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ABSTRACT

Accurate precipitation forecasting is a vital challenge of both scientific and soci-
etal importance. Data-driven approaches have emerged as a widely used solution
for addressing this challenge. However, solely relying on data-driven approaches
has limitations in modeling the underlying physics, making accurate predictions
difficult. Coupling AI-based post-processing techniques with traditional Numer-
ical Weather Prediction (NWP) methods offers a more effective solution for im-
proving forecasting accuracy. Despite previous post-processing efforts, accurately
predicting heavy rainfall remains challenging due to the imbalanced precipitation
data across locations and complex relationships between multiple meteorological
variables. To address these limitations, we introduce the PostRainBench, a com-
prehensive multi-variable NWP post-processing benchmark consisting of three
datasets for NWP post-processing-based precipitation forecasting. We propose
CAMT, a simple yet effective Channel Attention Enhanced Multi-task Learn-
ing framework with a specially designed weighted loss function. Its flexible de-
sign allows for easy plug-and-play integration with various backbones. Extensive
experimental results on the proposed benchmark show that our method outper-
forms state-of-the-art methods by 6.3%, 4.7%, and 26.8% in rain CSI on the
three datasets respectively. Most notably, our model is the first deep learning-
based method to outperform traditional Numerical Weather Prediction (NWP) ap-
proaches in extreme precipitation conditions. It shows improvements of 15.6%,
17.4%, and 31.8% over NWP predictions in heavy rain CSI on respective datasets.
These results highlight the potential impact of our model in reducing the severe
consequences of extreme weather events.

1 INTRODUCTION

Precipitation forecasting (Sønderby et al., 2020; Espeholt et al., 2022) refers to the problem of pro-
viding a forecast of the rainfall intensity based on radar echo maps, rain gauge, and other observation
data as well as the Numerical Weather Prediction (NWP) models (Shi et al., 2017). Accurate rain-
fall forecasts can guide people to make optimal decisions in production and life. The frequency
and intensity of rainfall varies based on geography. Though the occurrence of extreme precipitation
events is relatively infrequent, they can lead to adverse impacts on both agricultural production and
community well-being (de Witt et al., 2021).

At present, the most accurate forecasting system is the Numerical Weather Prediction (NWP)
method (Bi et al., 2023), which represents atmospheric states as discretized grids and numerically
solves partial differential equations that describe the transition between those states. NWP predic-
tions cover a wide range of variables. Each of them provides information about meteorological
states (wind speed, temperature, pressure, etc.) and surface states (water vapor on the surface, snow
amount, etc.), presenting a multidimensional description of the atmospheric state.

In the past few years, geoscience has begun to use deep learning to better exploit spatial and temporal
structures in the data. Studies are beginning to apply combined convolutional–recurrent approaches
to geoscientific problems such as precipitation nowcasting (Shi et al., 2015; Wang et al., 2017;
Shi et al., 2017). Precipitation nowcasting is mainly based on data-driven extrapolation and lacks
physics-based modeling (Kim et al., 2022). Despite continuous efforts to directly enhance global
weather forecasting (Lam et al., 2022; Bi et al., 2023; Chen et al., 2023a;b) with deep learning
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Figure 1: An overview of the proposed PostRainBench and CAMT framework. (a) illustrates our
benchmark’s attributes. (b) shows the input composition. (c) presents the distribution of the Ger-
man dataset, highlighting the data imbalance challenge. The bottom section illustrates our CAMT
workflow: (d) NWP inputs undergo processing by the Channel Attention Module, followed by a
Swin-Unet backbone. (e) Multi-task learning with hybrid weighted loss using classification and re-
gression heads.

methods, on the NWP side, post-processing methods can be developed to alleviate the predictable
biases of NWP models. Combining AI-based and NWP methods can bring about both strengths for
a stronger performance (Bi et al., 2023).

For the post-processing task, NWP predictions are fed to a deep learning model which is trained to
output refined precipitation forecasts. Rainfall station observations are used as ground truth. In a
nutshell, the overall goal is to post-process the predictions from NWP using deep models, under the
supervision of rainfall station observations.

However, Post-NWP optimization poses several distinct challenges that distinguish it from typical
weather forecasting optimization problems and computer vision tasks.

Variable Selection and Modeling. In NWP, each pixel on the grid has various variables express-
ing the atmospheric feature state, which exhibit different statistical properties. This discrepancy
includes spatial dependence and interdependence among variables, which violate the crucial as-
sumption of identical and independently distributed data (Reichstein et al., 2019). The variables
exhibit high correlation among themselves and also possess a degree of noise. Previous approaches
have either used all available variables (Rojas-Campos et al., 2022) as input or relied on expert-based
variable selection (Kim et al., 2022), which did not fully leverage the modeling capabilities.

Class Imbalance. The distribution of precipitation exhibits a significant imbalance, making model
optimization challenging. A prior study (Shi et al., 2017) introduced WMSE, which assigned higher
weighting factors to minority classes. Another study (Cao et al., 2022b) combined a reweighting
loss with the MSE loss to mitigate the degradation in performance for majority classes. While these
approaches have succeeded in improving forecast indicators for the minority class (heavy rainfall),
they have inadvertently compromised the model’s performance on the majority class.

Lack of A Unified Benchmark. A previous study, KoMet (Kim et al., 2022), introduced a small
dataset covering the time span of two years. Due to the limited data samples, models trained solely
on such datasets may risk overfitting to specific data characteristics. Furthermore, KoMet only
selected a subset of NWP variables as input. In contrast, another study (Rojas-Campos et al., 2022)
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utilized all 143 available NWP variables as input. The limited size of the dataset, along with the lack
of a standardized method for selecting variables, hinders research progress in improving the NWP
post-processing task.

To tackle the aforementioned challenges, we introduce a new model learning framework and a uni-
fied benchmark for robust evaluation.

We summarize our contributions as follows:

• We introduce PostRainBench, a comprehensive multi-variable benchmark, which covers the
full spectrum of scenarios with and without temporal information and various combinations of
NWP input variables. This unified benchmark could help accelerate the research area of NWP
post-processing-based precipitation forecasting.

• We propose CAMT, a simple yet effective Channel Attention Enhanced Multi-task Learning
framework with a specially designed weighted loss function. CAMT is flexible and can be
plugged into different model backbones.

• On the proposed benchmark, our model outperforms state-of-the-art methods by 6.3%, 4.7%,
and 26.8% in rain CSI on three datasets, respectively. Furthermore, it’s worth highlighting
a significant milestone achieved by our model. It stands as the first deep learning model to
surpass NWP method in heavy rain, with improvements of 15.6%, 17.4%, and 31.8% over
NWP predictions across respective datasets. This underscores its potential to effectively mitigate
substantial losses in the face of extreme weather events.

2 RELATED WORK

Deep Learning-based Precipitation Nowcasting Regarding precipitation nowcasting as a spa-
tiotemporal sequence forecasting problem, Shi et al. (2015) first proposed Convolutional Long
Short-Term Memory (ConvLSTM) to directly predict the future rainfall intensities based on the
past radar echo maps. PredRNN (Wang et al., 2017) separated the spatial and temporal memory
and communicated them at distinct LSTM levels. Lebedev et al. (2019) used the U-Net architec-
ture (Ronneberger et al., 2015) to nowcast categorical radar images with results that outperformed
traditional nowcasting methods. MetNet (Sønderby et al., 2020) employed a combination of a con-
volutional long short-term memory (LSTM) encoder and an axial attention decoder, which was
demonstrated to achieve strong results on short-term low precipitation forecasting using radar data.

NWP Post-processing A recent work (Rojas-Campos et al., 2022) used Conditional Generative
Adversarial Network (CGAN) (Goodfellow et al., 2014) to post-process NWP predictions to gener-
ate precipitation maps and compared it with U-Net (Ronneberger et al., 2015) and two deconvolution
networks. Following the Critical Success Index(CSI) scores, there was an initial high performance
in low precipitation forecasting and a progressive decline as the threshold increased, indicating a
general difficulty in predicting high precipitation events. NWP’s direct predictions of rain presented
the highest scores in predicting high precipitation events over proposed deep learning methods. An-
other work (Kim et al., 2022) proposed an open dataset with selected NWP predictions as input and
compared the performance of three baseline models, U-Net, ConvLSTM and MetNet. The findings
were similar, while deep learning models achieved better performance in low rain forecasting, none
of the deep learning models surpassed the performance of NWP in heavy rain conditions.

3 POSTRAINBENCH

3.1 TASK FORMULATION

In this study, we consider optimizing the following model:

min
w

{
L(w;D) ≜ E(Xt,yt)∼D[ℓ(yt;F (Xt,w))]

}
(1)

where L represents the objective function parameterized by w on the dataset D. As shown in
Figure 6, the input is NWP predictions Xt, the corresponding ground-truth is rain observation yt
at time t, and ℓ denotes the loss function between the output of our proposed model F (·,w) and
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the ground-truth. The NWP predictions Xt are derived from the NWP model at time t − L − τ ,
constituting a sequence denoted as Xt = x(t−L),x(t−L+1), · · · ,x(t−2),x(t−1), where L signifies
the sequence length and τ denotes the lead time. Our post-process model F (·,w) takes the sequence
of NWP predictions Xt as input, aiming to predict a refined output ỹt (at time t), where the rainfall
observations yt (at time t) sever as ground truth to train our model. In our multi-task framework, the
prediction of our model at time t is defined as a classification forecast ỹcls and a regression forecast
ỹreg. Our proposed model F (·,w) is formulated as:

ỹcls, ỹreg = F (Xt,w) (2)
= F ({x(t−L),x(t−L+1), · · · ,x(t−2),x(t−1)},w) (3)

where w is the trainable parameters. Our model utilizes a classification head and a regression head
to generate two final forecasts, ỹcls and ỹreg. ỹcls is a probability matrix and each item indicates
the probability of a specific class among {‘non-rain’, ‘rain’, ‘heavy rain’}. ỹreg is a prediction value
of each pixel in the grid.
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Figure 2: An illustrate of NWP post-processing task. NWP predictions Xt with a time sequence
length of L is used as input, while rain observation yt is used as ground truth.

3.2 EVALUATION METRICS

In terms of evaluation, we adopt commonly used multi-class classification metrics for precipita-
tion forecasting by previous works (Kim et al., 2022). The evaluation metrics are calculated based
on the number of true positives (TPk), false positives (FPk), true negatives (TNk), and false nega-
tives (FNk) for some generic class k. We describe the main metrics we consider as follows:

Critical Success Index (CSI) (Donaldson et al., 1975) is a categorical metric that takes into
account various elements of the confusion matrix, similar with F1-score having the value as

TPk

TPk+FNk+FPk
.

Heidke Skill Score (HSS) (Woo & Wong, 2017) as stated by Hogan et al. (2010), is more
equitable in evaluating the forecasting performance. Higher HSS means better performance and a
positive HSS indicates that a forecast is better than a random-based forecast. HSS is calculated as

2×(TPk×TNk−FNk×FPk)
FP 2

k+TN2
k+2×TPk×FNk+(FPk+TNk)(TPk+FPk)

.

Please refer to the Section A.4 for all metrics we use in the benchmark.

3.3 DATASETS

To address the issues of limited dataset size and the lack of a standardized criterion for variable
selection, we introduce a unified benchmark comprising three datasets. Two of these datasets are
sourced from prior research, while the third is collected from a public challenge. We describe our
processing and standardization of the datasets below.
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The first dataset, called KoMet (Kim et al., 2022), was collected in South Korea. The input data
originates from GDAPS-KIM, a global numerical weather prediction model that furnishes hourly
forecasts for diverse atmospheric variables. GDAPS-KIM operates at a spatial resolution of 12 km
× 12 km, resulting in a spatial dimension of 65 × 50. The variables fall into two categories: pressure
level variables and surface variables. For benchmarking purposes, 12 variables out of the 122 are
selected according to Korean experts, and we follow this setting in our paper.

The second dataset originates from Germany (Rojas-Campos et al., 2022). This dataset covers the
period from 2011 to 2018 and is confined to a selected area in West Germany. The input data is
derived from the COSMO-DE-EPS forecast (Peralta et al., 2012), which provides 143 variables of
the atmospheric state. For this dataset, the forecast with a 3-hour lead time is selected. A detailed
description of the COSMO-DE-EPS output can be found in Schättler et al. (2008). The input data
has a spatial resolution of 36×36, while the output data is available at a resolution of 72×72. To
give a fair comparison between various algorithms, we perform interpolation on both to bring them
to a consistent resolution of 64×64.

The third dataset originates from China and provides hourly, 1 km × 1 km resolution, 3-hour grid
point precipitation data for the rainy season. This dataset spans from April to October in both 2020
and 2021. Additionally, it includes 3-hour lead time forecasts from a regional NWP model, with 28
surface and pressure level variables such as 2-meter temperature, 2-meter dew point temperature,
10-meter u and v wind components, and CAPE (Convective Available Potential Energy) values. For
all variables provided, please refer to Table 6. Each time frame in this dataset covers a substantial
spatial area, featuring a grid size of 430×815. To maintain consistency, we interpolate this dataset
to a more manageable 64×64 grid.

We summarize important details of the three datasets in the Table 5.

3.4 DATA DISTRIBUTION

We analyze the distribution of the observed precipitation data, which serves as the ground truth,
across the three datasets. In accordance with the framework outlined in Kim et al. (2022), we
categorize precipitation into two types: rain and heavy rain, each with its set of evaluation metrics
and frame this forecasting problem as a three-class classification task. It is important to note that
the threshold for defining heavy rain can vary by location due to differences in rainfall frequency
influenced by geographical and climatic factors.

Table 1: Statistics of three datasets.

Dataset Rain rate (mm/h) Proportion (%) Rainfall Level

KoMet
[0.0, 0.1) 87.24 No Rain
[0.1, 10.0) 11.57 Rain
[10.0,∞) 1.19 Heavy Rain

Germany
[0.0, 10−5) 85.10 No Rain
[10−5, 2.0) 13.80 Rain
[2.0,∞) 1.10 Heavy Rain

China
[0.0, 0.1) 91.75 No Rain
[0.1, 2.0) 3.81 Rain
[2.0,∞) 4.44 Heavy Rain

In Germany dataset, Rojas-Campos et al. (2022) explores various thresholds including 0.2, 0.5, 1,
2, and 5, we adopt a rain threshold of 10−5 mm/h since its distribution is concentrated in [0,1] and
we adhere to the rain threshold of 0.1mm/h adopted by Kim et al. (2022) In Korea dataset, we
adhere previous heavy rain threshold of 10mm/h and opt for a unified threshold of 2mm/h in another
two datasets, enabling a more equitable comparison. The distribution and the rain categorization
of the three datasets are presented in Table 1. It is evident that all three datasets exhibit significant
imbalances, which presents a great challenge to predict extreme weather scenarios.
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4 METHOD

As illustrated in Figure 1, our model can be divided into three parts. The first part is a channel
attention module (Woo et al., 2018). The second part is the Swin-Unet backbone (Cao et al.,
2022a) that generates linear projections. The third part is a multi-task learning branch with a hybrid
loss. We describe the first and third parts in detail below and put explanations of Swin-Unet in
Section A.1 and A.3.

4.1 CHANNEL ATTENTION MODULE

While the data-driven approaches can be improved by incorporating more variables, they also es-
calate the storage space and memory demands for modeling. Previous approaches either used all
available variables as input or relied on expert-driven variable selection, which did not fully harness
modeling capabilities.

A recent study (Chen et al., 2023a) viewed the medium-range forecast problem from a multi-modal
perspective and used a cross-model transformer to fuse different modalities. It inspires us by em-
phasizing that the crucial aspect of accurate multi-variable weather forecasting lies in effectively
modeling the relationships between different channels (variables).

To this concern, we introduce the Channel Attention Module (CAM), which enables variable selec-
tion for a unified NWP post-processing task, and models intricate relationships between variables.

CAM aggregates spatial information of a feature map by using both average-pooling and max-
pooling operations, generating two different spatial context descriptors: Fc

avg and Fc
max. Both

descriptors are forwarded to a shared multi-layer perceptron (MLP) to produce a channel attention
map Mc ∈ RC×1×1. To reduce parameter overhead, the hidden activation size is set to RC/r×1×1,
where r is the reduction ratio. After the shared network, the two output feature vectors are merged
with element-wise summation. We employ a residual connection (He et al., 2016) by adding the
attention map to the original input, which serves as the input for the subsequent backbone stage.

In short, the channel attention is computed as:

Mc(F) = σ(MLP (AvgPool(F)) +MLP (MaxPool(F)))

= σ(W1(W0(F
c
avg)) +W1(W0(F

c
max))),

(4)

where σ denotes the sigmoid function, W0 ∈ RC/r×C , and W1 ∈ RC×C/r. We choose r = 16.
Note that the MLP weights, W0 and W1, are shared for both inputs and the activation function is
followed by W0. We choose GeLU activation function instead of ReLU.

The resulting feature maps are then input to the Swin-Unet backbone, as shown in Figure 1.

The backbone model is connected to a classification head and a regression head, which are learned
under our proposed multitask learning framework as described in the next section.

4.2 MULTITASK LEARNING WITH HYBRID WEIGHTED LOSS

Prior research has traditionally approached precipitation forecasting as either a regression or clas-
sification problem. In practice, people care more about the rain level than specific rain intensity.
Considering the realistic needs, a classification task is more appropriate. However, In our practice,
we find regression task can enhance the learning for classification task. This approach streamlines
model optimization, aligning with the metrics we utilize.

In this paper, we introduce a combination of Mean Squared Error (MSE) loss and weighted
Cross-Entropy (CE) loss within a multi-task learning framework, incorporating two task outputs
ỹcls, ỹregwith a hyperparameter α. Utilizing dedicated classification and regression heads encour-
ages the backbone to focus on learning essential features for both tasks.

As previously mentioned, precipitation forecasting grapples with the challenge of highly imbalanced
class distributions from a classification standpoint. To tackle this issue, we apply class weights wc

based on the class distribution of each dataset. The full loss function Lhybrid is defined as:
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Lcls =

h∑
i=1

w∑
j=1

(−
M∑
c=1

wcyt log(ỹcls)) (5)

Lreg =

h∑
i=1

w∑
j=1

(ỹreg − yt)
2 (6)

Lhybrid = Lcls + αLreg (7)

In Equation 5, h and w refer to the spatial resolution, height and width, c refer to the grid’s pixel
class, M is the number of classes, and yt is the ground truth.

5 EXPERIMENTAL EVALUATION

5.1 IMPLEMENTATION DETAILS

We compare our proposed Swin-Unet-based CAMT framework with various strong baselines,
including the NWP method, three deep learning models (ConvLSTM, UNet, MetNet). Swin-
Unet (Ronneberger et al., 2015) is a Unet-like Transformer. The tokenized image patches are fed
into the Swin Transformer-based (Liu et al., 2021) U-shaped Encoder-Decoder architecture with
skip connections for local-global semantic feature learning.

The datasets are split into training, validation, and test sets following the configurations outlined in
previous studies. For the China dataset, we randomly partition the data into a 6:2:2 ratio. To ensure
consistency with prior studies, we select the model with the best CSI performance on the validation
set and report its performance on the test set. Each model is run with three different random seeds
for robust performance. We use the Adam optimizer for all models.

For the Korea dataset, baseline models are trained with a learning rate of 0.001 (as mentioned in Kim
et al. (2022)), while Swin-Unet models are trained with a learning rate of 0.0001. Consistent with
previous settings, a batch size of 1 is employed, and all models are trained for 50 epochs. We apply
a weight of [1, 5, 30] for the CE Loss. We utilize a hyperparameter α of 100 for the MSE Loss on
all datasets. For the Germany dataset, baseline models are trained with a learning rate of 0.001 (as
mentioned in Rojas-Campos et al. (2022)), whereas Swin-Unet models are trained with a learning
rate of 0.0001. The batch size remains consistent with previous settings at 20, and all models are
trained for 30 epochs. We utilize a class weight of [1, 5, 30]. For the China dataset, all models are
trained with a learning rate of 10−4 for 100 epochs. The weight configuration used is [1, 15, 10].

5.2 RESULTS

As shown in Table 8, for the Korea dataset, our method demonstrates an improvement of 6.3%
in rain prediction CSI compared to the state-of-the-art (SOTA) approach, which is ConvLSTM.
We highlight that CAMT achieves a remarkable 15.6% improvement in heavy rain prediction CSI
over the NWP method, which is the first DL model to surpass NWP results for extreme weather
conditions. This result underscores the potential and efficacy of data-driven methods in advancing
precipitation forecasting.

For the Germany dataset, U-Net emerges as the top performer among previous models, particularly
excelling in rain CSI. Notably, our method achieves a 4.7% improvement over U-Net. When it
comes to heavy rain prediction, U-Net’s performance is limited and the NWP model outperforms
all previous DL models. Our method shows a substantial 17.4% improvement over NWP, marking
a significant advancement.

In the case of the China dataset, the NWP method demonstrates better performance in both rain
and heavy rain prediction compared to previous DL models. Our method achieves improvements
of 26.8% and 31.8% over the NWP method under these two conditions, respectively. Previous DL
methods might be struggling with this dataset due to its small sample size, while our method man-
ages to achieve substantial improvements using the proposed CAM and multi-task training frame-
work. This underscores the robustness and versatility of our approach. We make this dataset avail-
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Table 2: Experimental Results on the proposed PostRainBench. Each model undergoes three runs
with different random seeds, and we report the mean, standard deviation (std), and best performance
in terms of CSI and HSS. The best results are highlighted in bold, with the second-best results
underlined. We report the relative improvement of our method (Swin-Unet+CAMT) over the best
result among the baselines and NWP. In the context of the results, ’↑’ indicates that higher scores
are better.

Rain Heavy Rain

CSI↑ HSS↑ CSI↑ HSS↑
Mean(Std) Best Mean(Std) Best Mean(Std) Best Mean(Std) Best

Korea

NWP 0.263(±0.000) * 0.045(±0.000) *
U-Net 0.300 (±0.025) 0.322 0.384(±0.025) 0.408 0.006(±0.005) 0.010 0.011(±0.009) 0.018

ConvLSTM 0.302 (±0.009) 0.312 0.384(±0.009) 0.395 0.009(±0.007) 0.015 0.016(±0.012) 0.026
MetNet 0.298 (±0.012) 0.307 0.375(±0.014) 0.384 0.005(±0.007) 0.012 0.009(±0.012) 0.023
Ours 0.321 (±0.005) 0.326 0.384(±0.007) 0.389 0.052(±0.010) 0.058 0.089(±0.017) 0.097

Ours ∆ +6.3% +0% +15.6% +456.3%

Germany

NWP 0.338(±0.000) 0.252(±0.000) 0.178(±0.000) 0.173(±0.000)

U-Net 0.491 (±0.007) 0.495 0.601(±0.006) 0.605 0.082(±0.028) 0.107 0.148(±0.048) 0.189
ConvLSTM 0.477 (±0.026) 0.478 0.587(±0.004) 0.590 0.091(±0.041) 0.121 0.162(±0.068) 0.212

MetNet 0.485 (±0.002) 0.487 0.595(±0.005) 0.599 0.027(±0.016) 0.094 0.147(±0.027) 0.168
Ours 0.514 (±0.003) 0.518 0.609(±0.006) 0.616 0.209(±0.014) 0.224 0.339(±0.020) 0.359

Ours ∆ +4.7% +1.3% +17.4% +96.0%

China

NWP 0.164(±0.000) 0.123(±0.000) 0.110 (±0.000) 0.089(±0.000)

U-Net 0.065 (±0.007) 0.073 0.093(±0.009) 0.103 0.058(±0.014) 0.070 0.089(±0.024) 0.110
ConvLSTM 0.054 (±0.011) 0.066 0.079(±0.009) 0.088 0.065(±0.003) 0.068 0.104(±0.010) 0.114

MetNet 0.064 (±0.019) 0.078 0.061(±0.047) 0.106 0.057(±0.017) 0.076 0.069(±0.057) 0.118
Ours 0.208 (±0.007) 0.216 0.274(±0.014) 0.289 0.145(±0.015) 0.163 0.225(±0.019) 0.246

Ours ∆ +26.8% +122.8% +31.8% +116.3%

* For Korea dataset, NWP method’s HSS is not reported. For all NWP method, we only have the mean value.

able and integrate it with the previous two datasets, creating a unified benchmark that could facilitate
future research in this field.

5.3 ABLATION STUDY

5.3.1 CAMT COMPONENT

We conduct an ablation study by systematically disabling certain components of our CAMT Com-
ponent and evaluating the CSI results for both rain and heavy rain in Table 3 . Specifically, we focus
on the weighted loss, multi-task learning, and channel attention modules as these are unique addi-
tions to the Swin-Unet backbone. In the first part, we use Swin-Unet with CAMT framework (a) as
a baseline and we disable each component in CAMT and demonstrate their respective outcomes. In
the second part, we use Swin-Unet without CAMT framework (e) as a baseline and we gradually
add each component to the model to understand its role.

Weigthed Loss (b) Without the weighted Loss in CAMT, there is a slight increase in rain CSI,
but heavy rain CSI shows a dominant 97.6% decrease. (f) Adding the weighted loss to Swin-Unet
results in a 6.0% decrease in rain CSI, but a significant improvement in heavy rain CSI.

Multi-Task Learning (c) Without multi-task learning, there is a 3.7% drop in rain CSI, along
with a notable 8.1% decrease in heavy rain CSI. (g) Incorporating multi-task learning into Swin-
Unet leads to a comparable performance of rain CSI but brings a slight increase in heavy rain CSI.

CAM (d) In the absence of CAM, we observe a 1.8% decrease in rain CSI and a significant 11.1%
decrease in heavy rain CSI. (h) The introduction of CAM into Swin-Unet leads to a rain CSI similar
to the baseline but demonstrates an impressive 11.5% improvement in heavy rain CSI. It indicates
that CAM is effective for selecting and modeling multiple weather variables.
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Table 3: Ablation study on Germany dataset (Rojas-Campos et al., 2022). We disable components
of the framework in each experiment and report rain and heavy rain CSI as the evaluation metric.

Weighted Loss Multi-Task Learning CAM
Rain Heavy Rain

CSI↑ HSS↑ CSI↑ HSS↑

(a) ✓ ✓ ✓ 0.514 0.609 0.209 0.339
(b) ✗ ✓ ✓ 0.517 (+0.6%) 0.625 (+2.6%) 0.042 (−97.6%) 0.008 (−11.1%)

(c) ✓ ✗ ✓ 0.495 (−3.7%) 0.588 (−3.4%) 0.192 (−8.1%) 0.317 (−6.5%)

(d) ✓ ✓ ✗ 0.505 (−1.8%) 0.602 (−1.1%) 0.183 (−11.1%) 0.305 (−11.1%)

(e) ✗ ✗ ✗ 0.521 0.628 0.000 0.000
(f) ✓ ✗ ✗ 0.490 (−6.0%) 0.580 (−7.6%) 0.188 ↑↑↑ 0.307 ↑↑↑
(g) ✗ ✓ ✗ 0.516 (−0.1%) 0.629 (+0.2%) 0.067 ↑ 0.007 ↑
(h) ✗ ✗ ✓ 0.513 (−1.5%) 0.624 (−0.6%) 0.115 ↑↑ 0.204 ↑↑

Although Swin-Unet can achieve a relatively high CSI when used alone (e), it does not have the abil-
ity to predict heavy rain. Importantly, these three enhancements complement each other. Weighted
loss and multi-task learning are effective in improving simultaneous forecasting under the unbal-
anced distribution of light rain and heavy rain, while CAM provides comprehensive improvements.

5.3.2 ABLATION ON BACKBONE

We conduct another ablation study by replacing Swin-Unet backbone with ViT (Dosovitskiy et al.,
2020) backbone under our CAMT framework in Table 4.

For the Korea dataset, ViT outperforms Swin-Unet in rain CSI and HSS but shows a slight decrease
in heavy rain CSI. Importantly, its performance remains higher than that of NWP, which shows the
effectiveness of CAMT. For the Germany dataset, though its performance on rain CSI is limited, the
ViT model still demonstrates a remarkable performance in heavy rain CSI and surpasses NWP. For
the China dataset, ViT outperforms all baseline models and is only second to Swin-Unet.

Table 4: Ablation study with ViT backbone, we highlight the best results in bold.

Rain Heavy Rain

CSI↑ HSS↑ CSI↑ HSS↑
Mean(Std) Best Mean(Std) Best Mean(Std) Best Mean(Std) Best

Korea
ViT+CAMT 0.326 (±0.004) 0.329 0.394(±0.001) 0.395 0.049(±0.010) 0.055 0.083(±0.017) 0.097

Swin-Unet+CAMT 0.321 (±0.005) 0.326 0.384(±0.007) 0.389 0.052(±0.010) 0.058 0.089(±0.017) 0.097

Germany
ViT+CAMT 0.484 (±0.004) 0.488 0.576(±0.005) 0.581 0.194(±0.023) 0.041 0.050(±0.043) 0.078

Swin-Unet+CAMT 0.514 (±0.003) 0.518 0.609(±0.006) 0.616 0.209(±0.014) 0.224 0.339(±0.020) 0.359

China
ViT+CAMT 0.177 (±0.004) 0.181 0.217(±0.006) 0.224 0.068(±0.033) 0.105 0.091(±0.052) 0.149

Swin-Unet+CAMT 0.208 (±0.007) 0.216 0.274(±0.014) 0.289 0.145(±0.015) 0.163 0.225(±0.019) 0.246

These experiments highlight the potential of the ViT model. We also conduct experiments with
three baseline models but observe limited improvements. We believe that addressing the challenge
of imbalanced precipitation forecasting requires a more robust backbone and the use of our CAMT
framework, which incorporates multi-task information to enrich the learning process of this task.

6 CONCLUSION

In this paper, we introduce PostRainBench, a comprehensive multi-variable benchmark for NWP
post-processing-based precipitation forecasting and we present CAMT, Channel Attention En-
hanced Multi-task Learning framework with a specially designed weighted loss function. Our ap-
proach demonstrates outstanding performance improvements compared to the three baseline models
and the NWP method. In conclusion, our research provides novel insights into the challenging do-
main of highly imbalanced precipitation forecasting tasks. We believe our benchmark could help
advance the model development of the research community.
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Reproducibility Statement We provide the details of implementing our method as well as in-
structions to reproduce the experiments in Section 5. We provide the datasets we used and our code
in supplementary material.
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A APPENDIX

A.1 BASELINES

U-Net (Ronneberger et al., 2015) is a model specifically crafted to address the challenge of im-
age segmentation in biomedical images. It excels in capturing essential features in a reduced-
dimensional form during the propagation phase of its encoder component.

ConvLSTM (Shi et al., 2015; 2017) is a hybrid model integrating LSTM and convolutional op-
erations. LSTMs are tailored for capturing temporal relationships, while convolutional operations
specialize in modeling spatial patterns. This combination allows ConvLSTM to effectively model
both temporal and spatial relationships within sequences of images.

MetNet (Sønderby et al., 2020) incorporates a spatial downsampler, achieved through convolutional
layers, to reduce input size. Its temporal encoder employs the ConvLSTM structure, enabling the
capture of spatial-temporal data on a per-pixel basis. The feature map subsequently undergoes self-
attention in the Spatial Aggregator to integrate global context, before being processed by a classifier
that outputs precipitation probabilities for each pixel.

Swin-Unet (Cao et al., 2022a) is a Unet-like Transformer. The tokenized image patches are fed
into the Swin Transformer-based U-shaped Encoder-Decoder architecture with skip connections for
local-global semantic feature learning. Specifically, it uses hierarchical Swin Transformer (Liu et al.,
2021) with shifted windows as the encoder and decoder.

ViT (Dosovitskiy et al., 2020) apply a pure Transformer architecture on image data, by proposing
a simple, yet efficient image tokenization strategy. We follow previous work (Tarasiou et al., 2023)
to employ Transformers for dense prediction.

FourCastNet (Pathak et al., 2022) is a data-driven global weather forecasting model known for its
rapid and accurate predictions, excelling in high-resolution forecasting of complex meteorological
variables, which is based on Adaptive Fourier Neural Operators (AFNO).

A.2 POSTRAINBENCH DATASET SUMMARY

For Korea dataset and Germany dataset variables, please refer to previous research. For China
dataset variables, please refer to Table 6.

Table 5: Comparison of three NWP datasets with different spatial and temporal resolutions.

Dataset Korea Germany China

Variable type Pressure Level and Surface
Variable numbers 12 143 28
Time period 2020-2021 2011-2018 2020-2021
Spatial resolution 12km × 12km 2.8km × 2.8km 1km × 1km
Temporal resolution 1h 3h 3h
Temporal Window Size 6 1 1
Data shape (T C H W) (6, 12, 50, 65) (1, 143, 64, 64) (1, 28, 64, 64)
Data split [train val test] [4920, 2624, 2542] [15189, 2725, 2671] [2264, 752, 760]
Data size 47.9GB 16.2GB 3.6GB

A.3 SWIN-UNET ARCHITECTURE

The overall architecture of Swin-Unet is presented in Figure 3. In our multi-task framework, two
linear projection layers are applied to output the pixel-level classification and regression predictions.

A.4 EXPERIMENT RESULTS WITH MORE METRICS

We report more evaluation metrics of all models as follows:
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Table 6: List of variables contained in the China dataset.

Type Long name Short name Level Unit

Pressure Level

U-component of wind u 200,500,700,850,925 (ms−1)
V-component of wind v 200,500,700,850,925 (ms−1)
Temperature T 500,700,850,925 (K)
Relative humidity rh liq 500,700,850,925 (%)

Surface

Rain rain * (mm/h)
Convective Rain rain thud * (mm/h)
Large-scale Rain rain big * (mm/h)
Convective Available Potential Energy” cape * (J/kg)
Precipitable Water PWAT * (kg/m2)
Mean Sea Level msl * (hPa)
2m temperature t2m * (◦C)
2m dew point temperature d2m * (◦C)
10m component of wind u10m * (ms−1)
10m v component of wind v10m * (ms−1)

• Critical Success Index (CSI) (Donaldson et al., 1975) is a categorical metric that takes
into account various elements of the confusion matrix, similar with F1-score having the
value as TPk

TPk+FNk+FPk
.

• Heidke Skill Score (HSS) (Woo & Wong, 2017) as stated by (Hogan et al., 2010), is more
equitable in evaluating the forecasting performance. Higher HSS means better performance
and a positive HSS indicates that a forecast is better than a random-based forecast. HSS is
calculated as 2×(TPk×TNk−FNk×FPk)

FP 2
k+TN2

k+2×TPk×FNk+(FPk+TNk)(TPk+FPk)
.

• Accuracy (ACC) provides a comprehensive assessment of how accurately the model pre-
dicts outcomes across the entire dataset.

• Probability of Detection (POD) is a recall calculated as TPk

TPk+FPK
.

• False Alarm Ratio (FAR) (Barnes et al., 2009) represents the number of false alarms
in relation to the total number of warnings or alarms, indicating the probability of false
detection. It is computed as FNk

TPk+FNk

• Bias quantifies the ratio between the observed frequency of a phenomenon and the fre-
quency predicted by the forecasting model. TPk+FPk

TPk+FNk
. If the value is greater than 1, it

signifies that the forecast model predicts the occurrence more frequently than the actual
phenomenon. Consequently, a bias value closer to 1 indicates a more accurate forecast.

For accuracy (Acc), our model performs lower than the baseline deep learning models but higher
than NWP. However, it’s important to note that accuracy may not provide realistic insights in an
extremely imbalanced case. If the model predicts all instances as no-rain, it could achieve a better
score. For probability of detection (Pod), our model ranks second only to NWP and outperforms
all deep learning models. In terms of critical success index (CSI) and Heidke skill score (HSS), our
model consistently outperforms the baseline models, as discussed earlier. The false alarm ratio (Far)
measures whether the forecasting model predicts an event more frequently than it actually occurs.
Our model exhibits higher but acceptable values in the rain category compared to other deep-learning
models, reflecting the trade-off between enhanced forecasting ability and overforecast. In the heavy
rain category, our model’s bias is less than 1 and closer to 1, indicating a more accurate forecast.

A.5 COMPARISON WITH FOURCASTNET

For the Korea dataset, our model exhibits superior performance to FourCastNet in both rain CSI
and heavy rain CSI metrics, with a marginal shortfall in rain HSS, where it trails by 1.8% behind
FourCastNet. It is important to highlight that FourCastNet’s predictive capability does not surpass
that of NWP algorithms for heavy rain scenarios.
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Figure 3: The architecture of Swin-Unet, which is composed of encoder, bottleneck, decoder and
skip connections. Encoder, bottleneck and decoder are all constructed based on swin transformer
block.

Regarding the Germany dataset, our model demonstrates an advancement over FourCastNet in all
metrics for both rain and heavy rain, whereas FourCastNet does not demonstrate an advantage over
NWP algorithms in heavy rain predictions.

For the China dataset, our model demonstrates comprehensive outperformance across all metrics
when compared to FourCastNet. While FourCastNet posts a modest 3.6% gain over NWP meth-
ods in heavy rain forecasting, our approach achieves a substantial 31.8% improvement, marking a
significant enhancement in predictive accuracy.

A.6 PERFORMANCE ON DIFFERENT LEAD TIME ON KOREA DATASET

As shown in Figure 4, wthin the lead time interval of 6 to 20, we observe that the CSI for rain reaches
a peak at a lead time of 10 before exhibiting a declining trend, whereas the CSI for heavy rain peaks
at a lead time of 9, subsequently showing a fluctuating trajectory.

Expanding the analysis to a lead time range of 6 to 87, both rain and heavy rain CSI exhibit parallel
trends, with heavy rain demonstrating superior performance over extended lead times, likely reflec-
tive of inherent data characteristics. Across all evaluated lead times from 6 to 87, our model’s mean
performance is enhanced, underscoring the comprehensive superiority of our modeling approach.
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Table 7: Evaluation metrics on three datasets. Best performances are marked in bold. ’↑’ indicates
that higher scores are better, ’↓’ indicates that higher scores are worse.

Rain Heavy Rain

Acc↑ POD↑ CSI↑ FAR↓ Bias HSS↑ Acc↑ POD↑ CSI↑ FAR↓ Bias HSS↑

Korea

NWP 0.747 0.633 0.263 0.690 2.042 * 0.985 0.055 0.045 0.795 0.266 *
U-Net 0.860 0.430 0.305 0.489 0.841 0.387 0.987 0.001 0.001 0.750 0.002 0.001

ConvLSTM 0.860 0.446 0.312 0.492 0.878 0.395 0.986 0.011 0.010 0.874 0.083 0.018
MetNet 0.853 0.457 0.307 0.517 0.946 0.384 0.987 0.013 0.012 0.805 0.067 0.023

Ours 0.832 0.559 0.322 0.569 1.299 0.388 0.979 0.067 0.048 0.908 0.729 0.068

Germany

NWP 0.728 0.925 0.338 0.652 2.657 0.252 0.980 0.434 0.178 0.767 1.863 0.173
U-Net 0.903 0.631 0.495 0.305 0.908 0.605 0.990 0.053 0.051 0.412 0.090 0.095

ConvLSTM 0.896 0.623 0.475 0.334 0.935 0.583 0.990 0.048 0.045 0.566 0.111 0.085
MetNet 0.895 0.653 0.483 0.349 1.003 0.590 0.990 0.000 0.000 0.694 0.001 0.001

Ours 0.884 0.811 0.513 0.418 1.393 0.610 0.989 0.280 0.207 0.557 0.632 0.338

China

NWP 0.843 0.433 0.164 0.792 2.082 0.123 0.903 0.348 0.110 0.861 2.512 0.089
U-Net 0.914 0.071 0.060 0.725 0.261 0.084 0.950 0.053 0.042 0.821 0.294 0.064

ConvLSTM 0.909 0.083 0.066 0.756 0.339 0.088 0.941 0.099 0.066 0.837 0.607 0.094
MetNet 0.915 0.086 0.072 0.680 0.268 0.106 0.947 0.104 0.076 0.778 0.466 0.118

Ours 0.873 0.454 0.216 0.708 1.553 0.289 0.943 0.210 0.135 0.727 0.768 0.209

Table 8: Experiment result compared with FourCastNet. Each model undergoes three runs with
different random seeds, and we report the mean, standard deviation (std), and best performance in
terms of CSI and HSS. The best results are highlighted in bold. In the context of the results, ’↑’
indicates that higher scores are better.

Rain Heavy Rain

CSI↑ HSS↑ CSI↑ HSS↑
Mean(Std) Best Mean(Std) Best Mean(Std) Best Mean(Std) Best

Korea
NWP 0.263(±0.000) * 0.045(±0.000) *

FourCastNet 0.314 (±0.016) 0.325 0.391(±0.023) 0.409 0.011(±0.008) 0.017 0.020(±0.014) 0.029
Ours 0.321 (±0.005) 0.326 0.384(±0.007) 0.389 0.052(±0.010) 0.058 0.089(±0.017) 0.097

Germany
NWP 0.338(±0.000) 0.252(±0.000) 0.178(±0.000) 0.173(±0.000)

FourCastNet 0.494 (±0.009) 0.504 0.595(±0.009) 0.601 0.157(±0.034) 0.185 0.265(±0.051) 0.306
Ours 0.514 (±0.003) 0.518 0.609(±0.006) 0.616 0.209(±0.014) 0.224 0.339(±0.020) 0.359

China
NWP 0.164(±0.000) 0.123(±0.000) 0.110 (±0.000) 0.089(±0.000)

FourCastNet 0.163 (±0.006) 0.167 0.219(±0.010) 0.230 0.114(±0.013) 0.129 0.166(±0.023) 0.192
Ours 0.208 (±0.007) 0.216 0.274(±0.014) 0.289 0.145(±0.015) 0.163 0.225(±0.019) 0.246

* For Korea dataset, NWP method’s HSS is not reported. For all NWP method, we only have the mean value.

A.7 VALIDATION LOSS ON GERMANY DATASET

In our ablation study, we visualized the validation loss for different configurations of our model on
the Germany Dataset to assess the impact of each proposed component. The validation loss curve
for the standalone SwinUnet displayed an upward trend, suggesting a potential for overfitting or an
insufficient capture of the dataset’s essential patterns. Conversely, the integration of our proposed
Channel Attention Module (CAM) and Weighted Loss (WL) resulted in a downward trend of the
loss over epochs, indicating effective learning of the data distribution and improved generalizability
of the model.

The CAM, with its targeted focus on salient features, and the WL, which addresses class imbalance,
have shown a discernible positive influence on the model’s learning process, as demonstrated by a
consistent reduction in validation loss. This reduction substantiates our method’s capability to tackle
the specific challenges associated with precipitation forecasting in imbalanced datasets.
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Figure 4: CSI scores of Korea Dataset for rain and heavy rain classification with lead times ranging
from 6 to 87 hours.

Ultimately, the depicted loss curves validate our method’s proficiency in grasping the complexities
of the forecasting task, where the integrated components not only counteract overfitting but also
significantly bolster the model’s forecasting accuracy.
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Figure 5: Valiation loss on Germany Dataset with SwinUnet.
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Figure 6: Validation loss on Germany Dataset with SwinUnet and proposed components: CAM
(Channel Attention Module), WL (Weighted Loss), and MT (Multi-task Learning).
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