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Abstract

The evaluation paradigm of LLM-as-judge001
gains popularity due to its significant reduc-002
tion in human labor and time costs. This ap-003
proach utilizes one or more large language mod-004
els (LLMs) to assess the quality of outputs005
from other LLMs. However, existing methods006
rely on generic scoring rubrics that fail to con-007
sider the specificities of each question and its008
problem-solving process, compromising pre-009
cision and stability in assessments. Inspired010
by human examination scoring processes, we011
propose a new evaluation paradigm based on012
self-adaptive rubrics. Specifically, we create013
detailed scoring rubrics for each question, cap-014
turing the primary and secondary criteria in015
a structured format of scoring and deduction016
points that mimic a human evaluator’s ana-017
lytical process. Building on this paradigm,018
we further develop a novel benchmark called019
SedarEval, which covers a range of domains020
including long-tail knowledge, mathematics,021
coding, and logical reasoning. SedarEval con-022
sists of 1,000 meticulously crafted questions,023
each with its own self-adaptive rubric. To fur-024
ther streamline the evaluation, we train a spe-025
cialized evaluator language model (evaluator026
LM) to supplant human graders. Using the027
same training data, our evaluator LM achieves028
a higher concordance rate with human grading029
results than other paradigms, including GPT-4,030
highlighting the superiority and efficiency of031
our approach.032

1 Introduction033

The rapid advancements in large language models034

(LLMs) have led to their widespread use (OpenAI035

et al., 2024; Team et al., 2023; Anthropic, 2024;036

Bai et al., 2023). However, assessing these models037

in open-ended question-answering scenarios poses038

a significant challenge. Automated metric-based039

evaluations offer speed and convenience but of-040

ten fall short due to the diversity of ground truth041

(Schluter, 2017a; Reiter, 2018; Montahaei et al.,042

2019; Freitag et al., 2020). In contrast, human- 043

based evaluations provide reliable assessments but 044

require substantial resources. 045

To bridge the gap, the LLM-as-a-judge paradigm 046

attempts to strike a balance between automated 047

and human evaluation. Prominent examples of this 048

approach include MT-bench (Zheng et al., 2024) 049

and Arena (Chiang et al., 2024), which leverage 050

proprietary models to evaluate individual or com- 051

parative model responses. These benchmarks use 052

pre-defined principles, such as the 3H principle 053

(human-like, helpful, harmonious), to determine 054

responses that align best with realistic human pref- 055

erences. The widespread use of GPT-4 (OpenAI 056

et al., 2024) as an evaluator in these studies presents 057

challenges, including high costs for research insti- 058

tutions and potential data leaks. 059

Some studies (Zhu et al., 2023; Li et al., 2023a; 060

Wang et al., 2024; Kim et al., 2024a,b) propose us- 061

ing open-source pretrained models (Touvron et al., 062

2023; Bai et al., 2023; Zeng et al., 2022) to train 063

specialized evaluator LMs, offering a more cost- 064

effective and secure solution. However, these 065

methods typically use a uniform, question-agnostic 066

rubric to guide the scoring process, overlooking 067

the unique characteristics of each question. Each 068

question has different emphases, with primary and 069

secondary scoring points. A general rubric applies 070

uniform criteria, failing to accurately reflect human 071

preferences. 072

To adaptively align the scoring process with 073

human judgment, we propose a novel evaluation 074

paradigm based on self-adaptive rubrics. Unlike 075

coarse-grained general rubrics, we provide fine- 076

grained rubrics for each task, detailing specific 077

scoring and penalty points with primary and sec- 078

ondary information. By analyzing focus points, we 079

assign different values to each point. Additionally, 080

we introduce penalty points to penalize models for 081

generating rejected responses. The scoring process 082

considers both preferred and rejected perspectives. 083
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The Vietnamese poet Rabindranath Tagore, who 
won the Nobel Prize in Literature for "Leaves of 
Grass," was which number Nobel laureate from 

Asia?

+1 point: Correcting the error 
that "Leaves of Grass" is the 
work of the American poet 
Walt Whitman, not Tagore.
+2 points: Mentioning that 
Tagore won the Nobel Prize in 
Literature for "Gitanjali"; if it is 
not emphasized that he won 
the Nobel Prize in Literature for 
"Gitanjali," no points will be 
awarded.
+2 points: Stating that Tagore 
was the first Nobel laureate 
from Asia.

-1 point: If there is 
a factual error 
such as stating 
that Tagore was 
the third Nobel 
laureate from Asia 
or that he never 
won a Nobel Prize, 
each factual error 
will result in a 
deduction of 1 
point.

Firstly, two errors need to be corrected.
1. "Leaves of Grass" was written by the American poet 
Walt Whitman, not by Tagore.
2. Rabindranath Tagore was an Indian poet. He won the 
Nobel Prize in Literature in 1913 for "Gitanjali."

1. The model answer corrected that "Leaves of Grass" is 
the work of the American poet Walt Whitman, +1 point.
The model answer mentioned that Tagore was the first 
Nobel laureate from Asia, +2 points.
2. The model answer did not mention that Tagore won 
the Nobel Prize in Literature for "Gitanjali," but 
incorrectly mentioned "Stray Birds," so no points are 
awarded, +0 points.
3. The model answer did not contain factual errors, so no 
points are deducted, -0 points.

Therefore, the score is 1 point + 2 points + 0 
points - 0 points = 3 points.
Final score: 3 points.

Evaluators

1

Human LLM

2

3

3

4

5

Self-adaptive Rubrics

Question

Final Score

Model Response

Figure 1: Automated evaluation pipeline using self-adaptive rubrics.This pipeline dynamically adjusts the evaluation
rubric based on the input question, resulting in a scoring process that aligns more closely with human evaluators.

The inconsistent coverage of positive and penalty084

points ensures a more refined constraint on the085

scoring process. These detailed scoring trajectories086

simplify the evaluation process to an instruction-087

following task, reducing dependency on a judge088

model’s internal knowledge and skills, leading to089

more accurate and stable assessments. Building090

on this paradigm, we construct a new benchmark091

called SedarEval that fully aligns with realistic sce-092

narios.093

We further conduct ablation experiments on each094

component of the LLM-as-a-judge paradigm to095

investigate training a specialized LLM for scor-096

ing, revealing their respective importance. We an-097

alyze whether LLMs can correctly evaluate ques-098

tions they can correctly answer and find that in-099

sufficient diversity in existing SFT data and a100

lack of evaluation-format data limit model perfor-101

mance. We also propose human-AI consistency to102

ensure evaluator LLMs maintain alignment with103

human preferences while leveraging their chain104

of thought capability to improve evaluation per-105

formance. Based on these findings, we develop a106

specialized evaluator LLM tailored to the bench-107

mark for automated scoring. This model surpasses108

GPT-4 in model-level and question-level Pearson109

correlation, GSB, and ACC metrics, demonstrat-110

ing higher consistency with human judgment. Ex-111

perimental results validate the effectiveness and112

efficiency of our proposed paradigm.113

Our contributions are summarized as follows:114

1. We propose a novel evaluation paradigm using 115

self-adaptive rubrics for each question, offer- 116

ing granular guidance and closely aligning the 117

scoring process with human evaluation. 118

2. We develop a high-quality benchmark called 119

SedarEval, featuring 1,000 meticulously 120

crafted questions with detailed rubrics, and 121

conduct manual evaluations on 20 LLMs. 122

3. We analyze the training of evaluator LMs, 123

highlight existing methods’ shortcomings, and 124

use the self-adaptive rubrics paradigm to train 125

an evaluator LM that surpasses GPT-4 in 126

agreement with human evaluations. 127

2 Related Work 128

Benchmark LLMs Capabilities. With the rapid 129

advancement of LLMs (OpenAI et al., 2024; Team 130

et al., 2023; Anthropic, 2024), it has become a sub- 131

stantial challenge to benchmark their broad capa- 132

bilities reliably. NLU-style tasks (Hendrycks et al., 133

2020; Huang et al., 2024; Srivastava et al., 2022; 134

Zhong et al., 2023), such as multi-choice QA, em- 135

ploy general-exam questions from various domains 136

to assess a model’s knowledge and comprehension 137

abilities. However, their real-world usage is limited 138

due to misalignment with human preferences. Re- 139

cently, reference-free benchmarks (Li et al., 2023b; 140

Chiang et al., 2023; Zheng et al., 2024; Ye et al., 141

2023) have been proposed to evaluate texts’ quality 142

2



in a generative setting directly. Unlike previous143

datasets, our benchmark provides a comprehensive144

and stable model assessment with its diverse test145

cases and broad label distribution.146

Automatic NLG Evaluation. It’s notably challeng-147

ing to evaluate the quality of generated text in the148

field of natural language generation (NLG). Tradi-149

tional n-gram-based metrics (Papineni et al., 2002;150

Lin, 2004; Snover et al., 2006) and embedding-151

based metrics (Li et al., 2019; Zhang et al., 2020;152

Risch et al., 2021) can only assess lexical or se-153

mantic similarity between the generated answers154

and reference answers (Schluter, 2017a; Reiter,155

2018; Montahaei et al., 2019; Freitag et al., 2020).156

These metrics have been found to have a rela-157

tively low correlation with human preferences (Liu158

et al., 2023a). Recently, employing LLM as a159

judge (Zheng et al., 2023; Li et al., 2023b; Chan160

et al., 2023) is a novel evaluation paradigm that has161

gained widespread application. The most common162

approach involves using proprietary LLMs, such163

as GPT-4 (OpenAI et al., 2024), as judge models164

to rank or score outputs generated by other mod-165

els. However, this method relies on closed-source166

models, incurs high costs, and poses risks of in-167

ternal evaluation dataset leaks for companies de-168

veloping LLMs. To address these issues, various169

works (Zhu et al., 2023; Li et al., 2023a; Wang et al.,170

2024; Kim et al., 2024a,b) have proposed train-171

ing dedicated scoring models on open-source base172

models using synthetic or manually labeled data.173

These evaluations often use reference answers to174

assist in the assessment or employ general rubrics175

to guide the scoring process. However, these ap-176

proaches overlook the differences between individ-177

ual questions and the varying scoring criteria of178

each question, even within the same category. In179

contrast, we propose an evaluation paradigm based180

on self-adaptive rubrics that generates fine-grained,181

customizable rubrics for each question, guiding182

a more precise scoring process. It is worth not-183

ing that although Prometheus 2 also claims to use184

fine-grained rubrics, their rubrics remain question-185

agnostic.186

Quantifying Evaluation Confidence. The auto-187

matic metrics are imperfect, and we must mea-188

sure their performance further. A gold standard189

for this is their alignment with human judgment190

and the confidence level we can have when these191

metrics guide our decision-making process. How-192

ever, quantifying this performance (Krishna et al.,193

2021; Schluter, 2017b; Stureborg et al., 2024) is194

difficult due to various factors (the evaluator’s ac- 195

curacy and stability, evaluation set size, the extent 196

of the performance difference among competing 197

models, etc.). (Kocmi et al., 2021; Deutsch et al., 198

2021; Zhang and Vogel, 2004) investigate the cor- 199

relation between human judgment and traditional 200

automatic metrics such as ROUGE and BLEU and 201

analyze their confidence intervals. For LLM-based 202

evaluators, commonly used metrics include Pear- 203

son, Spearman, and Kdendall-Tau to measure the 204

alignment between the model’s scores and human 205

preferences. However, previous work has primarily 206

focused on the correlation of rankings or overall 207

scores at the model level without comparing the 208

scores with human ratings at the individual ques- 209

tion. This limits the interpretability of the scoring 210

process and hampers its utility in guiding the devel- 211

opment and iteration of LLMs. 212

3 SedarEval Benchmark 213

In this section, we introduce SedarEval, a bench- 214

mark constructed upon the self-adaptive rubrics 215

paradigm. We begin by delving into the intricacies 216

of the self-adaptive rubric paradigm, followed by a 217

detailed explanation of the benchmark’s core com- 218

ponents – questions and their corresponding rubrics 219

– along with the methodology for model evaluation 220

using this benchmark. To ensure the quality of 221

SedarEval, we incorporate comprehensive human 222

assessment into the construction process, meticu- 223

lously filtering out samples that fail to meet the 224

established quality standards. 225

3.1 Self-Adaptive Rubrics 226

Previous LLM-as-a-judge approaches, which rely 227

on general rubrics or principles for scoring, of- 228

ten lack specific, problem-related rubric guidance. 229

Consequently, these methods depend heavily on 230

the inherent capabilities of the LLM itself, leading 231

to potential errors in evaluations due to insufficient 232

reasoning abilities or hallucinations. Additionally, 233

this approach introduces extraneous biases, such as 234

position bias and order bias. 235

Self-adaptive rubrics address these issues by tailor- 236

ing the evaluation criteria to the specific problems 237

at hand, incorporating the focal points of the prob- 238

lem and assigning different weights accordingly. 239

By introducing penalty points, these rubrics align 240

more closely with human judgments by deducting 241

points for outputs that deviate from expected ten- 242

dencies. To prevent human evaluators (or LLMs) 243
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from making incorrect assessments due to a lack244

of background information, additional context is245

provided for each question to assist in the scoring246

process. A typical self-adaptive rubric comprises247

three components: scoring points, penalty points,248

and background knowledge, as illustrated in Table249

3.250

3.2 Dataset Construction251

Questions: We have defined a classification system252

for objective questions, with a two-tiered scoring253

system as shown in the diagram. Under each sec-254

ondary classification, we have hired five people to255

create questions. Specifically, each person is re-256

quired to first create their own questions to get a257

question pool, and then each person votes on all258

the questions. We only keep the questions that all259

five people agree on.260

For each candidate question, the annotators will261

select 5 LLMs to test the effectiveness of the ques-262

tioned question. We only keep the questions with263

a larger variance in scores, which are more dis-264

criminating, and remove the questions where the265

answers from different models are almost the same,266

which are not helpful in distinguishing between267

different models. For example, if a question can be268

answered correctly by all models, or incorrectly by269

all models, then this question cannot show which270

model is better.271

After collecting the initial questions, we hired an-272

other group of people to compare all the questions273

in pairs to judge the similarity of the problem-274

solving ideas for the two questions and delete the275

questions with too much similarity.276

Rubrics: For each question, we assign it to three277

individuals to discuss together and generate a rubric278

like the one shown in Figure 1.279

For more detailed information, please refer to Ap-280

pendix D, which contains benchmark statistics and281

the leaderboard.282

3.3 Evaluation Pipeline283

The entire evaluation pipeline using our benchmark284

is illustrated in Figure 1. Given a question, its285

corresponding rubrics, and the model to be evalu-286

ated, we first input the question into the model to287

generate a response. The response is then scored288

according to the predefined rubric, either by human289

evaluators or using LLMs. Finally, all the scores290

are aggregated to obtain the model’s total score.291

4 Evaluator Language Model 292

In this section, we introduce an evaluator LM 293

aligned with the self-adaptive rubrics paradigm to 294

substitute human evaluators. We begin by delin- 295

eating the evaluation format. Subsequently, we 296

propose a novel data filtering strategy to align the 297

Chain-of-Thought evaluation process with human 298

judgments. Finally, we discuss the automation of 299

rubric generation. 300

4.1 Evaluation Format 301

The evaluation format consists of two types: direct 302

scoring of individual model outputs and pairwise 303

comparison of model outputs to determine the supe- 304

rior one. Pairwise evaluation requires significantly 305

more comparisons as the number of candidate mod- 306

els increases, as shown by Equation 1. Therefore, 307

we employ direct assessment in this paper. Notably, 308

direct assessment scores can be compared to derive 309

pairwise results. 310

C(n, 2) =
n!

2!(n− 2)!
− n =

n2 − 3n

2
(1) 311

We use a reference-based format to organize the 312

output. Specifically, for each question, we compile 313

the reference answer, self-adaptive rubrics, and 314

scoring examples to create an auto-prompt tem- 315

plate. When evaluating answers, we incorporate 316

the answers into this auto-prompt template as the 317

complete input. We conduct ablation experiments 318

on each component in zero-shot, few-shot, and in- 319

struction tuning settings. 320

4.2 Human-AI Consistency 321

Human annotators provide specific scores for 322

each response without corresponding explanations, 323

which is efficient but suboptimal for training eval- 324

uator LMs. To alleviate this issue, we use GPT-4 325

to generate detailed reasoning steps using Chain- 326

of-Thought. However, scoring preferences may 327

differ between GPT-4 and human annotators, and 328

both may make errors. To mitigate these errors and 329

align the scoring process with human judgment, 330

we introduce a Human-AI Consistency strategy 331

to improve synthetic data quality. We extract final 332

scores from the GPT-4 scoring process and com- 333

pare them with human scores, retaining only the 334

data where GPT-4 and human results are consistent, 335

as shown in Equation 2, whereH represents human 336

scores,A represents AI scores, and I is an indicator 337

function. 338
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T = {(h, a) | h ∈ H, a ∈ A, I(h, a) = 1} (2)339

This approach only retains instances where human340

and AI scores are consistent and differs from re-341

jection sampling, which uses human scores as a342

reward function to select the optimal output from343

multiple GPT-4 results.344

4.3 Automatic Rubric Generation345

To reduce human annotation costs, we investigate346

using human-annotated datasets to train a model for347

automatic self-adaptive rubric generation. By pro-348

viding the model with questions and corresponding349

reference answers, we train it to produce rubrics350

that delineate scoring criteria and identify deduc-351

tion points.352

Generating self-adaptive rubric format output is353

straightforward, but aligning rubrics with human354

preferences requires aligning the model with hu-355

man evaluative criteria. This complexity arises be-356

cause identifying scoring points, assigning specific357

weights, and criteria for deductions are significantly358

influenced by human judgment.359

The training process for the automatic rubric gen-360

eration model comprises two stages. Initially,361

we use human-labeled data to train a base model362

through Supervised Fine-Tuning (SFT), as depicted363

in Equation 3.364

L(θ) = −
N∑
i=1

log pθ(yi|xi) (3)365

The base model generates rubrics that conform to366

the specified format, though they may not fully367

align with human preferences (quantitative met-368

rics will be introduced in Section 5.2). In the next369

phase, rubrics generated by the base model are370

treated as rejected responses, while human-labeled371

rubrics serve as preferred responses to construct372

preference pairs. We then train the model using373

Direct Preference Optimization (DPO) to align it374

with human preferences, as shown in Equations 4375

and 5.376

f(y, x) = β log
πθ(y | x)
πref(y | x)

(4)377

L(πθ) = − log σ (f(yw, x)− f(yl, x)) (5)378

We also explore automating rubric generation using379

GPT-4 without reference answers. To ensure ac-380

curacy, GPT-4 creates both the rubric and an ideal381

answer for each question. If the ideal answer corre- 382

sponds with the ground truth, the generated rubric 383

is deemed acceptable. We employ a self-refinement 384

strategy to help the model iteratively refine its out- 385

puts, aligning it with human preferences. For de- 386

tailed algorithmic procedures and prompts, refer to 387

Appendix E.1. 388

5 Experiment 389

5.1 Experimental Setting 390

We train the Evaluator Language Model and the 391

Rubric Generation Model using both the open- 392

source model LLaMA-3 (Touvron et al., 2023) and 393

our internal model XDG1. To maximize training 394

efficiency and utilize hardware resources, we im- 395

plement tensor parallelism (Shoeybi et al., 2020) 396

with PyTorch 2.3 (Paszke et al., 2019). For the 397

7B/8B models, we use 128 H100 GPUs, while for 398

the 70B models, we use 512 H100 GPUs. For the 399

models’ chat versions (i.e., instruction-tuned), we 400

employ the same chat markup language (ChatML) 401

as the models themselves. For the pre-trained ver- 402

sions, we use a unified ChatML to reduce data 403

bias. We adopt adaptive learning rate and batch 404

size strategies. Further training details are provided 405

in Appendix A. 406

5.2 Evaluation Metrics 407

To assess the performance of the evaluator language 408

model, we use Pearson’s correlation coefficient and 409

Spearman’s rank correlation coefficient. These sta- 410

tistical measures assess the consistency between 411

the outcomes of the evaluator language model and 412

those obtained from human evaluators. 413

Each question is accompanied by a detailed rubric 414

specifying exact scoring and deduction criteria, so 415

we use accuracy to evaluate the model’s capability 416

in following these self-adaptive rubrics for scoring. 417

Considering potential noise in the model scoring, 418

we introduce a weaker threshold ACC, which con- 419

siders a result correct if it falls within a specified 420

range. The calculation formulas are presented in 421

Equation 6. 422

ACCt =
1

N

N∑
i=1

{
1, if |ypredi − ytruei | ≤ ϵ

0, otherwise
(6) 423

To facilitate the iterative enhancement of LLMs 424

using our benchmark, a robust metric is essential 425

1The name of this model has been anonymized to ensure
confidentiality.
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to assess whether the current model version out-426

performs its predecessor. Therefore, we adopt the427

widely used GSB (Good, Same, Bad) metric to428

compare model performance. Given two models,429

A and B, the calculation formula is presented in430

Equation 7. In this context, "#good" signifies that431

model A surpasses model B, "#bad" denotes the432

contrary, and "#same" indicates equivalent perfor-433

mance between the models.434

∆GSB =
#good−#bad

#good +#same +#bad
(7)435

To evaluate the quality of automatically generated436

rubrics, we draw on the ACU (Liu et al., 2023b)437

and FactScore (Min et al., 2023) paradigms, using438

GPT-4 to calculate the match between the gener-439

ated rubrics and the ground truth rubrics. The cal-440

culation formula is specified in Equation 8, where441

GT represents the correct rubric set containing mul-442

tiple {grading points: specific score} pairs, and443

AT denotes the automatically generated rubric set.444

I(i ∈ GT ) is an indicator function that equals 1445

if the item i from AT is present in GT, and 0 oth-446

erwise. The prompts used for this evaluation are447

detailed in Appendix C.2.448

Match(GT,AT ) =

∑
i∈AT I(i ∈ GT )

|GT |
(8)449

5.3 Selected Models450

Previous studies predominantly employ English-451

proficient models to generate <question, response,452

score> triples for training evaluator language mod-453

els, often overlooking models proficient in Chi-454

nese. Additionally, several studies exclusively455

use GPT-3.5 or GPT-4 to construct such synthetic456

data. These data generation methodologies may457

cause discrepancies between the synthetic and real-458

world data distributions, introducing biases into the459

trained evaluator language models.460

To alleviate this issue, we utilize a broader range of461

LLMs to collect responses that better reflect real-462

world distributions. This approach ensures greater463

diversity and mitigates biases introduced by rely-464

ing solely on synthetic data generated from a single465

model. Specifically, we choose GPT-4, GPT-4-466

turbo, GPT-4-o, Claude Opus, DeepSeek 2.0, Min-467

iMax 6.5, MiniMax 6, Doubao, GPT-3.5, Tongyi468

Qianwen 2.0, and Tongyi Qianwen 1.5-100B/70B.469

This selection includes models proficient in differ-470

ent languages and multiple versions of the same471

model.472

For open-source models, we use local deployment 473

to infer responses. For proprietary LLMs, if API 474

services are available, we collect model outputs 475

by requesting the API. If only a web interface is 476

provided, we employ people to gather the outputs. 477

6 Analysis 478

In this section, we conduct a comprehensive exper- 479

imental analysis of the robustness of the proposed 480

benchmark evaluations, examining the data distri- 481

bution, training phases, and training paradigms of 482

evaluator LMs. Our findings reveal limitations in 483

current training methodologies for evaluator LMs. 484

Building on these insights, we develop an eval- 485

uator LM aligned with the self-adaptive rubrics 486

paradigm. 487

6.1 Scaling Law for Robust Evaluation 488

A robust benchmark should effectively distinguish 489

the capabilities of different models and maintain 490

stability to ensure consistent rankings rather than 491

allowing fluctuations due to the instability of indi- 492

vidual tasks. To achieve this, the benchmark needs 493

a sufficiently broad distribution while minimizing 494

extraneous biases. 495

To verify the robustness of the proposed bench- 496

mark, we conduct two rounds of sampling with- 497

out replacement from a pool of 1,000 questions. 498

In each round, we select n questions, resulting 499

in a total of 2n independent questions, where 500

n ∈ [10, 500]. We then compare the consistency of 501

the model rankings obtained from these two sam- 502

ples. 503

Figure 2: Consistency of model rankings as n increases.
After n reaches approximately 300, the consistency sta-
bilizes with only minor fluctuations.

Figure 2 shows the variation in the consistency of 504

model rankings under different question sets as n 505

increases. When n is relatively small, the consis- 506

tency is low, indicating the inconsistency caused by 507
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biases in different distributions. As n increases, the508

consistency improves despite the two sets remain-509

ing independent. After n reaches approximately510

300, the consistency stabilizes with only minor511

fluctuations. This demonstrates the scaling law for512

robust evaluation, indicating that as the number of513

questions increases, the evaluation results tend to514

stabilize due to the broader coverage of the distri-515

bution.516

6.2 Score Distribution Shift517

Figure 3: Data distribution comparison of different data.

The Prometheus approach, which relies on general518

rubrics not specifically tailored to the problem at519

hand, employs GPT-4 to generate an equal amount520

of synthetic data across different scores (1-5) to521

mitigate score bias from the evaluating language522

model. In contrast, our method uses self-adaptive523

rubrics, and our responses are genuinely collected524

from the model rather than artificially synthesized.525

Consequently, we cannot ensure that the quantity526

of data for each score is perfectly balanced.527

However, as illustrated in Figure 3, we observe528

that despite the score distribution shift between529

the training and test data, the score distribution of530

the model outputs, trained using the self-adaptive531

rubrics paradigm, closely aligns with the human-532

provided ground truth. This finding substantiates533

the robustness and efficacy of the self-adaptive534

rubrics paradigm in automated scoring.535

6.3 Out of Distribution Evaluation536

We establish two dimensions for evaluating the out-537

of-distribution capabilities of our model: model-538

level and question-level. For the model-level eval-539

uation, we utilize the same set of questions, se-540

lecting a subset of models to train the evaluator541

language model (LM), and subsequently test on542

the remaining unselected models. In the question-543

level evaluation, a subset of questions along with544

all associated models are used for training, and the545

scoring performance is then assessed on a different546

set of questions.547

Table 1 presents the experimental results, show- 548

ing that under the self-adaptive rubrics paradigm, 549

the model performs well in both model-level and 550

question-level evaluations. This indicates that our 551

proposed method has strong generalization capabil- 552

ities. 553

6.4 Merged SFT or Continual SFT 554

Previous research shows that a model might gener- 555

ate a correct answer but fail to accurately evaluate 556

the <question, answer> pair for the same question. 557

We argue that this issue mainly arises from the 558

insufficient diversity of the SFT data. 559

To validate this, we conduct the following experi- 560

ments: 561

1. Training a pretrained language model (PLM) 562

using only traditional SFT data. 563

2. Training a PLM using a mix of SFT data and 564

evaluator LM format data. 565

3. Performing continual SFT on an instruction- 566

tuned model using evaluator LM format data, 567

a widely adopted approach in other studies. 568

As shown in Table 2, we find that although the 569

model using continual SFT performs well on evalu- 570

ation tasks, its general ability significantly declines, 571

limiting its versatility. However, starting from a 572

PLM and using a mix of SFT data and evaluator 573

LM format data for SFT results in excellent eval- 574

uation capability with minimal impact on general 575

ability. This reveals the shortcomings of the pre- 576

vious continual SFT approach and suggests that 577

the model’s inability to evaluate the questions it 578

can answer may simply be due to the lack of such 579

data, highlighting the importance of diversity in 580

SFT data. 581

We employ Human-AI Consistency to filter the 582

evaluator LM and find that, compared to using 583

raw Chain-of-Thought data generated by GPT-4 584

and data filtered by rejection sampling, the data se- 585

lected using Human-AI Consistency shows signifi- 586

cant improvements in both evaluation and general 587

capability, demonstrating the effectiveness of this 588

strategy. 589

6.5 Ablation Study 590

We conduct detailed ablation experiments on the 591

components of self-adaptive rubrics, namely, ref- 592

erence answers, rubrics, and in-context examples. 593

As shown in Table 3, the consistency between the 594
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Question-level Model-level
Type GSB ACC ACC(t) pearsonr GSB ACC ACC(t) pearsonr
XDG 0.952 0.590 0.794 0.738 0.952 0.590 0.794 0.380
GPT-3.5 0.829 0.422 0.663 0.566 0.829 0.422 0.663 0.566
GPT-4 0.952 0.654 0.855 0.822 0.952 0.654 0.855 0.822

Table 1: Out of distribution evaluation performance in both model-level and question-level.

Type GSB ACC ACC(t) pearsonr general
baseline 0.784 0.339 0.584 0.263 730
XDG-v1 0.910 0.514 0.755 0.686 458
XDG-v2 0.895 0.551 0.802 0.761 684
XDG-v3 0.911 0.593 0.811 0.765 653
XDG-v4 0.941 0.664 0.854 0.829 685

Table 2: Experiments on training phases and training
data, where V1 represents continual SFT, V2 represents
SFT from PLM, V3 represents SFT incorporating eval-
uator LM format data, and V4 represents data filtered
using the Human-AI Consistency strategy.

evaluator LM and human scoring significantly in-595

creases after incorporating self-adaptive rubrics.596

However, the improvements are not as pronounced597

when other components are added, indicating that598

the primary driver of enhanced performance is the599

self-adaptive rubrics themselves. This suggests that600

self-adaptive rubrics play a crucial role in aligning601

the evaluator LM with human judgment.602

Type GSB ACC ACCt pearsonr
Baseline 0.963 0.636 0.802 0.733
+ rubric 0.957 0.706 0.871 0.843
+ R.A 0.952 0.717 0.877 0.848
+ example 0.959 0.728 0.888 0.867

Table 3: Ablation study for each component, where R.A.
stands for reference answer.

6.6 Comparison with Alternative Paradigm603

Using the same training data, we conduct a com-604

parative analysis between the self-adaptive rubrics605

paradigm and the existing general rubric paradigm,606

as presented in Table 4. The results demonstrate607

that our approach significantly outperforms exist-608

ing methods. Furthermore, in addition to accurately609

ranking the models, our method provides fine-610

grained capability evaluations that closely align611

with human assessments. This is both crucial and612

practical for facilitating the iterative development613

of LLMs. Due to space constraints, detailed de-614

scriptions and results of other experiments are pro-615

vided in Appendix E. 616

7 Conclusion 617

In this paper, we introduce a novel evaluation 618

paradigm called self-adaptive rubrics, aligning the 619

scoring process with human judgment and reduc- 620

ing bias by tailoring rubrics to specific questions. 621

Based on this paradigm, we develop a new bench- 622

mark, INSDA. To automate scoring, we analyze 623

existing open-source evaluator language models 624

and identify training phase data diversity issues. 625

We then introduce human-AI consistency to align 626

the chain-of-thought evaluation with human judg- 627

ment and propose an evaluator LM that follows the 628

self-adaptive rubrics paradigm. Experimental re- 629

sults show our model achieves higher consistency 630

with human evaluation compared to GPT-4. We 631

hope our work inspires researchers to apply this 632

paradigm to more tasks, aligning automated scor- 633

ing with human judgment. 634

Limitations 635

In this paper, we propose an evaluation paradigm 636

based on self-adaptive rubrics, which provides 637

more granular process guidance to align the scor- 638

ing process with human judgment. Additionally, 639

we introduce a benchmark, INSDA, based on this 640

framework. However, there are several limitations: 641

• For questions with multiple correct answers, 642

it requires manually writing multiple self- 643

adaptive rubrics. It is worth noting that, to 644

our knowledge, no current work focuses on 645

the multi-solution direction. 646

• For subjective questions, such as creative writ- 647

ing, poetry, and other forms of artistic ex- 648

pression, different groups or individuals may 649

have varying definitions of what constitutes 650

good work. Therefore, it is necessary for 651

each group or individual to set their own self- 652

adaptive rubrics rather than relying on prede- 653

fined ones. This also highlights the flexibility 654
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and interpretability of the self-adaptive rubrics655

paradigm we propose.656

Ethical Considerations657

We propose a scoring paradigm based on self-658

adaptive rubrics to enhance the interpretability and659

controllability of the automated scoring process.660

This approach aims to improve the credibility of661

evaluation results produced by LLMs and to sup-662

port the research community in advancing these663

models. Nevertheless, the inherent hallucinations664

within LLMs pose a challenge to ensuring the com-665

plete accuracy of automated evaluation outcomes.666

Therefore, we recommend incorporating human re-667

view of certain outputs when using LLMs as judges668

to increase the overall reliability and credibility of669

the process.670

Additionally, when generating self-adaptive rubrics671

for subjective questions, different groups or indi-672

viduals may have varying definitions of what con-673

stitutes a good answer, potentially leading to bi-674

ases and discrepancies. We encourage dialogue675

and mutual understanding among groups or indi-676

viduals with diverse values, promoting the use of677

self-adaptive rubrics that align with their respective678

values and preferences.679
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A Training Details988

We employed a default learning rate of 2e-5, and989

the batch size per device was dynamically adjusted990

based on the total data volume and the number of991

machines to maintain consistent optimization steps.992

The Adam optimizer was utilized.993

For the scaling law experiments, when n was below994

300, we conducted three repetitions and averaged995

the results to minimize error.996

For all invoked APIs, we used the default parame-997

ters without extensive modifications.998

B Data Annotation999

B.1 Annotator Qualifications1000

All our annotators are internal team members with1001

at least a Master’s degree. We provide additional1002

compensation significantly higher than the standard1003

salary, based on the amount of data annotated.1004

C Prompt Templates1005

C.1 AutoPrompt1006

Below, I will provide a <Question>, along
with the corresponding <Reference An-
swer> and <Scoring Rubric>. You need
to evaluate the <Output Result> from the
<Model Answer> of the <Model to be As-
sessed>. The evaluation should be divided
into two parts: "Scoring Process" and "Final
Score." Please note that the scoring range
is from 0 to 5 points. You must justify the
score you assign based on the <Model An-
swer>, strictly adhering to the requirements
of the <Scoring Rubric> without adding,
changing, or imagining any additional crite-
ria.

1007

C.2 Prompt for Set Matching1008

You are a meticulous judge tasked with
evaluating whether the "Test Rubric" pro-
vided by the user aligns with the "Standard
Rubric." The evaluation rules are as follows:

• The initial total score is set to zero.

• For each item in the "Test Rubric":

1. If the item matches any item in
the "Standard Rubric" exactly,
one point is added to the total
score.

1009

2. If the item in the "Test Rubric" is
unrelated to any item in the "Stan-
dard Rubric," the total score re-
mains unchanged.

3. If the item in the "Test Rubric" is
the exact opposite of any item in
the "Standard Rubric," one point
is subtracted from the total score.

You need to return the entire scoring pro-
cess (explaining why points were added or
subtracted) along with the final score. The
return format should be:

{ "Scoring Process": "<Here, pro-
vide the scoring process as a
string>",
"Final Score": "<Here, pro-
vide the final score as a math-
ematical expression, concluding
with ’Final Score: <score>’ e.g.,
’3/5=0.6, Final Score: 0.6’>" }

The returned format must be compatible
with json.loads() to be converted into a
dictionary.

1010

C.3 Prosecutor Prompt 1011

Please check if the generated answer is cor-
rect. The reference answer is: {gt}, and the
generated answer is: {user}. Please respond
in the following format: { "result": True }

1012

C.4 Refinement Prompt 1013

Your generated answer is not the standard
answer. Please reflect on this and generate
a new answer.
The generated scoring points and the full
score answer are:

1014

D Benchmark 1015

D.1 Benchmark Leaderboard 1016

We provide the Benchmark Leader- 1017

Board at the following anonymous link: 1018

https://anonymous.4open.science/r/ 1019

self-adaptive-rubrics-4F62 1020

12

https://anonymous.4open.science/r/self-adaptive-rubrics-4F62
https://anonymous.4open.science/r/self-adaptive-rubrics-4F62
https://anonymous.4open.science/r/self-adaptive-rubrics-4F62


D.2 Benchmark Statistics1021

We provide the Benchmark statistics at the follow-1022

ing anonymous link: https://anonymous.4open.1023

science/r/self-adaptive-rubrics-4F621024

E Additional Experiments1025

E.1 Automatic Rubric Generation1026

Algorithm 1 Self-Adaptive Rubrics Generation
and Validation
Require: Q {Given question}
Require: GT {Ground truth answer}
Require: n {Maximum iterations}

1: i← 0
2: accepted← False
3: while i < n and ¬accepted do
4: R, IA← GPT-4(Q) {Generate rubrics and

ideal answer}
5: if PA(IA,GT ) then

{Prosecutor agent checks ideal answer}
accepted← True

6: 7: else
8: Inform GPT-4 of incorrect IA
9: i← i+ 1

10: end if
11: end while
12: if accepted then
13: return R
14: else
15: return Failure in n iterations
16: end if

E.2 Error Propagating1027

When using rubric generation models to automati-1028

cally create self-adaptive rubrics, a potential issue1029

is that if the generated rubric is inconsistent with1030

the human-provided rubric, errors can accumulate1031

in the scoring pipeline, leading to a larger devia-1032

tion in the final score. By incorporating a filtering1033

strategy, the overall performance will improve.1034

E.3 Joint Training vs. Expert Training1035

We also explored whether to combine data from1036

different categories for joint training when training1037

the evaluator LM or rubric generation model, or1038

to train a separate expert model for each category1039

individually. We found that using joint training can1040

achieve better results than expert training.1041
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Model Type ACC ACCt Pearsonr GSB
GPT-4 w self-adaptive rubrics 0.3241 0.7025 0.7283 0.9211
GPT-4 wo 0.2500 0.5035 0.4863 0.8684

GPT-4-turbo w - - - -
GPT-4-turbo wo 0.1995 0.5473 0.5326 0.9000

GPT-3.5 w 0.2121 0.5569 0.3888 0.8947
GPT-3.5 wo 0.1677 0.3872 0.1286 0.5158

Table 4: Ablation Study

Figure 4: Distribution change of the evaluator LM format data after applying the Human-AI Consistency strategy.

Type OOD ID Random
GPT4-turbo 0.399 0.488 0.417
GPT4 0.602 0.613 0.613
xdg-turbo 0.606 0.607 0.603

Table 5: Rubric Generation Results.

Type GSB ACC ACCt pearsonr
GPT-4 0.921 0.324 0.702 0.728
GPT-3.5 0.894 0.212 0.556 0.388

Table 6: General Rubrics with Ground Truth.

Type GSB ACC ACCt pearsonr
GPT-4-turbo 0.9 0.199 0.547 0.532
GPT-4 0.868 0.250 0.503 0.486
GPT-3.5 0.515 0.167 0.0.387 0.128

Table 7: General Rubrics without Groud Truth.

14


	Introduction
	Related Work
	SedarEval Benchmark
	Self-Adaptive Rubrics
	Dataset Construction
	Evaluation Pipeline

	Evaluator Language Model
	Evaluation Format
	Human-AI Consistency
	Automatic Rubric Generation

	Experiment
	Experimental Setting
	Evaluation Metrics
	Selected Models

	Analysis
	Scaling Law for Robust Evaluation
	Score Distribution Shift
	Out of Distribution Evaluation
	Merged SFT or Continual SFT
	Ablation Study
	Comparison with Alternative Paradigm

	Conclusion
	Training Details
	Data Annotation
	Annotator Qualifications

	Prompt Templates
	AutoPrompt
	Prompt for Set Matching
	Prosecutor Prompt
	Refinement Prompt

	Benchmark
	Benchmark Leaderboard
	Benchmark Statistics

	Additional Experiments
	Automatic Rubric Generation
	Error Propagating
	Joint Training vs. Expert Training


