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ABSTRACT

Many real-world user queries (e.g. “How do to make egg fried rice?”) could ben-
efit from systems capable of generating responses with both textual steps with
accompanying images, similar to a cookbook. Models designed to generate inter-
leaved text and images face challenges in ensuring consistency within and across
these modalities. To address these challenges, we present ISG, a comprehensive
evaluation framework for interleaved text-and-image generation. ISG leverages a
scene graph structure to capture relationships between text and image blocks, eval-
uating responses on four levels of granularity: holistic, structural, block-level, and
image-specific. This multi-tiered evaluation allows for a nuanced assessment of
consistency, coherence, and accuracy, and provides interpretable question-answer
feedback. In conjunction with ISG, we introduce a benchmark, ISG-BENCH, en-
compassing 1,150 samples across 8 categories and 21 subcategories. This bench-
mark dataset includes complex language-vision dependencies and golden answers
to evaluate models effectively on vision-centric tasks such as style transfer, a chal-
lenging area for current models. Using ISG-BENCH, we demonstrate that recent
unified vision-language models perform poorly on generating interleaved content.
While compositional approaches that combine separate language and image mod-
els show a 111% improvement over unified models at the holistic level, their per-
formance remains suboptimal at both block and image levels. To facilitate fu-
ture work, we develop ISG-AGENT, a baseline agent employing a “plan-execute-
refine” pipeline to invoke tools, achieving a 122% performance improvement.

1 INTRODUCTION

With the proliferation of multimodal language models, it has become apparent that users want mod-
els that can simultaneously generate both texts as well as images (Huang et al., 2016; Miech et al.,
2019). Consider a scenario where a user asks “How to make egg fried rice?” (Figure 1). Answering
this query in language - with a list of steps - is one reasonable answer. A more ecological response
would follow the style of cookbooks; i.e., by creating intermediate images of the cooking process
alongside those steps. Enabling such multimodal responses is possible by leveraging a language
generation model (Yuan et al., 2022; Gómez-Rodrı́guez & Williams, 2023) in tandem with a sep-
arate image generation model (Rombach et al., 2022; Betker et al., 2023; Blattmann et al., 2023).
But the need for dual models slows down inference as both models have to be loaded and run in se-
quence. Many practical applications, such as writing storybooks (Huang et al., 2016) or generating
illustrated instructions (Miech et al., 2019), require generating interleaved images and text.

The community has begun designing unified models with the capability of generating interleaved
texts and images for the aforementioned use cases (Zhou et al., 2024; Li et al., 2024b; Chern et al.,
2024). However, generating multiple modalities is challenging. The generations between modalities
need to maintain consistency, between multiple images, between multiple sentences, and across the
generated images and sentences. Benchmarks for such challenges are still in their infancy (Chen
et al., 2024d). 1) Previous benchmarks primarily focus on language-dominate tasks, meaning that
queries can be solved with only textual output, thereby not adequately assessing multimodal gener-
ation capabilities (Liu et al., 2024d). 2) The queries in existing benchmarks are free-form without
reference answers, making them ambiguous for evaluating multimodal instruction-following gener-
ation (An et al., 2023). 3) Existing benchmarks mainly use an evaluation paradigm called LLM-as-
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How to make egg fried rice？

1. Prepare Ingredients: Gather rice, 

eggs, vegetables, soy sauce.

2. Cook Rice: Boil and cool rice for 

better texture.

3. Scramble Eggs: Lightly beat and 

scramble eggs in a pan.

4. Sauté Vegetables: Stir-fry vegetables 

until tender.

5. Add Rice and Eggs: Mix rice, eggs, 

and vegetables in pan.

6. Season and Serve: Add soy sauce, 

stir well, and serve hot. 

1. Prepare ingredients. A bowl of rice, eggs, chopped 

green onions, oil, salt to taste, soy sauce.  <image1>

2. Put more oil in the pot for frying two eggs, and fry 

quickly. <image2>

3. Add the beaten cold rice and salt, and stir-fry the rice 

over low heat or turn off the heat.  <image3>

4. Add the chopped green onions just before taking the 

dish off the heat.  <image4>

5. Turn off the heat once the green onions release their 

fragrance.  <image5>

6. Finally, the delicious egg fried rice is ready. 

<image6>
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Figure 1: An illustration of differences of each generative model performance on Õ~ (vision-
language dominate) tasks, with merely text and image output cannot address the user’s problem.
See Section 3.2 for how we define Õ (vision dominate) and ~ (language-dominate). Left: Text
Generation; Middle: Image Generation; Right: Interleaved Text-and-Image Generation.

a-Judge (Chen et al., 2024a; Ye et al., 2024), where GPT4 or equivalent model is used for holistic
evaluation with their pretrained knowledge (Xia et al., 2024). There is a need for more fine-grained
assessment to validate the semantics of each text and image, the consistency between images, the
connection between each text and its neighboring image, etc.

We present INTERLEAVED SCENE GRAPH (ISG), an evaluation framework for interleaved image-
and-text generation. Conceptually, ISG borrows the scene graph representation as the underlying
semantic representation connecting images and text (Krishna et al., 2017; Johnson et al., 2018).
ISG automatically parses queries into a scene-graph-like structure, where text and image blocks
serve as nodes and their relationships as edges. We define a block as a continuous sequence of
text or sequence of image tokens. Based on this graph representation, ISG proposes an evaluation
protocol across four levels of granularity: holistic (evaluates the entire response in its entirety),
structural (evaluates the relationship between blocks), block (evaluates the accuracy within each
block), and image (evaluates the contents of an image). The framework translates user queries into
(TIFA-like (Hu et al., 2023)) interpretable question answers at each level, enabling systematic and
interpretable assessments, and addressing a critical gap in existing research.

Based on ISG, we introduce a benchmark containing user queries with detailed question-answers
for evaluating each query across the four levels. ISG-BENCH consists of 8 categories, 21 subcate-
gories classified by their instruction types, and 1, 150 manually collected samples, all incorporating
both language-vision dependencies and golden answers to solve the above-mentioned problems. All
samples are meticulously collected from previous datasets or built from scratch for high quality.
Unlike existing benchmarks, we prioritize vision-centric tasks, such as style transfer, where the im-
age outputs have specific requirements. Table 1 displays the difference between current interleaved
benchmarks and datasets. To validate the accuracy of our evaluation, we compare our automated
evaluations with human-annotated judgments across all four levels. ISG shows a Pearson similarity
of 0.718 and 0.907, outperforming previous evaluation methods in alignment with humans.

With ISG-BENCH, we evaluate nine accessible interleaved text-and-image generative methods, in-
cluding five recently popular unified models (e.g., Show-o (Xie et al., 2024), Anole (Chern et al.,
2024)), four compositional frameworks (e.g., Claude + SD3 (Esser et al., 2024)). Empirical re-
sults demonstrate that current unified models still exhibit significant room for improvement in both
instruction following and generation quality. Compositional frameworks significantly outperform
unified models in generating high-quality multimodal content, achieving an average holistic score
of 6.262 compared to 2.961 from the best unified model (CoMM-MiniGPT-5). However, they still
fall short at the block and image levels for accurate generation due to their separate understanding
and generation structure, especially in Vision-dominated tasks.

Based on the superior performance of compositional frameworks, we propose ISG-AGENT as a
compositional baseline for future comparisons. ISG-AGENT generates interleaved text and images
through a “Plan-Execute-Refine” pipeline (Wang et al., 2024). Specifically, it first produces a plan
of tool usage and subsequently executes these advanced tools for interleaved generation, followed

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison with existing multimodal interleaved benchmarks. GT: Ground truth. Acc:
Accuracy. MG: Multi-granular. Õ: Image-dominate, ~: Language-dominate, Õ~: Both.

Name #Sample GT. Benchmark Evaluation Fine-grained Levels
Õ ~ Õ~ MLLM Acc MG Holistic Structural Block Image

MMC4 (Zhu et al., 2024) - † ✔ ✔

CoMM (Chen et al., 2024d) - ⋆ ✔ ✔ ✔ ✔ ✔ ✔

OpenLeaf (An et al., 2023) 30 ✔ ✔ ✔ ✔

InterleavedBench (Liu et al., 2024d) 815 ✔ ✔ ✔

MMIE (Xia et al., 2024) 20,103 ✔ ✔ ✔ ✔ ✔

ISG-BENCH (Ours) 1,150 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

† MMC4 contains 101M documents with 571M images.
⋆ CoMM contains 227K documents with 2.28M images in both training and test set.

by a refinement process for better text-and-image alignment and error fixing. Notably, ISG-AGENT
outperforms all other baselines across all four evaluation levels. It achieves an impressive Structural
accuracy of 0.871, markedly outperforming the previous best of 0.385 from Gemini. These results
underline ISG-AGENT’s effectiveness in generating coherent interleaved content, paving the way
for more advanced instruction-following agents in multimodal generation and creative applications.

2 RELATED WORK

Interleaved Text-and-Image Generation. Recent advancements in MLLMs (GeminiTeam, 2023;
OpenAI, 2024; 2023; Li et al., 2024a) and diffusion models (Rombach et al., 2022; Esser et al., 2024;
Flux, 2024) have led to a surge in research aimed at integrating autoregressive architectures (Liu
et al., 2024c; Sun et al., 2024a) for both multimodal understanding (Yue et al., 2024; Li et al., 2023b)
and generation tasks (Ghosh et al., 2024; Huang et al., 2023). For understanding, early research has
effectively integrated visual perception with pre-trained LLMs using simple visual tokenization (Li
et al., 2023a) or projection methods (Li et al., 2023c; 2024a), yielding promising results. Multimodal
generation, on the other hand, was initially achieved using pre-trained text-to-image models (Li
et al., 2024b; Wu et al., 2023) or through an autoregressive process, where generated tokens are
decoded into images (Team, 2024; Chern et al., 2024; Koh et al., 2024). Recently, researchers have
started to explore the integration of Transformers and diffusion models, with the aim of unifying
multimodal understanding and generation tasks within a single framework (Zhou et al., 2024; Xie
et al., 2024; Wu et al., 2024b), demonstrating potential in interleaved generation of texts and images.

Automatic Interleaved Text-and-Image Evaluation. Originating from early text summarization
in NLP (Narayan et al., 2018), QA-based evaluation methods automatically transform prompts into
questions and use them to validate generated content (Durmus et al., 2020; Deutsch et al., 2020;
Eyal et al., 2019). In the multimodal domain, particularly in text-to-image generation, VQA-based
evaluation methods transfer text into atomic questions and conduct VQA to verify generated images,
providing enhanced fine-grained and interpretable benchmark results (Cho et al., 2023; Lin et al.,
2024). Notably, TIFA (Hu et al., 2023) pioneered the use of VQA for automatic evaluation, with
multiple subsequent enhancement (Lu et al., 2024; Ghosh et al., 2024; Cho et al., 2024; Chen et al.,
2024a). However, evaluating interleaved generations remains challenging. Table 1 shows that exist-
ing benchmarks (An et al., 2023; Liu et al., 2024d) heavily rely on zero-shot MLLM-as-a-Judge or
traditional metrics (Chen et al., 2024d;b), leading to rough and coarse-grained assessment results.

3 INTERLEAVED SCENE GRAPH

We introduce ISG (Figure 2), a comprehensive automatic evaluation framework for interleaved
text-and-image generation assessment. Using ISG, we introduce ISG-BENCH, a benchmark for
evaluating image-and-text generation.

3.1 THE EVALUATION FRAMEWORK

The framework automatically interprets queries into a scene-graph-like structure, where text and
image blocks serve as nodes and their relationships as edges. Based on this graph representation, we
can perform comprehensively four-level assessment: holistic, structural, block, and image. At each
level, the framework generates several question-answer pairs that can be used to evaluate whether
a response appropriately answers the query. At the macro level, structural and holistic questions
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Figure 2: ISG first interprets the user’s query into a scene-graph-like structure to enable fine-grained
assessment at three levels: 1) At the structural level, ISG predicts the query’s interleaved structure;
2) At the block level, nodes represent text-image blocks connected by requirement edges; 3) At the
image level, the graph consists of entities, their attributes, and their relationships. Finally, ISG con-
verts each element within the graph structure into questions, evaluates the model’s interleaved output
using a QA module, and subsequently summarizes these results into a comprehensive assessment.

analyze the overall response coherence and quality; while block and image questions assess how
accurately each content module adheres to the user’s instructions.

• Structural questions evaluate whether the response strictly follows the structural requirement in
the user’s query. As shown in Figure 2, given structural requirement “generate image first followed
by an instruction”, the correct structure should consist of 4 images interleaved by 4 text blocks.
We leverage an LLM to predict the generated structure based on the query and subsequently
evaluate answers through direct structural matching.

• Holistic questions assess the overall text-image alignment, coherence, and helpfulness by in-
putting the multimodal query, response, and human-annotated golden answer into an MLLM,
which then outputs judgments on the entire answer. Building on previous work (An et al., 2023;
Liu et al., 2024d), we enhance the process by employing MLLM-as-a-Judge with golden answers
and the “Analyze-then-Judge” Chain-of-Thought (CoT) (Wei et al., 2022). This allows for a more
human-aligned evaluation, assessing generation quality, text-image alignment, and helpfulness to
yield a comprehensive score.

• Block questions evaluate fine-grained details within each block. We initially represent the prompt
P as subject-object-relation tuples (sub, obj, r), such as < Text 1, Image 1, Describe > in the
example of Figure 2, where {sub, obj} are nodes that denotes image or text block and r is edge
that denotes an atomic open-vocabulary requirement. Subsequently, we generate questions from
these tuples and evaluate them using the VQA module, with MLLMs providing “Yes-or-No” and
“1-10 score” answers. We also attempt to use CLIPScore (Hessel et al., 2021) for assessing text-
image relations, but it fails due to the text block exceeding the text encoder’s limit of 77 tokens.

• Image questions assess the semantic content of images. We transform multimodal queries into
dependency-aware tuples that comprise entities, relations, and attributes, each linked to specific
generated images, particularly for vision-dominant tasks such as “Style Transfer” and “Multi-
Angle Object” that have concrete referential answers, whereas the “Painting” task requires only
the accurate generation of the final image. In contrast, tasks such as “HowTo” demand the in-
clusion of specific objects but allow flexibility in other aspects. We categorize tasks based on the
requirement of image generation in the answers as shown in Table 2. These tuples might include
<Image 1, Entity, Cat> and <Image 1, Relation, Cat, on the right of, Dog>. Subsequently, we
employ an LLM to generate questions with dependencies and evaluate image generation using
these questions via a VQA module (Cho et al., 2023).
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Figure 3: Left: An overview of ISG-BENCH. Right: Distribution analysis of textual content length
and image count for queries and golden answers.

Table 2: Task definitions and additional evaluation dimensions for ISG-BENCH. Modal: dominant
modality in response evaluation; Image: the level of accurate image generation requirements.

Task Description Modal Image Subtask # Sample

Style Transfer
Generate a sequence of transformed
images with corresponding text
descriptions.

Õ

Art Style Transfer 50
Scene Attribute Transfer 50
Photo Variation 50
Portrait Variation 50

Image Decomposition Segment input image into visual
elements with text descriptions.

Õ
Realistic Image Object Decomposition 50
Synthetic Image Object Decomposition 50
Semantic Decomposition 50

3D Scene
Transformation

3D Transformation for images Õ
Multi-view Scene Generation 50
Multi-Angle Object Generation 50

Progressive Image
Transformation

Generate a sequence of images
that show gradual changes

Õ
Text-guided Animation 50
Image-guided Animation 50
Attribute-guided Image Generation 50

Temporal Prediction Forecast future or past sequences Õ~
Real-world Simulation 50
Painting Process Generation 50

Image-Text
Complementation

Generate complementary visual or
textual content

Õ~
HowTo 100*
Scientific Phenomenon Explanation 50

Visual Story Telling Tell a coherent narrative story with
images and texts

Õ~
Image-based Visual Storytelling 50
Text-based Visual Storytelling 50
Image & Text-based Visual Storytelling 50

VQA with Image
Generation

Provide texts and relevant images
to answer the question

~
Object Q&A and Explanation 100*
Historical Event/Artifact Analysis 50

 denotes accurate image generation requirement for all objects,  for main objects, and  for no requirement.
* For some datasets, we constructed 100 samples because they are more common in life.

For generating VQA questions in block and image levels, we implemented ISG with few-shot ex-
amples for in-context learning (Dong et al., 2022) and carefully verified these generated questions
against human-annotated ground truth. For the evaluation of ISG-BENCH, refer to Section 4.1, and
for technical details, see Appendix D.1.

3.2 THE BENCHMARK

Based on ISG, we develop the first benchmark, termed ISG-BENCH, for interleaved text-and-image
generation to assess multimodal understanding and generation capabilities across various tasks. As
shown in Table 2, ISG-BENCH consists of a categorically balanced dataset of 1,150 samples, cov-
ering 21 subtasks across 8 daily interleaved generative scenarios. Each sample includes detailed
instructions and structural requirements, such as “Generate four images and provide a brief text
description after your generated image,” to evaluate both instruction-following capability and in-
terleaved generation ability. Every query is designed to be 1) vision-language dependent, meaning
it cannot be addressed using information from a single modality alone, and 2) paired with a care-
fully collected golden reference answer. All samples are collected and manually selected by cross-
validation and BertScore (Zhang et al., 2019) for similarity filtering, as detailed in Appendix B.3.
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Data collection and quality control. Our benchmark collections involve three main stages.
First, we review existing datasets according to the task definition and retrieve high-quality, non-
overlapping vision metadata to serve as the visual information in both the query and the golden an-
swer, with some data collected by ourselves (e.g., “Multi-View Scene Generation”). We then curate
natural language queries that reference the images for automatic evaluation. Each query specifies
the required structure of the output. MLLMs are employed to generate textual answers for each
task, which are subsequently reviewed by human annotators to ensure accuracy. Due to concerns
about data contamination in foundation models (Balloccu et al., 2024; Xu et al., 2024), annotators
are instructed to create free-form queries and develop both the query and the corresponding golden
answer from scratch. Finally, we obtain a diverse and high-quality interleaved multimodal bench-
mark with query-answer pairs sourced from various origins. To ensure the quality of our samples,
we conduct cross-validation among different annotators for format consistency and typo checking.
Detailed definitions, the collection pipeline, and additional examples are provided in Appendix B.

Modality Specific Assessment. We categorize each task within our ISG-BENCH into three modes
(i.e., Image, Language, and Both) for their primary modality contributing to the output via decision
tree (Figure 8). For example, the “HowTo” task requires both vision and language content to solve
the problem, and “Art Style Transfer” requires mainly on vision generation; while “VQA with Image
Generation” primarily relies on textual output, where the quality and accuracy of answers is mainly
attributed to the language component, with generated images serving as complementary information.

4 EXPERIMENTS AND ANALYSIS

We first validate ISG against human annotations (Section 4.1), demonstrating its alignment with
human judgments. Our subsequent evaluation of interleaved generation (Section 4.2) reveals the
limitations of unified models and moderate success of compositional approaches, underscoring cur-
rent challenges in instruction-following for interleaved generation.

4.1 EVALUATING ISG-BENCH

Experiment Setups. We leverage one of the most popular MLLMs, GPT-4o (OpenAI, 2024), as
question generation and VQA module of our ISG. We conduct experiments to verify the perfor-
mance of ISG in each step with varying sample sizes and metric settings, as shown in Table 3.

Figure 4: Distributions of VQA
instances in Block-level (Upper)
and Image-level (Lower).

All results are compared with human-annotated ground
truth with cross-validation. Figure 4 visualize the distribu-
tions of VQA instances in our ISG-BENCH. For the question
generation module, we classify a result as correct if it matches
the subject and object, with a BertScore (Zhang et al., 2019)
higher than 0.8 compared to the ground truth. Our experiments
include two settings for VQA module in ISG with an “Analyze-
then-Judge” COT framework (Wei et al., 2022): “1-10” scor-
ing (Lin et al., 2024) and direct “Yes-or-No” (Cho et al., 2023).
We also conduct ablation experiments on vision inputs or cap-
tion images as textual information and few-shot prompting to
probe the best setting of ISG. For MLLM-as-a-Judge, we fol-
low previous studies to use human agreement as the evaluation
metric (Chen et al., 2024a;e).

ISG demonstrates commendable performance across all
tasks in each module. As illustrated in Table 3, each mod-
ule of ISG aligns well with human annotation. For structural,
ISG exhibits consistent excellence across all tasks, indicating
robust potential for capturing structural requirements in interleaved generation instructions. In both
Q-Gen and VQA modules, ISG successfully extracts fine-grained requirements with high fidelity
to ground truth. For the VQA module, the scoring approach consistently outperforms the “Yes-or-
No” method, suggesting that more nuanced judgments align better with human evaluations, par-
ticularly in ambiguous cases as highlighted in Appendix D.1.1. Vision-guided tasks consistently
underperform compared to other tasks, with a noticeable decline in both Q-Gen and VQA modules,
underscoring the challenges in automatically evaluating fine-grained aspects of interleaved text-and-
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Table 3: When evaluated against human annotations, ISG showed strong alignment with human
judgments across all levels. All results for Pearson Similarity have a P-value lower than 0.005. We
bold better results in two comparative experiments. Q-Gen: Question generation module; Acc+BS:
Accuracy and BertScore for block and question matching respectively.

Eval Level Eval Task Metric Size Avg. Õ Õ~ ~
Style Prog. 3D Dec. I-T C.. Temp. VST VQA

Structural Direct Match Accuracy 1,150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Block
Q-Gen Acc+BS 1,150 0.967 0.955 0.988 0.890 0.970 0.993 0.980 0.980 0.980

VQA Score Pearson 1,092 0.718 0.482 0.529 0.581 0.850 0.778 0.816 0.873 0.835
VQA YesNo 0.446 0.169 0.386 0.528 0.382 0.555 0.388 0.634 0.529

Image Q-Gen Acc+BS 1,150 0.811 0.949 0.761 0.553 0.925 0.884 0.817 0.792 -
VQA YesNo Accuracy 4,871 0.907 0.851 0.873 0.863 0.937 0.968 0.921 0.934 -

Holistic w. GT Agreement 260 0.730 0.720 0.620 0.660 0.600 0.950 0.750 0.640 0.900
w.o. GT 0.537 0.600 0.460 0.450 0.400 0.900 0.600 0.370 0.800

Table 4: Ablation study on vision input and few-shot help tuple construction in both block-level and
image-level. For language-dominate tasks, we do not require accurate image generation.

Eval Level Vision Few-Shot Avg. Õ Õ~ ~
Style Prog. 3D Dec. I-T C. Temp. VST VQA

Block

✘ ✘ 0.631 0.635 0.801 0.495 0.778 0.725 0.621 0.787 0.207
✘ ✔ 0.967 0.955 0.988 0.890 0.970 0.993 0.980 0.980 0.980
✔ ✘ 0.671 0.662 0.858 0.575 0.810 0.739 0.649 0.848 0.224
✔ ✔ 0.942 0.934 0.959 0.822 0.969 0.981 0.970 0.949 0.954

Image

✘ ✘ 0.688 0.873 0.751 0.497 0.908 0.575 0.526 0.684 -
✘ ✔ 0.804 0.902 0.796 0.518 0.905 0.869 0.859 0.780 -
✔ ✘ 0.711 0.943 0.755 0.535 0.951 0.586 0.539 0.671 -
✔ ✔ 0.811 0.949 0.761 0.553 0.925 0.884 0.817 0.792 -

image generation. In holistic evaluation, leveraging a golden answer significantly outperforms the
zero-shot judging setting of MLLMs, especially in vision-guided tasks, yielding an average of 20%
improvement in human agreement.

Ablation Study on Vision Input and Few-shot Prompting. We evaluate our ISG under two con-
ditions: vision input and few-shot examples, for a more comprehensive study. As shown in Table 4,
multimodal input varies in block-level and image-level question generation, with a slight enhance-
ment in image-level question generation. In addition, few-shot in-context learning provides dramatic
enhancement on both tasks, improving performance by more than 30% in block-level and 10% in
image-level tasks, especially in vision-language guided tasks by limiting requirements for the pre-
dicted generative content. For language-guided tasks, few-shot learning brings a 70% enhancement
in block-level performance, further demonstrating the accurate evaluation framework establishment
for this type of creative generation task.

4.2 BENCHMARKING INTERLEAVED TEXT-AND-IMAGE GENERATION

Experiment Setups. We evaluate 10 frameworks capable of generating interleaved text-and-image
content, four recently released unified models, Show-o1 (Xie et al., 2024), Anole (Chern et al.,
2024), Minigpt-5 (Li et al., 2024b), CoMM-Minigpt-5 (Chen et al., 2024d), SEED-LLaMA (Li
et al., 2023b) as well as two compositional settings, using Gemini-1.5-Pro (GeminiTeam, 2023)
and Claude-3.5-Sonnet (Anthropic, 2024) as a multimodal preceptor2 and SD3 (Esser et al., 2024)
as its generator, with SD2.1 (Rombach et al., 2022) for ablation study. For our ISG-AGENT, we
use GPT-4o for planning and verification agent, and use Claude-3.5-Sonnet for tool selector, with
SD3 as image generator and multiple tools (UltraEdit(Zhao et al., 2024), DynamiCrafter(Xing et al.,
2023), SV3D (Voleti et al., 2024), DreamMover (Shen et al., 2024)). As for ISG, we follow the best-
performed setting in Section 4.1 for a completely automatic evaluating setting. Refer to Appendix
D for detailed experiment setups.

Unified models underperform in accurate interleaved generation. As illustrated in Table 5, all
unified models exhibit significant deficiencies in following our instructions to generate interleaved

1Since Show-o’s interleaved generation scripts are unavailable and their current checkpoint lacks multiple-
image generation capability, we generate the whole answer via multi-turn dialogues.

2Given that AzureOpenAI filters most of our prompt when prompting them to generate caption for image
generation, we do not evaluate GPT-4o (OpenAI, 2024) here.
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Table 5: Evaluating interleaved text-and-image generation with ISG for structural and holistic level.
depicts a unified model. depicts compositional framework.

Model Avg. Õ Õ~ ~
Style Prog. 3D Dec. I-T C. Temp. VST VQA

St
ru

ct
ur

al
Show-o 0.295 0.320 0.253 0.380 0.000 0.195 0.700 0.080 0.433
Anole 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000
Minigpt-5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CoMM-Minigpt-5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Seed-Llama-14b 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Claude 0.323 0.000 0.000 0.030 0.760 0.313 0.500 0.000 0.980
Gemini 0.385 0.005 0.093 0.000 0.959 0.453 0.549 0.107 0.913
ISG-AGENT 0.871 0.944 0.967 0.788 0.902 0.800 1.000 0.987 0.577

H
ol

is
tic

Show-o 2.329 2.112 2.407 1.434 2.868 2.056 2.578 3.315 1.863
Anole 2.810 2.931 2.764 1.850 1.485 3.209 2.575 2.968 4.695
Minigpt-5 2.787 2.161 3.147 1.793 2.538 2.722 2.732 2.909 4.292
CoMM-Minigpt-5 2.961 2.602 3.085 2.237 3.090 2.523 2.720 2.874 4.557
Seed-Llama-14b 2.388 1.837 3.298 1.518 3.689 1.944 1.778 2.842 2.200
Claude & SD3 6.254 5.179 6.435 3.874 7.306 7.912 5.290 6.168 7.864
Claude & SD2.1 5.803 4.908 4.332 3.818 6.932 7.566 5.819 5.679 7.370
Gemini & SD3 5.827 4.887 6.594 2.677 7.264 6.370 5.256 5.681 7.889
Gemini & SD2.1 5.708 5.025 6.205 2.936 7.024 6.549 4.570 5.526 7.828
ISG-AGENT 6.262 5.873 6.459 4.887 7.582 6.932 4.540 7.030 6.795

Human 9.265 9.215 9.509 9.352 8.972 9.528 9.484 9.299 8.764

Table 6: Evaluating interleaved generation with ISG for block and image level evaluation. We do
not report image-level evaluation for language-dominate task “VQA”. depicts a unified model.

depicts compositional framework.

Model Avg. Õ Õ~ ~
Style Prog. 3D Dec. I-T C. Temp. VST VQA

B
lo

ck

Show-o 1.962 1.719 2.087 1.351 1.000 1.632 4.421 1.233 2.252
Claude & SD3 2.962 1.000 1.000 1.048 4.904 3.380 3.357 1.000 8.011
Claude & SD2.1 2.870 1.000 1.000 1.065 4.513 3.356 3.013 1.000 8.011
Gemini & SD3 3.081 1.018 1.500 1.000 5.077 4.204 3.533 1.434 6.885
Gemini & SD2.1 2.982 1.018 1.400 1.000 4.696 4.069 3.429 1.334 6.908
ISG-AGENT 5.515 5.391 6.181 6.081 4.243 6.408 6.816 5.678 3.321

Human 7.611 7.204 6.363 7.213 7.517 8.517 8.453 7.788 7.832

Im
ag

e

Show-o 0.078 0.056 0.138 0.020 0.000 0.026 0.265 0.042 -
Claude & SD3 0.116 0.000 0.000 0.027 0.484 0.000 0.302 0.000 -
Claude & SD2.1 0.104 0.000 0.000 0.014 0.432 0.000 0.281 0.000 -
Gemini & SD3 0.113 0.001 0.071 0.000 0.308 0.086 0.301 0.023 -
Gemini & SD2.1 0.150 0.001 0.060 0.000 0.576 0.092 0.276 0.045 -
ISG-AGENT 0.574 0.538 0.752 0.359 0.617 0.368 0.670 0.713 -

Human 0.813 0.781 0.829 0.870 0.677 0.908 0.896 0.734 -

text-and-image content. Many models produced only one to three images, while some failed to
generate any images at all. Consequently, these models could not be subjected to block-level and
image-level evaluation protocols. In terms of holistic evaluation, the models demonstrated superior
capabilities in language-dominant tasks, while notably underperforming in vision-dominant tasks.
This disparity further proves the hypothesis that current training datasets for unified models lack
sufficient vision-dominant instruction tuning samples, such as those for “Style Transfer” and “Image
Decomposition”. Notably, Show-o, as one of the first unified autoregressive models, demonstrates
strong structural accuracy but suffers from hallucinations — generating images based on system
prompts rather than user instructions, as illustrated in Figure 39. Similarly, Anole achieves SOTA
performance among unified models, highlighting the promise of its architectural design.

Vision-dominated tasks challenge all models. Given that these compositional frameworks per-
ceive images and generate images separately, i.e., not end to end, meaning that they naturally cannot
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Table 7: Ablation study for ISG-AGENT in refinement module and advanced tools.
Ablation Avg. Õ Õ~ ~

Refine SOTA Tools Style Prog. 3D Dec. I-T C. Temp. VST VQA
St

ru
.

✘ ✔ 0.883 0.945 0.967 0.780 0.910 0.899 1.000 0.987 0.573
✔ ✔ 0.876 0.944 0.967 0.788 0.902 0.840 1.000 0.987 0.577

B
lo

ck ✔ ✘ 5.155 5.013 5.615 6.833 3.229 6.031 5.784 3.541 5.198
✘ ✔ 5.366 5.206 6.035 6.031 4.248 6.298 6.771 5.283 3.055
✔ ✔ 5.515 5.391 6.181 6.081 4.243 6.408 6.816 5.678 3.321

Im
ag

e ✔ ✘ 0.554 0.585 0.732 0.518 0.504 0.318 0.614 0.605 -
✘ ✔ 0.598 0.540 0.752 0.530 0.620 0.366 0.665 0.714 -
✔ ✔ 0.574 0.538 0.752 0.359 0.617 0.368 0.670 0.713 -

H
ol

is
tic ✔ ✘ 5.433 5.477 6.024 4.544 6.630 5.971 3.980 5.585 5.256

✘ ✔ 5.974 5.418 5.489 4.682 7.630 6.736 4.502 6.631 6.704
✔ ✔ 6.262 5.873 6.459 4.887 7.582 6.932 4.540 7.030 6.795

perform these tasks well such as accurate image editing due to their inherent structure. On the other
hand, although these unified models have the potential to understand and generate images in an end-
to-end manner and announce their capability in vision generative tasks such as “Image Generation”
or “Image Editing”, they fall short in understanding multimodal queries to generate interleaved con-
tent with multiple images. As shown in Figure 6, the best unified model Anole fails to understand
the output format and deviates from the context of input images, demonstrating their deficiency in
generating images in vision in-context learning (Sun et al., 2024b).

MLLM-as-a-Judge cannot evaluate fine-grained accurate generation. The inconsistency be-
tween holistic evaluation results and those at three fine-grained levels, as illustrated in Tables 5 and 6,
reveals a notable limitation in MLLM-as-a-Judge to comprehensively assess responses, even when
provided with both the user’s instruction and correct golden answer. Specifically, Judge MLLM
struggles to evaluate responses according to fine-grained criteria, such as output structure (includ-
ing image count) and the detailed text-image relationships stipulated in the prompt. Furthermore,
our analysis of the results presented in Table 7 uncovers an inherent bias within MLLM-as-a-Judge,
namely “image-quality bias”, where higher scores are consistently awarded to responses featuring
higher-quality image content, despite these responses potentially violating the user’s instructional re-
quirements and judging guidelines. This bias demonstrates that MLLM-as-a-Judge, even provided
with a golden answer, still cannot properly perform accurate assessments on interleaved responses
that adhere to specified requirements.

5 ISG-AGENT: DESIGNING A BASELINE AGENT

Although unified generation models (Chern et al., 2024; Zhou et al., 2024; Team, 2024) show po-
tential in multimodal interleaved generation, generating interleaved text-and-image content remains
challenging, even after fine-tuning. Inspired by previous compositional frameworks for vision gener-
ative tasks (Gupta & Kembhavi, 2023; Surı́s et al., 2023; Ma et al., 2024), we propose ISG-AGENT,
a baseline agent for future work to use for the benchmark.

5.1 AGENT SETUP

Figure 5 provides an overview of ISG-AGENT, which consists of three components—planning,
execution, and refinement—that work collaboratively for interleaved text-and-image generation.

• Planning. This component acts as the interface for interpreting the user’s multimodal query and
generating a corresponding plan for tool usage in JSON format. The plan outlines sequential steps
that primarily involve tool invocation. By leveraging an MLLM as the backbone, it ensures the
creation of an accurate interleaved generation plan that strictly adheres to the user’s instructions,
including specifications for fine-grained text-image block requirements. Each step includes clear
tool execution functions and natural language descriptions for subsequent tool usage.

• Tool-usage. This component is responsible for executing tools with detailed logs (Schick et al.,
2024). At each step, it selects the most appropriate tools from the tool library and provides refined,
descriptive text and images to the designated tool, such as a Vision-Language Model (VLM) for

9
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Planning

“Create 4 versions of this 

image in 4 artistic styles 

in order: Crayon, French, 
Expressionism, Mosaic.”

Tool-usage 

…

“is in Expressionism style, 

with vivid colors.”

“is in Mosaic style, pattern 

resembling small tiles.”

Refinement
User Request

Task Planning

Caption: 

using mllm's

ability to 

caption …..

Call tool: 

transfer the 

image style 

to ….

…

Tool Selection

❶ Caption ❷ Editing

Tool Library

Image caption Image editing 

Image generation 3D transformation 

Content Generation

“is in Crayon style, 

with colorful pattern.”

“is in French style, in 

classic ink drawing.”

“is in Mosaic style, 

with small tiles and 

bricks.”

“I apologize I do 

not see the image”?

❸ Caption

Error-log 

Self Correction

“is in Crayon style, colors 

bright and layered.”

“is in French style, 

reminiscent of classic ink 

drawing.”

Figure 5: An overview of ISG-AGENT.

captioning and diffusion models for image generation. To avoid potential deviations during tool
utilization, the agent is designed to generate descriptions that closely align with the instructions
specifically for tool-calling.

• Refinement. This component is responsible for reviewing and enhancing the quality of the gen-
erated content from the previous step by analyzing error messages or improper generation and
addressing them by reconstructing the erroneous steps with more detailed and precise execution
instructions until the issues are resolved (Wu et al., 2024a). Additionally, this agent refines the
text by transforming pronouns, adding conjunctions, and removing repetitive descriptions to im-
prove consistency and textual quality, thus creating more coherent and text-image-aligned content
instead of several discrete fragments.

This “Plan-Execute-Refine” pipeline for interleaved text-and-image generation ensures that the final
output closely adheres to the user’s instructions while autonomously handling a variety of tasks
effectively. We provide two examples of ISG-AGENT’s performance in Figures 37 and 38. For
further technical details, please refer to Appendix D.2.

5.2 EXPERIMENT RESULT

ISG-AGENT outperforms in vision-dominated tasks while falling short in language-guided
tasks. As shown in Table 6, ISG-AGENT strictly follows users’ requirements to generate inter-
leaved content, achieving comparative results to human’s golden answer in various tasks in both
block-level and image-level, especially in vision-dominated tasks like “Style Transfer” and “3D
Scene”. The SOTA results in “Progressive Transformation” also demonstrate good coherence of the
image content, even accommodate to human-collected answers. Although LLM+Diffusion frame-
works fall short in accurate instruction-following, they achieve SOTA results in holistic evaluation in
some language-dominate tasks, demonstrating their high generation quality of textual information.

Enhanced components bring improvement to general response quality. The comparative analy-
sis between two image generation models (Table 6) and ablation study on tools (Table 7) consistently
demonstrates superior performance across various task levels when employing enhanced compo-
nents, thereby underscoring the importance of advanced tools in producing more accurate and high-
fidelity content. Furthermore, the incorporation of a refinement module significantly contributes to
improved text-image alignment, substantially enhancing both block-level and holistic performance,
which highlights the potential for optimizing individual components to achieve precise interleaved
generation within a compositional framework.

6 CONCLUSION

This paper advances the field of evaluating interleaved text-and-image generation by introducing the
first automatic multi-granular evaluation framework INTERLEAVED SCENE GRAPH and proposing
ISG-BENCH with 1,150 multimodal queries paired with high-quality golden answers over 8 diverse
tasks, as well as an agent framework ISG-AGENT for exploring this task. Our comprehensive study,
which includes assessments of ten cutting-edge multimodal interleaved generative frameworks, of-
fers crucial insights into current performance and establishes a solid foundation for future research
in Appendix A. We emphasize the importance of continued efforts in developing better interleaved
generative models and better evaluation frameworks.
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A DISCUSSIONS AND FUTURE WORKS

Improving Unified Models with Advanced Interleaved Datasets. Our results highlight the poten-
tial of unified autoregressive model structures like Anole (Chern et al., 2024) and Show-o (Xie et al.,
2024), while revealing substantial room for improvement in their instruction following and accurate
generation capabilities. This underscores the need for dedicated interleaved datasets, particularly
for vision-dominant tasks. Current datasets, limited to unimodal tasks or loosely aligned vision-
language pairs (Chen et al., 2024d), inadequately address the challenges of generating coherent
interleaved content. Additionally, existing interleaved datasets are predominantly language-centric,
failing to establish robust vision-language dependencies crucial for enhanced multimodal under-
standing and generation. In this context, our compositional agent, ISG-AGENT, shows promise as
a pipeline for synthetic interleaved instruction tuning and vision-centric data, potentially advancing
the development of unified generative models.

Improving Evaluation Framework for Transparency and Reliability. Although we have care-
fully built the whole benchmark from scratch with cross-validation and evaluated the reliability of
these generative models in the question generation and VQA module, concluding that it’s practical to
use them as evaluators, the potential trustworthiness problem of LLMs should be noted as they still
make mistakes in evaluation. Moreover, due to their inherent structure, their evaluation lacks trans-
parent and interpretable results. Therefore, a future direction lies in reducing the AI models in the
evaluation process, like Task Me Anything (Zhang et al., 2024a), to synthetically generate questions
paired with answers to evaluate model performance with highest truthfulness and confidence.

A Flexible and Integrative Compositional Strategy. In this study, we explore a compositional
agent strategy (Xiao et al., 2024) that integrates diverse model modules to generate interleaved multi-
modal content. Experimental results indicate that further enhancing each sub-module’s performance
may significantly improve the overall generative capabilities (Ma et al., 2024). Consequently, the
compositional model not only demonstrates high flexibility and adaptability but also serves as a piv-
otal component in the advancement of unified models, particularly by functioning as a synthetic data
pipeline to facilitate interleaved dataset construction. By leveraging high-quality generated content,
this synthetic dataset further augments the generalization capabilities of unified multimodal mod-
els. Thus, its application not only contributes to exploring the upper-performance bounds of current
models but also provides valuable insights and guidance for the design and optimization of future
unified models.

Trustworthiness of Interleaved Generation. While ISG-BENCH provides a strong foundation
for evaluating accurate multimodal interleaved generation, a critical yet underexplored aspect is
trustworthiness (Huang et al., 2024) within these models. However, evaluating trustworthiness for
interleaved generation presents several key challenges: 1) Previous research (Liu et al., 2023; Zhang
et al., 2023; Huang & Sun, 2023) mainly focus on single-modality generative models (e.g., LLMs),
while challenges across text-and-image are not well addressed. 2) Another significant challenge is
assessing the robustness of interleaved generation models against adversarial inputs (e.g., jailbreak
attacks (Wei et al., 2024)) or unexpected variations in prompts (Zhu et al., 2023). These models may
produce misleading or harmful outputs when manipulated through subtle alterations in the input text
or images. Evaluating a model’s resistance to such attacks is particularly difficult in a multimodal
setting, as an attack could target just one modality (e.g., a slight change in a word or a pixel) and
still cause cascading effects on the overall output.

B DETAILED ISG-BENCH CONSTRUCTION

B.1 GENERAL INFORMATION

As shown in Figure 3, our benchmark are first categorized by dominated modal, i.e., Vision, Lan-
guage and Both, followed by 8 categories and 21 sub-categories classified by their definitions. All
samples in ISG-BENCH are featuring multimodal input (except one category) with most images
collected from existing datasets and text content manually constructed. While MLLMs were used
to generate golden answers for some tasks, these underwent thorough human refinement to ensure
benchmark accuracy and quality. We provide all MLLM prompts used, and all image-text content
was safety-reviewed to ensure benchmark security, quality, and transparency. Refer to Section B.3
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Figure 6: Case study evaluation performed by ISG-BENCH, with each generation resulting to a
four-level scoring sheet. Mini-GPT5 and Seed-14B fail to generate interleaved content, while Anole
generates low-quality images.

Figure 7: Comparative performance of unified models and compositional frameworks. All
interleaved generative methods largely fall behind human-annotated golden answers.

for human annotation details, Section C for additional quantitative analysis, and Section C.2 for
NSFW evaluation results.

B.2 TASK DEFINITION AND SAMPLE COLLECTION

In this section, we provide detailed definitions, collecting pipelines including source datasets and
how we collect golden answers, as well as examples for each task in our ISG-BENCH, aiming to
provide transparent and detailed construction.

B.2.1 VISUAL STORY TELLING

This task involves telling a story based on the input. The goal is to generate a coherent narrative se-
quence that combines both visual and textual information from the image. Previous articles required
highly specific design frameworks to accomplish visual storytelling tasks (Liu et al., 2024b; Maha-
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Figure 8: Tasks are classified by task dependency, according to the removal of one modal.

rana et al., 2022; Liu et al., 2024a), whereas the unified model offers a more general framework that
is adequate for achieving the same goal.

Image-based Visual Storytelling. In this task, we benchmark the capability of image under-
standing, narrative generation, and creativity by presenting models with input images. Based on its
understanding of the input images and its creativity in continuing the story, the model is expected to
generate a sequence of image-text pairs. Each image should represent a scene in the story, and each
accompanying text should describe the content of the image while also linking it to the preceding
and following images. We provide an example of a golden answer in Figure 40.

We utilize images from the StorySalon dataset (Liu et al., 2024a), which offers a rich collection of
videos and e-books featuring diverse characters, storylines, and artistic styles. Captions for each
image, which include connections to the surrounding context, are generated by GPT-4o using the
template shown in Figure 9.

Task: Generate contextually connected captions for each image.
Input: Images.
Output: Short captions that describe the storyline depicted in
each image while seamlessly connecting to the surrounding context.
Start with ’image1.’, ’image2.’ and so on.
Here are the images:[INSERT IMAGES]

Figure 9: Prompt - Visual Storytelling.
Text-based Visual Storytelling. In this task, we benchmark the capability of textual understanding,
narrative generation and creativity by presenting models with texts. Based on the input text and its
creativity in continuing the story, the model is expected to generate a sequence of image-text pairs.
Each image should represent a scene in the story, and each accompanying text should describe the
content of the image while also linking it to the preceding and following images. We provide an
example of a golden answer in Figure 41.

We utilize images from the StorySalon dataset (Liu et al., 2024a), where each image is accompanied
by a short caption. Captions for each image, which include connections to the surrounding context,
are generated by GPT-4o using the template shown in Figure 9.

Image & Text-based Visual Storytelling. In this task, we benchmark the capability of mul-
timodal understanding, narrative generation and creativity by presenting models with image-text
pairs. Based on its understanding of the input images, the text hints for subsequent episodes, and its
creativity in continuing the story, the model is expected to generate a sequence of image-text pairs.
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Each image should represent a scene in the story, and each accompanying text should describe the
content of the image while also connecting it to the preceding and following images. We provide an
example of a golden answer in Figure 42.

We utilize images from the StorySalon dataset (Liu et al., 2024a), which offers a rich collection of
videos and e-books featuring diverse characters, storylines, and artistic styles. Captions for each
image, which include connections to the surrounding context, are generated by GPT-4o using the
template shown in Figure 9.

B.2.2 VQA WITH IMAGE GENERATION

Presented with an image and a question, the model is supposed to not only provide a textual answer
but also generate a new, relevant image to support or illustrate its response.

Object Q&A and Explanation. In this task, we benchmark the capability of explanatory and
knowledge understanding. It involves providing a model with a mixed input of text and an image,
where the text includes a question about the image’s content. The model is required to identify the
subject in the image and generate an interleaved output of text and images that offers a thorough
explanation about the subject. Examples can be found in Figure 43.

In this task, we focus on daily object explanations such as animals, plants, insects, daily items and
electrical devices. We collect our image data from the Internet using Google and Bing. Provided
reference answer to each question is generated by GPT-4o. The prompt to get this reference answer
is the same as the original question in our benchmark.

Historical Event Analysis. In this task, we benchmark the capability of cultural interpretation,
knowledge understanding and visual analysis. This task involves providing the model with a mixed
input of text and an image, where the text includes a question about a historical site or artifact
depicted in the image. The model is required to identify the place or artifact, describe its historical
significance, and generate an interleaved output of text and images that offers a comprehensive
analysis. We provide an example of a golden answer in Figure 44.

We collect our image data from the Internet using Google and Bing. Provided reference answer to
each question is generated by GPT-4o. The prompt to get this reference answer is the same as the
original question in our benchmark.

B.2.3 TEMPORAL PREDICTION

The model is required to forecast future states or sequences based on initial conditions or partial
information, such as predicting the progression of a natural phenomenon or the steps in creating a
painting.

Real World Simulation. In this task, we benchmark the capability of commonsense reasoning,
physical understanding and temporal reasoning. This task involves real-world simulation based on
an input image containing both visual elements and text, to generate an image-text sequence that
represents physical world phenomena. Each step in the output sequence should include: an gener-
ated or modified image showing the progression of the action; and accompanying text describing the
change or action taking place. We provide an example of a golden answer in Figure 45.

We use dataset from Panda-70M (Chen et al., 2024c), which contains 70 million high-quality video-
caption pairs across various domains, including animals, scenery, and food. We utilize GPT-4o to
generate descriptions for images extracted from the relevant videos, with prompts shown in Fig-
ure 10.

Painting Process Generation. In this task, we benchmark the capability of artistic knowledge
and temporal reasoning. This task involves generating a sequence of images and text that simulate
the process of creating a painting from start to finish. The model is supposed to produce an image-
text sequence that illustrates the painting process, where each step includes: an image showing the
current state of the painting; and accompanying text describing the techniques, colors, or elements
being added or modified. We provide an example of a golden answer in Figure 46.

We construct a dataset sourced from various painting process videos on YouTube, encompassing
a range of painting styles, including oil painting, sketching, quick studies, and digital painting.
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Task: Generate a caption for all images except the first one.
Input: Image sequences about real-world physical phenomena.
Output: Short captions (10-15 words) describe what is happening
in Image sequences. Focus on the key changes or actions in
physical world phenomena between images. Do not include any other
information.
Here are the images:[INSERT IMAGES]

Figure 10: Prompt - Real world simulation.

Additionally, we employ GPT-4o to generate relevant descriptions of each step in the process. The
prompt template is shown in Figure 11.

Task: Generate a caption for all images.
Input: Image sequences about the painting process.
Output: Short captions (10-15 words) describe the painting stage
in each image. Focus on the main objects, techniques, or elements
being added or modified between images. Do not include any other
information. Start with ’step1:’, ’step2:’, and so on.
Make sure that the number of your answers is equal to the number of
input images.
Here are the images:[INSERT IMAGES]

Figure 11: Prompt - Painting process generation.

B.2.4 IMAGE-TEXT COMPLEMENTATION.

The model must generate images based on textual input, or conversely, produce text that comple-
ments and explains given images. In this task, visual and textual information are synergistically
combined to enhance understanding and communication.

HowTo. In this task, we benchmark the capability of sequential reasoning, task decomposition, and
procedural understanding. Given a high-level instruction or a text-image pair as input, generate a
sequence of image-text pairs that represent steps to accomplish the given task. Each instruction will
describe an action or transformation that should occur in the following frames. The output video
should be consistent with the provided instructions, maintaining coherent transitions and logical
scene progression. We provide an example of a golden answer in Figure 47.

We download HowTo videos from CrossTask (Zhukov et al., 2019) and ChangeIt (Souček et al.,
2022), which cover instructional videos collected for different tasks. We captured the frames of
the key steps from the video as output images. Descriptions are written by GPT-4o with templates
outlined in Figure 12.

Task: Based on the instruction, generate a caption for each image.
Input: Images sequences and instruction about [INSERT QUESTIONS].
Output: Use imperative sentences (10-15 words) describing what is
in each image. Focus on the main objects and their relationships
between images. Do not include any other information. Start with
’1.’, ’2.’ and so on.
Make sure that the number of your answers is equal to the number of
input images.
Here are the images:[INSERT IMAGES]

Figure 12: Prompt - HowTo.
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Scientific Phenomenon Explanation. In this task, we benchmark the capability of scientific
knowledge, analytical thinking and procedural understanding. This task requires the model to an-
alyze an image depicting a natural or scientific phenomenon. The model receives a mixed input
of text and an image, where the text includes a question about how the phenomenon in the image
is formed. The model is expected to identify the phenomenon, describe its formation process, and
generate an interleaved output of text and images that offers a detailed explanation. We provide an
example of a golden answer in Figure 48.

The data for this task is crafted manually and relevant images are also collected from the Internet
using Google and Bing. Reference answers are also generated by GPT-4o with the same prompt as
the original question in our benchmark.

B.2.5 STYLE TRANSFER

This task involves taking an input image with associated text and generating a sequence of trans-
formed images with corresponding text descriptions.

Art Style Transfer. In this task, we benchmark the capability of artistic knowledge, style editing,
creativity, and novelty. The model is supposed to generate style-transferred versions of the input
image in different art periods (e.g., Renaissance, Impressionism, Cubism), or specified artists (e.g.,
Van Gogh, Picasso, Monet), each attached with a style description. We provide an example of a
golden answer in Figure 49.

We use images from UnlearnCanvas (Zhang et al., 2024c), which includes high-resolution stylized
images from 60 different artistic painting styles across 20 different object categories. We directly
use the style name of the image to form the description.

Scene Attribute Transfer. In this task, we benchmark the capability of attribute manipulation and
image editing. The model is supposed to generate a sequence of image-text pairs, where each image
is a transformed version of an input landscape photograph based on specified scene attributes (e.g.,
weather, lighting, time of day, season), and each text describes the applied transformation. Changes
should be photorealistic and faithful to the specified attributes. We provide an example of golden
answer in Figure 50.

We use images from TransientAttributes (Laffont et al., 2014), which includes scene appearances
with 40 transient attributes related to weather, lighting, time of day, season, and more subjective
impressions (e.g. “mysterious” and “soothing”). We manually choose attributes of the image from
the dataset to form the description.

Photo Variation. In this task, we benchmark the capability of image analysis and photo editing.
The model is supposed to generate a sequence of image-text pairs that show various adjustments to
an input photograph, along with descriptive text for each adjustment. Adjustment Categories include
exposure, sharpness, brightness, contrast, color temperature, hue, saturation. Changes should be
high-quality and natural-looking. We provide an example of a golden answer in Figure 51.

We use photos from MIT-Adobe FiveK (Bychkovsky et al., 2011), which consists of 5 sets of 5,000
example input-output image pairs, each edited by trained photographers. We use GPT-4o to describe
images and the prompt template is outlined in Figure 13.

Task: Generate a caption for all images except the first one.
Input: Images. Output: Short captions (5-15 words) describe
what adjustment has been made, when the next followed image is
compared with the first image, one by one. Do not include any
other information. Start with ’1. ’, ’2.’ and so on.
Make sure that the number of your answers is 1 less than the number
of input images.
Here are the images:[INSERT IMAGES]

Figure 13: Prompt - Photo variation.

Portrait Variation. In this task, we benchmark the capability of facial analysis and image edit-
ing. The model is supposed to generate a sequence of image-text pairs showing a person at similar
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ages based on an input portrait, along with descriptive text for each image. Output images should
ensure identity consistency across all generated images. We provide an example of golden answer
in Figure 52.

We use human portraits from similar ages of the same person in MORPH dataset (Ricanek &
Tesafaye, 2006). Descriptions for each step is written by GPT-4o with following prompt template in
Figure 14.

Task: Generate a caption for all images except the first one.
Input: Images taken in similar ages.
Output: Short captions (5-15 words) describe what is different,
when the next followed image is compared with the first image, one
by one. Do not include any other information. Start with ’1. ’,
’2.’ and so on.
Make sure that the number of your answers is 1 less than the number
of input images.
Here are the images:[INSERT IMAGES]

Figure 14: Prompt - Portrait variation.

B.2.6 IMAGE DECOMPOSITION

This task involves image decomposition based on an input image containing both visual elements
and text, with the goal of segment or generating an image-text sequence that breaks down the image
into its constituent parts.

Realistic Image Decomposition. In this task, we benchmark the capability of object detection and
segmentation, and object recognition. The model is supposed to generate image-text pairs where
each image showcases objects detected within real-world scenes. The text should detail the objects
and the event or relationships between the objects. The output images should ensure the accuracy of
the required object present in the image. We provide an example of a golden answer in Figure 53.
We selected 50 images from object detection datasets COCO (Lin et al., 2014) and SA1B from
Segment-Anything (Kirillov et al., 2023). Rather than using the labeled images directly, we man-
ually identified between two to eight objects in each image to ensure clarity. To maintain task
precision, we opted for less crowded scenes. The model is required to generate images that closely
resemble the identified objects. Golden answers were crafted using GPT-4o, followed by manual
inspection and refinement. The prompt can be found in Figure 15.

Task: Given you the task description and the original image,
generate captions for each object required in the task. Focus on
objects’ key features.
Input: Task description and the input image.
Output: You should give feedback in the format required by the
task, first describe the whole image, then orderly caption each
object one by one. You don’t need to generate any image, but
describe them.

Figure 15: Prompt - Realistic (Synthetic) Image Decomposition.

Synthetic Image Decomposition. In this task, we benchmark the capability of stylized object
detection, object identification and extraction. The model is supposed to generate image-text pairs
that highlight the detection of objects within virtual or stylized environments, such as digital artwork
or fantasy scenes. Each description should caption the corresponding objects in the image. Models
should respond without losing any object and precisely cut out the objects from the image or generate
similar objects within the image. We provide an example of a golden answer in Figure 54.

We constructed the input images for synthetic image decomposition using search engines and video
platforms, resulting in a dataset comprising AI-generated images, real artworks, animations, pixel
art, and stamps. To enhance task clarity, we selected images with fewer objects to avoid ambiguity
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in descriptions. Similar to the realistic image decomposition task, we utilized the above prompt in
Figure 15 to generate reference answers, which were then manually inspected and corrected.

Semantic Decomposition. In this task, we benchmark the capability of semantic segmentation
and hierarchical understanding. The model is supposed to generate image-text pairs that present
the hierarchy of the image. Output Images should precisely segment the region based on the user’s
prompt from the raw image. The text should correctly label the segmented image and give more
information about the image-text input. In addition, enhancing the composition suggestions are
given. We provide an example of a golden answer in Figure 55.

We manually selected fifty high-quality and challenging images from the BG-20K dataset (Li
et al., 2022) suitable for semantic segmentation. These images encompass not only foreground-
background distinctions but also left-right and top-bottom segmentation. To maintain clarity, we
avoided overly ambiguous images. We confirmed the segmentation methods with GPT-4o and ulti-
mately constructed golden answers using the following prompt shown in Figure 16.

Task: Given you the task description and the original image,
generate captions for each region required in the task. Focus on
objects’ key features.
Input: Task description and the input image.
Output: You should give feedback in the format required by the
task, first describe the whole image, then orderly caption each
region one by one. You don’t need to generate any image, but
describe them.

Figure 16: Prompt - Semantic Decomposition.

B.2.7 3D TRANSFORMATION

This task involves 3D Transformation based on an input image containing visual elements and text,
with the output being an image-text sequence representing different views or angles of the scene or
object.

Multi-view Scene Generation. In this task, we benchmark the capability of 3D scene understand-
ing, spatial reasoning and viewpoint synthesis. Based on the input image, the model is expected to
generate a sequence of image-text pairs. Each image should depict the scene from the input image
as viewed from a different angle, with each accompanying text explaining the observation angle.
The objects in the output images must remain consistent across all views. We provide an example
of a golden answer in Figure 56.

Multi-angle Object Generation. In this task, we benchmark the capability of 3D object recon-
struction and single-view to multi-view object synthesis. This task involves providing a model with
a single image of an object within a scene, along with a textual instruction that specifies the genera-
tion of additional images of the object from different perspectives. The model is required to interpret
the instruction and generate a series of images showing the object from various angles, such as left
to right, while maintaining consistency in the object’s appearance. An instance can be found in
Figure 57.

We download images of different angles from ABO (Collins et al., 2022) where we extract golden
answer images from five target perspectives. We directly use the angle to form the caption.

B.2.8 PROGRESSIVE IMAGE TRANSFORMATION

This task involves generating a sequence of images that show gradual changes based on an initial
input image and a text prompt. The output is not just a single transformed image, but a series of
images showing the progression of the transformation.
We gain a 90-images high quality image morphing dataset using Diffmorpher (Zhang et al., 2024b).
By dividing them into two parts. One for Text-guided animation, the other for Image-guided anima-
tion.
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Text-guided Animation. In this task, we benchmark the capability of textual understanding and
guided image progression modeling. Based on the input image and the accompanying text that
explains the desired final state, the model is expected to generate a sequence of image-text pairs.
Each image should represent a stage in the transformation process, and each accompanying text
should describe the change occurring in the corresponding part. We provide an example of a golden
answer in Figure 58.

We selected 50 easily captioned image pairs from the DiffMorpher dataset (Zhang et al., 2024b).
After selection, we prompted GPT-4o to generate captions for a randomly selected image from each
pair, replacing the image with a text description as desired final stage. Since the morphing process
is an open-ended problem, it aims to make sure each stage is more closer to the text description of
the final stage.

Image-guided Animation. In this task, we benchmark the capability of visual understanding and
state transformation synthesis. Based on the input images, one representing the initial state and
the other the final state, the model is expected to generate a sequence of image-text pairs. Each
image should depict a stage in the transformation process, with each accompanying text describing
the change occurring in the corresponding part. We provide an example of a golden answer in
Figure 59.

For this task, we utilized 50 randomly sampled image pairs from the Diffmorpher dataset (Zhang
et al., 2024b). To enhance the diversity of the input, we employed data augmentation techniques,
which included randomly selecting different initial and final stages. We shifted our focus away from
strictly adhering to golden answers. This task aims to make sure each stage is more closer to the
final stage’s image. Therefore, we pay less attention to the golden answer construction.

Attribute-guided Image Generation. In this task, we benchmark the capability of controlled
visual attribute manipulation and image synthesis. The model is required to generate a series of
images that depict gradual transitions, such as from wealth to poverty, noise to silence, or cleanli-
ness to disorder. Each image reflects the gradual change in state, driven by the transformation or
synthesis process while maintaining core structural integrity. The final images should be realistic,
clearly illustrating the progression of visual states as guided by the specified changes. We provide
an example of a golden answer in Figure 60.

The dataset is created using the DALL-E model from GPT-4o, which generates images based on
prompt phrases describing key attribute changes, with accompanying image descriptions also gen-
erated by GPT-4o. The prompt template is presented in Figure 17.

Task: Generate a caption for all images except the first one.
Input: Image sequences about attribute-guided transitions.
Output: Short captions (5-15 words) describe the key attribute
transitions happening in each image. Focus on gradual transitions
and changes in the primary attributes. Do not include any other
information.
Make sure that the number of your answers is 1 less than the number
of input images.
Here are the images:[INSERT IMAGES]

Figure 17: Prompt - Attribute-guided image generation.

B.3 HUMAN ANNOTATION

The annotation process on ISG is carried out independently by six authors of this paper, each bring-
ing a diverse perspective to the evaluation. Recognizing the importance of annotator diversity, we
have selected individuals with varied genders, ages, and educational backgrounds, all of whom pos-
sess expertise in the domain. This diversity is instrumental in minimizing bias and enhancing the
reliability of our benchmark.

To ensure that our annotators are well-prepared to objectively assess ISG, we have provided them
with comprehensive tutorials. These tutorials guide them on how to critically evaluate aspects of
the responses, including structure, entities, attributes, and relations. Moreover, we employ cross-
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validation techniques among different annotators to ensure consistency and objectivity in their judg-
ments. This rigorous approach ensures that our data is marked with a high level of precision and
impartiality, providing a robust foundation for our research findings.

We provide an annotation interface for annotation participants, including Image-level VQA human
annotation, Block-level VQA human annotation, MLLM-as-a-Judge human agreement annotation
and MLLM-as-a-Judge human scoring annotation, as shown in Figure 18.
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(a) Image-level VQA human annotation (b) Block-level VQA human annotation

(c) MLLM-as-a-Judge human agreement annotation (d) MLLM-as-a-Judge human scoring annotation

Figure 18: The annotation interface.
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C ANALYSIS ON ISG-BENCH

C.1 GOLDEN ANSWER

Figure 19 illustrates the distribution of image-word number per sample across eight tasks in golden
answers. Darker colors indicate a higher number of documents. The µ and M represent the mean
and median number of images/sentences in samples, respectively. These tasks range from “Visual
Storytelling” to “Progressive Image Transformation” with each task having varying distributions of
image-to-word ratios.

In tasks like “Visual Storytelling” and “VQA with Image Generation”, there is a higher concentra-
tion of words per sample (above 100), indicating that these tasks require more detailed descriptions.
Meanwhile, tasks such as “Style Transfer” and “3D Scene Transformation”, focus more on images,
with a lower median word count. The difference between the mean and median in several tasks also
highlights the presence of outliers, particularly in tasks like “Image Decomposition” and “Progres-
sive Image Transformation”, where a few samples have significantly higher numbers of words or
images per sample compared to the majority.

C.2 SAFETY CHECKING

This part contains examples of harmful contents. Reader discretion is recommended.

In this section, we provide a detailed analysis of trustworthiness problems in ISG-BENCH, focusing
on NSFW content in images and text content separately. NSFW Image Filtering. Figure 20 illus-
trates the proportion of unsafe and safe images across all categories based on the model’s judgments.
Out of all the images used, only two (shown in Figure 21) were genuinely unsafe. The remaining
images flagged as unsafe were false positives, as demonstrated in Figure 22.

NSFW Text Content Filtering. Figure 23 shows the proportions of unsafe and safe text content
(both query and golden answer) across all categories, based on the model’s evaluations. Among the
text content, only one instance in the query and five in the golden answer were truly unsafe. The rest
of the flagged text were false positives, as illustrated in Figure 24.
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Figure 19: Visualization of the image-word numbers per sample distribution of eight tasks in golden
answer. The µ and M denote the mean/median number of images/words in samples, respectively.
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Figure 20: Proportion of unsafe and safe images in each category

Figure 21: Unsafe images

Figure 22: Images that are judged to be unsafe but are actually safe.
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Figure 23: Proportion of unsafe and safe text in each category - query (left) and golden answer
(right)

Query: “The girl will play happily in the park.” Based on the <image1> and the provided text
prompts, continue the story, presenting it through 4 new PNG images with descriptions. Ensure
each text includes connecting phrases for smooth transitions. For example, <image1> [description1],
<image2> [description2].
Golden Answer: The little girl cautiously climbs up the tall slide, looking slightly nervous but deter-
mined. She reaches the top and sits down, her legs dangling over the edge. She takes a deep breath
and pushes off, sliding down the slide with a giggle. She reaches the bottom safely and runs back to
the top to do it again.The little boy watches his sister slide down the slide, looking a little jealous. He
climbs up the slide and sits down, his legs dangling over the edge. He takes a deep breath and pushes
off, sliding down the slide with a giggle. He reaches the bottom safely and runs back to the top to do
it again. The little girl and boy continue to slide down the slide, taking turns and having fun. They are
safe and happy, enjoying the playground together.

Figure 24: Texts that are judged to be unsafe but are actually safe.
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Ambiguous Case of ISG

Task: Scientific phenomenon explanation
<gen text2>: As the tsunami travels across the open ocean, it may
be barely noticeable on the surface, with wave heights of only a few
feet. However, these waves contain enormous energy and can propa-
gate for thousands of miles with minimal loss of energy. The wave-
length between crests can be hundreds of kilometers long.

Question: Is this image related to <gen text2>?
VQA Yes-or-No: No
The image shows large ocean waves, but the text describes a tsunami traveling across the
open ocean, which is barely noticeable on the surface with wave heights of only a few feet.
The image does not depict the described scenario.
VQA Score: 8
The image shows large ocean waves, which could be related to the text about tsunamis and
their wave characteristics.

Figure 25: Scoring beats Yes/No judging in ambiguous case of ISG.

D DETAILED EXPERIMENT SETUPS

In this section, we provide prompts, and the whole pipeline settings of ISG in Section D.1, ISG-
AGENT in Section D.2, and models hyperparameter settings in Section D.3.

D.1 ISG DETAILS

The pseudo-algorithm of ISG is shown in Algorithm 1. We provide prompts for using MLLM to
build ISG in and judge model’s responses
Algorithm 1 ISG Evaluation

1: procedure EVALUATE(P , G) ▷ P: Prompt, G: Generated Answer
2: SPred ← LLM(P ) ▷ Predict Structure
3: if ¬StructureMatch(SPred, G) then
4: return EvaluateWithWhole(P,G)
5: end if
6: Questions← GenerateQA(P ) ▷ Construct Block-wise (T-T, T-I, I-I) Evaluation
7: score← 0, total← 0
8: for all r = (sub, obj,Q) ∈ Questions do
9: judgement← VQA Module(Q, sub, obj)

10: if judgement = “Yes” then
11: score← score+ 1
12: end if
13: total← total + 1
14: end for
15: FinalScore← score/total
16: return FinalScore
17: end procedure

D.1.1 SCORING EVALUATION REDUCE AMBIGUITY WITHIN VQA MODULE

In VQA, we find that the scoring approach consistently outperforms the “Yes-or-No” method, sug-
gesting that more nuanced judgments align better with human evaluations. As shown in Figure 25,
the “Yes-or-No” answer is wrong but the VQA score is aligned with human judgement.
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Task: Extract key information from a multimodal prompt and format it into JSON.
Input: A prompt for a multimodal model to generate interleaved text-and-image content. The prompt
may include input images.
Output: JSON format containing the following keys: 1. “Query”: List representing the sequence of
images and text in the input 2. “Answer”: List representing the sequence of images and text in the
expected output
Special Tokens: - Input query: - Images: <query img1>, <query img2>, ... - Text: <query text1>,
<query text2>, ... - Generated output: - Images: <gen img1>, <gen img2>, ... - Text:
<gen text1>, <gen text2>, ...
Here are examples: ...
Instructions: 1. Analyze the given prompt to determine the number of images and text pieces to be
generated. 2. Identify the sequence of images and text in both the query and the expected answer.
3. Format the extracted information into the specified JSON structure. 4. There will not be adjacent
<gen text>, such as <gen textX> <gen textX+1>. 5. Only output the sequence of images and text
noted by <gen text> and <gen img> in the “Query” and “Answer”. 6. Think before you output your
final answer, you can format your thought in a key “Thought” in your output and explain your answer
to be generated.
Here is the prompt: ...

Figure 26: Prompt - Structure Extraction.

Task: Extract and format the relationships between elements in a multimodal prompt and its expected
generated answer.
Input: 1. Original prompt for a multimodal model 2. Sequence of elements represented by special
tokens
Output: JSON format with a “relatio” key containing a list of triplets.
Relation Triplet Format: (<subject>, <object>, <relation>) - <relation> is an open-vocabulary
description (phrase or short sentence) - The triplet should be able to form a fluent English sentence:
<subject> <relation> <object> - Avoid duplicate triplets - Only include relations explicitly de-
scribed in the prompt - The order of <subject> and <object> should reflect the most logical and
fluent relationship, regardless of their sequence in the input or output
Instructions: 1. Analyze the given prompt carefully. 2. Identify explicit relationships between ele-
ments in both the prompt and expected answer. 3. Format relationships as triplets according to the
specified format. 4. Ensure the triplets can be easily constructed into fluent English sentences. 5. Use
specific descriptors for relations, forming phrases or short sentences. 6. Ensure all triplets are unique
and explicitly described in the prompt. 7. Order <subject> and <object> in each triplet to create
the most logical and fluent relationship. Do not include relations between input images and texts. 8.
Compile the triplets into a list under the “relation” key in the JSON output. 9. Think before you output
your final answer, you can format your thought in a key “Thought” in your output and explain your
answer to be generated.
Here are examples: ...
Note: This example includes only the relations that can be confidently inferred from the prompt. The
triplets are formed to create fluent English sentences when read as “<subject><relation><object>”.
Do not include any obscure or ambiguous relations that can’t be understood by only reading the triplet.
For example, “is an image of the third object extracted from” is an obscure relation because there is no
“third” within this triplet, you can use “is an image of the object extracted from” instead.
Here is the prompt: ...
Here is the element sequence: ...

Figure 27: Prompt - Block-Level Requirements Extraction.

D.1.2 DETAILS OF MLLM-AS-A-JUDGE

We use MLLM-as-a-judge for an overall evaluation, including the following aspects:

• Coherence: How well the text and images work together to convey a unified message or story.
• Content Accuracy: The factual correctness of both textual information and visual elements.
• Relevance and Responsiveness: How well the generated content addresses the given query.
• Visual-Textual Alignment: The degree to which generated images match and support the accom-

panying text.
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Task: Predict atomic concrete visual entities, attributes, and relations for generated images based on a
prompt for a multimodal generative model.
Input: 1. Original prompt for a multimodal generative model 2. Sequence of elements represented by
special tokens
Output: JSON format with a “tuple” key containing a list of tuples in the following formats: 1.
Entity: (entity, name of entity, image id), for example: [“entity”, “fish”, “<gen img1>”] 2. At-
tribute: (attribute, name of attribute, entity, image id), for example: [“attribute”, “yellow”, “fish”,
“<gen img1>”] 3. Relation: (relation, name of relation, entity1, entity2, image id), for example:
[“relation”, “swim in”, “fish”, “water”, “<gen img1>”]
Here are examples: ...
Instructions: 1. Carefully analyze the given prompt, focusing on predicting concrete, visual elements
that are highly likely to appear in the generated images. Do not describe or analyze any input images
mentioned in the prompt. 2. If the prompt includes descriptions or captions of multiple input images,
identify common themes and key visual elements across these descriptions. Use these commonalities
to inform your predictions for the generated images. 3. Predict tangible entities first. These should be
physical objects or beings that can be visually represented in generated images. Avoid abstract con-
cepts or general scenes like ’scene’, ’atmosphere’, or ’landscape’. 4. For each predicted entity, identify
its likely visual attributes. Focus on characteristics that would be visibly apparent in a generated im-
age. 5. You should atomize the entity and attribute as much as possible, and generate entity tuple
first, then attribute tuple, and finally relation tuple. Make sure the entities, attributes, and relations are
atomic. For example, you should not output “yellow fish” as an entity, you should output “fish” as
an entity and “yellow” as an attribute. 6. For attributes and relations, always reference the specific
entity or entities they are associated with. 8. Specify which generated image (image id) each predicted
element is expected to appear in. If an entity is likely to appear in multiple generated images, create
separate tuples for each image. DO NOT INCLUDE tuples can’t be inferred from prompt. 9. Only
include tuples for elements you are highly confident (100% Sure) will appear in the generated images
based on the prompt and common sense reasoning. Avoid speculating about details that aren’t strongly
implied by the prompt! 10. For prompts describing a sequence of generated images, consider how
visual elements might change or interact across the sequence. 11. Compile the tuples into a list under
the “tuple” key in the JSON output.
Here is the prompt: ...
Here is the element sequence: ...

Figure 28: Prompt - Image-Level Requirements Extraction.

• Creativity and Originality: The model’s ability to generate novel and imaginative content across
both text and images.

D.2 ISG-AGENT DETAILS

To enable the interleaved generation of multiple image-text pairs, we employ a suite of advanced
tools proficient at image generation, editing, and video creation. Our methodology integrates these
tools to create a cohesive system capable of producing high-quality visual content alongside descrip-
tive text. Figure 38 and 37 show examples of our ISG-AGENT’s output of a randomly selected task
from our benchmark.

Planning Phase. To improve the model by providing a structured plan, we have designed the
following prompt, with a special emphasis on enhancing the model’s abilities in:

• Following Instruction to Output in Format: Ensuring the model can produce output that strictly
adheres to the task required interleaved format.

• Planning with Tool Box: Enabling the model to effectively plan tasks by breaking them down
into manageable steps, utilizing a set of predefined tools, and providing precise instructions for
each step.

• Enhanced Task Clarity: Improving the clarity and precision of task instructions, ensuring that
each step is well-defined and easy to follow.

• Consistency in Output: Ensuring that the output is consistent across different tasks and steps,
maintaining a high standard of quality and reliability.
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Task: Create questions for each provided triplet to verify the stated relationship.
Input: A list of triplets in the format (<subject>, <object>, <relation>).
Output: A JSON list of objects, each containing the original triplet information and a generated
question.
Here are examples: ...
Instructions: 1. For each input triplet, create an object with the following structure: “subject”:
“<subject from triplet>”, “object”: “<object from triplet>”, “relation”: “relation from triplet”,
“Question”: “<generated question>” 2. Generate a question that, when answered, would verify
whether the stated relationship between the subject and object is correct. 3. Ensure the question is clear,
concise, and directly related to the triplet’s content. 4. Replace image references (e.g., <gen img1>,
<query img1>) with “this image” if only one image occurs in the triplet, otherwise replace with “first
image”, “second image” for the subject and object based on their order of appearance in the triplet. 5.
Do not use “third” or “fourth” images in the question, as in the question, the maximum number of im-
ages could only be 2 (subject and object). 6. Keep text references (e.g., <gen text1>, <query text1>)
as they are in the original triplet. 7. Frame the question in a way that can be answered with a yes/no or
true/false response. 8. Compile all generated objects into a JSON list.
Notice: If subject and object are images (<gen img1>, <query img1>, etc.), refer the first image
as “first image” and the second image as “second image” in your generated question. Ensure that
the generated questions are diverse in their phrasing while maintaining clarity and relevance to the
original triplet. The questions should be designed to elicit a yes/no or true/false response that verifies
the relationship stated in the triplet. Remember to replace image references with “first image”, “second
image”, etc., but keep text references as they are.
Here is the input:

Figure 29: Prompt - Block-Level Question Generation.

Task: Create questions for each provided triplet of entity, attribute, or relation, and format them into a
specific JSON structure.
Input: A list of triplets in the following formats: 1. Entity: (entity, name of entity, image id) 2.
Attribute: (attribute, name of attribute, entity, image id) 3. Relation: (relation, name of relation,
entity1, entity2, image id)
Output: A JSON list of objects, each containing the generated question and related information.
Here are examples: ...
Instructions: 1. For each input triplet, create an object with the following structure: “image”: special
token refer to generated images, “Question”: “<generated question>”, “id”: <numeric id starting
from 0>, “Preliminary”: [<list of prerequisite question ids>]
2. Generate a question that verifies the existence of the entity, the presence of the attribute, or the
relationship between entities. 3. Ensure the question is clear, concise, and can be answered with a
yes/no response. 4. Assign a unique numeric id to each question, starting from 0. 5. Determine any
prerequisite questions and list their ids in the “Preliminary” field. - For attributes, include the id of the
corresponding entity question. - For relations, include the ids of both entity questions. 6. Compile all
generated objects into a JSON list.
Note: Ensure that the generated questions are clear and directly related to the triplet’s content. The
“Preliminary” field should accurately reflect the dependencies between questions, especially for at-
tributes and relations that depend on the existence of entities.
Here is the input: ...

Figure 30: Prompt - Image-Level Question Generation.

The prompt is shown in Figure 34 and Figure35, which give concise instruction for planning a task.
Key Instructions construct the whole planning pipeline.

Tool Box offers insights to the planning agent for better step instruction generation. Considerations
and Remember are used for controlling the output into strict format and clear instruction.
The refined plan offers the agent more control over the tool-execution phase.

Tool-Execution Phase. We integrate various advanced vision generative models as tools in our
ISG-AGENT during agent execution process, detailed as follows:
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Task: You are given two texts and a question. Please judge whether the question is correct within the
two texts.
Judge Requirement: You should output a score on a scale of 1-10 and your reason. The score should
be a numerical value that reflects how well the question is answered by the given text and image. 10
means the question is answered perfectly. 1 means the question is not answered at all.
Output Requirement: Please output in JSON format, directly output your judgment in key “Judge”
and your reason in key “Reason”. Do not write an introduction or summary. Do not output other
irrelevant information.
Here is the input:
Text 1: ...
Text 2: ...
Question: ...
Now please judge the question.

Figure 31: Prompt - Block-level VQA - Two Texts.

Task: You are a helpful assistant capable of analyzing images and answering questions about them.
Your task is to examine the provided image and answer the given question.
Input: - An image - A question about the image (e.g., “Is a dog in this image?” or “Is the dog blue in
this image?”)
Output: Provide your response in JSON format with the following structure: “Judge”: “Yes” or
“No”, “Reason”: “Your explanation here”
Instructions: 1. Analyze the provided image. 2. Consider the question asked about the image. 3.
Determine whether the answer to the question is “Yes” or “No”. 4. Provide a brief but clear explanation
for your judgment. 5. Format your response in the required JSON structure.
Here is the question: ...
Now please judge the question. Remember to output in JSON format with “Judge” and

Figure 32: Prompt - Image-level VQA.

• Image Generation Tool: We use Stable Diffusion 2.13 or Flux.1-dev4 to generate images based on
textual prompts. In the system, the tool agent automatically provides refined and concise prompts
extracted from the step’s prompt for better generation performance. Input Size: 512 × 512 pixels.
Inference Steps: 28.

• Image Editing Tool: Instructpix2pix5 and UltraEdit6 is employed for precise image editing and
enhancements. These two models can edit image with step’s prompt guidance. We utilize this
capability for better instruction-guided image edit. Guidance Scale: 7.5. Image Guidance Scale:
1.5.

• Video Generation Tool: DynamiCrafter7 is a video generation tool under video diffusion frame-
work. It allows both text-image input and images interpolation, which helps to generate temporal
continuous and frame-continuous video. In the output, we take screenshots from the video, main-
tain it’s continuity. Input Size: 256 × 256 pixels. Video Length: 32 frames. Guidance Scale: 7.5
(unconditional guidance). Guidance Rescale: 0.7. Conditional Input: Text-based input (True).

• 3D Video Generation Tool: SV3D8 is utilized for generating 3D video content by only image
input. By including this tool, we grant our multi-agents framework the ability to understand the
spatial information and to generate views of objects and scenes from different perspectives. In
the output, we take fixed frame screenshots to fit our benchmark’s tasks. Number of Frames: 21.
Conditional Augmentation: 1e-5. Decoding Time: 14.

3https://stablediffusion.com
4https://blackforestlabs.ai/
5https://github.com/timothybrooks/instruct-pix2pix
6https://ultra-editing.github.io/
7https://doubiiu.github.io/projects/DynamiCrafter/
8https://sv3d.github.io/
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Task: You are a helpful and impartial assistant. You are given a multimodal query with one or several
images and a multimodal answer with interleaved text and images. I will also provide a golden answer
to the query. Please judge whether the answer is correct and relevant to the query in several dimensions.
Judge Requirement: Evaluate the answer based on the following dimensions: 1. Coherence: How
well the text and images work together to convey a unified message or story.
2. Content Accuracy: The factual correctness of both textual information and visual elements.
3. Relevance and Responsiveness: How well the generated content addresses the given query.
4. Visual-Textual Alignment: The degree to which generated images match and support the accompa-
nying text.
5. Creativity and Originality: The model’s ability to generate novel and imaginative content across
both text and images.
Output Requirement: Please output in JSON format, including scores for each dimension (on a scale
of 1-10) and a final overall score (on a scale of 1-10). Also provide brief explanations for each score.

Figure 33: Prompt - Overall-level MLLM-as-a-Judge.

• DreamMover: DreamMover9 is an interpolation tool inspired by the DiffMorpher, so we utilize
this tool on doing our augemented interpolation or morphing tasks. Guidance Scale: 1.0. Time
for Morphing: 3 units.

All the tools are plug-ins within the tool-execution phase. By integrating these tools, we develop a
robust pipeline that supports the generation and editing of images interleaved with textual descrip-
tions generated by the ISG-AGENT.

Refinement Phase. Refinement Phase’s primary capability is to handle errors arising from incorrect
planning or tool calling within the Planning-Execution phases. When it fails to generate a final result,
it raises an error, which the ISG-AGENT then captures and addresses using different strategies based
on the error category. For planning-related errors, the ISG-AGENT detect and reconstructs the entire
plan solely based on the original blueprint. In contrast, for other types of errors, it meticulously
examines the plan step by step, regenerating relevant input text to provide clearer instructions and
ultimately produce an error-free result. Additionally, ISG-AGENT is tasked with smoothing the
plan in this phase by creating more continuous text segments, a process facilitated by leveraging the
LLM. The prompt used for this operation is illustrated in Figure 36.

Limitations. While our agent framework is designed to handle a variety of general interleaved
tasks, several limitations must be acknowledged.

• Lack of Continuity Despite the Planning Agent’s comprehensive understanding of the objectives
at each step, the Tool Agent encounters difficulties in accessing information from earlier stages
and input accurate information into the tool. Given that large language models operate as black
boxes, it is difficult to control the exact prompts input into the Tool Agent, further exacerbating
the issue of continuity.

• Resource Intensity A significant challenge associated with multi-agent systems is the high re-
source cost. In our framework, the Tool Agent’s effectiveness is heavily dependent on a metic-
ulously planned initial phase. If the planning is not sufficiently detailed or well-structured, the
operational efficiency and overall performance of the Tool Agent can be substantially compro-
mised, leading to increased time and computational resource expenditures.

D.3 MODEL SETTINGS

Open-source Unified Models. We employed four open-source unified models, namely Show-o,
Mini-GPT5, Anole, CoMM-MiniGPT5 (Mini-GPT5 finetuned on CoMM) and SeedLlama-14B. All
hyper-parameters are detailed as follows:

• Show-o (Xie et al., 2024) Guidance Scale: 1.75, generation timesteps: 18, temperature: 0.7,
resolution: 256× 256.

• Mini-GPT5 (Zheng et al., 2023). Image size: 224. temperature: 0.7, repetition penalty: 1.2,
guidance scale: 7.5

9https://github.com/leoShen917/DreamMover
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Task:
You are a proficient planning agent tasked with writing a step-by-step plan for a ‘tool agent‘
based on a multimodal input. Generate a strictly JSON-formatted plan, ensuring each step
leads the tool agent towards a coherent final result.

Key Instructions:
- Step Format: Each Step contains a “Task” Category (Only three labels Call tool,

Caption and AddImage), “Input text” and “Input images” fields and “Output”
field. AddImage step only contains “Task” and “Input images” fields.

- Control Tool Usage: All the “Call tool” steps will be executed at the beginning
in order, creating an orderly generated image list [<GEN 0>, <GEN 1>,...], this
Task do not affect the final output and the structure because all the generated images
will be add to the output in AddImage step.

- Control Result Format: Design the relationship between Caption step and Ad-
dImage step to fit the structural requirement. Caption step will add a text part
to the final result, indicating a <gen text{ID}> placeholder in the structure,
while AddImage step will add an image fragment to the final result, indicating
a <gen img{ID}> placeholder in the structure. So you should design the order
of Caption and AddImage steps to fit the given plan structural requirement. Do
not plan several continuous “Caption” steps, which will be merged into one text
fragment in the end.

- Tool Guidance: Each Call tool step’s text instruction should guide the tool agent
on which tool to utilize. Use clear terms like “Generate one image”, “Edit the
image”, “Generate a continuous video”, “Generate 3D views”, “Morphing from”
as needed. Look for the Tool Box for more details.

Tool Box:
- ImageGeneration: Generates one image based on descriptive text only. No refer-

ences allowed. ImageGeneration is expert in text-guided image generation, but it
cannot see any input image.

- ImageEdit: Edits an input image based on a provided prompt and the image. Pro-
ficient at editing images like style transfer, attribute modification, and handling
subtle changes. When the task requires a change in the input image, use this tool.

- VideoGeneration: Creates a sequence of images by input text and one input image
guidance. returning several image screenshots of a continuous event. You have to
mention how many images you want from this tool. VideoGeneration tool is expert
in frame-contiguous and short-time-contiguous generation. Cannot Coexist with
other tool in one plan and only can be used once in a task. Do not use this tool to
handle subtle changes in image.

- Video3DGeneration: Returns multiple chosen views of a 3D object from a single
input image. The chosen views should be clearly stated in the Call tool Input text
in the format [Angle1: “Degree-left/right”, Angle2: ...]. Only Use this tool when
the user wants to retrieve multiple different views of a 3D object or a 3D scene from
a single image at once. Cannot Coexist with other tool in one plan and only can be
used once in a task. You should provide a list of views you want to get in the input
text.

- ImageMorph: Return four images of the process of morphing from the first image
to the second image. Only Use this tool when the user wants to retrieve the morph-
ing process between two images. Give really simple caption like: ’a photo of [cls]’
in the instruction for tool agent to prompt the tool. Cannot Coexist with other tool
in one plan and only can be used once in a task. You should provide two images in
the input images.

Figure 34: Prompt - Agent planning prompt - Part 1
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Remember:
Different tool have different input restrictions like any input image, any text input, input
image number, ... , and can return different result. You are not doing the task your-
self, think of the tool agent! ImageGeneration: input text only; ImageEdit: input text and
one image; VideoGeneration: input text and one image; Fixed3DGeneration: input image;
Free3DGeneration: input image; ImageMorph: input two images.
Warning:

- When your instruction for “Call tool” is aiming to call ‘VideoGeneration’, ‘3DGen-
eration’ or ‘ImageMorph’, remember these three tools can not coexist with all the
other tools in one plan and can only be planned once for the whole task.

- Caption is always executed after all the images are generated, so you should plan
any input image in the caption step if necessary.

- Video/3D Generation is less controllable by text so if you want to make text-
controllable generation and edit, use ImageGeneration or ImageEdit.

Considerations:
- Use explicit terms to avoid ambiguity (e.g., “Edit the image” for edits, “Generate

an image” for new creations).
- Each Caption instruction should ask the tool agent to describe every aspect of the

image you want to get, instead of generating the caption yourself.
- Each Call tool instruction should be descriptive, focusing on the desired attributes,

styles, and settings of the images.
- For sequential tasks, maintain consistency in characters, plot, and style across

scenes by instruction.
- When comparing multiple images, ensure the original image is listed first. You

should plan a comparison with two or more images in the caption step if the task
indicates image comparison or contrast, like multi-perspectives contrast.

- The output should be strictly in JSON format, else the extraction will fail.
- Output placeholders: For original input images, use #image{ID}#. For all images

to be outputted during the process, use <GEN ID> to replace them. For each
step’s output, use <WAIT> as a placeholder. Check the example for more details.

Note:
If you want the tool agent to generate an image, your Input text cannot use pronouns like
“previous outline,” “original image,” etc., to refer to any image. Instead, you should
provide a detailed description of the image you want to refer to. For example: “Generate
an image of the right cat from the original image. The cat should be white and fluffy,
curled up next to a toy.” should be modified to “Generate an image of a cat. The cat
should be white and fluffy, curled up next to a toy.”
Must: Your output JSON file must be in officially strict format; any deviation will cause the
failure of the evaluation.
Example Output:[INSERT FORMAT]

Figure 35: Prompt - Agent planning prompt - Part 2
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Task Instructions for Refining Text Segments in Multimodal Content

Sequence and Placeholder Preservation
- Maintain the exact sequence and number of text segments and image placeholders

(‘<boi><eoi>’) as in the input. No new segments should be added between exist-
ing placeholders.

Text Flow Improvements
- Rephrase text segments for improved fluency and coherence. Remove redundancy

and ensure smooth transitions between segments.
Image-Text Consistency

- Integrate references to the images naturally within the text without direct statements
about the images. Describe or hint at image content.

Error Handling
- If any references to missing or problematic images occur, remove apologies or

explanations to keep the narrative smooth.
Key Instructions: Output must match input in sequence and number of placeholders. En-
sure coherent and engaging text. Eliminate redundancy and fix fragmented sentences.
Fewshot Example: [INSERT FORMAT]

Figure 36: Prompt - Agent refinement and verification prompt - Part 1

• CoMM-MiniGPT5 (Chen et al., 2024d). Image size: 224. temperature: 0.7, repetition penalty:
1.2, guidance scale: 7.5

• Anole (Chern et al., 2024). Text repetition penalty: 0.7 Text temperature: 0.5, Text top p: 0.8,
Text greedy: False; Image guidance scale text: 2.0, Image guidance scale image: 1.2, Image temp:
0.5, Image top p: 0.7, Image greedy: False.

• Seed-Llama 14B (Li et al., 2023b). Temperature: 0.7, num beams: 1, top p: 0.5, Image size:
224.

Other Models. We utilize three proprietary models, GPT-4o, Claude-3.5-Sonnet, and Gemini-1.5-
pro-latest as multimodal preceptors and Flux-dev, SD3, SD2.1 as image generators, with detailed
settings as follows:

• Gemini-1.5-pro-latest (GeminiTeam, 2023). Temperature: 1, top p: 0.95
• Claude-3.5-Sonnet (Anthropic, 2024). Temperature: 0.9
• GPT-4o OpenAI (2024). Temperature: 1, top p: 1
• Flux1-dev (Flux, 2024). Guidance scale: 3.5, num inference steps: 50
• Stable Diffusion 3 (Esser et al., 2024). Guidance scale: 7.0, num inference steps: 28
• Stable Diffusion 2.1 (Rombach et al., 2022). Guidance scale: 7.5, num inference steps: 25
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Example of ISG-AGENT performance on Historical Event Analysis task

Input: What is the historical significance of the site or monument depicted
in the picture <image1>? Provide detailed information about its history,
including when its property, its cultural importance, and any relevant events
associated with it. You should answer my question in text first and then gen-
erate four interleaved sections of text followed by images, where each im-
age matches the text that comes before it. The last block must be image and
every image are separated with text content. For example, <gen text1>,
<gen img1>, <gen text2>, <gen img2>....

Agent Response:

Mount Fuji, an iconic symbol of Japan, stands majestically at 3,776 me-
ters (12,388 feet) tall. Located on Honshu Island, this active stratovolcano
has been revered in Japanese culture for centuries. Its near-perfect conical
shape has inspired artists and poets, and it remains a popular destination
for pilgrims and tourists alike. The mountain’s beauty is enhanced by the
surrounding landscape, with lakes, forests, and colorful flowers at its base,
creating a picturesque scene that epitomizes the natural splendor of Japan.

Mount Fuji holds immense cultural significance in Japan. As one of the
country’s ’Three Holy Mountains’, it has long been revered in Shinto reli-
gion. The mountain’s iconic symmetrical cone shape has inspired countless
artists and writers throughout history, becoming a symbol of Japan itself. Its
image appears frequently in traditional ukiyo-e woodblock prints, most fa-
mously in Hokusai’s ’Thirty-six Views of Mount Fuji’ series. In literature,
Mount Fuji features prominently in classical poetry and modern works alike,
often symbolizing beauty, purity, and the spirit of Japan. Its cultural im-
portance led to its designation as a UNESCO World Heritage Site in 2013,
recognizing it as a place of artistic and spiritual inspiration.

It shows Mount Fuji in its iconic form, surrounded by cherry blossoms and a
traditional pagoda. The Hoei Eruption of 1707-1708 was a significant event
that temporarily altered Fuji’s appearance and impacted surrounding areas.
This eruption produced substantial ashfall, affecting agricultural productivity
and daily life in nearby regions, including Edo (modern-day Tokyo). The
eruption’s effects were felt far and wide, with ash deposits reported as far as
100 km away from the volcano.

Mount Fuji’s iconic silhouette and cultural significance make it a natural
choice for UNESCO World Heritage status. Its perfect conical shape and
fiery eruption in this image showcase why it’s such a powerful symbol of
Japan. As a popular climbing destination, thousands ascend its slopes each
year to witness the sunrise from its summit. The surrounding area, with
its scenic beauty and traditional buildings, attracts tourists year-round who
come to admire the mountain from various vantage points and experience
Japanese culture in its shadow.

Figure 37: Example of ISG-AGENT performing the Historical Event task
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Example of ISG-AGENT performance on How-to Analysis task

Input: I will give you an this image. Based on it, please tell me
next next 5 steps on How to make celery juice. Generate an image for
each step, and write a brief description after each image. For example,
<gen img1>[description1], <gen img2> [description2], <gen img3>
[description3], <gen img4> [description4].

Agent Response:

In this step, the celery is being finely diced on a wooden cutting board using a
sharp knife. The precise knife skills are evident as the celery is cut into small,
uniform cubes. The vibrant green color of the celery contrasts beautifully
with the warm tones of the wooden surface, highlighting the freshness of the
ingredients.

Here, chopped celery is being added to a tall glass jar. A hand is seen drop-
ping pieces of fresh, bright green celery stalks into the jar, which already
contains some chopped celery. The clean kitchen background emphasizes
the preparation of a healthy snack or recipe.

A modern blender is ready on the kitchen countertop, featuring a large, clear
glass jar with a black lid securely in place. The stainless steel base with a
black control panel adds a sleek touch to the kitchen setting, which includes
a sink, potted plants, and natural light, creating an inviting atmosphere for
blending.
The blender jar is now filled with a vibrant green liquid as the celery stalks
are being blended. The swirling, frothy mixture is captured mid-action, with
the green juice splashing against the sides of the container. The clear glass
provides a perfect view of the blending process, set against a kitchen counter
backdrop with additional ingredients.
Finally, the vibrant green liquid is being poured from a container into a clear
glass. The smooth, slightly frothy texture of the juice is captured mid-stream,
creating a dynamic and appetizing visual. The bright green color stands out
against the plain, light-colored background, emphasizing the freshness and
healthiness of the juice.

Figure 38: Example of ISG-AGENT performing the How-to task
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Hallucination in Show-o

Task: Realistic Object Detection
Instruction: Select and extract [left cat, right cat, fan, toy] from the
image. For each object, generate a separate and independent image
for each object that closely resembles its state. Display the object
image followed by its detailed caption according to the sequence of
the previous list. Output Requirement: Start with the whole image
description. Then, for each object, display the object’s image follow-
ing its caption. For example: [Whole image Description]. <Object
1 image> [Object 1 caption]. <Object 2 image> [Object 2 caption].
<Object 3 image> [Object 3 caption]....

Model Output:

Figure 39: Hallucination in Show-o.

E CASE STUDY

We provide examples of each task in this Section.

For Visual Story Telling, please refer to Figure 40, Figure 41 and Figure 42. For VQA with Image
Generation, examples are shown in Figure 43 and Figure 44. For Temporal Prediction, please refer
to Figure 45 and Figure 46. Examples of Image-text Complementation are shown in Figure 47
and Figure 48. For Style Transfer, examples are shown in Figure 49, Figure 50, Figure 51 and
Figure 52. For Image Decomposition, examples are shown in Figure 53, Figure 54 and Figure 55.
Examples of 3D Transformation are shown in Figure 56 and Figure 57. Examples of Progressive
Image Transformation are shown in Figure 58, Figure 59 and Figure 60.
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Example of Image-based visual storytelling

Input: Based on <image1>, continue the story, presenting it through 4
new PNG images with descriptions. Ensure each text includes connecting
phrases for smooth transitions. For example, {1st image} [description1],
{2nd image} [description2], {3rd image} [description3].

Golden answer:

<image1> On a moonlit Halloween night, the Pink Panther, dressed as a
vampire, leads his friends into a spooky adventure. The eerie glow of the full
moon sets the perfect tone for their daring quest.

<image2> Their journey leads them to a mysterious mansion, filled with
carved pumpkins and flickering candles. The Pink Panther cautiously enters,
guiding his friends into the dimly lit room where shadows dance on the walls.

<image3> Deeper inside the mansion, the group discovers a hidden treasure
chest. With excitement, the Pink Panther opens it to reveal sparkling jewels
and gold, their eyes widening at the unexpected fortune.

<image4> Just as they celebrate their find, ghostly figures emerge from the
shadows, and the mansion begins to shake. The Pink Panther quickly devises
a plan, using his cape to distract the spirits, allowing the group to make a
swift escape into the night.

Figure 40: Example of Image-based visual storytelling.
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Example of Text-based visual storytelling

Input: I will tell you the captions of three pictures of this story: 1. The squirrels in the field of
poppies are musicians, playing the piano and singing in harmony, as indicated by the musical
note and piano in the background. 2. A musical instrument with a story.3.Twelve young
squirrels perform a dance routine on stage, their movements fluid and in harmony. Based
on the text, continue the story, presenting it through 5 new PNG images with descriptions.
Ensure each text includes connecting phrases for smooth transitions. For example, {1st
image} [description1], {2nd image} [description2], {3rd image} [description3].

Golden answer:

<image1> On a brightly lit stage, squirrels enthusiastically juggle acorns,
captivating the audience with their synchronized routine. Their movements
are smooth, and the spotlight highlights their joyful performance, setting a
lively tone for the rest of the show.

<image2> In the next act, a group of mice gather around a grand piano.
A mouse in a red dress stands proudly while others sing in unison. Their
melodic voices fill the theater, each mouse playing a unique part in creating
a harmonious ensemble.

<image3> As the curtains draw back for the next scene, a shy mouse
peeks from behind them. His nervous yet determined expression hints at
his upcoming solo performance, adding suspense and excitement to the
audience’s anticipation.

<image4> The lights dim, and a quartet of mice in colorful outfits take
center stage, showcasing a well-rehearsed dance routine. They twirl and
leap, their tails swirling in rhythm, and the audience can’t help but be
enchanted by their delightful performance.

<image5> Backstage, two mice prepare for their big moment, anxiously
awaiting their turn to shine. Their excitement is palpable as they practice
their steps one last time, knowing that their grand finale will bring the entire
show to a stunning conclusion.

Figure 41: Example of Text-based visual storytelling
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Example of Image & text-based visual storytelling

Input: I’ll tell you what happens next in the story: A robot and a button will
go on an adventure. Based on <image1> and the provided text, continue
the story, presenting it through 6 new PNG images with descriptions. Ensure
each text includes connecting phrases for smooth transitions. For example,
{1st image} [description1], {2nd image} [description2], {3rd image} [de-
scription3].

Golden answer:

<image1> The little robot is happily marching forward, holding a large blue
button as if it’s his prized possession.

<image2> Suddenly, while swinging from a wire, the button slips from his
hand and flies into the air. The robot looks startled.

<image3> The robot stands underneath a pedestrian traffic light, eagerly
waiting for the green light to guide him forward.

<image4> The light turns red, and the robot looks disappointed as he real-
izes it’s not time to cross yet.

<image5> As the robot prepares to step forward, he stares at the road ahead,
still determined to retrieve his lost button.

<image6> A huge splash of water from a nearby passing vehicle drenches
the robot, leaving him soaking wet as he stands on the crosswalk.

Figure 42: Example of Image & text-based visual storytelling
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Object Q&A and Explanation

Input: What device is depicted in the picture <image1>? Provide
detailed information to demonstrate its primary function, historical
evolution, and the key steps to use it properly or any other relevant
facts. You should answer my question in text first and then generate
four interleaved images and text to thoroughly explain the device.

Golden answer:

The device depicted in the picture is a cassette tape, an analog magnetic tape format used
for audio recording and playback. First introduced in the early 1960s by Philips, the cassette
tape revolutionized personal audio by offering a compact, portable, and easy-to-use medium.
Its primary function is to store sound data, which can be played back using a cassette player
or recorder.

The cassette contains two reels of magnetic tape that move across a
read-write head, which translates the recorded audio into sound waves.
<image1>

To use a cassette tape, insert it into a compatible player, press play, and
the tape will move through the device, producing sound. <image2>

Over time, cassette tapes were replaced by digital formats, but they re-
main a symbol of the 1980s and 1990s music culture, offering a sense of
nostalgia. <image3>

While now largely obsolete, cassette tapes are still appreciated by collec-
tors and audiophiles for their analog sound and the physical act of rewind-
ing and flipping the tape. <image4>

Figure 43: Object Q&A and Explanation.
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Example of Historical Event/Artifact Analysis

Input: What is the historical significance of the site or monument de-
picted in the picture <image1>? Provide detailed information about
its history, including when it was built, its cultural importance, and
any relevant events associated with it. You should answer my ques-
tion in text first and then generate four interleaved images and text to
thoroughly explain the site or monument.

Golden answer:

The site depicted in the picture is Mount Fuji, Japan’s highest peak and one of the country’s
most iconic natural landmarks. Standing at 3,776 meters (12,389 feet) tall, Mount Fuji is a
stratovolcano that last erupted in 1707 during the Edo period.

The mountain’s nearly symmetrical cone shape makes it a prominent
feature of the Japanese landscape and a symbol of beauty and tran-
quility. <image1>

Mount Fuji holds profound cultural and spiritual significance in
Japan. It is considered a sacred site in Shinto, the indigenous re-
ligion of Japan, and has been a subject of veneration and pilgrimage
for centuries. The mountain is frequently depicted in Japanese art and
literature, including famous woodblock prints by Katsushika Hokusai
and Utagawa Hiroshige. <image2>
The mountain is also a popular destination for climbers and tourists.
The official climbing season is from early July to early September,
and thousands of people ascend the mountain each year to experience
its scenic beauty and spiritual significance. <image3>

As a UNESCO World Heritage site, Mount Fuji is celebrated for its
natural beauty and its role in Japanese culture and history, making it a
symbol of national pride and a focal point of both natural and cultural
heritage. <image4>

Figure 44: Example of Historical Event/Artifact Analysis.

Example of Real World Simulation

Input: I will give you a picture of a vegetable spiralizer cutting a squash
into spirals <image1>. Please use a combination of 4 images and text
to show what will happen to this squash. For example, [whole descrip-
tion] {1st image}, {2nd image}, {3rd image}.

Golden answer:
The vegetable spiralizer begins cutting the squash into long spirals. As the handle is turned,
the squash is pushed against the blade, creating thin spirals. The squash continues to
spiralize, and the length of the squash gradually reduces. The spirals form a continuous,
long string. <image1> <image2> <image3> <image4>

Figure 45: Example of Real World Simulation.
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Example of Painting Process Generation

Input: I will give you a painting <image1>. Please tell me how to
draw this image in 5 steps using a combination of images and text.
For example, {1st image} [description1], {2nd image} [description2],
{3rd image} [description3].

Golden answer:

<image1> Step 1: Start with an underpainting or basic sketch to block in
the shapes and form of the face.

<image2> Step 2: Add base skin tones and block in large areas of light
and shadow.

<image3> Step 3: Gradually refine the shapes and add details to features
like the eyes, nose, and mouth.

<image4> Step 4: Work on smoothing transitions and adding further detail,
focusing on depth.

<image5> Step 5: Finalize the painting by refining edges, adding high-
lights, and introducing a subtle background.

Figure 46: Example of Painting Process Generation.
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Example of HowTo

Input: Please tell me 5 steps on How to shave. Generate an image for each step, and write
a brief description after each image. For example, {1st image} [description1], {2nd image}
[description2], {3rd image} [description3].

Golden answer:

<image1> First, keeping your skin moisturized can effectively reduce
cuts, nicks, and irritation during shaving. We recommend shaving im-
mediately after a shower or while in the shower. Keeping the skin moist
softens your facial hair, allowing the razor to glide more smoothly.
<image2> Apply shaving cream or shaving foam - lather it up and apply
evenly to moisturize the hair, allowing the razor to glide smoothly and
effectively reducing irritation, such as razor burn, during shaving.

<image3> Gently glide the razor across your face, softly removing the
bread. Rinse your face with clean water and pat it dry.

<image4> Apply an aftershave moisturizer to replenish moisture and
soothe the skin.

<image5> You finished shaving.

Figure 47: Example of HowTo.
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Example of Scientific Phenomenon Explanation

Input: How is the phenomenon in the picture <image1> scientif-
ically explained? Provide a detailed explanation of the principles
behind the phenomenon, including relevant knowledge. You should
answer my question in text first and then generate four interleaved
images and text to thoroughly explain the phenomenon.

Golden answer:

The phenomenon in the picture is a volcanic eruption, which occurs when magma from
beneath the Earth’s crust is expelled to the surface.

This eruption is often characterized by the expulsion of lava, ash, and
gases. <image1>

The magma originates from the mantle, where it melts due to high
pressure and temperature. As magma rises through the Earth’s crust,
it collects in a magma chamber beneath the volcano. When pressure
in the chamber exceeds the strength of the surrounding rock, an erup-
tion occurs. <image2>
During the eruption, lava flows from the volcano, while volcanic ash
and gases are ejected into the atmosphere. The composition of lava
can vary, influencing the eruption style, with basaltic lava produc-
ing relatively gentle eruptions and more viscous andesitic or rhyolitic
lavas leading to explosive eruptions. <image3>

Volcanic eruptions can also create new landforms such as volcanic
cones or calderas, shaped by the accumulation of erupted materials.
<image4>

Figure 48: Example of Scientific Phenomenon Explanation.
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Example of Art Style Transfer

Input: I will give you an image <image1>. Using this image, cre-
ate 3 versions of this image in 3 different artistic styles in order:
Dreamweave, Dapple, and Watercolor. Focus on transforming the
whole image style while maintaining the subject’s features. For each
image, provide a brief description of the style. Descriptions should
be put after each image. For example, {1st image} [style1], {2nd
image} [style2], {3rd image} [style3].

Golden answer:

<image1> is in Dreamweave style, characterized by a surreal, vibrant,
and slightly distorted color pattern that blends colors fluidly, creating an
almost dream-like effect.

<image2> is in Dapple style, which features a pointillism-like texture
with overlapping dots or small patches of color that create a textured and
dynamic look.

<image3> is in Watercolor style, distinguished by soft, flowing colors
with blended edges that mimic the translucent and layered appearance typ-
ical of watercolor paintings.

Figure 49: Example of Art Style Transfer.

Example of Scene Attribute Transfer

Input: Given a photograph <image1>, generate 4 images that trans-
form this scene across 4 following conditions in order: foggy, dusk,
cloudy, night. Please provide a brief text description explaining the
changes made. Descriptions should be put after each image. For ex-
ample, {1st image} [description1], {2nd image} [description2], {3rd
image} [description3].

Golden answer:

<image1> shows a fog-covered city with reduced visibility and dimmed
lighting compared to the clear, sunny condition in the original image.

<image2> shows a twilight scene with the city lights starting to illumi-
nate and a darker sky.

<image3> displays a partially overcast sky with clouds covering much
of the skyline, creating a gloomy ambiance.

<image4> features a fully dark environment with city lights prominently
visible, contrasting with the bright daytime in the original image.

Figure 50: Example of Scene Attribute Transfer.
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Example of Photo Variation

Input: Given a photograph <image1>, create 4 new images by ap-
plying the following adjustments in order: reduced brightness and ex-
posure; reduced brightness and increased contrast; decreased bright-
ness; greener tone. Please provide a brief text description explaining
the changes made. Descriptions should be put after each image. For
example, {1st image} [description1], {2nd image} [description2],
{3rd image} [description3].

Golden answer:

<image1> has reduced brightness and exposure, making the overall scene
darker.

<image2> has reduced brightness and increased contrast, giving it a more
pronounced difference between light and dark areas.

<image3> has decreased brightness, resulting in a more subdued and dim
appearance.

<image4> has a greener tone, altering the color balance to emphasize green
hues in the scene.

Figure 51: Example of Photo Variation.

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Example of Portrait Variation

Input: Given input portrait photograph <image1>, create 4 new images
by applying the following adjustments in order: lightly better lighting and
contrast; more serious expression and a slightly different angle; with eyes
closed or looking down; a slightly different facial expression and head
tilt. Please provide a brief text description explaining the changes made.
Descriptions should be put after each image. For example, {1st image}
[description1], {2nd image} [description2], {3rd image} [description3].

Golden answer:

<image1> appears to have slightly better lighting and contrast.

<image2> shows the subject with a more serious expression and a slightly
different angle.

<image3> depicts the subject with his eyes closed or looking down.

<image4> is with a slightly different facial expression and head tilt.

Figure 52: Example of Portrait Variation.

54



2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

Example of Realistic Image Decomposition

Input: Select and extract grenade, flashlight, bullet, dog-tag, com-
pass, badge from the image <image1>. If capable, Segment the
object directly from the image, else generate a similar one. Output
the object image and its detailed caption according to the sequence
of previous list. Output Requirement: Start with the whole image de-
scription. Then, for each object, display the object’s image following
its caption. When multiple objects interact, describe them together
with conjunctions. For example: [Whole image description] {1st ob-
ject’s image} [description1], {2nd object’s image} [description2],
{3rd object’s image} [description3].

Golden answer: A collection of military objects laid out on a wooden surface.

A dark green hand grenade <image2> with a metallic safety pin is placed
in the upper left corner.

A black and green flashlight grip <image3> with a textured surface lies
beside the grenade.

Three brass bullets <image4> are lined up on the right, each with a cop-
per tip.

Two dog tags <image5> on a metal chain are positioned in the upper
right corner.

A green military compass <image6> with a transparent cover is dis-
played near the center.

A round badge <image7> with a blue background and a yellow trident
symbol is positioned at the bottom left.

Figure 53: Example of Realistic Image Decomposition.
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Example of Synthetic Image Decomposition

Input: Select and extract bread, milk, egg, rice from the image
<image1>. If capable, Segment the object directly from the image,
else generate a similar one. Output the object image and its detailed
caption according to the sequence of previous list. Output Require-
ment: Start with the whole image description. Then, for each object,
display the object’s image following its caption. When multiple ob-
jects interact, describe them together with conjunctions. For example:
[Whole image description] {1st object’s image} [description1], {2nd
object’s image} [description2], {3rd object’s image} [description3].

Golden answer: A simple meal tray featuring bread, milk, egg, and rice.

A loaf of brown bread <image1> with two light stripes is placed on the tray.

A carton of milk <image2> sits beside the bread, its blue and white packaging
standing out.

A fried egg <image3> with a bright yellow yolk rests on a section of the tray.

A ball of white rice <image4> is placed next to the egg, completing the meal.

Figure 54: Example of Synthetic Image Decomposition.
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Example of Semantic Decomposition

Input: Decompose the image <image1> into left-view, mid-view,
right-view regions base on the image composition. If capable, Seg-
ment the region directly from the image, else generate a similar one.
Display the generated region image and its detailed caption according
to the sequence of previous list. Output Requirement: Start with the
whole image description. Then, for each region, display the object’s
image following its caption. For example: [Whole image description]
{1st region’s image} [description1], {2nd region’s image} [descrip-
tion2], {3rd region’s image} [description3].

Golden answer: This image showcases a church interior, richly decorated with religious art.

The left view <image1> features a painting that illustrates the Baptism
of Christ, with angels in attendance, set against a backdrop of dramatic
clouds and golden light, framed by dark marbled columns.

The mid-view <image2> is dominated by the Crucifixion scene, where
Christ is centered on the cross, flanked by sorrowful figures under a stormy
sky, emphasizing the solemnity of the moment.

The right view <image3> depicts the Ascension of Christ, with apostles
gazing upwards as Christ rises, surrounded by a halo of light, conveying a
sense of divine transcendence.

Figure 55: Example of Semantic Decomposition.
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Example of Multi-view Scene Generation

Input: Here is an image <image1> of an object. based on this im-
age, create a series of 4 images showing views from following per-
spectives in order : right 30, right 15, left 45, left 60. For each image,
provide a brief description of the angle. Descriptions should be put
after each image. Your response should follow this structure: 30 de-
grees right: {1st image}, 15 degrees right: {2nd image}, 45 degrees
left: {3rd image}, 60 degrees left: {4th image}.

Golden answer:

The perspective of the object from 30 degrees right: <image1>

The perspective of the object from 15 degrees right: <image2>

The perspective of the object from 45 degrees left: <image3>

The perspective of the object from 60 degrees left: <image4>

Figure 56: Example of Multi-view Scene Generation.
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Example of Multi-angle Object Generation

Input: Here is an image <image1> of an object. Use this image as
the reference angle and generate four additional images of the object
from the following angles: 60 degrees left, 30 degrees left, 30 degrees
right, and 60 degrees right. Your response should follow this struc-
ture: 60 degrees left: {1st image}, 30 degrees left: {2nd image}, 30
degrees right: {3rd image}, 60 degrees right: {4th image}.

Golden answer:

The perspective of the object from 60 degrees left: <image1>

The perspective of the object from 30 degrees left: <image2>

The perspective of the object from 30 degrees right: <image3>

The perspective of the object from 60 degrees right: <image4>

Figure 57: Example of Multi-angle Object Generation
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Example of Text-guided Animation

Input: Increase the number of pancake layers from <image1>, mak-
ing the stack taller. Reduce the amount of toppings on the pancakes,
keeping the overall composition the same but with a more minimal
topping arrangement. <image1> represents the initial state, and the
provided text describes the changes needed. Create a series of 5 PNG
images that gradually transition from the initial state to the final state.
Please provide a brief text description explaining the changes made.
Descriptions should be put after each image. For example: {second
stage} [description1], ... {final stage} [description5]. Ensure that
the transitions are natural and progressively illustrate the changes be-
tween states.

Golden answer:

At the second stage <image1>, the stack of pancakes appears slightly
taller with an added layer. The toppings remain similar, but the overall
arrangement looks a bit more minimal, maintaining the berries and syrup.

In the third stage <image2>, the pancake stack continues to grow taller
with another added layer. The toppings have been reduced further, with
fewer berries on top, enhancing the minimalistic appearance.

The fourth stage <image3> shows an even taller stack with another layer
added. The quantity of berries decreases slightly, keeping the minimal
topping arrangement consistent.

At the fifth stage <image4>, the pancake stack continues to rise with an
additional layer. The berries appear to be fewer, maintaining a minimal
topping display.

At the final stage <image5>, the pancake stack reaches its maximum
height with the tallest stack yet. The toppings are further minimized, with
just a few berries and a hint of syrup, achieving the intended minimalistic
composition.

Figure 58: Example of Text-guided Animation
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Example of Image-guided Animation

Input:<image1> (left) represents the initial state,
and <image2> (right) represents the final de-
sired state. Create a series of 4 PNG images that
gradually morph from the initial state to the final
state. Include a brief text description after each
image explaining the changes made in each step.
For example: {second stage} [description1]. ...
{penultimate stage} [description4].. Ensure that
the transitions are natural and progressively illus-
trate the changes between states.

Golden answer:

At the second stage <image1>, the fur appears slightly longer and the
color pattern remains consistent, though the overall form of the dog seems
slightly larger and the background remains unchanged.

In the third stage <image2>, the dog’s ears appear to be lengthening
slightly, and subtle changes in the shading on the fur give it a slightly
fuller appearance, while the background maintains its consistency.

In the fourth stage <image3>, there is a noticeable increase in the length
and volume of the dog’s fur, with a more defined transition in coloration
on the coat. The background starts to blend more with the dog’s fur tones,
creating a more cohesive look.

At the penultimate stage <image4>, the dog’s fur has grown significantly
longer and thicker, resembling more closely that of a Border Collie. The
overall composition of colors on the coat reflects this transformation, and
the background has transitioned to an outdoor scene, enhancing the natural
look of the dog.

Figure 59: Example of Image-guided Animation
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Example of Attribute-guided Image Generation

Input: I will give you an image of a man sitting in a room <image1>.
Please show me the process of the man becoming increasingly poor, us-
ing a combination of 4 images and text. For example, {1st image} [de-
scription1], {2nd image} [description2], {3rd image} [description3].

Golden answer:

<image1> The man is sitting in a room that appears somewhat cluttered
but still functional. His clothes are clean, and the room, although slightly
messy, is in relatively good condition

<image2> The man’s clothes appear worn, and the room is becoming
more disorganized, with more clutter accumulating around him.

<image3> The man is visibly more disheveled, and the room has signif-
icantly deteriorated, with trash and debris scattered across the floor.

<image4> The man looks exhausted, his clothes are tattered, and the
room is in a state of disrepair, filled with broken furniture and debris,
reflecting deep poverty.

Figure 60: Example of Attribute-guided Image Generation
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