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ABSTRACT

Audio-driven avatars are increasingly employed in online meetings, virtual hu-
mans, gaming, and film production. However, existing approaches suffer from
technical limitations, including low visual fidelity (e.g., facial collapse, detail loss)
and limited controllability in expression and motion, such as inaccurate lip syn-
chronization and unnatural head motion. Besides, most existing methods lack
explicit modeling of the correlation between facial expressions and head pose
dynamics, which compromises realism. To address these challenges, we pro-
pose Talk2Me, a high-fidelity, expressive, and controllable audio-driven frame-
work comprising three core modules. Firstly, we enhance 3D Gaussian Splat-
ting (3DGS) with Learnable Positional Encoding (LPE) and a modified Region-
Weighted Mechanism to mitigate facial collapse and preserve fine details. Sec-
ondly, an Expression Generator (EG) with an Audio-Expression Temporal Fusion
(AETF) module models the temporal relationship between audio and expression
features, enabling accurate lip-sync and natural expression transitions. Thirdly, a
Retrieval-Based Pose Generator (RBPG) explicitly captures the coupling between
expressions and pose dynamics, with a Pose Refiner (PR) enhancing the natural-
ness and continuity of head motion. We further construct a Mandarin monocular
video dataset featuring diverse identities to evaluate cross-lingual generalization.
Experiments demonstrate that Talk2Me outperforms state-of-the-art methods in
visual quality, synchronization accuracy, and motion naturalness.

1 INTRODUCTION

Audio-driven talking avatars have received increasing attention from both academia and industry.
This task involves cross-modal synthesis, where visual facial animations must be temporally aligned
with input audio. Such audio-driven avatars show strong potential in applications like virtual con-
ferencing, gaming, and film production (Li et al., 2023; Peng et al., 2023; Cho et al., 2024; Peng
et al., 2024). By bridging human interaction and digital media, this technology plays a central role
in immersive experiences and intelligent agents.

Despite recent advances, audio-driven avatar generation continues to face two fundamental chal-
lenges: achieving high visual fidelity and ensuring controllable facial and head dynamics. Methods
based on Generative Adversarial Networks (GANs) (Guan et al., 2023; Wang et al., 2023; Zhang
et al., 2023b; Zhong et al., 2023) synthesize talking avatars conditioned on audio or landmarks,
but often suffer from identity inconsistency and inter-frame jitter (Peng et al., 2024), undermining
overall realism and temporal stability. Methods based on Neural Radiance Fields (NeRFs) (Milden-
hall et al., 2021; Guo et al., 2021; Shen et al., 2022; Yao et al., 2022) improve structural modeling
through volumetric rendering, yet frequently exhibit facial collapse, loss of fine-grained details, and
poor lip-speech synchronization. Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has
emerged as a compelling alternative due to its efficient rendering and strong spatial modeling ca-
pabilities. However, existing 3DGS-based methods (Cho et al., 2024; He et al., 2024; Li et al.,
2024) still struggle with expression jitter, temporal incoherence, and imprecise lip synchronization,
limiting both fidelity and controllability.
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To overcome low fidelity and limited controllability in audio-driven avatars, we revisit key limita-
tions of existing methods. NeRF- and 3DGS-based approaches rely heavily on traditional sinusoidal
positional encoding, which fails to capture local spatial variations and causes facial collapse with
loss of fine details. More broadly, GAN-, NeRF-, and 3DGS-based methods suffer from temporal
misalignment between audio and expression features, leading to lip-sync errors and discontinuous
expressions, as well as the independent treatment of expression and head pose, which produces rigid
motion and poor controllability. Inspired by these limitations, we introduce Talk2Me, a 3DGS-based
framework tailored to enhance visual fidelity and enable controllable facial and head dynamics. Built
upon 3DGS, Talk2Me incorporates several targeted modules to address the identified challenges.

Facial collapse and the loss of fine-grained details are two key obstacles to high-fidelity avatar gen-
eration. We address these issues by reforming the avatar modeling framework with Learnable Po-
sitional Encoding (LPE) and a modified Region-Weighted Mechanism, which more effectively cap-
ture spatial relationships among Gaussian primitives and improve structural consistency and detail
preservation. To further improve controllability over expressive dynamics, we incorporate the Eye
Aspect Ratio (EAR) (Dewi et al., 2022) feature into the expression representation, enabling fine-
grained modulation of blinking. It is also worth noting that the inherent modeling capability of
3DGS naturally ensures identity consistency throughout the animation process.

For expression controllability, we introduce an Expression Generator (EG) equipped with an Audio-
Expression Temporal Fusion (AETF) module. This component jointly models audio and expression
features across time, enabling accurate lip synchronization and smooth expression transitions. A
region-aware attention mechanism further refines lip and eye details, enriching facial features and
improving lip-sync precision.

For pose controllability, we introduce a Retrieval-Based Pose Generator (RBPG) alongside a dedi-
cated Pose Refiner (PR), which jointly generate natural and expressive head movements. PR takes
the retrieved pose, expression, and audio features as input, performing structured cross-modal fusion
and temporal modeling via multi-layer transformers. By capturing the intrinsic correlation between
expressions and head motion and optimizing temporal dynamics, our method ensures coherent and
lifelike head behavior. Furthermore, to assess cross-lingual generalization, we curate a Mandarin
video dataset featuring diverse identities and speech content.

Leveraging the above strategies, Talk2Me achieves high-fidelity, expressive, and controllable avatar
synthesis, with precise lip synchronization, natural head motion, and robust facial detail preser-
vation. Evaluations on both English and Mandarin datasets confirm its superiority over existing
methods in generation quality, synchronization accuracy, motion coherence, and expression control-
lability.

Our main contributions are summarized as follows:

• We present Talk2Me, an audio-driven avatar framework designed to improve both visual
fidelity and motion controllability in expressive talking head synthesis.

• We enhance 3D Gaussian Splatting with a Learnable Positional Encoding (LPE) and a
modified Region-Weighted Mechanism, effectively addressing facial collapse and enabling
fine-grained expression control.

• We propose an Expression Generator (EG) for expressive and controllable facial expres-
sion synthesis, and a Retrieval-Based Pose Generator (RBPG) to model expression–pose
correlation, enhancing head motion naturalness and controllability.

• Extensive experiments on both English and Mandarin corpus show that Talk2Me delivers
more faithful and controllable talking avatars than existing methods.

2 RELATED WORK

GAN-BASED METHODS.

Early works (Chen et al., 2018; Prajwal et al., 2020; Sun et al., 2022; Guan et al., 2023; Wang
et al., 2023; Zhong et al., 2023) focus on synthesizing only the mouth region. Although they achieve
accurate lip synchronization, they often neglect identity preservation. Later works (Chen et al.,
2019; Das et al., 2020) expand to full-face generation to address visual discontinuities, but identity
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drift and inter-frame jitter still remain. More recent efforts (Song et al., 2022; KR et al., 2019;
Zhou et al., 2020; Lu et al., 2021; Ji et al., 2022; Zhang et al., 2023a; 2021a; Zhou et al., 2021)
incorporate head pose, blinking, and emotion to improve expressiveness. However, due to frame-
wise generation and the absence of temporal constraints, these models still struggle to ensure visual
fidelity and controllable motion. In contrast, Talk2Me leverages the 3DGS representation to ensure
identity consistency, high-fidelity rendering, and temporally coherent control.

NERF-BASED METHODS.

NeRF-based methods improve identity consistency and spatial coherence over 2D GANs, enabling
higher-quality talking avatars. Yet, early audio-driven NeRFs often suffer from facial collapse and
detail loss, degrading fidelity and lip synchronization. Subsequent works attempt to mitigate these
issues—AD-NeRF (Guo et al., 2021) drives NeRFs directly from audio, DFA-NeRF (Yao et al.,
2022) decouples facial attributes, and SSP-NeRF (Liu et al., 2022) introduces semantic-aware mod-
eling. To enhance efficiency, RAD-NeRF (Tang et al., 2025) and ER-NeRF (Li et al., 2023)
accelerate training and rendering, while SyncTalk (Peng et al., 2024) emphasizes precise lip–pose
synchronization. Despite these advances, challenges remain in reconstructing high-frequency facial
details (especially lips), avoiding subtle collapse, and achieving fine-grained controllability. In con-
trast, Talk2Me builds on 3DGS with LPE and couples expression representation with EAR to ensure
high fidelity and controllable expression dynamics.

3DGS-BASED METHODS.

Recent advances in 3D Gaussian Splatting (3DGS) have demonstrated strong capabilities in scene
modeling and efficient rendering, making it increasingly popular for audio-driven avatar synthesis.
Pioneering works such as EmoTalk3D (He et al., 2024), GaussianTalker Cho et al. (2024), and
TalkingGaussian (Li et al., 2024) have begun to explore this direction, with a particular focus on
accelerating the rendering process. However, these methods often lack explicit temporal modeling
between audio signals and expression features, leading to common issues such as expression jitter,
lip-sync mismatches, and overall temporal incoherence. These shortcomings ultimately limit the
realism and controllability of the generated avatars.

Unlike previous 3DGS-based methods, Talk2Me introduces EG to generate temporally coherent and
controllable facial expressions while improving lip-sync accuracy. In addition, it incorporates RBPG
to explicitly model the correlation between facial expression and head pose, leading to more natural
and controllable head movements.

3 PRELIMINARY

3.1 3D GAUSSIAN SPLATTING.

3D Gaussian Splatting (3DGS) is a real-time rendering method that models a scene with a set of
anisotropic 3D Gaussian primitives. Each primitive is parameterized by a spatial center µ ∈ R3,
scale s, rotation q, feature vector z, color c, and opacity α. These primitives collectively encode the
geometry, appearance, and transparency of the scene.

Unlike NeRF-based methods relying on dense ray marching, 3DGS treats each Gaussian as an el-
liptical blob projected onto the screen and blended via differentiable rasterization, achieving high-
quality, real-time rendering.

Given N Gaussians {Gi}Ni=1, the pixel color is obtained by alpha-compositing weighted Gaussians:

C =

N∑
i=1

wi · ci, where wi = αi · Ti (1)

where Ti is the transmittance term accounting for occlusion and depth.

3DGS supports end-to-end optimization of geometry and appearance. However, directly applying it
to talking head synthesis can cause facial collapse or detail loss under large deformations, motivating
our improvements.

3
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Figure 1: Overview of Talk2Me. Our framework has two stages: (a) Gaussian Avatar Initialization,
where a mesh-based talking head initializes a 3D Gaussian avatar; (b) Audio-Driven Generation,
where the Expression Generator (EG) and Retrieval-Based Pose Generator (RBPG) predict expres-
sions and poses from audio to produce expressive, temporally coherent renderings.

4 METHOD

4.1 OVERVIEW

In this section, we present the proposed Talk2Me, as illustrated in Figure 1. It comprises two stages:
(a) Gaussian Avatar Initialization, which builds a 3D Gaussian head from a mesh-based avatar,
and (b) Audio-Driven Generation, where the Expression Generator (EG) and Retrieval-Based Pose
Generator (RBPG) predict expression and pose from input audio to drive avatar animation. The
internal designs of EG and RBPG are shown at the bottom of Figure 1, and we describe each module
in detail below. For more detailed model designs, please refer to the Appendix A.3.

4.2 GAUSSIAN AVATAR INITIALIZATION

Following HHAvatar (Liao et al., 2023), we use DMTet to extract a neutral mesh head, which serves
as the foundation for initializing 3D Gaussian primitives in a canonical space.

4.2.1 REGION-WEIGHTED MECHANISM.

We aim to build an animatable Gaussian Avatar driven by expression e and head pose p. Given
audio, we predict temporally aligned e and p to deform Gaussian primitives for expressive, high-
fidelity animation.

To balance local expressivity and global stability, we adapt the region-weighted mechanism from
HHAvatar (Liao et al., 2023), integrating expression features. Facial regions near landmarks (e.g.,
mouth, eyes) are assigned higher expression weights

wexp = clamp
(

dfar − d

dfar − dnear
, 0, 1

)
, (2)

where d is the distance to the nearest neutral landmark, and wpose = 1 − wexp. Thus, expressive
regions mainly follow e (augmented with EAR for ocular details), while peripheral regions follow
p for coherent global motion.

4
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We implement controllable deformation using an MLP-based network ϕD that takes primitive fea-
tures z, expression e, pose p, and ocular-aware features β, and outputs attribute offsets:

(µ′, s′,q′, c′,α′) = ϕD(µ, s,q, c,α; e,p, z,β). (3)

The updated primitives are rendered by a differentiable rasterizer:

I = R(µ′, s′,q′, c′,α′), (4)

producing temporally aligned, expressive, and controllable Gaussian Avatars.

4.2.2 LEARNABLE POSITIONAL ENCODING.

To enhance deformation accuracy in dynamic facial regions, we introduce a hybrid positional en-
coding that integrates explicit coordinates, sinusoidal features, and a learnable position table. For
each Gaussian primitive i with coordinate xi, we compute a linear coordinate embedding PC(xi)
and an index-based sinusoidal encoding

S(i) =
[
sin(i · (γ ⊙ f) + ϕ), cos(i · (γ ⊙ f) + ϕ)

]
, (5)

where f is the frequency band vector, γ a learnable global scale, and ϕ a learnable phase. A learnable
positional table L(i) further models local offsets, and we blend them as:

P̃ (i) = σ(α)L(i) +
(
1− σ(α)

)
S(i). (6)

The final feature is:
zi = PC(xi) + P̃ (i). (7)

This design provides complementary benefits: PC(xi) encodes geometric priors, S(i) captures mul-
tiscale frequency information with adaptive band distribution, and L(i) learns local nonlinear devi-
ations. The sigmoid-controlled blending ensures a smooth trade-off between global Fourier priors
and local corrections, yielding better modeling of complex deformations in regions such as eyes.

4.3 AUDIO-DRIVEN GAUSSIAN AVATAR

To enable high-fidelity and controllable talking head synthesis, we extend the neutral Gaussian
Avatar by incorporating audio-driven dynamics. Our framework introduces two key modules: the
Expression Generator (EG) and the Retrieval-Based Pose Generator (RBPG), which respectively
predict temporally aligned facial expressions and head poses from audio. These modules collabora-
tively produce synchronized, expressive, and naturalistic animations.

4.3.1 EXPRESSION GENERATOR.

Mapping speech to coherent facial animation is challenging due to the intricate coupling between
phonetic content and facial dynamics. Our Expression Generator (EG) addresses this with two key
modules: Audio-Expression Temporal Fusion (AETF) and a Region-Aware Attention Mechanism.

Audio-Expression Temporal Fusion. As shown in Figure 1 (bottom-left, pink), AETF comprises
an Audio Encoder, an Expression Encoder, and a Structured Temporal Fusion block. The Audio
Encoder extracts phonetic and emotional cues from a pretrained Wav2Lip model, while the Expres-
sion Encoder derives style features from a reference frame. Both are projected into a shared latent
space, where the fusion block models their temporal interplay for context-aware, audio-aligned ex-
pressions.

To capture second-order interactions, we propose a K-product fusion mechanism. Given audio a,
emotion e, and style s features, their pairwise Kronecker products are projected as

fe = ϕE(a⊗ e, a⊗ s, e⊗ s), (8)

where ϕE is a learnable projection. The fused representation is refined via gated concatenation and
fed into a Transformer-based temporal encoder, yielding smooth expression trajectories.

Region-Aware Attention Mechanism. To improve fidelity in perceptually critical areas, we adopt
a region-aware decoding strategy. A global decoder predicts full-face expressions, while a multi-
head attention module refines region-specific dynamics (e.g., eyes) over fused temporal features.

5
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Their outputs are merged into a unified representation, ensuring both lips and eyes exhibit precise,
synchronized motion.

We further employ a dual-pathway design to balance phoneme responsiveness and contextual ex-
pressiveness. The main pathway leverages AETF to produce emotion- and style-aware features,
while a parallel direct audio-to-expression stream captures sharp, phoneme-synchronous lip move-
ments. The two are fused and passed through a lightweight temporal smoothing layer, yielding
expressive, temporally stable facial animation.

4.3.2 RETRIEVAL-BASED POSE GENERATOR.

Most methods neglect the correlation between head motion and facial expression, causing unsta-
ble dynamics despite accurate lip-sync. We address this with the Retrieval-Based Pose Genera-
tor (RBPG), which grounds pose in real motion data and refines it with expression–audio cues for
smooth, speech-synchronized trajectories.

Given a monocular talking video of the target, we build an audio–pose database D segmented into
N -frame units. At inference, the input audio is encoded to a′ and matched via cosine similarity to
retrieve an initial pose p̂.

Pose Refiner. To refine p̂, we fuse it with expression features e′ via a Kronecker-product interaction:

fp = ϕP(p̂⊗ e′), (9)

where ϕP is a learnable fusion network. A cross-attention block then incorporates audio a′ to align
pose with speech prosody. A Transformer decoder subsequently predicts residual corrections ∆p,
producing the final pose p = p̂+∆p.

This retrieval–refinement framework yields head motions that are temporally smooth, expression-
consistent, and synchronized with speech. The detailed architecture of Pose Refiner is illustrated in
Figure 12.

4.4 TRAINING DETAILS

Gaussian Avatar. To achieve high-fidelity facial rendering, we augment standard 3DGS optimization
with additional perceptual and adversarial objectives. In addition to L1, perceptual loss Lp, and
SSIM loss Ls, we include an adversarial loss La to improve realism. The overall objective is:

LA = λ1L1 + λpLp + λsLs + λaLa. (10)

Expression Generator. EG is trained with a weighted L1 loss between predicted ê and ground truth
e, assigning higher weights w to eye-related coefficients:

LE = λe · L1(ê, e;w). (11)

Retrieval-Based Pose Generator. RBPG learns speech- and expression-conditioned head pose se-
quences with temporal coherence. A dual-branch discriminator evaluates realism globally and lo-
cally. The generator loss combines adversarial, reconstruction, and velocity smoothness terms:

LP = λganLgan + λrecL1(p, p̂) + λvelL1(v,0), (12)

where vt = p̂t − p̂t−1 enforces smooth motion, and λrec = 10.0, λvel = 1.0.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

5.1.1 DATASET.

We utilize monocular talking videos from the HDTF (Zhang et al., 2021b) dataset for training
and evaluation. To test cross-lingual generalization, we additionally collect 25 Mandarin videos
from diverse identities. Backgrounds are removed using the method in (Lin et al., 2022) to isolate
portrait regions. Following prior work, all videos are center-cropped and resized to 512× 512, with
a fixed frame rate of 25 FPS.

6
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5.1.2 COMPARISON BASELINES.

We compare with GAN-based methods (Wav2Lip (Prajwal et al., 2020), VideoReTalking (Cheng
et al., 2022), IP-LAP (Zhong et al., 2023)), NeRF-based methods (ER-NeRF (Li et al., 2023),
SyncTalk (Peng et al., 2024), Real3D-Portrait (Ye et al., 2024b), MimicTalk (Ye et al., 2024a)),
and 3DGS-based methods (GaussianTalker (Cho et al., 2024), TalkingGaussian (Li et al., 2024)).

5.1.3 IMPLEMENTATION DETAILS.

Our method follows a three-stage training pipeline. We first train a neutral mesh head for 30,000
steps, then use it to initialize the Gaussian Avatar, which is further optimized for 20,000 steps. The
Expression Generator (EG) and the generator of the Retrieval-Based Pose Generator (RBPG) are
trained jointly for 2,000 epochs with a learning rate of 1×10−4, while the RBPG discriminator uses
a learning rate of 1× 10−3. Training completes within a few hours on a single RTX A6000 GPU.

5.2 QUANTITATIVE EVALUATION

5.2.1 RECONSTRUCTION QUALITY ASSESSMENT.

Following (Li et al., 2023; Cho et al., 2024), we evaluate identity-specific reconstruction on the test
set using the audio from the original video. Metrics include PSNR, LPIPS (Zhang et al., 2018), FID
(Heusel et al., 2017), MS-SSIM, and Landmark Distance (LMD), measuring photometric accuracy,
perceptual realism, and geometric alignment.

5.2.2 AUDIO DRIVEN QUALITY ASSESSMENT.

For audio-driven evaluation, where facial and head motions vary, pixel-level metrics are less reliable.
We follow Wav2Lip (Prajwal et al., 2020) and report Lip Sync Error Distance (LSE-D) and Lip Sync
Confidence (LSE-C) to assess lip–speech alignment using audio from a different video.

5.2.3 EVALUATION RESULTS.

Table 1: Quantitative evaluation of reconstruction and audio-driven talking head synthesis.
We evaluate the methods using standard metrics for visual quality (PSNR, LPIPS, MS-SSIM, FID,
LMD) and audio-visual synchronization (LSE-D, LSE-C). Bold and underlined indicate the best
and second-best results, respectively.

Methods Reconstruction Audio Driven
PSNR↑ LPIPS↓ MS-SSIM↑ FID↓ LMD↓ LSE-D↓ LSE-C↑ LSE-D↓ LSE-C↑

G
A

N Wav2Lip 32.565 0.027 0.986 5.685 2.755 6.673 8.922 8.819 6.689
VideoReTalking 32.828 0.031 0.983 5.329 2.978 6.556 8.634 8.889 6.725
IP-LAP 33.107 0.024 0.991 5.791 2.789 6.420 8.941 9.498 5.502

N
eR

F

ER-NeRF 30.939 0.027 0.983 9.514 2.598 6.935 8.597 10.191 5.479
SyncTalk 36.449 0.023 0.962 6.243 2.265 8.434 6.910 9.140 6.109
Real3dPortrait 21.709 0.090 0.895 28.871 5.038 6.945 8.364 10.442 4.619
MimicTalk 23.233 0.064 0.979 19.638 5.239 8.353 6.827 10.021 4.104

3D
G

S GaussianTalker 28.217 0.048 0.981 21.549 2.306 7.797 7.863 11.841 3.016
TalkingGaussian 30.944 0.027 0.987 9.266 2.592 6.939 8.568 9.572 5.835

Talk2Me 29.489 0.018 0.976 5.082 3.437 6.300 8.993 8.757 6.729

Quantitative results for avatar reconstruction and audio-driven synthesis are shown in Table 1, com-
paring Talk2Me with recent GAN-, NeRF-, and 3DGS-based methods. Under the reconstruction
setting, Talk2Me achieves state-of-the-art perceptual quality (LPIPS, FID) and the best lip–speech
synchronization (LSE-D/C). Within the 3DGS family, it clearly outperforms GaussianTalker on per-
ceptual metrics, indicating more realistic rendering and tighter audio–visual alignment, while pre-
serving 3D consistency. Although our method does not lead in PSNR or MS-SSIM, this is expected
given our full-head generation strategy. Unlike models that only edit the mouth in static frames,
we synthesize full-face dynamics and head motion—variations that enhance realism and synchro-
nization but may be penalized by pixel-level metrics. In the audio-driven setting, Talk2Me achieves

7
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Figure 2: Qualitative comparison of facial synthesis by different methods. Compared with
GAN-, NeRF-, and 3DGS-based baselines, Talk2Me achieves more accurate lip synchronization,
richer facial expressions, and better identity preservation. The results closely match the ground truth
(bottom-right) while avoiding artifacts like facial collapse. Please zoom in for details.

Figure 3: Head pose diversity with the same audio. Talk2Me produces natural, diverse head
movements while preserving accurate lip-sync. Left: Ground Truth; Right: ours.

the best synchronization across all metrics. Overall, our method delivers high-fidelity, speech-aware
animation with fine-grained perceptual detail, controllable expressions, and natural motion.

5.3 QUALITATIVE EVALUATION

5.3.1 VISUALIZATION RESULTS.

Figure 2 shows a qualitative comparison across GAN-, NeRF-, and 3DGS-based methods. Talk2Me
generates expressive facial details, including accurate lip movements and natural head motion, while
preserving identity and structural coherence. Unlike GAN-based methods that often distort identity,
or NeRF-based ones prone to facial collapse, our method generates fine-grained expression and pose
that are well aligned with speech, enabling high-fidelity, controllable, audio driven facial animation.
A more detailed comparison is provided in the Appendix A.2.1 and supplementary material.

5.3.2 HEAD POSE GENERATION.

Figure 3 demonstrates Talk2Me’s ability to generate natural, diverse head motion from audio while
maintaining accurate lip synchronization. Unlike methods that require external driving videos, it
predicts temporally coherent head dynamics and expressions directly from speech, enabling fully
audio-driven motion.

8
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Table 2: User study (ratings 1–5) on five aspects. Bold and underlined indicate the best and
second-best results, respectively.

Methods Lip-sync Expression-sync Pose-sync Image quality Video realness

GAN
Wav2Lip 3.89 4.04 4.11 3.71 3.98
VideoReTalking 3.72 3.85 3.97 3.72 3.66
IP-LAP 4.17 4.07 3.97 4.00 4.00

NeRF
ER-NeRF 3.18 3.26 3.23 3.08 3.18
SyncTalk 3.83 3.93 3.89 3.89 3.65
Real3DPortrait 3.15 3.11 3.08 2.84 3.04
MimicTalk 3.60 3.23 3.50 3.56 3.57

3DGS
GaussianTalker 3.56 3.63 3.64 3.41 3.42
TalkingGaussian 3.82 3.87 4.00 3.74 3.85

Talk2Me 4.54 4.50 4.49 3.81 4.47

Table 3: Ablation study of key components. We report reconstruction and synchronization metrics.
“–” denotes reconstruction metrics not applicable when RBPG generates poses autonomously.

Methods LSE-D↓ LSE-C↑ PSNR↑ LPIPS↓ MS-SSIM↑ FID↓ LMD↓

w/o LPE,
EG, RBPG 9.853 4.948 25.912 0.036 0.946 16.018 5.280

w/o LPE 8.067 7.011 - - - - -
w/o EG 9.897 5.009 - - - - -
w/o RBPG 7.994 7.102 26.645 0.027 0.959 13.712 3.716
Talk2Me 7.949 7.162 - - - - -

5.3.3 USER STUDY.

To assess perceptual quality, we conduct a user study following the Mean Opinion Score (MOS) pro-
tocol across five criteria. As shown in Table 2, Talk2Me tops four of five aspects, especially audiovi-
sual coherence and expressiveness, and delivers overall balanced, high-fidelity, audio-synchronized
facial animation despite slightly lower raw image quality. For more details, please refer to Ap-
pendix A.4.

5.4 ABLATION STUDY.

To assess the contribution of each component, we conduct an ablation study (Table 3). Removing
any module degrades performance, confirming its necessity. Removing LPE affects geometric de-
formation, which in turn reduces lip-sync accuracy, highlighting its role in audio–visual alignment.
Excluding EG causes larger drops, underscoring the importance of the fusion design for temporal
consistency. The comparison between rows 1 and 4 further indicates that LPE and EG enhance
image quality, demonstrating the effectiveness of learnable spatial encoding and audio–expression
alignment. We further compare LPE with the conventional sinusoidal encoding from multiple per-
spectives, please refer to Appendix A.2.2 for details. In addition, we further investigate the impact
of each loss term on model performance, with more details provided in Appendix A.2.3.

6 CONCLUSION

In this paper, we present Talk2Me, a high-fidelity and controllable audio-driven avatar framework
that advances realistic talking head synthesis. Built upon 3D Gaussian Splatting, Talk2Me intro-
duces a learnable spatial encoding and a modified region-weighted mechanism to preserve facial
detail and structure. Our Expression Generator and Retrieval-Based Pose Generator jointly model
audio–expression–pose correlations, enabling synchronized lip motion, expressive facial dynamics,
and natural head movement. Extensive evaluations demonstrate that Talk2Me achieves superior
performance across photorealism, synchronization accuracy, and motion expressiveness, offering a
robust solution for audio-driven avatar generation.
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A APPENDIX

A.1 DATASET AND BASELINE DESCRIPTIONS

A.1.1 DATASET DETAILS

Our main experiments are conducted on a selected subset of the HDTF dataset (Zhang et al., 2021b),
a high-resolution talking-face corpus commonly used in prior work. The full dataset consists of 362
video clips (about 15.8 hours in total), from which we choose representative samples based on
speaking clarity, pose stability, and identity diversity. All selected videos are center-cropped and
resized to 512×512 resolution, with a fixed frame rate of 25 FPS. Background regions are extracted
using the matting technique proposed in (Lin et al., 2022). To evaluate cross-lingual generalization,
we further collect 25 Mandarin-speaking video clips featuring a wide range of speakers. These
videos undergo the same preprocessing steps as the HDTF subset.

To supplement our visual comparisons, we also include a few publicly available video samples from
prior works such as GeneFace (Ye et al., 2023), AD-NeRF (Guo et al., 2021), and ER-NeRF (Li
et al., 2023). These samples are used for qualitative demonstration only and are not involved in
model any quantitative evaluation.
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A.1.2 BASELINE METHODS

To ensure a comprehensive and fair evaluation, we compare our method against a wide range of state-
of-the-art talking-face synthesis models spanning different representation paradigms. Specifically,
our baselines include GAN-based methods such as Wav2Lip (Prajwal et al., 2020), VideoReTalking
(Cheng et al., 2022), and IP-LAP (Zhong et al., 2023), which focus on generating realistic lip-synced
facial motions. We also include NeRF-based approaches like ER-NeRF (Li et al., 2023), SyncTalk
(Peng et al., 2024), Real3dPortrait (Ye et al., 2024b), and MimicTalk (Ye et al., 2024a), which
leverage volumetric scene representations to improve 3D consistency and novel view rendering. Fi-
nally, we consider recent 3D Gaussian-based methods, including GaussianTalker (Cho et al., 2024)
and TalkingGaussian (Li et al., 2024), which explicitly model facial geometry with point-based
representations for efficient and photorealistic synthesis. These baselines cover both traditional and
emerging paradigms, enabling a thorough comparison across fidelity and controllability.

Wav2Lip.

This method focuses on generating talking-face videos with accurate lip synchronization for arbi-
trary identities under unconstrained conditions. It employs a fixed, pre-trained lip-sync discriminator
(based on SyncNet (Chung & Zisserman, 2016)) as a strong supervisory signal to guide the gener-
ator, avoiding adversarial training. This work also introduces new evaluation benchmarks and two
metrics—Lip Sync Error-Distance (LSE-D) and Lip Sync Error-Confidence (LSE-C)—to quanti-
tatively measure performance. Human evaluation results show that the generated videos achieve
synchronization quality comparable to real footage and are consistently preferred over those pro-
duced by previous methods.

VideoReTalking.

This method proposes a three-stage framework for audio-driven talking-head video editing in natural
scenes: (1) generating a face video with a canonical expression; (2) producing temporally aligned
lip movements from audio; and (3) enhancing realism via face restoration. Expression normalization
uses a fixed template as pose reference to support accurate lip motion. Final outputs are refined by
an identity-aware restoration network guided by a StyleGAN (Karras et al., 2019) prior. Without
requiring identity-specific training, the system generalizes well to unseen speakers and performs
robustly in the wild.

IP-LAP.

IP-LAP is a two-stage framework for audio-driven talking-face synthesis. It first employs a
Transformer-based module to predict lip and jaw landmarks from speech, incorporating reference
landmarks and prior poses for identity consistency. In the second stage, a rendering network gener-
ates face frames by warping multiple static reference images based on predicted motion, then fusing
them with a masked frame and sketch.

ER-NeRF.

To enable high-fidelity audio-driven portrait synthesis, this method proposes a region-aware con-
ditional neural radiance field that explicitly models the spatial contributions of different facial re-
gions. A tri-plane hash representation decomposes the 3D space into three orthogonal 2D planes,
improving rendering efficiency and reducing hash collisions by pruning empty regions. To capture
fine-grained correlations between facial areas and speech signals, a region attention module applies
cross-modal attention to produce region-aware conditioning features. In addition, a lightweight and
efficient adaptive pose encoding maps complex head movements into spatial coordinates.

SyncTalk.

This NeRF-based framework is designed for audio-driven talking-head synthesis with an emphasis
on spatiotemporal synchronization. It jointly addresses identity preservation, lip synchronization,
facial expression control, and head pose alignment through a modular architecture comprising a
facial synchronization controller, a head stabilization unit, and a portrait rendering module. The
controller maps audio signals to dynamic facial features via an audio-visual encoder and animation
mapper, enabling accurate lip-sync and expressive control. The stabilization unit smooths and aligns
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head motion using tracked facial keypoints, while the rendering module corrects common NeRF
artifacts to improve visual fidelity.

Real3dPortrait.

This one-shot 3D talking-head synthesis framework generates photorealistic and animatable portraits
from a single input image. It addresses challenges in identity preservation, expression fidelity, and
head–torso coordination by integrating several key components. A pre-trained image-to-plane (I2P)
model encodes strong 3D priors to reconstruct facial geometry, while a motion adapter modulates
animation behavior based on input conditions. To enable natural torso motion and background
flexibility, the system incorporates a head–torso–background super-resolution (HTB-SR) module.
In audio-driven scenarios, it uses a general audio-to-motion (A2M) model to generate synchronized
facial animation for previously unseen identities. Together, these components enable high-quality,
identity-consistent 3D portrait synthesis in a one-shot setting.

MimicTalk.

MimicTalk enables personalized and expressive 3D talking-face generation by rapidly adapting
to target identities and producing individualized facial motion from audio. Instead of relying on
identity-specific training from scratch, it builds upon a generalized NeRF-based model and in-
troduces a hybrid adaptation pipeline that disentangles and learns both static appearance and dy-
namic motion characteristics from a few input samples. This approach significantly reduces training
time—reportedly achieving adaptation in just minutes, over 47× faster than conventional methods.
Additionally, the framework integrates an intrinsically stylized audio-to-motion module (ICS-A2M),
which mimics the conversational style of a reference video while preserving the content integrity of
the driving audio.

GaussianTalker.

Leveraging the high rendering efficiency of 3D Gaussian Splatting (3DGS), GaussianTalker en-
ables real-time, audio-driven talking-head synthesis with controllable head pose. It constructs a
single 3DGS representation of the head and introduces a mechanism to deform the Gaussians syn-
chronously with the input speech. To enable controllability, Gaussian attributes are embedded into
a shared implicit feature space, which interacts with audio features to produce temporally aligned
deformation signals. A spatial audio-attention module further refines these embeddings to predict
per-Gaussian offset trajectories. By enforcing local coherence and leveraging spatial priors, the
system achieves stable manipulation of large sets of Gaussians with complex attributes.

TalkingGaussian.

To address the blurriness often observed in dynamic facial regions of NeRF-based models, Talk-
ingGaussian introduces a structure-persistent deformation field grounded in 3D Gaussian Splatting.
Smooth and continuous deformations are applied to stable Gaussian primitives, avoiding abrupt
appearance transitions and resulting in clearer, more accurate head synthesis. To further enhance
realism and synchronization, a motion decoupling module is incorporated to disentangle facial and
oral dynamics, which simplifies training and improves lip-sync fidelity.

A.2 ADDITIONAL EXPERIMENT

A.2.1 GENERALIZATION ABILITY

To further evaluate the generalization and robustness of our method, we conduct additional experi-
ments on a set of supplementary data samples. We compare the proposed method against all baseline
methods, and report the qualitative visual performance of each method.

In Figures 4 and 5, we present the lip-sync performance across consecutive frames on the supple-
mentary dataset. In terms of lip-sync accuracy, our method exhibits almost identical results to the
ground truth, demonstrating the strong capability of Talk2Me in audio-driven talking head syn-
thesis. Compared to the traditional GAN-based method Wav2Lip, our approach delivers superior
image quality. As shown in Figures 4 and 5, Wav2Lip often produces noticeable bounding box
artifacts around the mouth region. Moreover, it is visually evident that VideoReTalking performs
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Figure 4: Qualitative comparison of lip-sync performance on the supplementary dataset
(Speaker A). Talk2Me achieves superior lip-sync accuracy and identity preservation, with results
close to the ground truth and fewer artifacts compared to prior GAN-, NeRF-, and 3DGS-based
methods. Please zoom in for more details.

poorly in preserving speaker identity — the mouth appears to belong to a different person rather
than the target identity. In contrast, Talk2Me maintains identity consistency remarkably well.

Compared to NeRF-based methods, our approach demonstrates significantly better preservation of
fine-grained details and a more coherent connection between the head and torso. We attribute the
head-torso discontinuity observed in NeRF-based methods to the separate treatment of these regions
during the training phase.

Furthermore, in comparison to the other two 3DGS-based methods, the proposed method demon-
strates more stable detail preservation and lip-sync performance across temporally continuous
frames. For more intuitive and detailed comparisons, please refer to the supplementary videos pro-
vided, where we manually annotate the artifact-prone regions to better illustrate the differences.

A.2.2 DETAILED VISUALIZATION RESULTS OF LPE ABLATION

In this section, to more intuitively and thoroughly validate the effectiveness of LPE, we provide ad-
ditional visualization-based ablation results from three perspectives: the geometric quality of Mesh
Head, the preservation of pupil illumination in Gaussian Head, and the preservation of eye details
in Gaussian Head. These experiments highlight how LPE impacts generation quality from differ-
ent aspects, further demonstrating its advantages in maintaining geometric consistency and detail
fidelity.

Geometric quality of Mesh Head

Figure 6 illustrates the geometric quality of Mesh Head at different initialization steps. Without LPE,
the Mesh Head exhibits noticeable unreasonable geometric structures, which persist throughout op-
timization. In contrast, with LPE, Talk2Me learns more stable and coherent geometric formations,
and the rendered images at corresponding steps demonstrate significantly better quality. This indi-
cates that LPE not only enhances positional encoding, but also provides stronger adaptability to finer
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Figure 5: Qualitative comparison of lip-sync performance on the supplementary dataset
(Speaker B). Talk2Me achieves superior lip-sync accuracy and identity preservation, with results
close to the ground truth and fewer artifacts compared to prior GAN-, NeRF-, and 3DGS-based
methods. Please zoom in for more details.

Figure 6: Visualization of Mesh Head geometry at different training steps with and without
LPE. Without LPE, unreasonable geometric structures persist throughout optimization, while LPE
leads to more stable geometry and higher-quality renderings.

local deformations. On top of the general geometric patterns captured by standard PE, LPE performs
adaptive optimization, leading to superior structural fitting and more reliable reconstruction quality.

Preservation of Pupil Illumination

To examine the role of LPE in preserving eye illumination, we compare Gaussian Head renderings
with and without LPE, as shown in Figure 7. With LPE, Talk2Me better preserves illumination in
the eye region, resulting in higher brightness and greater visual fidelity. In contrast, without LPE,
the ability to retain illumination details decreases, making the eyes appear darker and less bright,
which leads to local detail loss and degraded visual fidelity. These results demonstrate that LPE
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Figure 7: Comparison of Gaussian Head renderings with and without LPE. Without LPE, the
ability to preserve illumination details in the eye region decreases, making the overall appearance
darker and less bright. In contrast, LPE better maintains eye-region lighting, resulting in brighter
and more faithful visual appearance. Please zoom in for detail.

Figure 8: Visualization of eye detail preservation in Gaussian Head renderings. Without LPE,
noticeable artifacts emerge in the eye region during blinking, whereas LPE enables Talk2Me to
capture fine-grained dynamics with stable geometry and improved rendering quality.
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significantly enhances the model’s ability to capture subtle lighting variations, thereby improving
the realism of the generated results.

Preservation of Eye Details

Furthermore, to evaluate the effectiveness of LPE in detail preservation, we compare Gaussian Head
renderings with and without LPE, as shown in Figure 8. Without LPE, the eye region exhibits
noticeable artifacts, leading to unstable geometry and loss of fine details. In contrast, with LPE,
Talk2Me better captures subtle dynamics such as blinking, maintains stable geometric structures,
and significantly improves overall rendering quality. These results further demonstrate the critical
role of LPE in high-fidelity detail modeling.

A.2.3 ABLATION ON TRAINING OBJECTIVES

Table 4: Ablation study on loss terms for Gaussian Avatar training. Bold and underlined indicate
the best and second-best results, respectively.

Loss Term PSNR↑ LPIPS↓ MS-SSIM↑ FID↓
L1 28.867 0.054 0.975 0.218
L1 + Lp 28.658 0.045 0.973 0.113
L1 + Lp + Ls 29.724 0.042 0.977 0.112
L1 + Lp + Ls + La 29.966 0.038 0.978 0.014

Table 5: Ablation study on loss terms for RBPG training. Bold and underlined indicate the best
and second-best results, respectively.

Loss Term LSE-D↓ LSE-C↑

Lgan + Lvel - -
Lvel + Lrec 8.282 7.088
Lgan + Lrec 8.254 6.844
Lgan + Lrec + Lvel 7.949 7.162

To assess the contribution of each loss, we run ablations on Gaussian Avatar and RBPG (Eq. 10,
Eq. 12); results are reported in Table 4 and Table 5. For Gaussian Avatar, adding the perceptual
loss Lp to L1 improves perceptual quality: LPIPS changes from 0.054 to 0.045 and FID from
0.218 to 0.113, while PSNR and MS-SSIM decrease slightly. Introducing the SSIM loss Ls then
recovers fidelity, raising PSNR and MS-SSIM to 29.724 and 0.977, and further improving perceptual
metrics (LPIPS = 0.042, FID = 0.112). Finally, adding the adversarial term La provides the largest
perceptual gain and the best overall accuracy (PSNR = 29.966, MS-SSIM = 0.978; LPIPS = 0.038,
FID = 0.014).

For RBPG, note that removing the reconstruction loss prevents the model from generating plausible
poses, and thus no results are reported in this case. Adding the velocity smoothness loss substantially
improves temporal coherence (reflected by a lower LSE-D), while the adversarial loss enhances real-
ism and reduces motion artifacts. The full objective achieves the most favorable trade-off, reaching
the lowest LSE-D and highest LSE-C, which demonstrates the necessity of jointly considering all
components.

A.3 MODEL ARCHITECTURE AND IMPLEMENTATION

In this section, we provide a more detailed description of the proposed Expression Generator and
the Pose Refiner.

EXPRESSION GENERATOR

In Figure 9, we present a more detailed processing pipeline inside the Expression Generator (EG).
First, the input audio is processed by wav2vec to extract initial audio features. Then, we leverage
a pre-trained Wav2Lip model to obtain richer audio representations, which provide more lip-related
information. These audio features are then fed into an Audio Encoder, which maps them into the
latent space of expression features. Simultaneously, an Expression Encoder extracts facial style
features from a reference frame.
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Figure 9: Architecture of the Expression Generator (EG). EG fuses audio and visual features via
temporal modeling and outputs the predicted expression using both regional and global branches.

Then, a Structured Temporal Fusion module performs temporal modeling of the two modalities
within the shared latent space, capturing cross-modal temporal correlations and outputting a fused
feature representation.

After obtaining the fused feature, we design two branches to jointly predict the final expression. For
the AETF branch, the fused feature is first processed by a Multi-Head Attention layer, followed by
a Regional Decoder to generate a regional expression feature enriched with localized details. For
the global branch, a more straightforward pathway is used to directly predict a global expression
feature from the fused representation, which carries higher-level phonetic information. Finally, a
lightweight, learnable weighting layer combines both branches as input and outputs the Predicted
Expression.

ENCODER AND DECODER

All the encoders and decoders introduced in EG share the same lightweight architecture, as illus-
trated in Figure 10. This architecture consists of a few linear layers combined with ReLU activation
function. Despite its simplicity, the design achieves superior performance while maintaining low
computational overhead.

Figure 10: Shared encoder-decoder architecture used in EG. A lightweight design combining
linear layers and ReLU, achieving efficiency without sacrificing performance.

Figure 11: STF module for multimodal fusion. Audio and expression features are fused via
gating, K-product interaction, and a Transformer layer to enhance temporal modeling.

STRUCTURED TEMPORAL FUSION.

The STF module within EG is illustrated in Figure 11. The features obtained from the Audio En-
coder and Expression Encoder are first processed by a feature gate and a K-product fusion module,
resulting in Embedding G and Embedding K, respectively. These embeddings are then fed into a
Transformer Layer, which effectively aggregates expression and audio features, thereby enriching
the temporal correlation information within the generated fused feature.
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Figure 12: Pose Refiner (PR). Architecture of the PR module in RBPG. Pose, expression, and
audio features are projected via linear layers. Pose and expression embeddings are fused using
Kronecker Fusion, then combined with the audio embedding and processed by a Transformer layer.
A final linear layer outputs the predicted pose.

POSE REFINER

The architecture of the Pose Refiner within the Retrieval-Based Pose Generator (RBPG) is shown
in Figure 12. The retrieved pose, expression feature, and audio feature are each passed through
individual linear layers to be projected into a shared latent space. Subsequently, a Kronecker Fusion
layer takes the pose embedding and expression embedding as input to further model the relationship
between facial expression and head pose. After this operation, the resulting fused embedding, along
with the audio embedding, is fed into a Transformer Layer. The output is then passed through a final
linear layer to produce smooth and natural head poses.

A.4 USER STUDY DESIGN AND QUESTIONNAIRE

A.4.1 OVERVIEW

To assess the perceptual quality of the generated talking head videos, we conduct a user study to
evaluate the perceptual quality of the generated talking head videos following the standard Mean
Opinion Score (MOS) protocol. The evaluation focuses on five key aspects:

• Lip-sync accuracy (Lip): Alignment between lip movements and spoken audio.

• Expression synchronization (Exp): Temporal and semantic consistency between facial
expressions and the speech content.

• Pose synchronization (Pose): Naturalness and coherence of head movement in response
to speech.

• Image quality (Img): Visual fidelity, clarity, and absence of artifacts.

• Video realness (Vid): Overall realism of the video, including identity consistency and
expressiveness.

Each criterion is rated on a 5-point Likert scale, where 1 indicates ”poor” and 5 indicates ”excellent.”
Participants watch anonymized video clips generated by various methods, including GAN-based,
NeRF-based, 3DGS-based baselines, and our proposed Talk2Me model.

A.4.2 STUDY SETUP

We conduct an anonymous online survey and obtain 120 valid responses. Each participant views a
randomized set of anonymized video clips, each lasting 30–60 seconds, to reduce ordering effects
and bias. Participants are asked to watch and rate the videos according to five specific criteria. They
may replay each video as many times as needed before submitting their responses. No time limits
are imposed, and participants complete the questionnaire at their own convenience.

The video dataset comprises a diverse set of speakers and utterances to mitigate potential bias related
to speaker identity or language content. All participants are bilingual in English and Chinese.
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A.4.3 ETHICS AND CONSENT

All participants provide informed consent before participating in the study. They are informed about
the purpose of the study, data privacy protection, and their right to withdraw at any time without
consequence. No personal or identifiable data is collected.

The study involves non-sensitive, anonymous video content, while adhering to standard ethical
guidelines for human-subject research.

A.4.4 QUESTIONNAIRE

Figure 13: User Study Questionnaire. Participants rate generated videos on five aspects using a 5-
point Likert scale: lip-sync accuracy (Lip), expression synchronization (Exp), pose synchronization
(Pose), image quality (Img), and video realness (Vid).

As shown in Figure 13, each participant answers the following five questions after watching each
video clip:

1. How well do the lip movements match the spoken audio? (Lip-sync accuracy)
2. How consistent are the facial expressions with the audio content? (Expression synchro-

nization)
3. How natural and coherent are the head movements during speech? (Pose synchronization)
4. How would you rate the overall image quality of the face? (Image quality)
5. How realistic and convincing does the video appear overall? (Video realness)

All responses are collected digitally, and we compute the average MOS scores for each method and
evaluation criterion. The final results are summarized in Table 2, where the best and second-best
scores are shown in bold and underlined, respectively.

A.4.5 ANALYSIS AND RESULTS

As shown in Table 2, Talk2Me achieves the highest scores in four out of five evaluation aspects, and
outperforms recent GAN-, NeRF-, and 3DGS-based methods. The method shows clear advantages
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in audiovisual coherence and expressiveness. Although it ranks slightly lower in raw image quality,
it demonstrates balanced and robust performance overall, generating high-fidelity and controllable
facial animation that remains well synchronized with the input audio.

A.5 LARGE LANGUAGE MODEL USAGE

In the process of writing this paper, we use a large language model (LLM) solely to refine the
phrasing and improve the clarity of the text. The LLM is not involved in the design of the method,
the experiments, or the analysis of results.

A.6 REPRODUCIBILITY

We ensure reproducibility by providing clear distinctions between results and interpretations, and
by reporting implementation details such as hyperparameters, evaluation metrics, and computing
infrastructure. All external datasets used in this work are publicly available and properly cited. In
addition, we construct a small Chinese dataset, which will also be released upon publication. While
certain aspects such as random seed settings and statistical significance tests are not reported, the
information and resources provided are sufficient to enable independent reproduction of our results.

A.7 ETHICAL CONSIDERATIONS IN AVATAR GENERATION

Our proposed method can be applied to avatar generation, enabling more realistic and stable 3D
reconstructions. While such technology has promising applications in areas like virtual communica-
tion and entertainment, it may also raise concerns if misused. We therefore call for the responsible
and ethical use of this technology to ensure it benefits creative and human-centered applications
without infringing on privacy or identity rights.
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