted scaling for the optimal bandwidth.

h(n) = Cn− 1
5 (4)

where n is the sample size and C is a pre-coefficient (Equation 16). In the low-data regime, a larger
bandwidth provides more smoothing bias, which compensates for data sparsity. While the n−1/5

scaling is widely accepted, determining the pre-coefficient C is more challenging (Wand & Jones,
1994; Silverman, 2018). Unless otherwise noted, we use C = 1 for classical KDE in this paper7.

6See Appendices A.5 and A.6 for viusalizations using other distance measures such as L2 and the symmetrized
KL-divergence.

7In practice, various heuristics have been proposed to determine C, such as Silverman’s rule of thumb
(Silverman, 2018) (see Appendices A.7.1 and A.10).
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Bayesian histogram. The Bayesian histogram (Lugosi & Nobel, 1996) is another non-parametric
method for density estimation, and can be formulated as follows:

p̂n(x) =
ni + α

n+ αM
, (5)

where p̂n(x) is the estimated probability density for bin i containing x, ni is the number of observed
data points in bin i, n is the total number of observed data points, M is the total number of bins.8,
and α is the prior count for each bin. We set α = 1, effectively populating each bin with one
"hallucinated" data point prior to observing any data (Jeffreys, 1946). This choice ensures that the
histogram algorithm starts from a state of maximal ignorance, consistent with LLaMA’s in-context
DE in the low data regime9.

4 EXPERIMENTS AND ANALYSIS

We visualize and analyze the learning trajectories of LLaMA on two types of target (ground truth)
distributions: uniform and Gaussian. To provide context and facilitate interpretation of the 2D space,
we embed the following additional reference points and trajectories:

• Ignorance: A point representing maximum entropy (uniform distribution over the entire
support).

• Truth: A point representing the ground truth distribution.
• Geodesic: The shortest trajectory connecting Ignorance and Truth points (Mao et al., 2024).
• Gaussian submanifold: A 1D manifold of centered Gaussians with variances ranging from
∞ to 0.

Our experiments focus on LLaMA-2 13b, unless otherwise noted. While LLaMA-2 has a context
window of 4096 tokens (equivalent to ∼1365 comma-delimited, 2-digit data points), we limit our
analysis to a context length of n = 200. This limitation is based on our observation that LLaMA’s
DE accuracy typically plateaus beyond this point.

4.1 GAUSSIAN TARGET

Figure 3: In-context density estimation trajectories for Gaussian targets. Top row: 2D InPCA
embeddings of DE trajectories for Gaussian targets of decreasing width (left to right). Bottom row:
Corresponding ground truth distributions. These 2D embeddings capture 92% of pairwise Hellinger
distances between probability distributions.

We begin our analysis with Gaussian target distributions of varying widths.

Wide Gaussian target. A wide Gaussian distribution serves as our simplest target, as it is close in
Hellinger distance to the uniform distribution (total ignorance). In this scenario, both LLaMA and
Gaussian KDE successfully approximate the target PDF within 200 data points.

8M = 100 since our most refined estimation from Hierarchy-PDF consists of 100 one-digit bins
9A curious feature which we foreshadowed in Section 3 and further discuss throughout Section 4
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Narrow Gaussian target. However, as the Gaussian target narrows, Gaussian KDE lags behind,
while LLaMA maintains its ability to closely approximate the target distribution.

In all three cases, the Bayesian histogram, by design, begins exactly at maximal ignorance, and then
follows the geodesic trajectory. Despite following this geometrically shortest path, the Bayesian
histogram is the slowest to converge to the target distribution; likely due to the strong influence of its
uniform prior.

Gaussian KDE, on the other hand, starts closer to the target, thanks to its unfair advantage of having
a Gaussian-shape kernel. Interestingly, Gaussian KDE consistently lingers on the Gaussian sub-
manifold throughout the DE process. This behavior of lingering on the Gaussian sub-manifold is
not unique to Gaussian kernels; as demonstrated in Figure 16, KDEs with alternative kernel shapes
(e.g., exponential and parabolic) also exhibit a strong propensity for the Gaussian submanifold. One
potential explanation for this phenomenon lies in the nature of KDE itself. KDE can be expressed as
a convolution of two distributions: the empirical data distribution and the kernel shape, as

p̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
= (Fn ∗Kh)(x), (6)

where Fn is the empirical distribution and Kh is the scaled kernel. This convolution operation tends
to produce Gaussian-like distributions due to the central limit theorem (Fischer, 2011). Consequently,
a DE trajectory near the Gaussian manifold may indicate a kernel-style density estimation
algorithm.

4.2 UNIFORM TARGET

The Gaussian distribution easily arises in data with additive noise (Fischer, 2011) and therefore
likely dominates the training data (Touvron et al., 2023). What’s more, the Gaussian distribution is
everywhere smooth, which makes it very easy to estimate from a function approximation point of
view (DeVore, 1993). Uniform distributions, on the other hand, feature non-differentiable boundaries;
difficult to represent by both parametric (DeVore, 1993) and kernel-based (Wand & Jones, 1994,
Chapter 2.9) methods. For these reasons, we now investigate the in-context DE trajectory with
uniform targets.

Figure 4: In-context density estimation trajectories for uniform distribution targets. Top row: 2D
InPCA embeddings of DE trajectories for uniform targets of decreasing width (left to right). Bottom
row: Corresponding ground truth distributions. These 2D embeddings capture 89% of pairwise
Hellinger distances between probability distributions.

Wide uniform target. For a wide uniform target, both LLaMA and Gaussian KDE initially move
rapidly towards the target distribution. However, they then linger at the point on the Gaussian sub-
manifold nearest to the uniform target. As more data streams in, they slowly depart from the sub-
manifold and converge to the target distribution.

Narrow uniform target. As the uniform target narrows, Gaussian KDE’s performance deteriorates,
while LLaMA’s in-context DE successfully reaches the target. Notably, LLaMA exhibits less bias
towards the Gaussian sub-manifold, as compared with the narrow Gaussian target case.

7
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In the low data regime, Gaussian KDE and Bayesian histogram follow the same trajectories that they
previously followed for the narrow Gaussian target. However, LLaMA already appears to differentiate
this target by taking a path further from the Gaussian sub-manifold and closer to the geodesic. This
behavior suggests that LLaMA’s in-context DE algorithm is more flexible and adaptive than
classical KDE with pre-determined width schedule and shape.

4.3 THE KERNEL INTERPRETATION OF IN-CONTEXT DENSITY ESTIMATION

Based on our observations in Sections 4.1 and 4.2, we propose a kernel-based interpretation of
LLaMA’s in-context density estimation algorithm. The bias towards Gaussian submanifolds in
LLaMA’s trajectories suggests a KDE-like approach. To test this hypothesis, we develop a bespoke
KDE model with adaptive kernel shape and bandwidth, optimized to emulate LLaMA’s learning
trajectory.

4.3.1 BESPOKE KDE MODEL

We construct our bespoke KDE model in two steps:

Step 1: Parameterize kernel shape

We introduce a flexible kernel function Ks(x) parameterized by a shape parameter s:

Ks(x) =
b(s)e−|b(s)x|s

Z(s)
(7)

where Z(s) = 2Γ(1s + 1) normalizes the kernel to integrate to 1, and b(s) =

√
Γ( 3

s+1)

3Γ( 1
s+1)

scales it to

maintain unit variance. This parameterization allows us to interpolate between common kernel shapes
such as exponential (s = 1), Gaussian (s = 2), and tophat (s → ∞), as visualized in Figure 5.

Figure 5: Bespoke kernel interpolates various common kernel shapes.

We visualize the DE trajectories with these three common kernels (s = 1, 2, and ∞) in Figure 16
of Appendix A.7.2. As the shape parameter (s) decreases, the DE trajectories gradually shift from
outside the Gaussian submanifold to inside, moving closer to LLaMA’s trajectory. This trend suggests
that our parameterization (Equation 7) may be able to capture LLaMA’s behavior by allowing s to
take values below 1, extending beyond the range of common kernel shapes.

We augment the standard KDE formula with kernel shape, resulting in two hyperparameters: h and s.

p̂h,s(x) =
1

nh

n∑
i=1

Ks

(
x−Xi

h

)
(8)

Step 2: Optimize kernel bandwidth (h) and shape (s)

For a given DE trajectory p̂1(x), . . . , p̂n(x), we optimize our bespoke KDE to minimize the Hellinger
distance at each context length i:

min
si∈(0,∞),hi∈(0,∞)

DHel(p̂i(x)∥p̂hi,si(x)) (9)

yielding the "bespoke KDE" bandwidth schedule {hi}ni=1 and shape schedule {si}ni=1, which together
prescribe a sequence of fitted kernels of changing widths and shapes. We visualize such sequences of
fitted kernels, and compare them against the Gaussian kernel with standard n−1/5 width schedule
in Appendix A.8 and A.9. We implement this optimization numerically using SciPy, and estimate
parameter uncertainties from the inverse Hessian of the loss function (Hellinger distance) at the
optimum. This provides error bars for our fitted kernel shape and bandwidth parameters (Figure 6).
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Figure 6: Optimized kernel shape (s) and bandwidth (h)
schedules for the bespoke KDE model, fitted to LLaMA-2
13b’s DE trajectory on a narrow Gaussian target.

Figure 7: Bespoke KDE trajectories
(◦) fitted to LLaMA-2 13b’s DE tra-
jectory (△) on a narrow Gaussian tar-
get.

4.3.2 BESPOKE KDE ANALYSIS

Figure 6 presents the optimized kernel shape and bandwidth schedules for our bespoke KDE model,
fitted to LLaMA-2 13b’s in-context DE trajectory for the narrow Gaussian target (Section 4.1). Two
key observations emerge:

1. The fitted kernel width decays significantly faster than the standard KDE bandwidth schedule
(n− 1

5 ). This rapid decay explains the much longer trajectory of LLaMA’s in-context DE within the
inPCA embedding, as compared to standard Gaussian KDE (Figure 3).

2. Unlike fixed-shape KDE methods (e.g., Gaussian KDE with s = 2), LLaMA seems to implicitly
employ an adaptive kernel. The shape parameter s evolves from ∼ 0.1 to ∼ 1, with increasing
uncertainty for n ≳ 20.

Figure 7 compares LLaMA-2 13b’s in-context DE trajectory with its bespoke KDE counterpart,
demonstrating the close fit achieved by our model.

Significance of Bespoke KDE The existence of a bespoke KDE that closely imitates LLaMA’s in-
context DE processs is significant and non-trivial. Not all DE processes can be faithfully represented
by KDE methods; for instance, the Bayesian histogram, despite its superficial similarity to a fixed-
width tophat kernel KDE, resists accurate modeling as a bespoke KDE process (Appendix A.3).

While our initial experiments focused on regular distributions like Gaussian and uniform, for better
generality we extended our experiments to randomly generated PDFs (Appendix A.9). Notably,
LLaMA-13b’s DE performance on these irregular distributions can still be effectively described using
our bespoke KDE process (Appendix A.8 and A.9). Although the DE trajectories of these random
PDFs lack low-dimensional embeddings, and thus provide less geometric insight, they nonetheless
corroborate our findings from the cases with more regular distributions.

This consistency across diverse target PDF types strengthens our core hypothesis about LLaMA’s
underlying DE mechanism. Specifically, we posit that LLaMA’s in-context DE algorithm shares
fundamental characteristics with kernel density estimation, albeit with adaptive kernel shape and
bandwidth schedules that distinguish it from classical KDE approaches.

5 CONCLUSIONS

Inspired by emergent, in-context abilities of LLMs to continue stochastic time series, the current
work explores the efficacy of foundation models operating as kernel density estimators; a crucial
element within such time series forecasting. Through an application of InPCA, we determine that
such in-context kernel density estimation proceeds within a common, low dimensional probability
space; along meaningful trajectories that allow for a comparison between histogram, Gaussian kernel
density estimation, and LLM in-context kernel density estimation. Through the lens of InPCA, it
becomes clear that a profitable characterization of this in-context learning can be made in terms of a

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

two-parameter, adaptive kernel density estimation framework; hinting at mechanistic basis (Appendix
A.1) that points in the direction of future research.

Future direction: towards dispersive induction heads. Recent research has identified induction
heads as fundamental circuits underlying many in-context learning behaviors in stochastic systems
with discrete states (Olsson et al., 2022; Bigelow et al., 2024). These emergent circuits increase the
predicted probability of token combinations that are observed in-context. However, such discrete
mechanisms are insufficient to explain the in-context learning of continuous stochastic systems, such
as the density estimation task we’ve studied. To address this gap, our Bespoke KDE analysis in Section
4.3.2 reveals that LLaMA might possess a kernel-like induction mechanism, which we term dispersive
induction head. This is an extension to the induction head concept, and operates as follows:

• Unlike standard induction heads (Akyürek et al., 2024), a dispersive induction head increases
the predicted probability of not just exact matches, but also of similar tokens or words.

• The "similarity" is determined by an adaptive kernel, analogous to our bespoke KDE model.

• The influence of each observation on dissimilar tokens decays over context length, mirroring
the decreasing bandwidth in our KDE model.

This concept of dispersive induction heads could potentially bridge the gap between discrete (Akyürek
et al., 2024) and continuous (Gruver et al., 2024; Liu et al., 2024) in-context learning mechanisms in
transformers (Dong et al., 2024).

ACKNOWLEDGEMENTS

This work was supported by the SciAI Center, and funded by the Office of Naval Research (ONR),
under Grant Numbers N00014-23-1-2729 and N00014-23-1-2716.

REFERENCES

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models, 2023. URL https://
arxiv.org/abs/2211.15661.

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Architec-
tures and algorithms, 2024. URL https://arxiv.org/abs/2401.12973.

Shun-ichi Amari. Information geometry and its applications. Springer, 2016.

Anil Bhattacharyya. On a measure of divergence between two statistical populations defined by their
probability distribution. Bulletin of the Calcutta Mathematical Society, 35:99–110, 1943.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint, 2023. URL https://arxiv.org/abs/2306.00802.

Eric J. Bigelow, Ekdeep Singh Lubana, Robert P. Dick, Hidenori Tanaka, and Tomer D. Ullman. In-
context learning dynamics with random binary sequences, 2024. URL https://arxiv.org/
abs/2310.17639.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Chun-houh Chen, Wolfgang Karl Härdle, and Antony Unwin. Handbook of data visualization.
Springer Science & Business Media, 2007.

10

https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2401.12973
https://arxiv.org/abs/2306.00802
https://arxiv.org/abs/2310.17639
https://arxiv.org/abs/2310.17639
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers, 2023.
URL https://arxiv.org/abs/2212.10559.

RA DeVore. Constructive Approximation. Springer-Verlag, 1993.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context
learning, 2024. URL https://arxiv.org/abs/2301.00234.

Albert Einstein. On the electrodynamics of moving bodies. 1905.

Hans Fischer. A history of the central limit theorem: from classical to modern probability theory,
volume 4. Springer, 2011.

GemmaTeam, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex
Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson,
Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy,
Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan,
George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian
Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau,
Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine
Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej
Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem, Oscar
Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni, Ramona
Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith,
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De,
Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed,
Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff
Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral,
Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and
Kathleen Kenealy. Gemma: Open models based on gemini research and technology, 2024. URL
https://arxiv.org/abs/2403.08295.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are zero-
shot time series forecasters, 2024. URL https://arxiv.org/abs/2310.07820.

Ernst Hellinger. Neue begründung der theorie quadratischer formen von unendlichvielen veränder-
lichen. Journal für die reine und angewandte Mathematik, 1909(136):210–271, 1909.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Xiaoyang Hu, Shane Storks, Richard L. Lewis, and Joyce Chai. In-context analogical reasoning with
pre-trained language models, 2023. URL https://arxiv.org/abs/2305.17626.

Alan Julian Izenman. Review papers: Recent developments in nonparametric density estimation.
Journal of the american statistical association, 86(413):205–224, 1991.

Harold Jeffreys. An invariant form for the prior probability in estimation problems. Proceedings of the
Royal Society of London. Series A. Mathematical and Physical Sciences, 186(1007):453–461, 1946.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

11

https://arxiv.org/abs/2212.10559
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2310.07820
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2305.17626
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-llm: Time series forecasting
by reprogramming large language models, 2024. URL https://arxiv.org/abs/2310.
01728.

Subhash Kantamneni, Ziming Liu, and Max Tegmark. How do transformers "do" physics? investigat-
ing the simple harmonic oscillator, 2024. URL https://arxiv.org/abs/2405.17209.

Friedrich Liese and Igor Vajda. On divergences and informations in statistics and information theory.
IEEE Transactions on Information Theory, 52(10):4394–4412, 2006.

Toni J. B. Liu, Nicolas Boullé, Raphaël Sarfati, and Christopher J. Earls. Llms learn governing
principles of dynamical systems, revealing an in-context neural scaling law, 2024. URL https:
//arxiv.org/abs/2402.00795.

Gábor Lugosi and Andrew Nobel. Consistency of data-driven histogram methods for density
estimation and classification. The Annals of Statistics, 24(2):687–706, 1996.

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum,
James P. Sethna, and Pratik Chaudhari. The training process of many deep networks explores
the same low-dimensional manifold. Proceedings of the National Academy of Sciences, 121(12),
March 2024. ISSN 1091-6490. doi: 10.1073/pnas.2310002121. URL http://dx.doi.org/
10.1073/pnas.2310002121.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference, 2021. URL
https://arxiv.org/abs/1912.02762.

Emanuel Parzen. On estimation of a probability density function and mode. The annals of mathemat-
ical statistics, 33(3):1065–1076, 1962.

Katherine N Quinn, Colin B Clement, Francesco De Bernardis, Michael D Niemack, and James P
Sethna. Visualizing probabilistic models and data with intensive principal component analysis.
Proceedings of the National Academy of Sciences, 116(28):13762–13767, 2019.

Alfréd Rényi. On measures of entropy and information. In Proceedings of the fourth Berkeley
symposium on mathematical statistics and probability, volume 1: contributions to the theory of
statistics, volume 4, pp. 547–562. University of California Press, 1961.

James Requeima, John Bronskill, Dami Choi, Richard E Turner, and David Duvenaud. Llm pro-
cesses: Numerical predictive distributions conditioned on natural language. arXiv preprint
arXiv:2405.12856, 2024.

M Rosenblat. Remarks on some nonparametric estimates of a density function. Ann. Math. Stat, 27:
832–837, 1956.

David W Scott. On optimal and data-based histograms. Biometrika, 66(3):605–610, 1979.

Matthias Seeger. Gaussian processes for machine learning. International journal of neural systems,
14(02):69–106, 2004.

Chenglei Si, Dan Friedman, Nitish Joshi, Shi Feng, Danqi Chen, and He He. Measuring inductive
biases of in-context learning with underspecified demonstrations, 2023. URL https://arxiv.
org/abs/2305.13299.

Bernard W Silverman. Density estimation for statistics and data analysis. Routledge, 2018.

12

https://arxiv.org/abs/2310.01728
https://arxiv.org/abs/2310.01728
https://arxiv.org/abs/2405.17209
https://arxiv.org/abs/2402.00795
https://arxiv.org/abs/2402.00795
http://dx.doi.org/10.1073/pnas.2310002121
http://dx.doi.org/10.1073/pnas.2310002121
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/1912.02762
https://arxiv.org/abs/2305.13299
https://arxiv.org/abs/2305.13299


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics, 2015. URL https://arxiv.org/abs/
1503.03585.

Han Kheng Teoh, Katherine N. Quinn, Jaron Kent-Dobias, Colin B. Clement, Qingyang Xu, and
James P. Sethna. Visualizing probabilistic models in minkowski space with intensive sym-
metrized kullback-leibler embedding. Physical Review Research, 2(3), August 2020. ISSN
2643-1564. doi: 10.1103/physrevresearch.2.033221. URL http://dx.doi.org/10.1103/
PhysRevResearch.2.033221.

MTCAJ Thomas and A Thomas Joy. Elements of information theory. Wiley-Interscience, 2006.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent,
2023. URL https://arxiv.org/abs/2212.07677.

Matt P Wand and M Chris Jones. Kernel smoothing. CRC press, 1994.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-
context learning as implicit bayesian inference, 2022. URL https://arxiv.org/abs/
2111.02080.

Oussama Zekri, Abdelhakim Benechehab, and Ievgen Redko. Can llms predict the convergence of
stochastic gradient descent?, 2024. URL https://arxiv.org/abs/2408.01736.

Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K. Gupta, and Jingbo Shang. Large language models
for time series: A survey, 2024. URL https://arxiv.org/abs/2402.01801.

13

https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
http://dx.doi.org/10.1103/PhysRevResearch.2.033221
http://dx.doi.org/10.1103/PhysRevResearch.2.033221
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2212.07677
https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2408.01736
https://arxiv.org/abs/2402.01801


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 MECHANISTIC INTERPRETATIONS OF IN-CONTEXT LEARNING.

In recent years a paradigm has emerged for LLMs’ in-context learning abilities: the simulation and
application of smaller, classical models, with well-understood algorithmic features, in response to
prompt information. As an example, Olsson et al. (2022) identified “induction heads" in pre-trained
LLMs, which simulate 1-gram models for language learning. Then, Akyürek et al. (2024) extended
this analysis to “n-gram heads" for computing distributions of next tokens conditioned on n previous
tokens. It has also been observed in the literature that transformers can perform in-context regression
via gradient descent (von Oswald et al., 2023; Dai et al., 2023). These works proposed to understand
induction heads as a specific case of in-context gradient descent. Akyürek et al. (2023) showed that
trained in-context learners closely match predictions of gradient-based optimization algorithms. More
recently, Kantamneni et al. (2024) identified mechanisms in transformers that implicitly implement
matrix exponential methods for solving linear ordinary differential equations (ODEs).

Our approach differs from these aforementioned studies for the following reason: we do not train
LLMs on synthetic data designed to induce specific in-context learning abilities. Instead, we
investigate the emergent density estimation capabilities of pre-trained foundation models (the LLaMA-
2 suite) without any fine-tuning. This approach aligns more closely with recent works (Liu et al.,
2024; Gruver et al., 2024) that focus on the inherent mathematical abilities of foundations models,
rather than LLMs that are trained to induce certain behaviors.

A.2 LOW-DIMENSIONAL STRUCTURES IN LEARNING DYNAMICS.

Despite the success of modern neural networks at learning patterns in high-dimensional data, the
learning dynamics of these complex neural networks are often shown to be constrained to low-
dimensional, potentially non-linear subspaces. Hu et al. (2021) demonstrated that the fine-tuning
dynamics of LLMs such as GPT and RoBERTa can be well-captured within extremely low-rank,
weighted spaces. More recently, Mao et al. (2024) showed that, during training, neural networks
spanning a wide range of architectures and sizes trace out similar low-dimensional trajectories in the
space of probability distributions. Their work focuses on learning trajectories pk=0, ..., pk=t, where
k indexes the training epoch, and pk is a high-dimensional PDF describing the model’s probabilistic
classification of input data. Key to their observations is a technique termed Intensive Principal
Component Analysis (InPCA), a visualization tool (Quinn et al., 2019) that embeds PDFs as points
in low dimensional spaces, such that the geometric (Euclidean or Minkowski) distances between
embedded points reflect the statistical distances - e.g. the Hellinger or Bhattacharyya distance -
between the corresponding PDFs.

Inspired by Mao et al. (2024) and Quinn et al. (2019), we extend this line of inquiry to investigate
whether the in-context learning dynamics of LLMs also follow low-dimensional trajectories in
probability space. and p̂k is a PDF of dimension 10N , where N is the number of digits used in the
multi-digit representation (see 3). Each p̂k describes the model’s estimation of the underlying data
distribution at a certain context length. Our findings show that in-context density estimation traces
low-dimensional paths.

A.3 BESPOKE KDE CANNOT IMITATE ALL DE PROCESSES

This section examines the ability of Bespoke KDE to imitate various density estimation (DE)
processes, including LLaMA-2 models (7b, 13b, 70b), Bayesian histogram, and standard Gaussian
KDE.

A.3.1 INPCA VISUALIZATION OF ORIGINAL DE TRAJECTORIES VS. BESPOKE KDE
IMITATIONS

Figure 8 illustrates the DE trajectories of various models alongside their bespoke KDE counterparts.
We observe that: 1. Bespoke KDE successfully imitates the LLaMA suite with high precision. 2. It
trivially replicates the Gaussian KDE trajectory, as expected. 3. However, it struggles to accurately
capture the Bayesian histogram’s trajectory. To further investigate these observations, we analyze the
fitted kernel parameters for Gaussian KDE and Bayesian histogram:
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Figure 8: Comparison of original DE trajectories (△) and their bespoke KDE imitations (◦) for
LLaMA-2 models (7b, 13b, 70b), Gaussian KDE, and Bayesian histogram. The 2D embeddings
capture 97% of pairwise Hellinger distances between probability distributions.

Figure 9: Bespoke KDE parameters fitted to standard
Gaussian-kernel KDE. The model accurately recovers
the Gaussian kernel shape (s = 2) and bandwidth
schedule (h = n− 1

5 ).

Figure 10: Bespoke KDE parameters fitted to
Bayesian histogram. The constant fitted kernel width
likely reflects the fixed bin width, while the near-zero
shape parameter indicates a highly peaked distribution.
High uncertainties suggest a fundamental mismatch
between the models.

Figure 9 demonstrates that bespoke KDE accurately recovers the parameters of standard Gaussian
KDE. In contrast, Figure 10 reveals significant challenges in fitting Bespoke KDE to the Bayesian
histogram: 1. The fitted kernel width remains constant, likely reflecting the fixed bin width of
the histogram. 2. The near-zero shape parameter suggests a highly peaked distribution. 3. High
uncertainties in both parameters indicate a fundamental mismatch between Histogram and KDE.

These results highlight that while Bespoke KDE can effectively model certain DE processes (e.g.,
LLaMA models and Gaussian KDE), it cannot capture fundamentally different approaches like the
Bayesian histogram.

A.3.2 META-INPCA EMBEDDING OF TRAJECTORIES

To quantify the similarity between the bespoke KDE model and various DE processes, we introduce
a meta-distance measure for trajectories and apply InPCA at a higher level of abstraction.
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Figure 11: Meta-InPCA embedding of DE trajectories (△) and their bespoke KDE imitations (◦).
This 2D embedding captures 94% of pairwise meta-distances between trajectories.

Trajectory distance metric. We define a meta-distance between two trajectories {pi}ni=1 and {qi}ni=1
as the sum of Hellinger distances between corresponding points at each context length:

Dtraj({pi}, {qi}) =
n∑

i=1

DHel(pi, qi) (10)

where DHel is the Hellinger distance defined in Equation 2.

Meta-InPCA procedure. Given a set of trajectories traj1, ..., trajl, we: 1. Compute the pairwise
trajectory distance matrix D ∈ Rl×l using Equation 10. 2. Apply the InPCA procedure described in
Section 3.1 to embed these trajectories in a lower-dimensional space.

Unlike previous InPCA visualizations where each point represented a single PDF, in this meta-
embedding, each point represents an entire DE trajectory.

Observations. Figure 11 reveals several key insights: 1. The Bayesian histogram and its bespoke
KDE imitation are far apart, confirming the model’s inability to capture this approach. 2. Gaussian
KDE almost exactly overlaps with its bespoke KDE imitation, as expected. 3. LLaMA-2 models (7b,
13b, 70b) are relatively close to their bespoke KDE counterparts but do not overlap exactly. These
observations suggest that while the 2-parameter bespoke KDE model captures much of LLaMA-2’s
in-context DE behavior, there are still certain nuances in LLaMA-2’s algorithm that it doesn’t fully
encapsulate.
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A.4 IN-CONTEXT DE TRAJECTORIES OF LLAMA, GEMMA, AND MISTRAL

This section documents additional experiments on three other recently released LLMs: Gemma-2b
and -7b (GemmaTeam et al., 2024) and Mistral-7b-v0.3 (Jiang et al., 2023). These models share
similar tokenizers as LLaMA-2, and work well with the Hierarchy-PDF algorithm Liu et al. (2024).

Figure 12: Comparison of in-context density estimation trajectories for LLaMA, Gemma, and Mistral.
Top row: 2D InPCA embeddings of DE trajectories for narrow and wide Gaussian targets. Bottom
row: Corresponding ground truth distributions. These 2D embeddings capture 91% of pairwise
Hellinger distances between probability distributions.

As shown in Figure 12, the in-context DE trajectories of LLaMA-2, Mistral v0.3, and Gemma, are
strikingly similar, despite the fact that they were built and trained entirely independently by different
teams.

Figure 13: Meta-InPCA embedding of DE trajectories (△) and their bespoke KDE imitations (◦).
This 2D embedding captures 91% of pairwise meta-distances between trajectories.

To quantify the similarity of these models’ learning trajectories, we use the meta-InPCA embedding
introduced in Appendix A.3.2 to visualize the pairwise trajectory distance from these models. As
shown in Figure 13, Gemma and Mistral are well-approximated by bespoke KDE counterparts. In
fact, all kernel-like methods are quite similar to each other, forming a cluster on the right corner of
the embedding, with Bayesian histogram isolated on the left, similar to Figure 11.

Interestingly, Gemma-2b seems more similar to Mistral-7b-v0.3 and LlaMA-2 70b, than to Gemma-
7b. Models from the same suite are not always the most alike in terms of in-context DE trajectories.

To summarize, the kernel-like density estimation process observed in this work is not limited to
any specific suite of LLMs. We therefore speculate that LLMs might spontaneously converge to a
universal in-context DE algorithm.
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A.5 APPENDIX: COMPARISON OF INPCA AND STANDARD PCA 
 
 
 
 
 a 

v 

b 

InPCA embeddings using Hellinger distance  

PCA embeddings using L2 distance  

a 

Figure 14: Comparison of InPCA and PCA visualizations for density estimation trajectories of
LLaMA-2 models. (a) 2D InPCA embedding preserves 91% of pairwise Hellinger distances, revealing
LLaMA’s DE trajectories geometrically bounded between the geodesic and Gaussian submanifold.
(b) In contrast, 2D PCA preserves only 83% of pairwise L2 distances, displaying erratic oscillations
in LLaMA’s DE trajectories without clear geometric relationships.
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A.6 INPCA EMBEDDINGS WITH SYMMETRIZED KL-DIVERGENCE AND BHATTACHARYYA
DISTANCE

 
 
 
 
 
 

b 

InPCA embeddings using Bhattacharyya distance 
 distance  

InPCA embeddings using symmetrized KL-divergence 

a 

Figure 15: InPCA embeddings of LLaMA-2 in-context DE trajectories using symmetrized KL-
divergence and Bhattacharyya distance. The target function is narrow Gaussian distribution as
shown in Figure 2. Red dots denote negative eigenvalue, and red axis denotes imaginary principal
component. (a) 2D InPCA embedding preserves 90% of pairwise Bhattacharyya distances. (b) 3D
InPCA embedding preserves 87% of pairwise symmetrized KL-divergence.

Bhattacharyya distances (Quinn et al., 2019) symmetrized KL-divergence (Teoh et al., 2020) are two
other statistical divergences commonly used for InPCA embeddings. They are defined as:
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D2
BT(p, q) = − ln

(∫ √
p(x)q(x) dx

)
(11)

D2
sKL(p, q) =

∫
p(x) ln

p(x)

q(x)
dx+

∫
q(x) ln

q(x)

p(x)
dx (12)

Figure 15 shows the InPCA embeddings resulting from these two distances. Both of these distances
locally agrees with the Hellinger distance as well as the KL-divergence (Teoh et al., 2020). In fact,
the Bhattacharyya distance has a deep physical connection to Hellinger distance, which was discussed
in Quinn et al. (2019).

However, unlike the Hellinger distance used in this work, both Bhattacharyya distance and sym-
metrized KL-divergence violate the triangle in-equality (Quinn et al., 2019), and are therefore not
valid distance metrics. Consequently, the eigenvalue decomposition step (Section 3.1) might result
in negative eigenvalues, with the corresponding coordinates being imaginary. A linear space with
a mixture of real and imaginary axes is a generalization of the Minkowski space, which is useful
in special relativity (Einstein, 1905), where events are represented as points in spacetime with one
timelike (imaginary) dimension, and up to three spacelike (real) dimensions. The Minkowski metric
between two points p = (x, t) and q = (x′, t′) is given by:

d2(p, q) = (x− x′)2 − (t− t′)2 (13)

In our visualization context, the imaginary axis (colored red in Figure 15) plays a role similar to the
time dimension in Minkowski space. The further separated two points are along the imaginary
axis, the closer they are in real distance.

As shown in Panel (a), visualization using the Bhattacharyya distance is quantitatively the same as its
Hellinger counterpart, shown in Figure 2. Visualization with symmetrized KL-divergence, shown in
the top figure in Panel (b), is also qualitatively similar, except that here LLaMA’s estimated density
no longer seems to converge to the ground truth (blue dot). However, this is a false impression. The
bottom figure in Panel (b) reveals a third principal component which is imaginary. The end point
of LLaMA’s estimated density is separated from the ground truth (blue dot) along both the real and
imaginary axes, by about the same distance. The positive and negative distances from spacelike
and timelike seprations roughly cancel out, which means the statistical distance between LLaMA’s
estimated density and the ground truth is actually small.

Negative eigenvalues from these metrics might be physically meaningful in certain circumstance,
such as shown in Teoh et al. (2020); Quinn et al. (2019); Mao et al. (2024). However, for the purpose
of visualizing in-context DE trajectories, they complicate the geometric analysis without adding
much insight.
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A.7 ADDITIONAL NOTES ON KERNEL DENSITY ESTIMATION

This section provides more background on classical results regarding optimal bandwidth schedules
{hi}ni=1 and kernel shapes. These results are derived by minimizing the Mean Integrated Squared
Error (MISE) (Wand & Jones, 1994, Chapter 2.3):

MISE(p|p̂h) = Ex∼p

[∫
(p̂h(x)− p(x))2 dx

]
, (14)

where p̂h is the kernel density estimate with bandwidth h, and p is the true density.

A.7.1 OPTIMAL BANDWIDTH

While MISE (Equation 14) provides a reasonable measure of estimation error, it is often analytically
intractable. To overcome this limitation, researchers developed the Asymptotic Mean Integrated
Squared Error (AMISE) (Wand & Jones, 1994, Chapter 2.4), an approximation of MISE that becomes
increasingly accurate as the sample size grows large:

AMISE(h) =
1

nh
R(K) +

1

4
h4µ2(K)2R(p′′), (15)

where R(f) =
∫
f(x)2 dx, µ2(K) =

∫
x2K(x) dx, and p′′ is the second derivative of the true

density.

AMISE provides a more manageable form for mathematical analysis. By minimizing AMISE with
respect to h, we can derive the optimal bandwidth:

hopt =

(
R(K)

nµ2(K)2R(p′′)

)1/5

= Cn− 1
5 . (16)

It’s important to note that this expression involves many unknown quantities related to the true density
p, such as the average curvature R(p′′), which is not known a priori. The key insight from this
derivation is therefore the n−1/5 scaling of the optimal bandwidth. In practice, there are many methods
for estimating the pre-coefficient C from data, such as Silverman’s rule of thumb (Silverman, 2018):

h = 0.9min(σ̂,
IQR
1.34

)n− 1
5 , (17)

where σ̂ is the sample standard deviation, IQR is the interquartile range, and n is the sample size.
This rule is derived heuristically based on minimizing the AMISE (Equation 15). The n−1/5 scaling
reveals a fundamental trade-off in kernel density estimation: as more data becomes available, we can
afford to use a narrower kernel, but the rate at which we can narrow the kernel is relatively slow.

A.7.2 OPTIMAL KERNEL SHAPE

The kernel function K can take various forms. Common choices include:

• Gaussian kernel: K(u) = 1√
2π

e−
1
2u

2

• Exponential kernel: K(u) = 1
2e

−|u|

• Epanechnikov kernel: K(u) = 3
4 (1− u2) for |u| ≤ 1, 0 otherwise

• Tophat kernel: K(u) =

{
1
2 for |u| ≤ 1

0 otherwise

The Epanechnikov kernel is a key result from optimal kernel theory as it minimizes the MISE.

As shown in Figure 16, different kernel shapes can lead to varying density estimation trajectories.
This visualization compares the performance of LLaMA-13b with various kernel density estimators
in a 2D InPCA embedding, capturing 87% of the pairwise Hellinger distances between probability
distributions.
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Figure 16: 2D InPCA embedding of density estimation trajectories for LLaMA-13b and KDEs with
various kernel shapes: exponential (s = 1), Gaussian (s = 2), and tophat (s = ∞). As s decreases,
the DE trajectories gradually shift from outside the Gaussian submanifold to inside, moving closer to
LLaMA’s trajectory. The ground truth is a narrow Gaussian distribution. This visualization captures
87% of the pairwise Hellinger distances between probability distributions.

A.7.3 MISE VS. VALID STATISTICAL DISTANCES

In our InPCA analysis, we choose the the Hellinger distance because: 1. It locally agrees with the KL-
divergence (Liese & Vajda, 2006); a measure motivated by information theory and commonly used in
training modern machine learning systems, including LLMs (Touvron et al., 2023). Mathematically,
this agreement means for distributions p and q that are close: D2

Hel(p, q) ≈ 1
2KL(p||q) 2. Unlike

the closely-related Bhattacharyya distance (Bhattacharyya, 1943), KL-divergence, or cross-entropy
(Thomas & Joy, 2006), Hellinger distance is both symmetric and satisfies the triangle inequality,
making it a proper metric. This property makes it more suitable for visualization purposes.10 3.
Although the L2 distance ||p− q||22 =

∫
|p(x)− q(x)|2dx is also a proper distance metric, it does

not locally agree with any information-theoretic divergence measure (Amari, 2016) and is therefore
not suited to measure distance between PDFs.11.

In contrast, classical KDE theory focuses on minimizing the Mean Integrated Squared Error (MISE),
which is fundamentally an L2-type distance that disagrees (globally and locally) with information-
theoretic divergence measure. Nevertheless MISE is widely used in classical KDE literature for
several reasons:

1. It can be easily analyzed mathematically using bias-variance decompositions (Wand & Jones, 1994,
Chapter 2.3).

2. It leads to closed-form solutions for optimal kernels and bandwidths under certain assumptions.

3. It provides a tractable objective function for theoretical analysis and optimization.

As a consequence of its popularity and mathematical tractability, MISE has been used to derive
heuristic bandwidth schedules, such as Silverman’s rule (Equation 17).

We note that modern machine learning often prefers loss functions from the f -divergence family
(Rényi, 1961), such as KL-divergence, cross-entropy, and Hellinger distance (Equation 2). These
measures have strong information-theoretic motivations and are often more appropriate for proba-
bilistic models.

10InPCA embedding with Bhattacharyya distance or symmetrized KL-divergence typically results in negative
distances in Minkowski space, which are harder to interpret (Teoh et al., 2020)

11Consequently, PCA embedding with such naive distance measure results in erratic trajectories with obscure
geometrical features, as explored in Appendix 14
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Despite the prevalence of f -divergences in machine learning, to the best of our knowledge, there are no
rigorous derivations of optimal kernel shapes or bandwidth schedules based on these measures. This
gap presents an interesting avenue for future research, potentially bridging classical statistical theory
with modern machine learning practices. Bridging this gap is beyond the scope of this paper. However,
we speculate that this gap is the reason why the optimal kernel shape employed by LLMs differs
significantly from those in classical optimal kernel theory (namely, Gaussian and Epanechnikov).
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A.8 ADAPTIVE KERNEL VISUALIZATION: COMPARING LLAMA-2 WITH KDE

This section provides a comprehensive visual analysis of DE processes across various target distribu-
tions, including Gaussian, uniform, and randomly generated probability density functions.

We present side-by-side comparisons of the DE trajectories for LLaMA-2, Gaussian KDE, and KDE
with fitted kernel designed to emulate LLaMA-2’s behavior. The fitted KDE process closely mirrors
LLaMA-2’s estimation patterns, while both diverge significantly from traditional Gaussian KDE
approaches.

Narrow Gaussian distribution target

Figure 17: Fitted kernel width and shape schedule

Figure 18: 2D inPCA cap-
turing 94% of Hellinger vari-
ances

Figure 19: Fitted kernel visualization with narrow gaussian target
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Wide Gaussian distribution target

Figure 20: Fitted kernel width and shape schedule

Figure 21: 2D inPCA cap-
turing 88% of Hellinger vari-
ances

Figure 22: Fitted kernel visualization with wide gaussian target
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Narrow uniform distribution target

Figure 23: Fitted kernel width and shape schedule

Figure 24: 2D inPCA cap-
turing 92% of Hellinger vari-
ances

Figure 25: Fitted kernel visualization with narrow uniform target
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Wide uniform distribution target

Figure 26: Fitted kernel width and shape schedule

Figure 27: 2D inPCA cap-
turing 83% of Hellinger vari-
ances

Figure 28: Fitted kernel visualization with wide uniform target
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A.9 RANDOMLY GENERATED PDFS

For completion, we also test LLaMA-2’s in-context DE ability on randomly generated PDFs. As
noted in Appendix A.7 and Chapter 2.9 of Wand & Jones (1994), PDFs with high average curvature
(defined as R(p′′) =

∫
p′′(x)2dx) are more difficult to estimate from data. Therefore, we want to be

able to control the average curvature R(p′′) of the generated random PDFs. We employ a technique
for generating random PDF using Gaussian processes. This allows us to create a wide variety of
smooth, continuous distributions with controllable average curvatures.

Gaussian Process Generation: We generate random PDFs using a Gaussian process with a
predefined covariance matrix. The process is defined over the interval [0, 1], discretized into
Nx = 10p points, where p is the precision parameter. The covariance matrix is constructed using a
squared exponential kernel (Seeger, 2004):

K(x, y) = exp

(
− (x− y)2

2l2

)
(18)

where x and y are points in the domain, and l is the correlation length, a crucial hyperparameter in
our generation process.

Correlation Length (l): The parameter l controls the smoothness and regularity of the generated
PDFs. Specifically:

• Large values of l produce more regular distributions with lower average curvature. These
PDFs tend to have smoother features with lower curvatures.

• Small values of l result in more irregular distributions with higher average curvature. These
PDFs can have sharper features with higher curvatures.

As l increases, the average curvature decreases, indicating a smoother, less curved function.

Generation Process: The random PDF generation involves the following steps:

1. Generate the covariance matrix using the squared exponential kernel.
2. Perform Cholesky decomposition on the covariance matrix.
3. Sample from the Gaussian process using the decomposed matrix.
4. Apply boundary conditions to ensure the PDF goes to zero at the domain edges.
5. Normalize the function to ensure it integrates to 1, making it a valid PDF.

This method allows us to generate a wide range of PDFs with varying degrees of complexity and
smoothness, providing a robust test set for our density estimation algorithms. By adjusting the corre-
lation length l, we can systematically explore how different estimation methods perform on targets of
varying regularity and curvature. Given a randomly generated PDF, we can calculate its average cur-
vature using two methods: numerical differentiation and analytical derivation. Numerically, we can
approximate the second derivative using finite differences and then compute the average curvature as:

Rnumeric(p
′′) ≈ 1

N

N∑
i=1

(
p(xi+1)− 2p(xi) + p(xi−1)

(∆x)2

)2

(19)

where N is the number of discretization points and ∆x is the spacing between points. Analytically,
we can leverage the fact that the derivative of a Gaussian process is itself a Gaussian process Seeger
(2004). For a Gaussian process with squared exponential kernel k(x, x′) = exp(− (x−x′)2

2l2 ), the
expected average curvature can be derived as:

Ranalytical(p
′′) = E[

∫
(p′′(x))2dx] =

3

4l3
√
π

(20)

In our numerical experiments, we find that these two methods agree to high precision, typically
within 10% relative error, validating our choice to use Gaussian processes to generate PDFs with
controllable curvatures.
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Randomly generated distribution at low curvature (l = 0.5)

Figure 29: Fitted kernel width and shape schedule

Figure 30: 2D inPCA cap-
turing 70% of Hellinger vari-
ances

Figure 31: Fitted kernel visualization with randomly generated target
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Randomly generated distribution at medium curvature (l = 0.1)

Figure 32: Fitted kernel width and shape schedule

Figure 33: 2D inPCA cap-
turing 73% of Hellinger vari-
ances

Figure 34: Fitted kernel visualization with randomly generated target
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Randomly generated distribution at high curvature (l = 0.02)

Figure 35: Fitted kernel width and shape schedule
Figure 36: 2D inPCA cap-
turing 55% of Hellinger vari-
ances

Figure 37: Fitted kernel visualization with randomly generated target
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A.10 KDE WITH SILVERMAN BANDWIDTH SCHEDULE

For the majority of our investigations, we have been comparing LLaMA’s in-context DE process with
Gaussian KDE with bandwidth schedule

h(n) = Cn− 1
5

with C = 1.However, as noted in Appendix A.7.1, in practice one often estimates the pre-coefficient
from data, such as Silverman’s rule of thumb (Equation 17). In this section, we replicate Figures 3
and 4 from Section 4, and use Silverman’s rule-of-thumb bandwidth instead of C = 1. As shown
in Figures 38 and 39, even with Silverman’s pre-coefficient, Gaussian KDE still shows a clear bias
towards the Gaussian submanifold.

Gaussian target

Figure 38: In-context density estimation trajectories for Gaussian targets. Top row: 2D InPCA
embeddings of DE trajectories for Gaussian targets of decreasing width (left to right). Bottom row:
Corresponding ground truth distributions. These 2D embeddings capture 94% of pairwise Hellinger
distances between probability distributions.

Uniform target

Figure 39: In-context density estimation trajectories for Gaussian targets. Top row: 2D InPCA
embeddings of DE trajectories for Gaussian targets of decreasing width (left to right). Bottom row:
Corresponding ground truth distributions. These 2D embeddings capture 91% of pairwise Hellinger
distances between probability distributions.

With Silverman’s heuristic bandwidth, the Gaussian KDE algorithm can now efficiently converge
to the ground truth target distribution, performing on par with or even surpassing LLaMA-13b’s in-
context DE in terms of speed. This outcome is not surprising for two reasons: 1. LLaMA is a general-
purpose LLM that is not optimized for density estimation tasks. 2. We do not specifically prompt
LLaMA to perform DE, so it must infer the task from the raw data sequence. This comparison is
inherently unfair to LLaMA, as Gaussian KDE is specifically designed for DE tasks.
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Under review as a conference paper at ICLR 2025

We would like to reiterate that the purpose of these visualizations is not to benchmark LLaMA against
existing algorithms, but to distill geometric insights. The Gaussian KDE, with Silverman’s bandwidth,
features much shorter trajectory lengths, and therefore provides fewer geometric insights compared
to our previous visualizations with fixed bandwidth.
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