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Abstract

Direct Advantage Estimation (DAE) was recently shown to improve sample-
efficiency of deep reinforcement learning algorithms. However, DAE assumes full
observability of the environment, which may be restrictive in realistic settings. In
the present work, we first show that DAE can be extended to partially observable
domains with minor modifications. Secondly, we address the increased compu-
tational cost due to the need to approximate the transition probabilities through
the use of discrete latent dynamics models. Finally, we empirically evaluate the
proposed method using the Arcade Learning Environments, and show that it is
scalable and sample-efficient.

1 Introduction

Real-world decision-making problems often involve incomplete information, where observations
received by the agents are not enough to fully determine the underlying state of the system. For
example, a robot navigating a building may only have a local view of its surrounding; a doctor has
to decide the course of treatment for a patient based on a limited set of test results. The Partially
Observable Markov Decision Process (POMDP) framework [Kaelbling et al., 1998] provides a
generalization of the fully observable MDP framework [Puterman, 2014] to tackle these problems.

While reinforcement learning (RL) [Sutton and Barto, 2018] paired with deep neural networks (deep
RL) has achieved unprecedented results in various domains [Mnih et al., 2015, Berner et al., 2019,
Schrittwieser et al., 2020, Ouyang et al., 2022, Wurman et al., 2022], it is known to be challenging to
train and often requires millions or billions of samples[Henderson et al., 2018]. One major difficulty
of training deep RL agents is to approximate the state(-action) value function (Qπ(s, a) or V π(s))
due to their non-stationary nature. Recently, Pan et al. [2022] demonstrated that the advantage
function is more stable under policy variations and proposed Direct Advantage Estimation (DAE)
to learn the advantage function directly for on-policy settings. DAE demonstrated strong empirical
performance, but is restricted to on-policy settings. Later, Pan and Schölkopf [2024] observed that
the return of a trajectory can be decomposed into two different advantage functions, which enabled a
natural generalization of DAE to off-policy settings (Off-policy DAE). Off-policy DAE was reported
to further improve the sample efficiency of DAE; however, the method suffers from significantly
increased computational complexity due to the need to learn a high dimensional generative model to
approximate the transition probabilities.

The present work explores the feasibility of DAE in partially observable domains, and ways to reduce
its computational complexity. More specifically, the contributions are:

• We show that Off-policy DAE can be applied to POMDPs with minor modifications to the
constraints of the objective.

• We address the problem of increased computational cost of Off-policy DAE by modeling
transitions in a low dimensional embedding space, which circumvents the need to model
high dimensional observations.
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• We show that truncating trajectories, a common technique for reducing the computational
cost of training POMDP agents, can lead to confounding and degrade performance.

• We evaluate our method empirically using the Arcade Learning Environment [Bellemare
et al., 2013] to verify its effectiveness. We also perform an extensive ablation study to show
the contributions of various corrections and

2 Background

In the present work, we consider a discounted POMDP defined by the tuple (S, A, T , Ω, O, r,
γ) [Kaelbling et al., 1998], where S is the state space, A is the action space, T (s, a, s′) denotes
the transition probability from state s into state s′ after taking action a, Ω is the observation space,
O(s, o) denotes the probability of observing o ∈ Ω in state s, r(s, a) denotes the reward received by
the agent after taking action a in state s, and γ ∈ [0, 1) denotes the discount factor. When the context
is clear, we shall simply denote T (s, a, s′) by p(s′|s, a), andO(s, o) by p(o|s). In this work, we shall
consider the case where S, A, and Ω are finite. An agent in a POMDP cannot directly observe the
states, but only the observations emitted from the state through O. We consider the infinite-horizon
discounted setting, where the goal of an agent is to find a policy π, which maximizes the expected
cumulative reward, i.e., J(π) = Eπ [

∑∞
t=0 γ

tr(st, at)].

In fully observable environments, one can estimate the state(-action) value function V π(s) (or
Qπ(s, a)) as the states are observed directly. In POMDPs, however, agents do not observe states
directly, and have to estimate the values based on the observed history (information vector) ht =
(o0, a0, r0, o1, ..., ot) [Bertsekas, 2012]. Similar to their counterparts in MDPs, we can define the
state(-action) value functions by:

V π(ht) = Eπ

[ ∞∑
t′=0

γt′rt+t′

∣∣∣∣∣ht

]
, Qπ(ht, at) = Eπ

[ ∞∑
t′=0

γt′rt+t′

∣∣∣∣∣ht, at

]
. (1)

2.1 Direct Advantage Estimation

Aside from Q and V , another function of interest is the advantage function defined by Aπ(s, a) =
Qπ(s, a)− V π(s) [Baird, 1995]. Recently, Pan et al. [2022] proposed Direct Advantage Estimation
(DAE) to estimate the advantage function by minimizing the following constrained objective function

L(Â, V̂ ) = Eπ

(n−1∑
t=0

γt(rt − Ât) + γnV̂target(sn)− V̂ (s0)

)2
 s.t.

∑
a∈A

Â(s, a)π(a|s) = 0,

(2)
where V̂target is a given bootstrapping target, rt = r(st, at), and Ât = Â(st, at). The constraint
signifies the centering property of the advantage function, (i.e., Eπ[A

π(s, a)|s] = 0). The minimizer
of L(Â, V̂ ) can be viewed as a multi-step estimate of (Aπ, V π). One limitation of DAE is that it is
on-policy, that is, the behavior policy (Eπ) has to be the same as the target policy (π in the constraint).

Pan and Schölkopf [2024] extends DAE to off-policy settings (Off-policy DAE), by showing that
if we view stochastic transitions as actions from an imaginary agent (nature), then the return of a
trajectory can be decomposed using the advantage functions from both agents by

∞∑
t=0

γtr(st, at) =

∞∑
t=0

γt (Aπ(st, at) +Bπ(st, at, st+1)) + V π(s0), (3)

where Bπ(st, at, st+1) = γV π(st+1) − γEs′∼p(·|st,at)[V
π(s′)|st, at] is the advantage function of

nature, which was also called luck as it quantifies how much of the return is caused by nature. This
decomposition admits a natural generalization of DAE into off-policy settings by incorporating B̂
into the objective function (Equation 2):

L(Â, B̂, V̂ ) = Eµ

(n−1∑
t=0

γt(rt − Ât − B̂t) + γnV̂ (sn)− V̂ (s0)

)2


subject to

{
Ea∼π(·|s)[Â(s, a)] = 0

Es′∼p(·|s,a)[B̂(s, a, s′)] = 0
.

(4)
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Contrary to Equation 2, the behavior policy (Eµ) and the target policy (π in the constraint) need not
be equal. Intuitively, Â and B̂ can be viewed as corrections for stochasticity originated from the
policy and the transitions, respectively. Under mild assumptions, one can show that (Aπ, Bπ, V π) is
the unique minimizer of this objective function, suggesting that we can perform off-policy policy
evaluation by minimizing the empirical version of this objective function. However, Off-policy DAE
has some limitations:

• The method assumes fully observable MDPs, which can be restrictive in realistic settings.

• Enforcing the B̂ constraint in Equation 4 requires estimating the transition probability
p(s′|s, a), which can be difficult when the state space is high-dimensional (e.g., images).
In Pan and Schölkopf [2024], it was reported that learning the transition probability can
drastically increase the computational complexity (∼7 fold increase in runtime).

We address these issues in Section 3.

3 Return Decomposition in POMDPs

The key observation by Pan and Schölkopf [2024] is that the return can be decomposed using two
different advantage functions (Equation 3). Here, we examine whether such a decomposition also
exists in POMDPs.

Firstly, we can define the advantage function in POMDPs by

Aπ(ht, at) = Qπ(ht, at)− V π(ht) = Eπ

[ ∞∑
t′=0

γt′rt+t′

∣∣∣∣∣ht, at

]
− Eπ

[ ∞∑
t′=0

γt′rt+t′

∣∣∣∣∣ht

]
. (5)

Similar to its counterpart in MDPs, this function also satisfies the centering property, namely∑
a∈A π(at|ht)A

π(ht, at) = 0. The next question is how we can similarly define the luck function
Bπ such that the return can be decomposed, and whether this function also satisfies the centering
condition.

We proceed by examining the difference between the return and the sum of the advantage function
along a given trajectory (o0, a0, r0, o1, a1, r1, ...)

∞∑
t=0

γtrt −

( ∞∑
t=0

γtAπ(ht, at) + V π(h0)

)
=

∞∑
t=0

γt (rt + γV π(ht+1)−Qπ(ht, at)) . (6)

This equation suggests that we can define the luck function by
Bπ(ht, at, ht+1) = rt + γV π(ht+1)−Qπ(ht, at) (7)

Remember that ht+1 is simply the concatenation of ht and (at, rt, ot+1), meaning that we can rewrite
Bπ(ht, at, ht+1) as Bπ(ht, at, rt, ot+1). We now see that, the Bπ defined this way also satisfies a
slightly different centering property, namely,

E(rt,ot+1)∼p(·|ht,at) [B
π(ht, at, rt, ot+1)|ht, at] = 0. (8)

Essentially, this equation differs from its MDP counterpart by the variables that are being integrated.
In POMDPs, since the agent does not observe the underlying state, we simply integrate the variables
being observed after taking an action (i.e., the immediate reward and the next observation).

Finally, we arrive at the following generalization:
Proposition 1 (Off-policy DAE for POMDPs). Given behavior policy µ, target policy π, and backup
length n ≥ 0. Let Ât = Â(ht, at), B̂t = B̂(ht, at, rt, ot+1), and the objective function

L(Â, B̂, V̂ ) = Eµ

(n−1∑
t′=0

γt′
(
rt+t′ − Ât+t′ − B̂t+t′

)
+ γnV̂ (hn+t)− V̂ (ht)

)2


subject to

{
Ea∼π(·|h)[Â(h, a)|h] = 0 ∀h ∈ H
E(r,o′)∼p(·|h,a)[B̂(h, a, r, o′)|h, a] = 0 ∀(h, a) ∈ H ×A

,

(9)

whereH is the set of all possible observed histories of the form (o0, a0, r0, ...ot), then (Aπ, Bπ, V π)
is a minimizer of the above problem. Furthermore, the minimizer is unique if µ has non-zero
probability of reaching any trajectory.
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Figure 1: The latent dynamics model first embeds observations into low dimensional vectors
xt ∈ Rd, which are then processed by an RNN to capture the information vectors ht (for illustrative
purpose, we omit conditioning on previous actions and rewards). At each time-step, |Z| predictions
are generated (x̂t+1,z) to capture the stochastic xt+1. During training, we only minimize the distance
between the best prediction and xt+1.

Again, we remind the reader that Proposition 1 differs from its MDP counterpart (Equation 4) by
simply replacing states with histories, and transition probabilities with conditional densities of the
observed variables (in the B̂ constraint). This is a consequence of the fact that POMDPs can be
reformulated as MDPs using information vectors [Bertsekas, 2012]. Like DAE, this can be seen as
an off-policy multi-step method for value approximation, as the objective function includes n-step
rewards. Deploying this method in practice, however, can be computationally heavy, and we discuss
methods to reduce its computational complexity below.

3.1 Practical Considerations — Enforcing Constraints

Here, we discuss how to (approximately) enforce the two centering constraints in the objective
function (Equation 9) by reparameterizing the function approximator.

The Â constraint can be easily enforced upon a given function approximator fθ(h, a) by constructing
Âθ(h, a) = fθ(h, a) −

∑
a∈A fθ(h, a)π(a|h) [Wang et al., 2016]. The B̂ constraint, on the other

hand, is much more challenging, as it requires knowledge of the transition probabilities p(·|h, a).
In the original Off-policy DAE implementation [Pan and Schölkopf, 2024], this was achieved by
encoding transitions into a small discrete latent space Z using a conditional variational autoencoder
[Kingma and Welling, 2013, Sohn et al., 2015], and constructing B̂(s, a, s′) from the function
approximator gθ(s, a, z) by

B̂(s, a, s′) = Ez∼qϕ(·|s,a,s′)[gθ(s, a, z)|s, a, s
′]− Ez∼pϕ(·|s,a)[gθ(s, a, z)|s, a], (10)

where qϕ(·|s, a, s′) is the approximated posterior and pϕ(·|s, a) is the prior. It then follows that
Es′∼p(·|s,a)[B̂(s, a, s′)|s, a] ≈ 0. This approach, however, can be computationally heavy if observa-
tions are high dimensional due to the need to reconstruct observations.

To reduce computational complexity, we propose to learn a discrete dynamics model purely in
the embedding space1 (see Figure 1). This is achieved by first embedding observations into a low
dimensional vector x = enc(o) ∈ Rd (with d ≪ the dimension of the observations), where enc
denotes the encoder, and learning to predict xt+1 = enc(ot+1) from the observed history (ht, at).
This approach is similar to the self-predictive representation (SPR) [Schwarzer et al., 2020]; however,
SPR only produces a single prediction which cannot capture the stochasticity of transitions. We
address this by combining SPR with the Winner-Takes-All (WTA) loss [Lee et al., 2015, Guzman-
Rivera et al., 2012], which was shown to be useful for modeling stochastic predictions. More
specifically, we combine them by: (1) making multiple predictions of the next encoded observation,

1To avoid confusion, we will refer to the space of encoded observations as the embedding space, and Z as
the latent space of the VAE.
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Figure 2: Left: A toy POMDP with 4 states and 2 actions. The nodes and the arrows represent
the states and the actions (up, down), respectively. s0 is the starting state and s3 is the terminal
(absorbing) state. The agent does not observe the underlying state but only the emitted observation at
each time step, o0 and o1, where both s1 and s2 emit the same observation o1. Right: The causal
relationship between a0, a1, and r1. We ignore other variables as they do not influence r1. The
variable a0 can act as a confounder during training when the target policy is memoryless.

and (2) only minimizing the prediction closest to the outcome. The objective function is then,

Lrec =
∑
z∈Z

w(x̂t+1,z, xt+1)|x̂t+1,z − sg(xt+1)|2, (11)

w(x̂t+1,z, xt+1) =

{
1, z = argmini |x̂t+1,i − xt+1|
0, otherwise

, (12)

where sg denotes stop-gradient. In practice, we follow SPR and use the normalized L2 distance
(cosine similarity) which was shown to be more stable than the L2 distance. Intuitively, this can
be seen as performing k-means clustering (with k = |Z|) in the embedding space with centroids
x̂·,z [Rupprecht et al., 2017]. Next, note that, the objective (Equation 11) is equivalent to a conditional
vector-quantized VAE (VQ-VAE) [Van Den Oord et al., 2017], with posterior

qϕ(z|ht, at, xt+1) = w(x̂t+1,z(ht, at), xt+1), (13)

and codebooks that are dependent on the information vectors (x̂·,z). Consequently, we can
learn the prior by minimizing the KL-divergence between the prior pθ(z|ht, at) and the poste-
rior qϕ(z|ht, at, xt+1). Once we learn a conditional VQ-VAE, we can approximate the B̂ constraint
using Equation 10. The constraint in the objective (Equation 9) indicates that we should also consider
stochasticity of the rewards, which can be similarly achieved by making multiple reward predictions
and adding a reward reconstruction term to the objective function.

In practice, we found that using shallow MLPs to model the dynamics already achieves strong
empirical performance with negligible additional computational cost compared to using convolutional
decoders for observation reconstruction. In addition, we found it possible to learn the RL objective
(Equation 9) and the dynamics model jointly end-to-end to further reduce computational complexity
compared to learning them separately as done by Pan and Schölkopf [2024].

3.2 Practical Considerations — Truncating Sequences

As states are now replaced by histories, we have to process sequences of observations instead of
singular states. In modern deep RL, this is typically achieved by using recurrent neural networks
(RNNs), such as LSTMs or GRUs [Hochreiter and Schmidhuber, 1997, Hausknecht and Stone, 2015,
Mnih et al., 2016, Kapturowski et al., 2018, Gruslys et al., 2018, Cho et al., 2014, Hafner et al., 2023].
This can be computationally heavy during training when trajectories extend to thousands of steps.
Instead, it is common to use truncated histories to provide the necessary context and alleviate the
need to process full histories [Kapturowski et al., 2018]. Similarly, we can replace full histories with
truncated histories in Equation 9 (replace ht with ht−k:t = (at−1−k, rt−1−k, ot−k, ..., ot), k is the
truncation length), to reduce the computational complexity.

Here, we highlight one commonly overlooked problem of truncating sequences due to confound-
ing [Pearl, 2009]. One way confounding can happen is when there are unobserved variables (e.g., the
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truncated part of the trajectory, h0:t−k−1) that simultaneously influence both the input variables (e.g.,
the remaining part of the trajectory ht−k:t) and the output variables (e.g., the rewards rt′ for t′ ≥ t).
We illustrate this problem with a toy example (see Figure 2). In this environment, the optimal policy
is π∗(up|o0) = p ∈ [0, 1] (arbitrary), and π∗(a|o0, a0=a, o1) = 1 (repeat previous actions). Now, let
us consider the case where the behavior policy is the optimal policy with π∗(up|o0) = 0.5, but the
truncation length is 0 (i.e., memoryless) for the target policy. In this case, we will incorrectly infer
that V π(o1) = Qπ(o1, ·) = 1 for any target policy π, since all the collected trajectories receive a
reward 1 irrespective of the action a1. This is a classic example of confounding, where the unobserved
variable a0 behaves as a confounder that biases our estimates.

In the online setting, we can partially eliminate confounding by conditioning both the behavior policy
and the target policy on the same set of variables (i.e., same memory capacity). This then breaks the
causal influence from h0:t−k−1 to at′ for all t′ ≥ t. While this does not fully eliminate confounding
since ht−k:t and Gt can still be influenced by h0:t−k−1, we empirically show that this simple change
can have non-trivial effects on the agent’s performance (see Section 4). Finally, we remind the reader
that this is not a limitation of the proposed method, but a common issue due to partial observability.

4 Experiments

In this section, we examine the performance of the proposed method using the Arcade Learning
Environment (ALE) [Bellemare et al., 2013], which includes environments with diverse dynamics and
various degrees of partial observability. More specifically, we use the five environments subset (Battle
Zone, Double Dunk, Name This Game, Phoenix, Qbert) suggested by Aitchison et al. [2023], as it was
found that the learning performance in this subset strongly correlates with the overall performance of
an algorithm. We use the same environment setting as the Dopamine baselines [Castro et al., 2018],
which largely follows the protocols proposed by Machado et al. [2018], including the use of sticky
actions (repeat previous action with a certain probability) and discarding end-of-life signals. Note
that while sticky actions were originally proposed to inject stochasticity into the environments, they
also introduce additional partial observability due to its dependency on previous actions.

We evaluate our method using a DQN-like [Mnih et al., 2015] agent with some modifications,
which we briefly summarize below. (1) Recurrent Architecture: We do not use frame-stacking,
but simply use an LSTM after the convolutional encoder to process sequences of observations.
Aside from image inputs, we also feed previous actions and rewards into the LSTM. (2) DAE
objective: We replace the 1-step Q-learning objective with our multi-step DAE objective (Equation 9),
and use three separate MLPs on top of the LSTM to model Â, B̂, and V̂ . (3) Discrete Latent
Dynamics Model: We use three additional MLPs on top of the LSTM to estimate the next observation
embedding x̂t+1(ht, at, zt), the immediate reward p(rt|ht, at), and the prior probability p(zt|ht, at).
(4) Exponential Moving Average: Similar to SPR, we use an exponential moving average of the
online network as the target network to generate the next observation embeddings for the dynamics
model. This target network is also used to construct smoothly changing target policies and value
bootstrapping targets for the DAE objective. (5) Deeper Network: We use the deep residual network
proposed by Espeholt et al. [2018] instead of the shallow three-layer convolutional network, which
we found to enjoy better scalability and improved sample efficiency. For more details, we refer the
reader to Appendix C.

In the following experiments, we train the agents for 20 million frames (5 million environment steps
due to frame-skipping), and evaluate the agent every 1 million frames by averaging the cumulative
scores of 50 episodes.

Off-policy correction is crucial for scaling In value-based deep RL, it is common to use biased
multistep value targets by ignoring off-policy corrections [Hessel et al., 2018, Hernandez-Garcia
and Sutton, 2019, Kapturowski et al., 2018, Horgan et al., 2018]. However, as we will demonstrate,
ignoring off-policy corrections can hurt the agent’s scalability and final performance. Following Pan
and Schölkopf [2024], we partially disable off-policy corrections by setting B̂ ≡ 0, which can be
seen as ignoring corrections for the stochasticity of the environment.2 For scaling, we simply multiply
the width of the convolutional layers in the encoder by a multiplier m. As a comparison, we use
Rainbow [Hessel et al., 2018] and DQN [Mnih et al., 2015] scores provided by Castro et al. [2018]

2The widely used biased n-step method is more aggressive and equivalent to enforcing Â ≡ 0 and B̂ ≡ 0
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Figure 3: Comparing scalability and sample efficiency with off-policy correction (top row) and
without it (bottom row). Results are aggregated over 10 random seeds. Lines and shadings represent
the mean and 1 standard error, respectively. m: width multiplier of the convolutional layers.

Table 1: Effect of model capacity and off-policy correction on the final evaluation score. Scores were
aggregated over 10 random seeds after 20M training frames. Values represent (mean)±(1 standard
error). O: Off-policy correction. m: width multiplier.

O m BattleZone DoubleDunk NameThisGame Phoenix Qbert

Y

1 35044± 986 8.80± 2.13 10977± 441 5666± 54 15313± 56
2 38164± 603 17.68± 1.15 14308± 289 8010± 270 15831± 146
4 40098± 900 21.17± 0.45 18682± 580 13593± 1036 19697± 599
8 39262± 763 21.49± 0.38 19638± 633 18127± 1075 23451± 415

N

1 27700± 433 7.59± 1.55 6066± 74 5366± 94 14944± 124
2 31310± 554 11.00± 0.95 8090± 246 5835± 189 15599± 239
4 30600± 490 11.16± 1.22 10171± 270 8838± 515 17529± 794
8 32438± 752 11.46± 0.90 11007± 186 9641± 408 19868± 732

DQN 17785± 868 −6.54± 3.41 7279± 291 4997± 34 10118± 358
RBW 40061± 1866 22.12± 0.34 9026± 193 8545± 1286 17383± 543

as baselines. Note that these baselines were trained for 200 million frames, while we only train our
method for 20 million frames. We summarize the results in Figure 3 and Table 1. Firstly, we find
that increasing m can substantially improve sample efficiency, and by simply scaling up, we can
achieve performance comparable to Rainbow while using only 10% of the data. Secondly, we see
that disabling off-policy correction can drastically degrade the performance and limit the benefit
of scaling. These results also suggest that the learned latent dynamics model can indeed capture
the stochasticity of the environments, as enabling B̂ significantly improves the performance, and
approximating the B̂ constraint hinges on the model.

Next, we perform ablation studies to better understand the contribution of each part. For the following
experiments, we use the m = 4 model to reduce the computational cost.

Effect of backup length. Multi-step learning allow reward information to propagate faster and
reduce dependencies on the bootstrapping target, and it was found to stabilize and speedup train-
ing [Hernandez-Garcia and Sutton, 2019, ?]. However, it can also increase the variance of value
updates, and choosing the backup length n can be seen as a bias-variance tradeoff [Kearns and Singh,
2000]. In Figure 4, we summarize the effect of n for our DAE agent. In general, we find using larger
n to be beneficial, except for Battle Zone and Name This Game, where we see that increasing the
backup length beyond 8 can hurt the performance.

Frame-stacking can be suboptimal. Frame-stacking has been the standard approach to approxi-
mate the ALE environments as MDPs since its introduction by Mnih et al. [2015]. Here, we examine
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Figure 5: Comparing LSTM to frame-stacking. Results are aggregated over 10 random seeds. Lines
and shadings represent the mean and 1 standard error, respectively.

the effect of our proposed POMDP correction compared to approximating the environment as an
MDP via frame-stacking.3 This can also be seen as a comparison between the POMDP version of
DAE and its MDP counterpart. For fair comparison, we set the truncation length of the LSTM agent
to 4 (this also applies to action selection), such that both agents have the same context length during
action selection, and differ only in how the values are learned. In Figure 5, we see the LSTM agent to
perform at least on par with the frame-stacking agent, while being significantly better in three of the
environments. This indicates that our POMDP correction is indeed effective when the underlying
environments are POMDPs.

Table 2: Effect of confounding and truncation length on the final evaluation score. Scores were
aggregated over 10 random seeds after 20M training frames. Values represent (mean)±(1 standard
error). k: truncation length. R: recurrent behavior policy. diff: relative difference of the score.

k R BattleZone DoubleDunk NameThisGame Phoenix Qbert

4 N 39404± 899 19.88± 0.58 21283± 412 12945± 590 19825± 559
Y 36762± 887 17.67± 1.43 19760± 800 12234± 379 18718± 493

diff(%) −6.70% −11.12% −7.15% −5.49% −5.58%

8 N 40098± 900 21.17± 0.45 18682± 580 13593± 1036 19697± 599
Y 37224± 803 18.86± 1.21 17104± 579 13486± 735 19355± 555

diff(%) −7.17% −10.90% −8.45% −0.79% −1.74%

Confounding can degrade performance. As pointed out in Section 3.2, truncating sequences is
essential to reducing computational cost, but naively truncating sequences can lead to bias in value
estimations due to confounders. Here, we test the impact of truncation length and the confounding
bias in the ALE. To test this, we compare two different sampling strategies: (1) fully recurrent
behavior policy (no truncation), which causes confounding by conditioning on variables that are
being truncated during training; (2) behavior policy with same truncation length as the target policy
(see also Figure 6 for the causal graph). It is noteworthy that the confounded approach is actually
widely used by popular algorithms [Hausknecht and Stone, 2015, Hafner et al., 2023]. We summarize
the results in Table 2. Surprisingly, we find that this simple change leads to small, yet consistent
performance degradation across all five environments and two truncation lengths.

3For easier comparison, we use a different frame-stacking implementation. See Appendix C.4 for details.
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In Appendix C.5, we also examine the effect of the latent space size |Z| on the performance, and find
it to be relative robust above a certain level. This suggests that while the environments are stochastic,
the stochasticity can be well approximated by a small number of latent variables.

5 Related Work

Advantage Estimation Estimating the advantage function is an important part of policy opti-
mization [Kakade and Langford, 2002]. Schulman et al. [2015] proposed Generalized Advantage
Estimation (GAE), which utilizes TD(λ) [Sutton, 1988] to perform on-policy multi-step estimates
of the advantage function. Wang et al. [2016] proposed dueling network to parametrize Qθ into
Vθ + Aθ and showed that it can improve the performance of the original DQN. Tang et al. [2023]
proposed VA learning to estimate V and A separately, and showed that it can outperform the dueling
architecture. Pan et al. [2022] proposed DAE to perform multi-step estimation of the advantage
function for on-policy data. This is later generalized to the off-policy setting by Pan and Schölkopf
[2024]. The present work extends off-policy DAE to partially observable environments and improves
its computational efficiency.

POMDP POMDPs provide a general framework for studying decision making with incomplete
states [Åström, 1965]. In RL, POMDPs are usually solved by first converting them into MDPs either
using belief states [Kaelbling et al., 1998] or information vectors [Bertsekas, 2012]. In deep RL,
partial observability is usually addressed using frame-stacking [Mnih et al., 2015], or by simply
modeling the histories directly [Kapturowski et al., 2018, Gruslys et al., 2018, Hafner et al., 2023,
Hausknecht and Stone, 2015, Mnih et al., 2016].

Latent Dynamics Model Learning dynamics models in the latent space is a promising approach
to model-based RL [Ha and Schmidhuber, 2018, Schrittwieser et al., 2020, Hafner et al., 2023,
Antonoglou et al., 2021]. It is, however, still common to rely on reconstructing observations to
learn meaningful latent representations [Anand et al., 2021]. In the present work, we combine ideas
from self-supervised learning methods [Schwarzer et al., 2020, Grill et al., 2020] and the WTA
loss [Makansi et al., 2019, Rupprecht et al., 2017] to estimate the transition probabilities purely in the
latent space, and found it to be beneficial in value estimation.

Causality The problem of inferring the effect of an action under partial observability dates at least
back to Splawa-Neyman et al. [1990], Rubin [1974], and is a central topic in the study of causal
inference [Pearl, 2009, Peters et al., 2017]. In RL, these problems have been studied in the bandit
setting [Bareinboim et al., 2015, Tennenholtz et al., 2021] and the sequential setting [Tennenholtz
et al., 2020, Pace et al., 2023]. We showed that the confounding problem can also have negative
impacts when training recurrent agents.

6 Discussion

In the present work, we proved how to extend DAE for POMDPs and addressed its computational cost
issue by using discrete latent dynamics models. Through experiments in the ALE, we demonstrated
that DAE is sample efficient and scalable, and that the proposed corrections are effective for POMDPs.

One limitation of our method is the need to approximate the transition probabilities through the use
of latent dynamics. This introduces additional hyperparameters (e.g., the network architecture of the
dynamics model) that require tuning, and render the proposed method more closely to model-based
than model-free, despite that we do not explicitly use the model for rollouts. One direction for future
work is to explore model-free approaches to approximate the constraints. Another limitation is that,
while we can partially mitigate the problem of confounding caused by using truncated trajectories,
we do not fully eliminate it. As such, an important direction is to develop computationally efficient
methods for eliminating the confounding bias.
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h′ h′′

at at+1

ot+1 ot+2 · · ·

rt rt+1

Figure 6: Causal relationship between variables of a truncated sequence for a general POMDP.
h′ = h0:t−k−1 denotes the truncated part of the sequence, and h′′ = ht−k:t denotes the remaining
(or "context") part of the sequence. The red arrows shows the dependency between actions and h′

when using recurrent actors.

A Proof of Proposition 1

Proposition (Off-policy DAE for POMDPs). Given behavior policy µ, target policy π, and backup
length n ≥ 0. Let Ât = Â(ht, at), B̂t = B̂(ht, at, rt, ot+1), and the objective function

L(Â, B̂, V̂ ) = Eµ

(n−1∑
t′=0

γt′
(
rt+t′ − Ât+t′ − B̂t+t′

)
+ γnV̂ (hn+t)− V̂ (ht)

)2


subject to

{
Ea∼π(·|h)[Â(h, a)|h] = 0 ∀h ∈ H
E(r,o′)∼p(·|h,a)[B̂(h, a, r, o′)|h, a] = 0 ∀(h, a) ∈ H ×A

,

(14)

whereH is the set of all possible observed histories of the form (o0, a0, r0, ...ot), then (Aπ, Bπ, V π)
is a minimizer of the above problem. Furthermore, the minimizer is unique if µ has non-zero
probability of reaching any trajectory.

Proof. Firstly, we note that a POMDP can be reformulated into a fully observable MDP with state
space equal to the space of information vectors (ht) [Bertsekas, 2012]. The theorem is then a direct
result of applying Off-policy DAE [Pan and Schölkopf, 2024] to the reformulated MDP.

Remark: The original proof of Off-policy DAE assumes that the reward function is deterministic,
which can be violated when converting from POMDPs into MDPs. As such, our definition of
Bπ(s, a, r, s′) = r+γV π(s′)−Eπ,s′′∼p(·|s,a)[r+γV π(s′′)|s, a] (in a fully observable MDP) differs
slightly from the original one Bπ(s, a, s′) = γV π(s′)− Eπ,s′′∼p(·|s,a)[γV

π(s′′)|s, a].

B Causal Graph of Truncated Sequences

Figure 6 shows the causal relationship between variables when sequences are truncated. For multi-
step methods like DAE, we learn the value/advantage functions by building a model that takes in
(h′′, at, rt, ot+1, · · · ) to predict

∑
t′>t rt′ (assuming the backup length is infinity for illustrative

purpose). It is then clear that h′ can influence both the input variables and the output variables, and
lead to confounding. In the confounding experiment in section 4, the two sampling strategies differ in
whether the red arrows are present for the behavior policy.

13



C Experiment Details & Additional Results

C.1 Pseudocode and additional implementation details

We provide the pseudocode in Algorithm 1. For illustrative purpose, the pseudocode assumes a single
actor and batch size 1; however, the algorithm can be easily parallelized over multiple actors and
mini-batches.

To avoid the latent dynamics from collapsing, we use a soft loss for the reconstruction by including
ϵW ≥ 0 into the posterior construction. In practice, ϵW is linearly annealed from 1 to 0 in the early
stage of training. This is similar to the approach by Makansi et al. [2019], except that the authors
construct the posterior using the top-k nearest neighbors.

Incorporating stochastic rewards can be done by adding an additional reward reconstruction loss.
In the case of Atari games, we can exploit the discrete structure of the rewards (rewards can only
be in R = {−1, 0, 1}) and construct the latent space by Z = ZO × R. This then allows us to
decompose the prior and the posterior by p(z|h, a) = p(zo|h, a)p(r|h, a) and p(z|h, a, r, o′) =
p(zo|h, a, r, o′)p(r̂|h, a, r, o′), respectively. Note that p(r̂|h, a, r, o′) = I(r̂ = r) is simply the
indicator function.

As pointed out by Pan et al. [2022], having a smoothly changing target policy is crucial to optimizing
the DAE objective function. Consequently, we use a softmax policy based on ÂθEMA as the target
policy. However, as reward density can vary drastically between environments, we additionally learn
a temperature parameter T by minimizing log T +βKLKL(π||πEMA), where both policies are softmax
policies constructed using the advantage functions (i.e. π = softmax( ÂT )). This ensures that the
online policy π does not deviate too much from the target policy πEMA, and alleviates the need to
tune the temperature manually for each environment.

Finally, to balance the scales between various objective functions, we set βV to be inverse proportional
to the standard deviation of the cumulative rewards (i.e., σ(G)).

C.2 Environment Setting

For fair comparison, our environment settings follow the ones used by the Dopamine baseline [Castro
et al., 2018], except that we do not use frame-stacking. In addition, we use EnvPool [Weng et al.,
2022] for efficient implementation of the parallelized environments.

Parameter Value
Grey-scaling True

Observation Resolution 84×84
Frame Stack 1

Action Repetitions 4
Reward Clipping [-1, 1]

Terminal on life-loss False
Sticky Action Prob. 0.25
γ (discount factor) 0.99

Table 3: ALE preprocessing parameters. Blue: Best practice suggested by Machado et al. [2018].
Red: Differ from the baseline [Castro et al., 2018].

C.3 Hyperparameters

Table 4 summarizes the default hyperparameters used in the experiments. The hyperparameters
largely follows the ones used by Castro et al. [2018] with some exceptions. For the learning rate, we
found linear warmup to be important, which is likely due to the use of LSTMs that can be unstable in
the early stage of training. The batch size indicates the number of trajectories instead of frames, as
such, the number of frames per batch is (backup length + truncation length)× batch size.
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Algorithm 1 Off-policy DAE (POMDP)
Require: n (backup length), k (truncation length)

1: Initialize network parameters θ
2: θEMA ← θ
3: D = {}
4: Observe o0
5: h0 ← (o0)
6: for t = 0, 1, 2, . . . do
7: Sample transition (o, a, r, o′) with ϵ-greedy based on Âθ(ht, ·)
8: ht+1 ← (ht, a, r, o

′)
9: ht+1 ← ht+1−k:t+1 (truncation)

10: D ← D ∪ {(o, a, r, o′)}
11: if t+ 1 mod steps_per_update = 0 then
12: Sample an n+ k-step trajectory T = (oi, ai, ri, ..., oi+n+k) from D
13: Encode observations of oi into xi

14: Compute the predicted next embedding x̂i+1 for each time step i
15: Compute the posterior

p(z|hi, ai, xi+1) =

{
1− ϵWTA + ϵWTA

Z , if z = argminz ∥x̂i+1,z − xi+1∥
ϵWTA
Z , otherwise

16: Compute embedding reconstruction loss by

Lrec =
∑
i>k

∑
z

p(z|hi, ai, xi+1)∥x̂i+1,z − sg(xi+1)∥2

17: Compute prior loss Lprior = −
∑

i>k log pθ(zi|hi, ai)
18: Approximate B-constraint by

B̂θ,i ← B̂θ(hi, ai, zi)−
∑
z

sg(pθ(z|hi, ai))B̂θ(hi, ai, z)

19: Compute target policy πtarget ← softmax(
ÂθEMA

T )

20: Compute online policy π ← softmax( Âθ

T )
21: Enforce A-constraint by

Âθ,i ← Âθ(hi, ai)−
∑
a

Âθ(hi, a)πtarget(hi, a)

22: Compute DAE objective by (note that we truncate the first k elements)

LDAE =

 n∑
j=k

γj−k(ri+j − Âθ,i+j − B̂θ,i+j) + γn−k+1V̂θEMA,i+n+k − V̂θ,i

2

23: Compute adaptive temperature objective LT = log T + βKLKL(π||πtarget)
24: Update θ by SGD with loss function βV Lvalue + βpriorLprior + βrecLrec + LT

25: θEMA ← τθEMA + (1− τ)θ
26: end if
27: end for
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Parameter Value
Replay buffer size 1000000

Minimum Steps before training 20000
Number of parallel actors 16

ϵ (exploration) Linearly annealed from 1 to 0.01 in the first 1M steps
ϵ (evaluation) 0.001

Optimizer Adam [Kingma and Ba, 2014]

Learning rate Linear warmup from 0 to 1.25× 10−4 in the first 100000 steps
and then linearly annealed to 0 throughout training

Adam β (0.9, 0.95)
Adam ϵ 10−6

Replay ratio ( Gradient updates
Environment steps ) 0.0625

Backup length 16
Truncation length 8

Batch size 12
|Z| 16
ϵWTA Linearly annealed from 1 to 0 in the first 500000 steps

τ (target EMA) 0.995
βprior 0.025
βrec 1
βKL 150

Table 4: Default hyperparameters for the experiments.

C.4 Network Architecture

Figure 7 shows the network architecture used in the experiments. In the scaling experiments, we
only multiply the width of the convolutional layers in the ResNet by the multiplier, with the sizes of
other modules fixed. We use Layer Normalization [Ba et al., 2016] before the activations in the MLP
heads and before the LSTM. In addition, we apply L2 normalization to the image embeddings (after
the linear layer) such that the SPR objective (cosine similarity) reduces to L2 distance between the
encoded vectors.

In the ablation study, we replace the LSTM layer with a 1D convolution with kernel size 4 to simulate
the effect of stacking 4 frames, which has the same effect of limiting the context window to 4. This
can also be seen as a late-fusion type of network for video processing, in contrast to frame-stacking,
which can be seen as early-fusion.

C.5 Additional Results

Latent space size The latent dynamics model relies on having multiple predictions to capture the
stochasticity of the environment. Here we examine the impact of the number of predictions at each
timestep on the learning performance. We summarize the results in Figure 8 and Table 5. In general,
we find the agent’s performance to be quite robust.

Table 5: Effect of latent space size on the final evaluation score. Scores were aggregated over 10
random seeds after 20M training frames. Values represent (mean)±(1 standard error).

|Z| BattleZone DoubleDunk NameThisGame Phoenix Qbert

4 35738± 584 19.14± 0.81 18579± 659 15902± 1065 21161± 695
8 40044± 1152 18.50± 0.93 19805± 466 16163± 1496 20686± 618
16 40098± 900 21.17± 0.45 18682± 580 13593± 1036 19697± 599

16



Figure 7: The network architecture. We use the same ResNet encoder proposed by Espeholt et al.
[2018]. All MLP heads have 1 hidden layer. Previous actions and rewards are first embedded
into 512-dimensional vectors before summed together with the image embedding to form the final
embedding vector. We use a residual connection around the LSTM similar to Kim et al. [2017].
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Figure 8: Effect of |Z| on the sample efficiency. Results are aggregated over 10 random seeds. Lines
and shadings represent the mean and 1 standard error, respectively.
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