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Abstract

End-to-end (E2E) autonomous driving models have
demonstrated strong performance in open-loop evaluations
but often suffer from cascading errors and poor generaliza-
tion in closed-loop settings. To address this gap, we propose
Model-based Policy Adaptation (MPA), a general frame-
work that enhances the robustness and safety of pretrained
E2E driving agents during deployment. MPA first gener-
ates diverse counterfactual trajectories using a geometry-
consistent simulation engine, exposing the agent to scenarios
beyond the original dataset. Based on this generated data,
MPA trains a diffusion-based policy adapter to refine the
base policy’s predictions and a multi-step Q value model to
evaluate long-term outcomes. At inference time, the adapter
proposes multiple trajectory candidates, and the Q value
model selects the one with the highest expected utility. Ex-
periments on the nuScenes benchmark using a photorealistic
closed-loop simulator demonstrate that MPA significantly im-
proves performance across in-domain, out-of-domain, and
safety-critical scenarios. We further investigate how the
scale of counterfactual data and inference-time guidance
strategies affect overall effectiveness.

1. Introduction
Driving foundation models have made impressive strides
by integrating perception, prediction, and planning into a
unified end-to-end (E2E) learning framework [6, 17, 18, 22].
Leveraging large-scale offline driving datasets, E2E models
perform well under open-loop evaluation protocols, where
the agent passively predicts future behaviors from offline
recorded observation sequences. However, these models
degrade in closed-loop environments, where minor devia-
tions accumulate over time, leading to compounding errors,
distribution shifts, and poor generalization to long-horizon
scenarios. This performance gap reveals a core challenge:
offline training based on empirical risk minimization does
not align with the online objective of maximizing cumulative
reward, as is illustrated in Figure 1.

To bridge this gap, recent efforts have turned to evalu-

ating the closed-loop performance of E2E agents. Some
open-loop such as NavSim proposes the approximate closed-
loop evaluation with a Predictive Driver Model Score in
an open-loop evaluation fashion. Other works introduced
sensor simulation for the closed-loop evaluation, generating
camera views based on diffusion models [13, 50], Neural Ra-
diance Field (NeRF) [31, 33, 42, 51] or 3D Gaussian Splat-
ting (3DGS) [14, 26, 46, 48, 56] that enable photorealistic
rendering of novel viewpoints. These tools provide fine-
grained control over agent interventions and visual realism,
making them promising testbeds for studying failure modes
and recovery strategies. Existing works such as VAD [22],
VAD-v2 [5], and Hydra-MDP [28] design different scoring
mechanisms to select the predicted motions for closed-loop
control, yet these works either lack closed-loop evaluation
results or are evaluated in a non-photorealistic simulator like
CARLA [9]. Most recently, RAD [11] incorporates rein-
forcement learning and uses 3DGS for online rollouts and
evaluation, while the training of PPO agents can be costly,
and the value critic is left unused at inference time. Among
all the prior attempts, none of the works have curated coun-
terfactual data into consideration during the training phase.

Our goal in this paper is to adapt the pretrained open-loop
E2E driving agents from the real domain to safe and general-
izable closed-loop agents, with a 3DGS-based driving simu-
lation data engine. We identify that the performance drop be-
tween the closed-loop and open-loop evaluations stems from
two fundamental sources: (1) Observation mismatch — the
shift between training-time sensor inputs and deployment-
time closed-loop observations under perturbed behaviors
from different data engines; (2) Objective mismatch — the
absence of meaningful reward feedback during offline imita-
tion learning, which limits long-term reasoning.

We conducted preliminary experiments to demonstrate
that the first mismatch is actually minor in the open-loop
evaluation. Then we propose a unified solution called Model-
Based Policy Adaptation (MPA), a general framework that
directly addresses both mismatches by separating and tar-
geting their root causes. We first use the pretrained policy
as a reference policy to generate a counterfactual dataset
using a high-fidelity 3DGS simulation engine. To mitigate
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Figure 1. Left: Causes of closed-loop performance degradation in End-to-End driving, including observation and objective mismatches.
Right: We propose counterfactual data generation to address the observation mismatch, and a model-based policy adaptation framework
tackling the objective mismatch.

observation mismatch, we design a diffusion-based residual
policy adapter that conditions on diverse, counterfactual
trajectories. This exposes the policy to a broad range of
behaviors and visual scenes beyond those seen in the of-
fline dataset. To address objective mismatch, then learn a Q-
value model from the same counterfactual data that captures
long-horizon outcomes and enables value-based assessment
beyond rule-based metrics. MPA uses both components at
inference time: the policy adapter generates residual action
proposals conditioned on the current observation, and the
value model performs inference-time scaling to select the
action with the highest expected utility.

Our Contribution. Our contributions are three-fold.
• We analyze the root causes of closed-loop performance

degradation in E2E agents and assess the fidelity of
3DGS-based simulation for modeling observation and
behavior shifts.

• We develop a counterfactual data curation pipeline us-
ing 3DGS rollouts and train the MPA with a
diffusion-based policy adapter and reward model to ad-
dress observation and reward mismatches, respectively.

• We demonstrate that inference-time scaling using the
learned reward model significantly improves closed-loop
performance on the nuScenes benchmark, particularly in
safety-critical and out-of-domain scenarios.

2. Preliminary
2.1. Problem Formulation of E2E Driving

We formulate closed-loop end-to-end (E2E) driving as a
Partially Observed Markov Decision Process (POMDP)
M = (S,A, P,R,O, γ, T ), where S is the latent state
space, A the action space, P the transition dynamics, R
the reward function, O the observation space, γ the discount
factor, and T the planning horizon. At each timestep, the
agent receives an observation ot ∈ O and outputs a trajec-

tory action at ∈ A. The environment evolves according
to P (st+1|st, at) and emits observations via Pobs(ot|st). In
practice, the state st includes the ego vehicle’s IMU sta-
tus and surrounding road entities’ past poses and motion
intents. These are often only partially observable. The ac-
tion at represents a sequence of future waypoints, which
is translated into low-level throttle and steering control se-
quences via an LQR controller [27], following prior bench-
marks [7, 25, 50, 56]. The observation ot is captured by real
sensors or rendered by a simulation engine during closed-
loop evaluation. Notably, current open-loop E2E agents
are trained using expert trajectories from a reference policy
πref, inducing a state distribution dref(st) and yielding a su-
pervised model π̂ref. In contrast, closed-loop agents aim to
maximize cumulative reward over time:

Open-loop : π̂∗ = argmin
π

T∑
t=1

E(st,at)∼πref ∥at − π(st)∥22,

Closed-loop : π∗ = argmax
π

T∑
t=1

Est∼P (st−1,at−1), at−1∼π(ot−1,st−1), ot−1∼Pobs(st−1) [r(st, at)] ,
(1)

This leads to an inherent objective mismatch: open-loop
training minimizes imitation error under expert supervision,
while closed-loop deployment optimizes long-horizon re-
ward under evolving dynamics and partial observability, as
is illustrated in Figure 1. Bridging this gap requires careful
alignment of three components in equation (1): the tran-
sition model P (st+1|st, at), which can be consistently ap-
proximated using vehicle dynamics; the observation model
Pobs(ot|st), which may deviate from simulated sensors P̂obs;
and the reward function r(st, at), which must be inferred
from partial observations ot using learned value models.

To address these mismatches, we employ a counterfac-
tual data generation supported by 3DGS-based observation
model P̂obs, then design a policy adapter that transforms
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Figure 2. Comparison of average L2 error in the motion prediction
under different prediction horizons.

the pretrained π̂ref into a reward-aligned policy π∗ under the
guidance of a learned Q-value model, as outlined in Figure 1.

2.2. E2E Driving in the Closed-loop Simulation

A recent line of approach uses visual generative or recon-
struction models for rendering photorealistic driving scenes
from state parameterizations, utilizing the recent advance-
ment in image diffusion modeling [50], neural field render-
ing [31], and 3D Gaussian Splatting [56]. This line of meth-
ods essentially learn to estimate P̂obs(·|st) in our POMDP
formulation in Sec. 2.1. However, it is critical to verify that
the visual quality of these model outputs remains close to
real-world scenes for them to serve as valid proxies for our
closed-loop evaluation.

We conducted the following preliminary experiments to
study the fidelity of the closed-loop simulator and demon-
strate the performance gap between open-loop and closed-
loop evaluation. In Figure 2, we systematically study the
difference in L2 error under open and closed-loop set-
tings. We use 3DGS [56] to reconstruct the scenes from
the nuScenes dataset and compare the performance differ-
ence using ground truth data in Figure 2. Among all three
E2E policies, we see a very close open-loop performance in
motion prediction. This confirms the fidelity of the 3DGS-
based simulation in its reconstruction quality. Meanwhile,
we also illustrate the L2 error based on UniAD’s closed-
loop rollout trajectory. As the prediction horizon grows,
the prediction error becomes quite significant compared to
the open-loop prediction. A non-ignorable L2 error in the
short prediction horizon leads to out-of-distribution issues,
resulting in compounding errors in the final prediction. In-
creasing the planning frequency cannot fundamentally close
the gap between open-loop and closed-loop performance
unless effective feedback guidance is provided to the agents.

3. Methodology
To bridge the observation and objective mismatches outlined
in Sec. 2.1, we introduce Model-Based Policy Adaptation
(MPA)—a unified framework for open-loop to closed-loop
adaptation in end-to-end (E2E) autonomous driving. Fig-
ure 3 shows an overview. This section is organized from left
to right along the pipeline: Section 3.1 describes our model-
based counterfactual data synthesis to address distribution
mismatch. Section 3.2 details the training of a diffusion-
based policy adapter on the curated dataset. Section 3.3
presents the value model used to guide policy adaptation.

3.1. Counterfactual Data Generation

Algorithm 1: 3DGS-Based Counterfactual Generation

Input: Ref. dataset Dref, policy π̂ref, horizon T ,
thresholds δ, rc

Output: Counterfactual dataset Dcf

foreach ref. traj (sref
0 , . . . ) in Dref do

s0 ← sref
0

for t = 0 to T−1 do
at ← π̂ref(s0:t)

if dist(st, s
ref
t ) > δ or r(st, at) < rc then

break
st+1, rt ← Sim.step(st, at)
ot ← 3DGS.Render(st)
Append (st, at, ot, rt) to Dcf

We generate counterfactual trajectories using a geometry-
consistent 3D Gaussian Splatting (3DGS) simulator [56],
which renders photorealistic observations conditioned on
poses of ego vehicle and surrounding agents, modeling the
observation distribution P̂obs(·|st). As shown in Section 2.2,
this rendering remains high-fidelity as long as the rollout
policy induces a state distribution close to the reference
distribution.

To ensure reliable observations while introducing behav-
ioral diversity, we simulate rollouts from a pretrained E2E
policy π̂ref under a teacher-forcing setup, starting from the
original reference states. To prevent rendering artifacts, we
discard trajectories that deviate beyond a distance threshold
or fall below a minimum reward. The rollout horizon T deter-
mines how far into the future these counterfactual behaviors
extend; as we show in our experiments, longer horizons ex-
pose richer supervision signals for downstream learning, but
increase the risk of divergence from reference data. The full
generation procedure is summarized in Algorithm 1.

3.2. Diffusion-Based Policy Adaptation

We propose a diffusion-based policy adapter that refines
the output of a frozen end-to-end (E2E) driving model by
predicting residual trajectories ∆a = a∗ − abase, where
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Figure 3. Overview of Model-Based Policy Adaptation (MPA). Left: We propose a counterfactual data generation pipeline, where we first
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abase ∈ RH×2 is the trajectory from a pretrained policy
(e.g., UniAD) and a∗ is the high-reward trajectory from
counterfactual data.

Training. To model the distribution over residuals, we
apply a latent diffusion process. The forward step adds
Gaussian noise over K steps:

q(∆a(k) | ∆a(0)) = N
(
∆a(k);

√
ᾱk∆a(0), (1− ᾱk)I

)
,

where ∆a(0) = ∆a and ᾱk is the cumulative noise schedule.
The denoising network fθ is a 1D U-Net that outputs multi-
mode ∆a(0) from ∆a(k), conditioned on the scene encoding
z = ϕenc(o, sego), ego history sego, and base predicted trajec-
tory abase. The output of fθ contains N modes, we denote
the i-th mode as fθ(...)[i]. It is trained with the loss:

E∆a(0),k,ϵ min
i

∥∥∥fθ(∆a(k), k, z, sego, a
base)[i]−∆a(0)

∥∥∥2
2
,

where ∆a(k) =
√
ᾱk∆a(0) +

√
1− ᾱkϵ, with ϵ ∼ N (0, I).

Inference. For inference, we use DDIM [37] to sample N
modes of ∆a(0) and recover the adapted trajectory:

aadapt[i] = abase +∆a(0)[i], ∀i ∈ [N ].

This design adapts the knowledge from the pretrained base
policy by conditioning on their encoded scene context and
base actions, enabling generalization beyond the counterfac-
tual data domain.

3.3. Principled Q-Value Guided Sampling

Training. While step-wise rewards can be computed given
full access to st, estimating long-horizon returns is chal-
lenging under partial observability. Using the generated
counterfactual dataset, we train a multi-step action value
model Q(ot, st, at;T ) =

∑T
t=1 γ

tr(s, at) based on four
interpretable principles: route following Qroute, lane dis-
tance Qdist, collision avoidance Qcollision, and speed com-
pliance Qspeed. Each Q-function is trained independently
to predict cumulative returns using (ot, sego, at). Q =∑

i∈{collision, dist, ...} wi ×Qi We provide thorough ablations
of the Q-function components in Sec. 4.3.

Inference. At inference, residual actions ∆a are sam-
pled following the policy adapter inference procedure from
Sec. 3.2, and the best proposal is selected via

â∗ = argmax
a∈aadapt

Q(ot, sego, a;T )

Compared to classifier-based reward guidance [49, 54], our
Q-value guidance offers feedback from longer planning hori-
zons and avoids the gradient instability of the reward model.

4. Experiment Results
In our experiments, we aim to answer the following research
questions. RQ1. Compared to the baselines, can MPA bring
benefits to the E2E driving agents in a closed-loop evaluation
in a generalizable way? RQ2. How does MPA benefit the



safety-critical performance in the closed-loop evaluation?
RQ3. How do different adapters and value guidance modules
contribute to the performance of MPA? RQ4. How does
MPA scale with the number of counterfactual planning steps
in the data generation phase?

4.1. Experiment Settings

Dataset and Simulation Engine. We utilize the nuScenes
dataset [3] that consists of 5.5 hours of driving data in Boston
and Singapore. Every scene has a reference trajectory of
20 seconds. We use HUGSIM [56] as the simulation en-
gine and evaluation benchmark. We train on a split of 290
scenes in the nuScenes train-val split, and evaluate on three
settings. (1) In-domain evaluation: the model will be tested
on a sub-split of 70 scenes, the surrounding dynamic entities
(vehicles, pedestrians) will be replayed by a fixed ratio of
their reference trajectory in the offline dataset. (2) Unseen
nominal scene evaluation: the model will be tested on a
sub-split of 70 scenes that are unseen yet during training,
the surrounding dynamic entities (vehicles, pedestrians) are
nominal and will be replayed by a fixed ratio of their ref-
erence trajectory in the offline dataset. (3) Safety-critical
evaluation: the model will be tested on 10 scenes, where
there exists one (or few) non-native agents to challenge the
ego agents in an adversarial way. The simulation frequency
is 4 Hz. In all the scenes, the termination occurs under one
of the following five conditions: (i) full route completion,
(ii) off-road events, (iii) collision events, (iv) too far from
the reference trajectory, (v) maximum rollout time limits (50
seconds, 2.5× of the reference trajectory) reached.

Baselines. We compare the MPA with diverse baselines in
E2E driving algorithms that fall in the two following cate-
gories. (1) Pretrained base policy with open-loop training
manner: we compare with the performance of UniAD [18],
VAD [22] and LTF [6] on the HUGSIM dataset. We fur-
ther build on our MPA with these policies. (2) E2E agents
trained with curated counterfactual dataset: We further train
several baseline policies with the curated dataset. AD-
MLP [53] utilizes the ego’s velocity, acceleration, past tra-
jectories, and high-level command as the input, which is
recognized as a naive baseline for the closed-loop Driving
tasks. BC-Safe [35] uses the safe segments in the counter-
factual datasets to train and End-to-End policies. Diffusion
adopts the implementation of [29] in the scene encoding
and utilizes a DDIM-based sampler [37] instead of truncated
denoising during the inference time. To ensure a fair com-
parison between the MPA and the second category of the
baselines, all the approach uses pretrained ResNet [15] as
the perception backbone to encode the RGB inputs from 6
perspective cameras.

Metrics. We follow the evaluation protocol in
HUGSIM [56], which is inspired by the NAVSIM-based
metrics [7]. The metrics include Route Completion (RC),
Non-Collision (NC), Driveable Area Compliance (DAC),
Time-To-Collision (TTC), Comfort (COM), HUGSIM Driv-
ing Score (HDScore). Specifically, HDScore is computed
with the above metrics along with Route Completion (RC),
instead of the Ego Progress (EP) in PDMS [7]. HDScore is
the weighted sum as follows:

HDScore = RC× 1

T

T∑
t=0

{ ∏
m∈{NC, DAC}

scorem×∑
m∈{TTC, COM} weightm × scorem∑

m∈{TTC,COM} weightm

}
t
.

We list all the metrics with (×100) in the tables. All the
metrics fall in [0.0, 100].

4.2. Main Results and Analysis (RQ1, RQ2)

To answer RQ1, we first evaluate the closed-loop perfor-
mance for in- and out-of-domain scenes, as shown in Fig-
ure 4. All the reported MPA approaches are evaluated with
20 action samples at inference time. In-domain scenes refer
to the scenes that are used to generate counterfactual train-
ing data in Singapore. We evaluate the quantitative closed-
loop results in these training scenes in Table 1. MPA-based
E2E driving agents achieved better results compared to their
pretrained counterparts, as well as three baseline methods
trained on the counterfactual curated dataset, especially in
the most important metrics, RC and HDScore. The baseline
AD-MLP moves very conservatively, so the NC and TTC are
low, yet the RC is also quite low as it barely completes the
assigned routes for the challenging E2E scenes. Besides, the
NC score in HUGSIM is a bit underestimated compared to
NAVSIM, as HUGSIM erodes the vehicle boxes compared to
the actual size by the point clouds. This leads to a few false
’collision’ signals during the evaluation. Yet, most of them
will not cause a collision that terminates the entire episode
in the closed-loop simulation. This is why we observe some
high RC with mediocre NC metrics. This still means the ego
agents are capable of navigating around different collisions
and off-road maneuvers to reach the goal in a reasonable
way, and will result in a good HDScore.

We further evaluate the closed-loop performance under
the unseen scenes. We select 70 scenes in Boston that are
not accessible in the curated counterfactual dataset. The
qualitative results are shown in Table 2 (left). Compared to
the in-domain results in Table 1, we can see a significantly
degraded performance in AD-MLP and Diffusion, while the
pretrained E2E policies still perform similarly as they do
in the in-domain scenes. We observe that the MPA agents
built upon the pretrained E2E policies are still optimal and
quite robust under the unseen scenes. All three variants have
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Table 1. In-Domain Closed-Loop Evaluation Results. All the evaluation metrics are higher the better. Bold means the best, and underlined
is the best runner-up for each metrics.

Model Ego Status Camera Curation RC NC DAC TTC COM HDScore

UniAD ✓ ✓ ✗ 39.4 56.9 75.1 52.1 98.7 19.4
VAD ✓ ✓ ✗ 50.1 68.4 87.2 66.1 90.2 31.9
LTF ✓ ✓ ✗ 65.2 71.3 92.1 67.6 98.4 46.7

AD-MLP ✓ ✗ ✓ 13.4 80.2 86.2 79.4 90.1 6.5
BC-Safe ✓ ✓ ✓ 57.0 59.8 87.9 55.2 89.4 33.6
Diffusion ✓ ✓ ✓ 71.8 67.4 88.1 64.5 91.5 45.1
MPA (UniAD) ✓ ✓ ✓ 93.6 76.4 92.8 72.8 91.8 66.4
MPA (VAD) ✓ ✓ ✓ 94.9 75.4 93.6 72.5 92.8 67.0
MPA (LTF) ✓ ✓ ✓ 93.1 70.8 90.9 67.9 94.9 60.0

comparable HDScore with their in-domain evaluation. This
demonstrates the generalizability of the proposed adapter
and value model under unseen scene contexts.

4.3. Ablation Studies (RQ3, RQ4)

We conduct ablation studies to analyze the contribution of
the three main modules of MPA: (i) counterfactual dataset
generation, (ii) policy adapter, and (iii) Q-value guidance.

Counterfactual Dataset. We further analyze the impact
of the curated counterfactual dataset by ablating the step size
during the rollout of counterfactual data. Then we train the
MPA over the curated dataset and evaluate its performance
in the unseen scenes in Boston, similar to the setting in
Table 2 (left). We illustrate the trends of evaluation metrics
with respect to the step sizes in the counterfactual dataset in
Figure 5. MPA benefits from longer counterfactual steps, as
there would be more informative supervision for the value
function training in the future steps.

Policy Adapter. In Table 3, we evaluate a few variants of
MPA (UniAD). We evaluate the unseen scene’s results across
different variants. The comparison between ID-5 and ID-
6 (ours) demonstrates the effectiveness of the adapter in a
better route completion. Under the safety-critical scenes, the
adapter brings ∼20% increase to the out route completion,
leading to a significantly higher HDScore compared to the
policies without the adapter.

Principles of Q-Value Guidance. In Table 3, we remove
different principles in the state-action value function Q.
Compared to the ID-5 variants, ID-1 removes the route infor-
mation used in all the baselines, which leads to drastically
degraded performance. ID-2 removes the distance function
to the reference route, significantly degrading driveable area
compliance and non-at-fault collision metrics. ID-3 removes
the collision values, and ID-4 removes the speeding value
function. Both of them have an impact on HDScore, espe-
cially in safety-critical situations. The reason that NC still
seemed to be high for ID-3 in safety-critical scenes is that the
available frame length before collision is short, which makes



Table 2. Out-of-Domain Closed-Loop Evaluation Results in unseen nominal and safety-critical scenes. All the evaluation metrics are
higher the better. Bold means the best, and underlined is the best runner-up for each metrics.

Unseen Nominal Scenes Safety-Critical Scenes

Model RC NC DAC TTC COM HDScore RC NC DAC TTC COM HDScore

UniAD 39.3 56.6 74.0 52.6 98.2 22.2 11.4 76.2 82.1 57.8 95.9 4.5
VAD 45.4 64.8 86.2 62.0 95.9 29.3 25.4 77.0 88.3 73.2 88.4 16.0
LTF 63.3 64.8 86.5 62.8 98.2 41.9 35.1 80.9 96.8 78.1 100.0 24.2

AD-MLP 7.6 71.6 82.2 69.8 92.3 3.3 4.9 93.5 96.2 93.4 85.9 4.3
BC-Safe 59.2 59.8 81.2 56.3 95.9 34.6 20.2 80.1 91.7 67.3 86.7 13.5
Diffusion 57.9 62.1 83.5 58.3 96.2 35.1 20.9 84.3 92.3 72.4 86.3 13.1
MPA (UniAD) 93.7 69.5 92.9 66.6 97.6 60.9 95.1 76.8 98.9 74.2 97.7 70.4
MPA (VAD) 90.9 71.0 94.4 68.8 97.7 61.2 96.6 79.8 99.0 77.3 97.7 74.7
MPA (LTF) 91.8 68.3 91.0 66.5 96.9 57.0 87.3 72.0 94.0 66.9 97.8 56.3

MPA (UniAD) MPA (VAD) MPA (LTF) UniAD VAD LTF

Figure 5. Impact of Rollout Steps (T from Algorithm 1) during the counterfactual data generation. We fix the sample size to six during the
closed-loop evaluation for all the MPA variants. MPA trained with more counterfactual steps results in better test-time performance, as the Q
value model takes more future steps as the supervision signals.

the denominator in NC smaller compared to the other group.
However, when we look at the RC metrics, the drop when
removing Qcollision is significant, as the agents will encounter
a collision and end to episode earlier than the nominal cases.

5. Related Works
End-to-End Autonomous Driving. End-to-End (E2E) au-
tonomous driving has achieved significant progress by jointly
training the detection, tracking, prediction, and planning
modules to avoid information loss throughout the cascading
system. ST-P3 [17] and UniAD [18] propose unified E2E
frameworks that achieve state-of-the-art open-loop perfor-
mance on the nuScenes dataset [3]. VAD [22] encodes the
driving scene with a vectorized representation and incor-
porates query-based planning modules, and VAD-v2 [22]
further designs a probabilistic planning approach and im-
proves the closed-loop performance over the CARLA [9]
benchmark. Hydra-MDP follows VAD-v2’s query-based
framework and conducts multi-target hydra distillation with
a set of scoring rules. With the prosperity of foundation
models, a series of works [2, 32, 34, 40, 41] incorporate
Large Language Models (LLMs) and Vision-Language Mod-
els (VLMs) into the E2E planning pipeline. Despite the
benefits of commonsense reasoning with foundation models,

most of the existing models still focus on the open-loop eval-
uation or the approximate closed-loop metrics from the open-
loop evaluation [7], which lack counterfactual reasoning for
the safety-critical scenarios. A recent work RAD [11] pays
attention to the photorealistic closed-loop evaluation and
utilizes imitation learning and online reinforcement learning
to fine-tune the E2E driving agents. Yet, the value functions
trained for the Proximal Policy Optimization (PPO) agents
are not effectively integrated during the inference. MPA
aims to use the value model as an effective inference-time
guidance to make the E2E agents more robust in closed-loop
evaluation.

Counterfactual Data Generation. Counterfactual data
generation has been explored within the context of of-
fline reinforcement learning. Wang et al. [43] utilize a
learned model to autonomously generate additional offline
data, thereby enhancing the training of sequence models.
OASIS [52] introduces a method to produce counterfac-
tual data by modulating guidance signals during diffusion
model inference. In high-stakes decision-making domains
such as autonomous driving, generating counterfactual data
is essential due to the limited presence of safety-critical
scenarios in existing datasets. Previous research has ad-
dressed the trade-off between realism and controllability



Table 3. Ablation Study on MPA’s variants on the UniAD base policy. Top: Unseen scenes that are nominal but not appearing in the training
dataset. Bottom: Safety-critical scenes with adversarial surrounding agents. Bold means the best, and underlined is the best runner-up for
each metrics.

ID Qroute Qdist Qcollision Qspeed Adapter RC NC DAC TTC COM HDScore

1 ✓ ✓ ✓ 6.9 81.2 95.1 81.0 100 5.1
2 ✓ ✓ ✓ 83.9 57.0 81.0 53.6 99.4 43.2
3 ✓ ✓ ✓ 89.2 70.8 95.6 68.6 99.4 60.8
4 ✓ ✓ ✓ 90.4 68.9 91.8 65.4 99.4 56.6
5 ✓ ✓ ✓ ✓ 91.1 71.5 94.1 69.4 99.4 60.9
6 ✓ ✓ ✓ ✓ ✓ 93.7 69.5 92.9 66.6 97.6 60.9

ID Qroute Qdist Qcollision Qspeed Adapter RC NC DAC TTC COM HDScore

1 ✓ ✓ ✓ 4.6 86.0 98.3 79.3 90.1 3.6
2 ✓ ✓ ✓ 65.1 65.6 85.7 53.8 86.5 39.5
3 ✓ ✓ ✓ 57.7 82.4 99.0 69.6 84.6 39.2
4 ✓ ✓ ✓ 79.3 82.9 98.5 68.0 93.9 50.1
5 ✓ ✓ ✓ ✓ 75.6 81.2 98.8 78.6 99.7 55.3
6 ✓ ✓ ✓ ✓ ✓ 95.1 76.8 98.9 74.2 97.7 70.4

in safety-critical scenario generation by integrating various
constraints. These include inference-time sampling tech-
niques [39], retrieval-augmented generation [8], low-rank
fine-tuning approaches [10], and language-conditioned gen-
eration methods [38]. However, these efforts primarily focus
on behavioral scenario generation without incorporating vi-
sual information. With advancements in Neural Radiance
Fields (NeRF) and 3D Gaussian Splatting (3DGS), recent
studies such as DriveArena [50] and MagicDrive [12] have
begun developing E2E simulators for closed-loop evalua-
tion. Similarly, RAD [11] employs a 3DGS-based simulator
for RL fine-tuning. Notably, to date, no existing work has
focused on generating E2E counterfactual data within E2E
simulators.

Reward Model for Inference-Time Scaling. Recent LLM
research has shown the power of the reward model in LLM’s
inference-time scaling [30, 36]. In sequential decision-
making problems, the reward model was explicitly used
for inference-time supervision signals, such as the guid-
ance for the diffusion-based policy models [1, 16, 21]. For
the closed-loop autonomous driving and decision-making
tasks, several prior works incorporate reward models as the
classifier-based guidance to steer the diffusion model’s sam-
pling process [23, 24, 54]. Other format of the guidance sig-
nals include signal temporal logic (STL) guidance, language-
based guidance [55], adversarial guidance [4, 45, 47], and
game-theoretic guidance [20]. In the autonomous driving do-
main, prior works like DiffusionDrive [29] utilize truncated
denoising for the diffusion models without additional classi-
fier guidance. DiffAD utilizes action conditional guidance
for E2E driving [44]. Diffusion-ES [49], Gen-Drive [19],
and Diffusion-Planner [54] utilize customized reward mod-
els as test-time guidance for the non-E2E driving tasks. To

the best of our knowledge, MPA is the first work incorporat-
ing the driving reward model for the inference-time scaling
of E2E driving agents.

6. Conclusion

In this work, we introduce MPA, a general framework for im-
proving the closed-loop trustworthiness of E2E autonomous
driving agents. MPA begins by generating high-quality coun-
terfactual trajectories through geometry-consistent rollouts
in a 3DGS-based simulation environment. This results in a
better data coverage while preserving visual fidelity. With
the counterfactual dataset, MPA further trains a diffusion-
based policy adapter to refine base policy predictions and
leverages a multi-principle value model to guide inference-
time decision making. These components allow pretrained
agents to generate and evaluate multiple trajectory proposals,
selecting actions that optimize long-term driving outcomes.
Experimental results on nuScenes data and HUGSIM bench-
mark demonstrate MPA’s effectiveness in boosting safety
and generalizability.

Limitations. Despite these promising results, our ap-
proach assumes reliable rendering from 3DGS under con-
strained trajectory deviations and currently decouples value
modeling from policy optimization. Future work includes
extending our current results to diverse driving datasets, ex-
ploring the online RL training over the 3DGS simulator, and
deploying MPA to the multi-modal foundation models to
enhance reasoning capability for more severe distribution
shifts in autonomous driving.
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