
Proceedings of Machine Learning Research 260:-, 2024 ACML 2024

DataFrame QA: A Universal LLM Framework on DataFrame
Question Answering Without Data Exposure

Junyi Ye jy394@njit.edu

Mengnan Du mengnan.du@njit.edu

Guiling Wang guiling.wang@njit.edu

Ying Wu College of Computing, New Jersey Institute of Technology, Newark, USA

Editors: Vu Nguyen and Hsuan-Tien Lin

Abstract

This paper introduces DataFrame question answering (QA), a novel task that utilizes nat-
ural language processing (NLP) models to generate Pandas queries for information re-
trieval and data analysis on dataframes, emphasizing safe and non-revealing data han-
dling. Specifically, our method, leveraging large language model (LLM), which solely
relies on dataframe column names, not only ensures data privacy but also significantly
reduces the context window in the prompt, streamlining information processing and ad-
dressing major challenges in LLM-based data analysis. We propose DataFrame QA as a
comprehensive framework that includes safe Pandas query generation and code execution.
Various LLMs are evaluated on the renowned WikiSQL dataset and our newly developed
UCI-DataFrameQA, tailored for complex data analysis queries. Our findings indicate that
GPT-4 performs well on both datasets, underscoring its capability in securely retrieving
and aggregating dataframe values and conducting sophisticated data analyses. This ap-
proach, deployable in a zero-shot manner without prior training or adjustments, proves to
be highly adaptable and secure for diverse applications. Our code and dataset are available
at https://github.com/JunyiYe/dataframe-qa.

Keywords: Large language models; DataFrame question answering.

1. Introduction

In the era of large language models (LLMs), table question answering (QA) with LLMs
typically involves embedding the entire table into the prompt, along with the user’s question
and instructions Li et al. (2023); Chen (2022). This method is highly effective for querying
small and simple tables or dataframes. However, since tables are inherently two-dimensional
structures, they can quickly increase the size of the prompt with the addition of rows. This
becomes particularly challenging with large dataframes such as those related to weather,
traffic, and product sales, which can easily exceed the 4K or 8K content window limit of
most models.

Unlike lengthy text content that can be efficiently managed using techniques such as
Retrieval-Augmented Generation (RAG) Lewis et al. (2020), which allows the summariza-
tion of each chunk and integrates searching to generate a final answer (thus efficiently
processing a large volume of text), large tables present a different challenge. Tables, due
to their two-dimensional structure and data density, do not lend themselves to this kind of
summarization and retrieval-based processing. This difference highlights the unique chal-
lenge of using LLMs to efficiently manage large table data, as opposed to handling extensive
text content.

© 2024 J. Ye, M. Du & G. Wang.

https://github.com/JunyiYe/dataframe-qa

Ye Du Wang

Despite many models (e.g., GPT-4 and Claude-3) now expanding their context window
sizes to 16k, 32k, or more, several key challenges remain. First, the computational cost for
processing tokens is high. For example, it costs $0.005 per 1K tokens using the latest GPT-
4o model API. Large tables can rapidly increase costs by boosting token count. Second,
embedding full datasets risks potential data leakage. In addition, recent studies indicate the
problem of ‘Lost in the Middle’, where long prompts can decrease the model performance
Liu et al. (2023). LLMs also struggle with mathematics, which becomes problematic when
the query involves calculations Ouyang et al. (2022). Moreover, conventional querying
often includes superfluous data beyond what is necessary to answer the question. These
pose challenges in maintaining accuracy, efficiently managing computational resources and
protecting sensitive information when applying LLMs to table-based QA.

Figure 1: An example where a LLM (Chatgpt) can generate a correct Pandas query to
answer user question using only the table header and column data types, without
accessing the table values. Typically, the total number of tokens for DataFrame
QA tasks, including both the prompt and the model output, stays below 250
tokens.

To address these challenges, we propose a new task and framework called DataFrame
QA. This task aims to enhance the efficiency and security of querying the dataframe by
using NLP models to generate Pandas queries. It employs a method that utilizes only
table column names and data types, effectively reducing data leakage risks and minimizing
the need for extensive context windows (Figure 1). Although various NLP models can be
used for the DataFrame QA task, this study focuses on LLMs because of their superior
code generation abilities, highlighting their appropriateness for complex data manipulation
tasks without prior specific training. We modify the WikiSQL dataset and create a new

LLM on DataFrame Question Answering Without Data Exposure

dataset, UCI-DataFrameQA for our task, conducting evaluations in a zero-shot manner
using Llama2 Touvron et al. (2023), CodeLlama Roziere et al. (2023), GPT-3.5, and GPT-
4 OpenAI (2023). Furthermore, our research involves a thorough analysis of the causes
of errors and the inherent challenges associated with the DataFrame QA task, along with
potential solutions. This investigation provides insights for future dataset expansions and
improvements and for enhancing model performance. The major contributions of this work
can be summarized as follows:

(1) We propose DataFrame QA, a new task and a general LLM framework for table
information retrieval and data analysis, safeguarding against data leakage.

(2) Developed UCI-DataFrameQA, a new dataset leveraging GPT-4’s capabilities, de-
signed for diverse questions on DataFrame, setting a foundation for expansive future dataset
creation.

(3) We evaluated several mainstream open-source and closed-source LLMs on two bench-
mark datasets, analyzed a wide range of error classes, and provided corresponding solutions.

2. Related Work

To the best of our knowledge, existing literature does not directly address the DataFrame
QA task. The closest domain is Table QA, which is a specialized area of NLP that focuses
on interpreting and answering queries based on tabular data. This field can be broadly
divided into two key tasks:

2.1. Text-to-SQL

Text-to-SQL involves converting natural language questions into SQL queries that can be
executed against relational databases. The aim is to accurately interpret the user’s in-
tent and translate it into syntactically and semantically correct SQL commands. Recent
advancements in Text-to-SQL have primarily leveraged neural network-based approaches,
including LLMs Ye et al. (2023); Ni et al. (2023), especially sequence-to-sequence models
Liu et al. (2021); Xu et al. (2021); Herzig et al. (2020); Yu et al. (2018); Zhong et al.
(2017). These technologies have demonstrated significant effectiveness in understanding
diverse queries across various domains and in generating the corresponding SQL state-
ments. Current Text-to-SQL technologies primarily rely on simple database schemas and
basic queries, limiting their ability to handle complex, real-world database structures and
advanced relational tasks.

2.2. QA on Semi-Structured Tables

This task focuses on accurately parsing HTML tables, which are often semi-structured and
vary in format, to understand the context and relationships within the data and provide
the correct answers Pasupat and Liang (2015). It requires advanced techniques in data ex-
traction, contextual understanding, and natural language processing to effectively navigate
the diverse structures and formats of HTML tables. Recent developments have utilized
transformer-based models Xie et al. (2022); Pan et al. (2021); Glass et al. (2021); Yin et al.
(2020) and LLMs Li et al. (2023), significantly improving the ability to process and inter-
pret complex table structures and query contexts. These models have notably improved

Ye Du Wang

the accuracy and efficiency of extracting information from semi-structured HTML tables,
representing a substantial advancement in the field. However, these models face limitations
when loading HTML/CSV-formatted tables, often showing limited proficiency in tasks such
as identifying missing cells or finding column names, leading to low accuracy in specific tests
Li et al. (2023). Including table values in input poses data privacy risks and challenges due
to context window limitations and the handling of sensitive information.

3. Methodology

3.1. Problem Statement

The DataFrame QA task is defined as the process of leveraging NLP models to generate
executable Pandas queries in response to natural language queries on a specified dataframe.
This highlights the versatility of Pandas, which offers a wide array of data analysis opera-
tions, ranging from simple data retrieval to intricate statistical analyses.

The system is characterized by an input tuple (S,H,C,Q), where:

• S represents the system prompt, encompassing task description, output format, Python
library constraints, and more.

• H = {h1, h2, ..., hn} denotes the dataframe headers.

• C = {c1, c2, ..., cn} covers additional column information, such as data types and
column descriptions.

• Q is the natural language query.

The system’s output, P ′, is a Pandas query generated by an NLP model f in response to
Q. The ground truth query, P , is the correct Pandas query that yields the answer to Q.
Thus, the generated Pandas query is a function of the input, defined as:

P ′ = f(S,H,C,Q) (1)

A′ = execute(P ′, df) (2)

A = execute(P, df) (3)

A′ and A are the results obtained by executing P ′ and P on the dataframe df in a safe
sandbox, respectively. The effectiveness of the DataFrame QA system is measured by how
closely A′ approximates the ground truth answer A.

Dataframe QA Task marks a departure from traditional table question answering, which
typically involves analyzing the relationship between questions and table contents. The
DataFrame QA task, instead, concentrates on the analysis of dataframe structures and
data types, deliberately omitting the scrutiny of actual data values. It evaluates NLP
models’ ability to understand dataframe headers and column metadata, and to convert this
understanding into valid Pandas queries through natural language questions.

Moreover, the task utilizes the versatility of prompts to include additional information,
such as dataset descriptions and specific constraints. This enhances contextual compre-
hension beyond what traditional fixed-input models offer. This approach facilitates a more

LLM on DataFrame Question Answering Without Data Exposure

dynamic and informed model interaction, greatly expanding the potential of dataframe
analysis in NLP.

3.2. Challenges

Key challenges of DataFrame QA include:

• Interpreting User Questions: Understanding how questions relate to the dataframe’s
structure and column types, requiring domain-specific knowledge and handling ambigui-
ties.

• Formulating Pandas Queries: Proficiency in creating accurate Pandas queries that
meet the technical and logical requirements of the task.

• Following Instructions: Adhering to given guidelines or constraints, ensuring that
responses are technically correct and contextually suitable.

These challenges highlight the intricacies involved in the Dataframe QA task, underscoring
the need for NLP models that are not only proficient in natural language processing but
also capable of understanding and manipulating complex data structures.

3.3. DataFrame QA Framework

Figure 2 outlines our DataFrame QA framework, structured in three stages: Pandas Query
Generation, Code Execution, and Result Evaluation.

Figure 2: Framework of DataFrame QA. Note that, LLM in the figure can be replaced with
any fine-tuned NLP model trained for the DataFrame QA task.

3.3.1. Pandas Query Generation

In this initial phase, a LLM processes the prompt, comprising the dataframe header, col-
umn data types, system prompt (i.e. assumption and requirements), and user question, to
generate a Pandas query. This design ensures data privacy by avoiding exposure to table
values and leverages column data types to inform query selection.

Ye Du Wang

3.3.2. Code Execution

The generated query is executed within a controlled virtual environment, protecting against
unauthorized operations. This environment is restricted to essential libraries (Pandas,
NumPy, and Math), thereby enhancing security. The execution results, stored as Python
objects, offer flexibility for further processing. For example, large table results can be
provided as downloadable content, while Matplotlib plot objects are displayed directly.

3.3.3. Result Evaluation

We compare the results of executed queries with ground truth answers, encountering chal-
lenges due to the diversity of data types involved. Our methodology standardizes results
across numeric, string, and list/ndarray types to facilitate an accurate comparison. Note
that Pandas queries often return series or dataframe objects, rather than direct answers
to user questions, mirroring the characteristics of coding datasets commonly used in LLM
training. To address this, we employ a relaxed evaluation criterion, considering the contents
of series or dataframes correct if they include the answer. For pairs with a mismatch, we
perform a manual comparison to ensure the accuracy and relevance of the results.

4. Experimental Settings

4.1. Dataset

To rigorously assess the proficiency of LLMs in generating Pandas queries for two distinct
types of tasks, we have adapted the WikiSQL and UCI datasets to align with our research
objectives.

User Question Pandas Query Types

which province is bay of islands
in?

result = df.loc[df[‘Electorate’]==‘bay of islands’,

‘Province’].iloc[0]

Retrieval

how many combined days did go
shiozaki have?

result = df.loc[df[‘Wrestler’]==‘go shiozaki’,

‘Combined days’].values[0]

Aggregation

how does the average shell weight
vary across different numbers of
rings?

result = df.groupby(‘Rings’)[‘Shell weight’].mean() Data Analy-
sis

can you create a new column ‘vol-
ume’ as a product of length, di-
ameter, and height, then find the
average volume for each sex?

df[‘Volume’] = df[‘Length’] * df[‘Diameter’]

* df[‘Height’]

result = df.groupby(‘Sex’)[‘Volume’].mean()

Data Analy-
sis

Table 1: Examples of Sample Questions and Corresponding Pandas Queries Categorized
by Complexity Level. Retrieval/Aggregation queries can be resolved using single-
step, SQL-like queries, whereas Data Analysis questions necessitate multi-step or
complex Pandas operations.

4.1.1. Simple Query Dataset - WikiSQL

WikiSQL Zhong et al. (2017), a benchmark in Text-to-SQL research, provides a test set
comprising 15,878 table-question pairs, designed to evaluate natural language interfaces

LLM on DataFrame Question Answering Without Data Exposure

with relational databases. We transformed these tables into dataframes, ensuring datatype
consistency for each column. Additionally, we utilized the results of the SQL queries exe-
cuted on these tables as the ground truth for our DataFrame QA framework.

A notable challenge in WikiSQL is the frequent lowercasing of entities in user questions,
which can lead to ambiguities when formulating Pandas queries. To mitigate this issue,
we standardized all user questions and dataframe strings to lowercase. Additionally, we
explicitly instructed in the prompt that all strings within the dataframe are lowercased.
This approach improves clarity and uniformity in LLM query processing, ensuring consistent
interpretation and handling of string data.

The WikiSQL dataset predominantly features straightforward information retrieval ques-
tions (71%), solvable with single-step operations similar to basic SQL queries. The re-
maining 29% focus on aggregation tasks, including 12% MIN/MAX, 9% COUNT, and 8%
AVG/SUM. These represent simpler and more direct query scenarios, which require basic
dataframe operations.

4.1.2. Complex Dataset - UCI-DataFrameQA

To develop a DataFrame QA dataset reflective of real-world scenarios, we adopted a com-
prehensive approach. We sourced diverse dataframes from the UCI dataset Newman et al.
(1998), spanning various domains such as animals, automobiles, and medical fields, to sim-
ulate different societal contexts. Our methodology was designed to represent three real-life
data interaction roles: 1) Data Scientists, who delve into detailed data analysis queries
for patterns, trends, and statistical insights; 2) General Users, such as patients in medical
datasets or customers in automobile datasets, seeking practical, consumer-oriented aspects
of the data; 3) Data Owners, like hospitals or companies, focusing on extracting business-
oriented insights.

Utilizing GPT-4, we generated questions mirroring typical inquiries and challenges these
roles face in real-life scenarios, thereby creating a comprehensive DataFrame QA dataset.
In Table 1, we illustrate simple retrieval/aggregation questions from WikiSQL and complex
data analysis questions generated in the UCI-DataFrameQA dataset, with the latter posing
greater challenges.

For each of the 11 dataframes from the UCI dataset, GPT-4 generated 60 questions (20
per role), each with a corresponding Pandas query. The appendix details the prompts and
provides examples of the question/Pandas query generation.

Following a meticulous manual review, we compiled a final set of 547 question/Pandas
query pairs. This curation involved eliminating pairs with inaccurate matches, those requir-
ing external libraries, or questions unsolvable with just the provided table headers. This
rigorous selection process ensures the dataset comprises realistic and executable DataFrame
QA scenarios.

Table 2 presents the distribution of generated question types within the UCI dataset,
categorized by different user roles. Analysis of the dataset indicates that 22% of the ques-
tions are focused on basic retrieval/aggregation tasks, while a predominant 78% involves
more advanced operations, such as grouping, correlation analysis, and sorting. Specifically,
the Data Scientist role primarily concerns complex data analysis queries, whereas General
Users tend to concentrate on more straightforward retrieval/aggregation questions. Ques-
tions from Data Owners exhibit a range of complexity, bridging the two extremes. The

Ye Du Wang

Role Retrieval/Aggregation Data Analysis

Data Scientist 9 (5%) 175 (95%)
General User 69 (40%) 105 (60%)
Data Owner 42 (22%) 147 (78%)

Table 2: Distribution of Generated Question Types on UCI Dataset Across Different Roles.

dataset is a pivotal testbed for assessing LLMs’ adeptness in handling advanced queries,
showing their capacity to execute complex, multi-step data analysis.

This distinction in question complexity across two datasets provides an opportunity
to evaluate LLMs’ capabilities over a wide spectrum of query complexities, ranging from
simple data retrieval to sophisticated data manipulation tasks.

4.2. Baselines

Our experimental baselines include:

Llama2. This advanced iteration of the Llama language model series offers configurations
ranging from 7B to 70B parameters Touvron et al. (2023). With training on 2 trillion tokens,
it is equipped with an expanded 4K token context window, enhancing its applicability across
diverse NLP tasks.

CodeLlama. A specialized variant of Llama2, CodeLlama is tailored for coding-related
tasks Roziere et al. (2023). It shows superior performance in coding benchmarks, benefitting
from a 16K token window. We utilized its instruction models at 7B, 13B, and 34B parameter
sizes, focusing on their ability to generate and interpret code.

GPT-3.5, GPT-4. These models are benchmarks in the LLM domain, showcasing excep-
tional performance across coding, general NLP tasks, and conversational capabilities. Their
ongoing updates reinforce their status as leaders in AI-driven solutions. The model versions
used in our experiments are gpt-3.5-turbo-0613 and gpt-4-0613.

4.3. Implementation Details

In our methodology, a consistent greedy decoding strategy was applied across all LLMs.
For the deployment of Llama2 and CodeLlama, the official checkpoints available through
the HuggingFace were used. The models were executed on NVIDIA A100 GPUs, with the
number of units ranging from one to four, depending on the model size.

4.4. Evaluation Metric

The pass@1 score Chen et al. (2021) is a crucial metric in evaluating the performance of
LLM in the context of code generation tasks. It measures the accuracy of the LLMs in
providing the correct answer on their first attempt without any additional iterations or
refinements. This score is especially important in scenarios where immediate and precise
responses are required, reflecting the model’s ability to accurately interpret and respond to
complex queries in a single pass.

LLM on DataFrame Question Answering Without Data Exposure

5. Experimental Analysis

This study delves into the DataFrame QA task, focusing on the capabilities and challenges
of cutting-edge LLMs. Our investigation is centered around three pivotal research ques-
tions: Q1. Are current state-of-the-art LLMs capable of effectively handling the
DataFrame QA task? Q2. What factors influence the performance differences
among various LLMs? Q3. What are the inherent challenges and potential
solutions associated with DataFrame QA tasks?

5.1. Q1: Efficacy of Leading LLMs in DataFrame QA Tasks

Our study assesses various LLMs’ first-attempt accuracy (pass@1), with findings illustrated
in Figures 3 and 4. Notably, GPT-4 exhibits high pass@1 accuracies—85.5% on WikiSQL
and 97.2% on UCI-DataFrameQA, reflecting its adeptness in processing a wide array of
queries, from simple data retrieval to complex analysis, without direct access to table data.

Analysis of GPT-4 on WikiSQL’s test set reveals that 11.6% of queries pose challenges
due to mismatched pairs (5%), ambiguity (5%), and quotation mark issues (1.6%), affecting
execution. Addressing these issues, GPT-4’s pass@1 accuracy could rise to 96.7%, aligning
with its performance on UCI-DataFrameQA.

Figure 3: Performance of LLMs on WikiSQL.

Scaling Laws in LLM Performance: We observed clear performance stratification
among models: Llama2 and CodeLlama, with the latter surpassed by the GPT series.
GPT and Llama2 models adhere to scaling laws (Kaplan et al. (2020)), showing gains with
increasing size. In contrast, CodeLlama models deviate from these laws, warranting further
exploration in subsequent sections.

Comparison with Text-to-SQL Models: GPT-4, in comparison to specialized Text-
to-SQL models such as TAPEX Liu et al. (2021) with an execution accuracy of 89.5% and
SeaD+EGCS Xu et al. (2021) at 92.7%, exhibits slightly lower performance. This discrep-
ancy is attributed to two main factors: Task Complexity: Generating Pandas queries is

Ye Du Wang

Figure 4: Performance of LLMs on UCI-DataFrameQA.

inherently more complex than structured SQL queries, given Pandas’ wider operation range.
Zero-Shot Learning Approach: Unlike TAPEX and SeaD+EGCS, which are specialized
for Text-to-SQL, GPT-4’s zero-shot application, without specific fine-tuning, impacts its
efficiency in DataFrame QA tasks.

5.2. Q2. Performance Variation Determinants

In delving into what drives performance differences in LLMs, we scrutinize failure cases
on WikiSQL using GPT-3.5. Starting with 100 error samples, we categorized these using
GPT-4 and further confirmed through manual verification, identifying eight distinct error
types detailed in the Appendix. We then used GPT-3.5 to classify all error classes across
model input, sample rows, generated queries, execution output, and expected results, where
incorrect queries often span multiple error categories.

Error Distribution Across LLMs: Figure 5 presents a heatmap of error class distri-
bution across LLMs. Predominant errors include String Matching and Comparison, Data
Access and Bounds, and Query Condition and Value. These stem from issues like misiden-
tified column names, case sensitivity, and misinterpretations of user questions and instruc-
tions, often due to a mismatch between instructions and their execution.

Bias Between Instructions and Training Data: In our analysis of CodeLlama
models, we identified a notable bias reflecting discrepancies between instruction adherence
and training data distribution, particularly evident in handling string queries. The 13B
model registered 2368 instances, and the 34B model recorded 1175 instances of errors related
to this bias, in stark contrast to the mere 175 instances encountered by the 7B model. These
errors persisted even with explicit instructions to treat all strings as lowercase, underscoring
a variance in the models’ interpretation and compliance with these directives, deviating from
the expected scaling law behavior in such tasks.

For instance, df[df[‘Player’]==‘Terrence Ross’][‘Nationality’]

.values[0] incorrectly queries the capitalized ‘Terrence Ross’, contrary to the directive

LLM on DataFrame Question Answering Without Data Exposure

Figure 5: Distribution of error types among different LLMs on WikiSQL. Definitions of
error types and prompts for error classification are put in Appendix.

of all strings in the dataframe being lowercase. This example highlights the bias issue:
when querying dataframe values, especially with proper nouns like names and places, the
model tends to capitalize them, showing a preference influenced by its training data over the
provided instructions. This tendency exemplifies the broader challenge of aligning model
behavior with specific directives, particularly when they counter the model’s training data
distribution.

These results reveal that DataFrame QA tasks test not only the coding abilities of
LLMs but also their ability to adhere to instructions in the face of conflicts with training
data distribution, along with their comprehensive skills in understanding user queries and
dataframe headers.

5.3. Q3. Inherent Challenges and Solutions in DataFrame QA Tasks

In Table 3, we outline typical failure cases in DataFrame QA tasks, categorizing a spectrum
of error types commonly encountered by LLMs. These include Value Retrieval, Column
Reference, Instruction Misalignment, Aggregation, Function-Column Ambiguity, Insuffi-
cient Column Data/Format Information, Coding Syntax, and Hallucination Errors, each

Ye Du Wang

Table 3: Typical Failure Cases in DataFrame QA Task. Q : User Question , P ′ : Generated
Pandas Query, P : Correct Pandas Query’

Error Type Eample

Value
Retrieval
Error

Q : Which province is grey and bell electorate in?
P ′ : result = df[(df[‘Electorate’]==‘grey’)|(df[‘Electorate’]

==‘bell’)][‘Province’].unique()

P : result=df[(df[‘Electorate’]==‘grey and bell’)]

[‘Province’].unique()

Column
Reference
Error

Q : What is the variance in resting blood pressure (trestbps) among
different heart disease severity levels?
P ′ : df.groupby(‘ca’)[‘trestbps’].var()
P : df.groupby(‘num’)[‘trestbps’].var()

Instruction
Misalign-
ment

Q : What are the mean and median lengths of abalone by each sex
category?
P ′ : import pandas as pd

Group the dataframe by sex

...

P : result = df.groupby(‘Sex’)[‘Length’].agg([‘mean’,

‘median’])

Aggregation
Error

Q : what is the total amount of allied-unrelated where the component
is human capital?
P ′ : result = df[df[‘Component’]==‘human capital’]

[‘Allied-Unrelated’].sum()

P : result = df[df[‘Component’]==‘human capital’]

[‘Allied-Unrelated’].count()

Function-
Column
Ambiguity
Error

Q : what is the average score when the swimsuit score is 8.503?
P ′ : result = df[df[‘Swimsuit’]==‘8.503’][‘Average’].mean()

P : result = df[df[‘Swimsuit’]==‘8.503’][‘Average’]

Insufficient
Column
Data/For-
mat
Information

Q : which team played on december 5?
P ′ : df[‘Date’] = pd.to datetime(df[‘Date’])

result = df[df[‘Date’] == ‘december 5’][‘Team’]

P : result = df[df[‘Date’] == ‘december 5’][‘Team’]

Coding
Syntax Error

Q : how does the average shell weight vary across different numbers
of rings?
P ′ : result = df.groupby(‘Rings’).mean()[‘Shell weight’]

P : result = df.groupby(‘Rings’)[‘Shell weight’].mean()

Hallucination
Error

Q : i’m interested in knowing the most common age of abalone. can
you find that for me?
P ′ : result = df[‘Age’].mode()

P : result = df[‘Rings’].mode()

posing distinct challenges. Detailed examples and solutions for varied failure types are
comprehensively provided in the Appendix.

LLM on DataFrame Question Answering Without Data Exposure

• Value Retrieval Error: This error occurs when Pandas queries fetch incorrect values
due to ambiguous user questions. For instance, a query for ‘grey and bell’ might
be misinterpreted as separate searches for ‘grey’ and ‘bell’. Also, LLMs might omit
crucial characters like Roman numeral ‘I’ or hyphens, mistaking them for textual errors.

Solution: Utilizing quotation marks around specific query terms can significantly reduce
these errors, clarifying the intended search as a singular entity.

• Column Reference Error: Errors occur when queries incorrectly target columns, often
due to ambiguous names. This common challenge arises especially when LLMs lack
domain-specific knowledge, leading to column misidentification.

Solution: Providing clear column descriptions in prompts, such as specifying the roles of
‘ca’ and ‘num’ columns, can greatly reduce these errors.

• Instruction Misalignment Error: This error occurs when LLMs deviate from given
instructions, often seen in superfluous import statements and comments, typical in train-
ing datasets but unnecessary for DataFrame QA tasks. It also includes issues like case
sensitivity errors, where LLMs incorrectly handle capitalized names or terms.

Solution: Precise directives in prompts, such as ‘Do not import Pandas

library’ and specific case sensitivity guidelines, help ensure LLMs’ adherence to task-
specific requirements.

• Aggregation Error: These errors occur when LLMs apply incorrect aggregation func-
tions, often because questions contain words common to both operations and column
names, like ‘average’.

Solution: Clear column information and specific query formulations, such as stating the
nature of ‘allied-unrelated’ columns, guide LLMs to apply the correct aggregation
method.

• Function-Column Ambiguity Error: This type of error manifests when there is con-
fusion between column names and function names, leading to incorrect query execution.

Solution: Renaming columns may not always work. Encapsulating column names in
quotes in queries can distinguish them from function commands, aiding accurate inter-
pretation.

• Insufficient Column Data/Format Information Error: These errors often occur
due to mismatches between the LLM’s assumptions about dataset structure and the
actual data format, particularly in handling date-related queries.

Solution: Specifying column formats, such as the format of ‘Date’ column, in prompts
ensures precise LLM data handling.

• Coding Syntax Error: Highlights differences in LLMs’ coding capabilities, especially
in structuring and executing dataframe queries.

Solution: Choosing an advanced base LLM or training on DataFrame QA datasets en-
hances their query optimization and data handling skills.

Ye Du Wang

• Hallucination Error: This type of error arises when LLMs create responses based on
incorrect assumptions or non-existent data, often due to a lack of domain knowledge.

Solution: Providing detailed data and column information in prompts, like explaining
how abalone age is determined, helps LLMs bridge domain knowledge gaps and improve
query accuracy.

In summary, DataFrame QA tasks present inherent challenges that broadly fall into two
categories. The first pertains to the inherent capabilities of LLMs, particularly visible in
issues like Instruction Misalignment and Coding Syntax Errors. GPT models, in particular,
have a significantly lower error rate in these areas than other models, showcasing their
superior ability to align with human instructions and coding accuracy.

The second category comprises challenges unique to the DataFrame QA environment.
This includes complexities in question interpretation, table header naming, and domain
knowledge gaps, which are central to the task-specific intricacies. Additionally, difficulties
that arise from missing table value formats and value range specifications also contribute to
this category, leading to errors in query processing. Tackling both the model-intrinsic limi-
tations and these dataframe-specific complexities is vital for enhancing LLMs’ performance
in DataFrame QA tasks.

6. Conclusions

In summary, our introduction of a new DataFrame QA task and framework represents a
significant advancement in the field. This zero-shot approach, which leverages dataframe
headers and datatypes along with user questions and deliberately excludes table values,
addresses data privacy concerns and minimizes extraneous data in prompts. Beyond this,
DataFrame QA can further enrich the prompts with dataset descriptions and column data
format details, aiding in clarifying the column meanings within dataframes. This method
not only offers improved control over code execution outputs but also provides greater
scalability compared to traditional Text-to-SQL tasks.

Through testing with advanced open-source and closed-source LLMs, we have analyzed
error patterns, challenges and determined that the efficacy of DataFrame QA relies not only
on the coding abilities of LLMs but also on their understanding of the relationship between
user questions, dataframe columns, and provided instructions. In particular, the accuracy
rate of GPT-4 largely consistent with practical applications.

Acknowledgments

We would like to thank Shreyas Kulkarni for his contribution to the dataset building for
this work. The work is in part supported by NSF #2310261 and Federal Highway Ad-
ministration Exploratory Advanced Research (FHWA EAR) Grant 693JJ320C000021. The
views and conclusions in this paper are those of the authors and should not be interpreted
as representing any funding agencies.

LLM on DataFrame Question Answering Without Data Exposure

References

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Eval-
uating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wenhu Chen. Large language models are few (1)-shot table reasoners. arXiv preprint
arXiv:2210.06710, 2022.

Michael Glass, Mustafa Canim, Alfio Gliozzo, Saneem Chemmengath, Vishwajeet Ku-
mar, Rishav Chakravarti, Avi Sil, Feifei Pan, Samarth Bharadwaj, and Nicolas Rodolfo
Fauceglia. Capturing row and column semantics in transformer based question answering
over tables. arXiv preprint arXiv:2104.08303, 2021.

Jonathan Herzig, Pawe l Krzysztof Nowak, Thomas Müller, Francesco Piccinno, and Ju-
lian Martin Eisenschlos. Tapas: Weakly supervised table parsing via pre-training. arXiv
preprint arXiv:2004.02349, 2020.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-
augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information
Processing Systems, 33:9459–9474, 2020.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski
Fainman, Dongmei Zhang, and Surajit Chaudhuri. Table-gpt: Table-tuned gpt for diverse
table tasks. arXiv preprint arXiv:2310.09263, 2023.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio
Petroni, and Percy Liang. Lost in the middle: How language models use long contexts.
arXiv preprint arXiv:2307.03172, 2023.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang
Lou. Tapex: Table pre-training via learning a neural sql executor. arXiv preprint
arXiv:2107.07653, 2021.

D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. Uci repository of machine learning
databases, 1998. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and
Xi Victoria Lin. Lever: Learning to verify language-to-code generation with execution.
In International Conference on Machine Learning, pages 26106–26128. PMLR, 2023.

OpenAI. Gpt-4 technical report, 2023.

http://www.ics.uci.edu/~mlearn/MLRepository.html

Ye Du Wang

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Feifei Pan, Mustafa Canim, Michael Glass, Alfio Gliozzo, and Peter Fox. Cltr: An end-to-
end, transformer-based system for cell level table retrieval and table question answering.
arXiv preprint arXiv:2106.04441, 2021.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured
tables. arXiv preprint arXiv:1508.00305, 2015.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen
Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open founda-
tion models for code. arXiv preprint arXiv:2308.12950, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Yasunaga,
Chien-Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I Wang, et al. Unifiedskg: Unifying
and multi-tasking structured knowledge grounding with text-to-text language models.
arXiv preprint arXiv:2201.05966, 2022.

Kuan Xu, Yongbo Wang, Yongliang Wang, Zujie Wen, and Yang Dong. Sead: End-to-end
text-to-sql generation with schema-aware denoising. arXiv preprint arXiv:2105.07911,
2021.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language
models are versatile decomposers: Decomposing evidence and questions for table-based
reasoning. In Proceedings of the 46th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 174–184, 2023.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. Tabert: Pretraining
for joint understanding of textual and tabular data. arXiv preprint arXiv:2005.08314,
2020.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and Dragomir
Radev. Syntaxsqlnet: Syntax tree networks for complex and cross-domaintext-to-sql task.
arXiv preprint arXiv:1810.05237, 2018.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries
from natural language using reinforcement learning. arXiv preprint arXiv:1709.00103,
2017.

	Introduction
	Related Work
	Text-to-SQL
	QA on Semi-Structured Tables

	Methodology
	Problem Statement
	Challenges
	DataFrame QA Framework
	Pandas Query Generation
	Code Execution
	Result Evaluation

	Experimental Settings
	Dataset
	Simple Query Dataset - WikiSQL
	Complex Dataset - UCI-DataFrameQA

	Baselines
	Implementation Details
	Evaluation Metric

	Experimental Analysis
	Q1: Efficacy of Leading LLMs in DataFrame QA Tasks
	Q2. Performance Variation Determinants
	Q3. Inherent Challenges and Solutions in DataFrame QA Tasks

	Conclusions

