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ABSTRACT

As a leading unsupervised classification algorithm in artificial intelligence, multi-
view subspace clustering segments unlabeled data from different subspaces. Re-
cent works based on the anchor have been proposed to decrease the computation
complexity for the datasets with large scales in multi-view clustering. The major
differences among these methods lie on the objective functions they define. De-
spite considerable success, these works pay few attention to guaranting the robust-
ness of learned consensus anchors via effective manner for efficient multi-view
clustering and investigating the specific local distribution of cluster in the affine
subspace. Besides, the robust consensus anchors as well as the common clus-
ter structure shared by different views are not able to be simultaneously learned.
In this paper, we propose Robust Consensus anchors learning for efficient multi-
view Subspace Clustering (RCSC). We first show that if the data are sufficiently
sampled from independent subspaces, and the objective function meets some con-
ditions, the achieved anchor graph has the block-diagonal structure. As a special
case, we provide a model based on Frobenius norm, non-negative and affine con-
straints in consensus anchors learning, which guarantees the robustness of learned
consensus anchors for efficient multi-view clustering and investigates the specific
local distribution of cluster in the affine subspace. While it is simple, we theo-
retically give the geometric analysis regarding the formulated RCSC. The union
of these three constraints is able to restrict how each data point is described in
the affine subspace with specific local distribution of cluster for guaranting the
robustness of learned consensus anchors. RCSC takes full advantages of correla-
tion among consensus anchors, which encourages the grouping effect and groups
highly correlated consensus anchors together with the guidance of view-specific
projection. The anchor graph construction, partition and robust anchor learning
are jointly integrated into a unified framework. It ensures the mutual enhancement
for these procedures and helps lead to more discriminative consensus anchors as
well as the cluster indicator. We then adopt an alternative optimization strategy
for solving the formulated problem. Experiments performed on eight multi-view
datasets confirm the superiority of RCSC based on the effectiveness and efficiency.

1 INTRODUCTION

Clustering is an important field in artificial intelligence and machine learning Jain (2008). As the
information technology develops, large amounts of data from multiple views or channels can be
collected in real-world scenarios. This type of data is termed as multi-view data and it widely exists
in the world. For instance, we can depict an image by multiple representations, such as local binary
pattern (LBP), histogram of oriented gradient (HOG) and Gabor feature representation. For dealing
with the multi-view data in clustering tasks, various multi-view clustering approaches have been
presented in the literature. As opposed to clustering for the data with single view Bai et al. (2023);
Bandyapadhyay et al. (2023), multi-view clustering can achieve more reasonable performance in
practice. It is able to integrate diverse feature representations of an object obtained by different views
and provide more comprehensive object information. Among the existing multi-view clustering
works, methods based on the graph have gained significant attention in recent years.

The graph-based methods for multi-view clustering Nie et al. (2017b); Zhan et al. (2019); Wang
et al. (2020) can reflect the relationships among samples in multi-view data by constructing graph
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structures. Then the final results can be achieved based on the partiton of the obtained graph. These
methods usually adopt an n×n adjacent graph to formulate the relationships among data points. Cao
et al. Cao et al. (2015) presented a multi-view clustering method based on diversity and smoothness,
which investigates the complementarity among different representations. Wang et al. Wang et al.
(2020) learned the unified global graph and view-specific graphs by adopting the mutual reinforce-
ment technique. Chen et al. Chen et al. (2020) simultaneously learned the global self-representation,
latent embedding space and cluster structure for subspace learning on multi-view data. Liang et
al. Liang et al. (2020) utilized the multi-view graph learning to learn a unified graph and lever-
aged the incosistency and consistency among multiple view-specific graphs. Nie et al. Nie et al.
(2017a) presented to simultaneously perform local structure learning and semi-supervised classifi-
cation/clustering. Wang et al. Wang et al. (2020) coupled unified graph, graph induced by similarity
across views and indicator into a unified framework. Despite significant progress, most of these
multi-view clustering approaches tend to suffer from high computation complexity. It takes O(n2)
to construct an n × n adjacent graph and needs O(n3) in partitioning this graph, which limits their
scalability for multi-view datasets with large scales.

For dealing with the computation complexity issue, multi-view clustering methods based on the an-
chor have been given Nie et al. (2017c); Guo & Ye (2019), which show promising capability in real
applications. Different from constructing an n×n graph, the methods based on the anchor typically
produce small number of anchors from the dataset and represent the structure of data by building an
n× l anchor graph, where l denotes the total number of anchors. In general, l is lower than n, which
enables the scale of data to be greatly decreased for reaching the goal of increasing the clustering
efficiency. Specifically, Yang et al. Yang et al. (2021) increased the efficiency and all views are
required to yield the same anchors. Kang et al. Kang et al. (2020) employed the subspace learning
based on the anchor to learn a anchor graph for each view and then heuristically combined different
anchor graphs into a unified one. Li et al. Li et al. (2022) presented a scalable multi-view clustering
method by fusing anchor graphs. It is able to employ the discrete cluster structure to adaptively
learn a unified graph by anchor graph fusion. Wang et al. Wang et al. (2022) employed multiple
projection matrices and a set of latent consensus anchors to learn a unified anchor graph. Yang et
al. Yang et al. (2022) seeked for l anchors on the original data with the guidance of K-means. The
produced centroids are regarded as anchors and a sparse anchor graph is constructed between the
obtained anchors and the original dataset. Despite great success, these methods pay few attention to
ensuring the robustness of learned consensus anchors for efficient multi-view clustering and inves-
tigating the specific local distribution of cluster in the affine subspace. The correlation among the
learned consensus anchors, which encourages the grouping effect and tends to group highly corre-
lated anchors together, is not able to be fully explored. Besides, the robust consensus anchors and
the common cluster structure shared by different views are not able to be simultaneously learned in
a unified framework. Then the mutual enhancement for these procedures is not guaranteed in this
manner and more discriminative consensus anchors as well as cluster indicator are not obtained.

To cope with the above issues, we propose a novel Robust Consensus anchor learning for efficient
multi-view Subspace Clustering (RCSC). We first theoretically show that a block-diagonal anchor
graph can be obtained if the objective function meets certain conditions based on the independent
subspace assumption. As a special case, we provide a model based on Frobenius norm, non-negative
and affine constraints in consensus anchors learning, which guarantees the robustness of learned
consensus anchors for efficient multi-view clustering and investigates the specific local distribution
of cluster in the affine subspace. While it is simple, we theoretically give the geometric analysis
regarding the formulated RCSC. The union of these three constraints is able to restrict how each
data point is described in the affine subspace with specific local distribution of cluster for guarant-
ing the robustness of learned consensus anchors. We can fully explore the correlation among the
learned consensus anchors with the view-specific projection, which encourages the grouping effect
and groups highly correlated anchors together. The robust anchor learning, partition and anchor
graph construction are jointly modeled in a unified framework. Then the robust consensus anchors
and the common cluster structure shared by different views are able to be simultaneously learned.
We can guarantee the mutual enhancement for these procedures in this manner and achieve more
discriminative consensus anchors as well as the cluster indicator. By imposing the orthogonal con-
straints on the actual bases, we constrain a factor matrix to be the cluster indicator matrix based
on the rigorous clustering interpretation. We then develop an alternate minimizing algorithm for
solving the formulated problem. The major contributions in this paper are:
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1. We propose a novel Robust Consensus anchor learning for efficient multi-view Subspace
Clustering (RCSC). We first theoretically demonstrate that an anchor graph with block-
diagonal structure can be achieved if the objective function satifies certain conditions. As a
special case, we give a model based on Frobenius norm, non-negative and affine constraints
in consensus anchors learning, which guarantees the robustness of learned consensus an-
chors for efficient multi-view clustering and investigates the specific local distribution of
cluster in the affine subspace.

2. We are able to fully explore the correlation among the learned consensus anchors with the
guidance of view-specific projection, which encourages the grouping effect and tends to
group highly correlated anchors together. We jointly perform the robust anchor learning,
partition and anchor graph construction in a unified framework. Then, the robust consensus
anchors and the common cluster structure shared by different views are simultaneously
learned, which ensures the mutual enhancement for these procedures and helps lead to
more discriminative consensus anchors as well as the cluster indicator.

3. We impose the orthogonal constraints on the actual bases and constrain a factor matrix to be
the cluster indicator matrix built on the rigorous clustering interpretation. Extentive exper-
iments on different multi-view datasets validate the effectivenss and efficiency of RCSC,
especially on the datasets with large scales.

2 METHODOLOGY

In this section, we present the motivation and formulation of RCSC, followed by the optimization
process and the related analysis of computation complexity for RCSC.

2.1 MOTIVATION

The anchor strategy is usually employed to find the underlying structure by choosing a small number
of data points as anchor bases. Some existing mutli-view clustering methods based on the anchor
conduct K-means to achieve clustering centroids with the anchor bases being fixed. Despite great
success, these methods pay few attention to guaranting the robustness of learned consensus anchors
for efficient multi-view clustering and investigating the specific local distribution of cluster in the
affine subspace. The correlation among the learned consensus anchors, which encourages the group-
ing effect and groups highly correlated anchors together, is ignored to be fully explored. Moreover,
the robust consensus anchors and the common cluster structure shared by multiple views are not
simultaneously learned. Therefore, the mutual enhancement for these procedures is not effectively
ensured and more discriminative consensus anchors as well as cluster indicator are not acquired.

2.2 FORMULATION

We generate view-specific data points via certain generation model based on a latent space. Given
multi-view dataset {Xp ∈ Rdp×n}vp=1 with dp and n being the dimension and size of dataset, we
first assume that the data are noise free and formulate the corresponding objective function as:

min
Up,A,S

v∑
p=1

||Xp − UpAS||2F , s.t. (Up)TUp = I, ATA = I, (1)

where S ∈ Rl×n is the shared affinity matrix, {Up}vp=1 ∈ Rdp×d indicates a projection matrix as
the consensus anchor guidance, A ∈ Rd×l represents the unified anchors, l and d are the number
of anchors and shared dimension across views, respectively. UpA ∈ Rdp×l represents the basis
matrix. We then theoretically demonstrate that a block-diagonal anchor graph can be achieved if
the corresponding objective function satisifies certain conditions based on the independent subspace
assumption, which is shown as Theorem 1 in the following.

Theorem 1. Assume the subspaces {Ωi}ki=1 are independent, Xp
i is a matrix with columns consist-

ing of some vectors from Ωi and Up
i Ai is a matrix with columns consisting of a basis of Ωi, where

(Up)TUp = I and ATA = I . The solution S to the following form

Xp = (UpA)S (2)
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is block-diagonal and unique.

Proof. For data point xp ̸= 0 and xp ∈ Ωi, we just need to prove that there exists a unique s,
xp = (UpA)s, where s = [sT1 , · · · , sTk ], with si ̸= 0 and sj = 0 for all j ̸= i. Since (Up)TUp = I
and ATA = I , we can obtain (UpA)T (UpA) = AT (Up)TUpA = I . Thus, UpA is orthogonal.
Due to the orthogonality among subspaces, there exists a unique decomposition for xp as follows:

xp = 0 + · · ·+ xp + · · ·+ 0

= (Up
1A1)s1 + · · ·+ (Up

i Ai)si + · · ·+ (Up
kAk)sk,

(3)

where (Up
i Ai)si ∈ Ωi and i = 1, · · · , k. Therefore, (Up

i Ai)si = xp and (Up
j Aj)sj = 0 for all

j ̸= i. Since Up
i Ai is a basis of Ωi, we have si ̸= 0, si is unique, and sj = 0 for all j ̸= i.

Accoring to Theorem 1, a basis of Xp can be learned and we use it as the dictionary. It is easy to
obtain a true solution by solving the problem in Eq. (1) if subspaces are independent. To deal with
more general multi-view clustering issue in the affine subspace, we introduce the affine constraint
ST1 = 1 to the original objective function and obtain the optimization problem as:

min
Up,A,S

v∑
p=1

||Xp − UpAS||2F , s.t. ST1 = 1, (Up)TUp = I, ATA = I, (4)

where 1 denotes the vector with all entries being one. To locally depict the distribution of contam-
inated data points from different subspaces, we add a non-negative constraint for S and achieve the
problem as:

min
Up,A,S

v∑
p=1

||Xp − UpAS||2F , s.t. S ≥ 0, ST1 = 1, (Up)TUp = I, ATA = I. (5)

Thus, the non-negative constraint endows the learned S with the probabilistic meaning. In real
applications, the data are ususally contaminated with the possible noise. We then adopt the Frobenius
norm for penalizing the noise based on affine and non-negative constraint in Eq. (5), formulated as:

min
Up,A,S

v∑
p=1

||Xp − UpAS||2F + λ∥S∥2F , s.t. S ≥ 0, ST1 = 1, (Up)TUp = I, ATA = I, (6)

where λ > 0 is a parameter to balance different parts. We then guarantee the robustness for efficient
multi-view clustering and investigate the specific local distribution of cluster in the affine subspace.
The grouping effect is stated in the theorem as follows.

Theorem 2. Given data point xp ∈ Rdp , matrix UpA ∈ Rdp×n and parameter λ. Assume each
column of UpA is normalized. Let s∗ be the optimal solution to the following problem:

min
Up,A,s

v∑
p=1

||xp − UpAs||22 + λ∥s∥22, s.t. S ≥ 0, ST1 = 1, (Up)TUp = I, ATA = I. (7)

We have
∥s∗i − s∗j∥2

∥xp∥2
≤ 1

λ

√
2(1− r), (8)

where r = (up
i ai)

T (up
jaj) denotes the basis correlation.

Proof. Let L(s) = ∥xp − UpAs∥22 + λ∥s∥22. Since s∗ is the optimal solution to Eq. (7), it meets

∂L(s)

∂sk

∣∣∣∣
s=s∗

= 0. (9)

Since (Up)TUp = I and ATA = I , we can obtain (UpA)T (UpA) = AT (Up)TUpA = I . Thus,
UpA is orthogonal. Then we have

−2(up
i ai)

T (xp − UpAs∗) + 2λs∗i = 0, (10)

−2(up
jaj)

T (xp − UpAs∗) + 2λs∗j = 0, (11)
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Thus

s∗i − s∗j =
1

λ
((up

i ai)
T − (up

jaj)
T )(xp − UpAs∗), (12)

∥up
i ai∥

2 = ∥up
jaj∥

2 = 1, (13)

and

(up
i ai)

Tup
jaj = 0. (14)

Then we have ∥up
i ai − up

jaj∥2 =
√
2. Note that s∗ is the optimal solution to Eq. (7), we can obtain

∥xp − UpAs∗∥22 + λ∥s∗∥22 = L(s∗) ≤ L(0) = ∥xp∥22. (15)

Therefore, ∥xp − UpAs∗∥2 ≤ ∥xp∥2. Thus, Eq. (15) implies

∥s∗i − s∗j∥2
∥xp∥2

≤
√
2

λ
. (16)

The grouping effect in the above theorem demonstrates that the obtained solution is correlation
dependent. Theorem 2 shows that the difference between s∗i and s∗j is nearly zero if up

i ai and up
jaj

are highly correlated. We then fully explore the correlation among the learned consensus anchors A
with the guidance of view-specific projection Up, which encourages the grouping effect and groups
highly correlated anchors together.

As abovementioned, we introduce the Frobenius norm, non-negative and affine constraints into the
shared affinity matrix learning. While it is simple, the union of these three constraints can restrict
how each data point is described in the affine subspace with specific local distribution of cluster for
guaranting the robustness of learned consensus anchors. We then denote the basis matrix UpA as

UpA = [(UpA)1, · · · , (UpA)t, · · · , (UpA)k], (17)

where (UpA)t is the basis matrix lying in the t-th affine subspace. We adopt (UpA)t−i to denote
basis matrices in the t-th affine subspace except the basis (UpA)i. (UpA)−t is employed to indicate
basis matrices in all affine subspaces except the t-th affine subspace. The sets of basis in (UpA)t,
(UpA)−t and (UpA)t−i can be denoted by Γ((UpA)t), Γ((UpA)−t) and Γ((UpA)t−i), respectively.
A basis tends to locate in three possible positions regarding (UpA)t, i.e., edge, inside and vertex.
We adopt edge((UpA)t), inside((UpA)t) and vertex((UpA)t) to indicate these three positions. For
non-vertex (edge and inside) basis, we first give the lemma and then have the theorem as follows:

Lemma 1. Assume that A and D are square matrices, we can obtain∣∣∣∣∣
∣∣∣∣∣
(
A B
C D

) ∣∣∣∣∣
∣∣∣∣∣
∗

≥

∣∣∣∣∣
∣∣∣∣∣
(
A 0
0 D

) ∣∣∣∣∣
∣∣∣∣∣
∗

= ∥A∥∗ + ∥D∥∗ for matrices B and C with compatible dimen-

sion.

Theorem 3. For any non-vertex basis (UpA)i ∈ edge((UpA)t) and (UpA)i ∈ inside((UpA)t)
with t = 1, 2, · · · , k, the optimal solution to Eq. (6) is block diagonal if Γ((UpA)t) does not
intersect with Γ((UpA)−t).

Proof. We prove the above theorem by the contrapositive and assume that there is an optimal
solution S to Eq. (6) and S does not have the block diagonal property. We set the block diagonal
matrix W as

Wij =

{
Sij , if (UpA)i and (UpA)j in the same subspace,
0, otherwise.

(18)

Then Q = S − W is adopted to denote the difference between S and W . We employ ∁ = {j :
(UpA)j ∈ Γ((UpA)t)} and k = {j : (UpA)j /∈ Γ((UpA)t)} to indicate indices of basis for the t-th
affine subspace and other affine subspaces, respectively. Each edge and inside basis (UpA)i lying
in Γ((UpA)t) which causes S against the block diagonal structure can be written as∑

j∈k
Qij(U

pA)j = (UpA)i −
∑
j∈∁

Wij(U
pA)j . (19)
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Since
∑

j∈∁ Wij +
∑

j∈k Qij = 1, we divide two sides of Eq. (19) by
∑

j∈k Qij and obtain:∑
j∈k Qij(U

pA)j∑
j∈k Qij

=
(UpA)i −

∑
j∈∁ Wij(U

pA)j∑
j∈k Qij

=
(UpA)i −

∑
j∈∁ Wij(U

pA)j

1−
∑

j∈∁ Wij
. (20)

We observe that the left and right sides of Eq. (20) are basis in Γ((UpA)−t) and Γ((UpA)t), respec-
tively. It can be concluded that Γ((UpA)−t) does intersect with Γ((UpA)t). Therefore, according
to Lemma1, we have ∥S∥∗ ≥ ∥W∥∗. Then, W is the optimal and owns the block diagonal structure.
Though it is hard to give sufficient conditons of the similar structure for vertices as Theorem 3, we
find that the proportions of vertices are far more less than edge and inside basis in practice.

To integrate the partition into the unified framework, we adopt the orthogonal and nonnegative fac-
torization to directly assign clusters to the data. Then extra post-processing steps are not needed
in recovering cluster structures based on the factor matrix. Specifically, we impose the orthogonal
constraint on the actual bases. The above process is formulated as:

min
α,Up,A,S,G,F

v∑
p=1

α2
p||Xp − UpAS||2F + λ∥S∥2F + β∥S −GF∥2F , s.t. S ≥ 0, ST1 = 1,

αT1 = 1, (Up)TUp = I, ATA = I, GTG = I, Fij ∈ {0, 1},
k∑

i=1

Fij = 1, ∀j = 1, 2, · · · , n,

(21)

where α2
p denotes the learned coefficients, β > 0 is a parameter for balancing different terms,

G ∈ Rl×k stands for the centroid matrix and F ∈ Rk×n represents the cluster assignment with
Fij = 0 if j-th data point is not belonged to the i-th cluster and 1 otherwise.

2.3 OPTIMIZATION

For solving the problem in Eq. (21), we design an alternate optimization algorithm to seek for the
solution to each variable while fixing the other variables.

Up-subproblem: With the other variables being fixed, the objective function regarding Up is

min
Up

v∑
p=1

α2
p||Xp − UpAS||2F , s.t. (Up)TUp = I. (22)

We then transform the above optimization problem by trace as follows:

max
Up

Tr((Up)TCp), s.t. (Up)TUp = I, (23)

where Cv = XpSTAT . Assuming the singular value decomposition (SVD) of Cv is U ′
CΣCV

T
C , we

can easily obtain the optimal Up by calculating U ′
CV

T
C .

S-subproblem: With the other variables being fixed, the objective function regarding S is

min
S

v∑
p=1

α2
p||Xp − UpAS||2F + λ∥S∥2F + β∥S −GF∥2F , s.t. S ≥ 0, ST1 = 1. (24)

We then rewrite it by the quadratic programming (QP) problem as follows:

minhTS:,j +
1

2
ST
:,jWS:,j , s.t. S ≥ 0, ST

:,j1 = 1, (25)

where hT = −2
∑v

p=1(X
p
:,j)

TUpA− 2βFT
:,jG

T and W = 2(
∑v

p=1 α
2
p + λ+ β)I . Thus, we tackle

the QP problem to achieve the optimization for each column in S.

A-subproblem: With the other variables being fixed, the objective function regarding A is

min
A

v∑
p=1

α2
p||Xp − UpAS||2F , s.t. ATA = I. (26)

6
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Likewise, Eq. (26) is equal to the problem as follows:

max
A

Tr(ATB), s.t. ATA = I, (27)

where B =
∑v

p=1 α
2
p(U

p)TXpST . Then the optimal A is U ′
BV

T
B , where B = U ′

BΣBV
T
B .

F -subproblem: With the other variables being fixed, the objective function regarding F is

min
F

β∥S −GF∥2F , s.t. Fij ∈ {0, 1},
k∑

i=1

Fij = 1, ∀j = 1, 2, · · · , n. (28)

We then independently solve each object for the optimization problem and obtain

min
F:,j

β∥S:,j −GF:,j∥2, s.t. F:,j ∈ {0, 1}k, ∥F:,j∥1 = 1. (29)

We can find the optimal row by

i∗ = argmin
i
∥S:,j −G:,i∥2. (30)

G-subproblem: With the other variables being fixed, the objective function regarding G is

min
G

β∥S −GF∥2F , s.t. GTG = I. (31)

Then the optimization problem regarding G is rewritten as

max
G

Tr(GTJ), s.t. GTG = I, (32)

where J = SFT . Then, the optimal G is equal to U ′
JV

T
J , where J = U ′

JΣJV
T
J .

αp-subproblem: With the other variables being fixed, the objective function regarding αp is

min
α

v∑
p=1

α2
p||Xp − UpAS||2F , s.t. αT1 = 1. (33)

Based on Cauchy-Buniakowsky-Schwarz inequality, the optimal αp can be obtained by

αp =

1
||Xp−UpAS||F∑v

p=1
1

||Xp−UpAS||F
. (34)

The objective function monotonically decreases in each iteration until convergence since the convex
property for each sub-problem. We list the procedure of RCSC in Algorithm 1.

Algorithm 1: Algorithm of RCSC
Input: Multi-view dataset {Xp}v

p=1, parameter λ, β, number of clusters k.
Output: Cluster assignment F .
Initialize: Initialize A, Up, {αp}v

p=1, S, F and G.
repeat

Update S by solving Eq. (24);
Update {Up}v

p=1 by solving Eq. (22);
Update A by solving Eq. (26);
Update G by solving Eq. (31);
Update F by solving Eq. (28);
Update α by solving Eq. (33);

until convergence;

2.4 COMPLEXITY ANALYSIS

The computation cost of our method includes the costs brought by optimizing all variables. Speci-
ficlly, it costs O(l3n) to update S. In optimizing Up, conducting matrix multiplication needs
O(dpdk

2) and SVD consumes O(dpd
2) for each view. It needs O(dlk2) in matrix multiplication

and O(dl2) in SVD for optimizing A. The complexity of O(lnk) is needed to optimize F . It takes
O(lk2 + lk3) to update G, which consists of the time cost in SVD and matrix multiplication. It
needs O(1) to update αp. The total time cost of our method is O((pd2+ pdk2 + dlk2+nl3+ lk2+
lk3 + dl2 + lnk)o) with o being the total number of iterations, where p =

∑v
p=1 dp. Since n ≫ k

and n ≫ l, the computation cost of our method is nearly linear to O(n).
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Figure 1: Parameter selection of λ on eight datasets.
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Figure 2: Parameter selection of β on eight datasets.
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Figure 3: Sensity investigation of anchor number on eight datasets.

3 EXPERIMENTS

In this part, we evaluate the proposed method against the representive methods on eight multi-view
datasets under different metrics in terms of effectiveness and efficiency.
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Figure 4: Robustness study of our method on different datasets in terms of ACC.

3.1 DATASETS AND EXPERIMENTAL SETTINGS

For the experimental evaluation, we use eight real-world multi-view datasets, namely, ORL, Mfeat,
Caltech101-20, Caltech101-all, SUNRGBD Song et al. (2015), NUSWIDEOBJ Chua et al. (2009),
AWA and YoutubeFace. In the experiment, eight representive multi-view clustering methods are
employed for comparison, including AMGL Nie et al. (2016), SFMC Li et al. (2022), BMVC Zhang
et al. (2019), LMVSC Kang et al. (2020), MSGL Kang et al. (2022), FRMVS Wang et al. (2022),
EOMSC-CA Liu et al. (2022) and OMSC Chen et al. (2022).

We need to determine the anchor number in evaluating the clustering performance of all methods.
For ensuring the fairness, the best parameters are used for compared methods. The anchor number
of our method is tuned in the range of [2k, 3k, · · · , 7k], where k denotes the total number of clusters
in dataset. To reduce the randomness, we repeat each experiment for 20 times and report their mean
values and variances in the experiment. We evaluate the clustering results by three widely adopted
metrics, which consists of accuracy (ACC), normalized mutual information (NMI) and F1-score. A
high value for each of these metrics indicates better clustering performance on the dataset.
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Table 1: Clustering results based on ACC (%) on all datasets. “N/A ” denotes out of memory.

Dataset AMGL SFMC BMVC LMVSC MSGL FPMVS EOMSC-CA OMSC Ours

ORL 64.50±0.01 61.40±0.05 48.70±0.05 58.60±0.02 21.00±0.05 52.00±0.50 62.20±0.05 63.80±0.00 65.20±0.00
Mfeat 82.60±0.02 75.50±0.20 69.30±0.05 81.75±0.05 75.40±0.02 82.20±0.05 82.25±0.03 84.00±0.05 85.60±0.00

Caltech101-20 28.70±0.20 59.40±0.05 16.80±0.05 29.00±0.30 48.00±0.02 66.15±0.10 64.10±0.50 65.00±0.10 67.40±0.00
Caltech101-all 14.80±0.01 17.70±0.05 21.20±0.03 15.50±0.01 14.10±0.02 27.50±0.05 22.30±0.03 24.00±0.00 28.00±0.50

SUNRGBD 9.80±0.01 11.30±0.05 16.70±0.01 18.00±0.05 13.00±0.01 23.40±0.05 23.70±0.05 25.20±0.00 27.00±0.00
NUSWIDEOBJ N/A 12.20±0.05 12.90±0.05 14.70±0.05 12.00±0.05 19.20±0.05 19.60±0.05 21.00±0.05 23.50±0.00

AWA N/A 3.92±0.03 8.60±0.05 7.20±0.03 8.00±0.02 8.90±0.01 8.65±0.05 9.00±0.10 10.50±0.10
YoutubeFace N/A N/A 8.90±0.05 14.00±0.02 16.70±0.01 23.00±0.03 26.45±0.05 26.50±0.00 27.80±0.00

Table 2: Clustering results based on NMI (%) on all datasets. “N/A ” denotes out of memory.

Dataset AMGL SFMC BMVC LMVSC MSGL FPMVS EOMSC-CA OMSC Ours

ORL 87.10±0.07 82.70±0.01 67.70±0.03 78.50±0.03 43.70±0.02 74.40±0.05 88.10±0.02 88.50±0.10 90.00±0.00
Mfeat 84.70±0.05 84.80±0.10 66.05±0.15 76.00±0.20 76.54±0.05 79.40±0.01 83.20±0.15 84.20±0.10 85.32±0.15

Caltech101-20 47.50±0.20 42.80±0.00 16.20±0.03 41.20±0.10 31.50±0.05 63.30±0.05 51.10±0.05 51.80±0.30 52.40±0.00
Caltech101-all 35.30±0.01 26.10±0.03 42.50±0.04 33.30±0.02 26.10±0.02 34.10±0.05 24.65±0.05 30.00±0.00 31.30±0.00

SUNRGBD 18.50±0.10 2.30±0.05 19.50±0.05 24.50±0.05 9.30±0.05 24.10±0.05 22.50±0.01 24.30±0.00 25.00±0.10
NUSWIDEOBJ N/A 0.96±0.01 12.90±0.02 12.80±0.05 5.70±0.03 13.20±0.05 13.20±0.15 14.00±0.00 15.20±0.00

AWA N/A 0.30±0.05 9.70±0.02 8.50±0.05 7.90±0.03 8.50±0.03 9.70±0.03 10.00±0.02 10.22±0.00
YoutubeFace N/A N/A 5.90±0.05 11.80±0.01 0.07±0.01 2.40±0.01 0.32±0.01 0.37±0.00 0.50±0.00

Figure 5: Logarithm of running time on different datasets.

We first study how parameters β and λ influence the final clustering performance. These two pa-
rameters are adopted to negotiate the importances of partition term and Frobenious norm term. We
illustrate the clustering performance of the proposed method with varying parameters λ and β in
Figs. 1-2. It is observed that appropriate values for these two parameters are generally beneficial to
the clustering results on different datasets. According to Figs. 1-2, we observe that relatively desired
clustering results are achieved when β = 0.1 and λ = 0.1 on various datasets. Moreover, the results
of the proposed method are generally stable over varying values within the range of parameters β
and λ on different datasets, which shows that RCSC is generally robust to these two parameters.

3.2 EXPERIMENTAL RESULTS AND ANALYIS

In this section, the proposed method is compared with the eight representive methods on several
multi-view datasets. To be specific, we report the clustering results with respect to ACC, NMI and
F1-score of all multi-view clustering methods in Tables 1-3, respectively. We adopt N/A to indicate
that the method is not able to be computationally feasible on the dataset caused by out of memory.
Based on the obtained clustering results in Tables 1-3, we can draw some conclusions as follows:

. For most datasets, the proposed method achieves more desired performance under different
metrics and still behaves well on multi-view datasets with relatively large scale. For exam-
ple, the clustering performance gain of the proposed method is about 2.32% higher than
MSGL in terms of NMI on AWA.

. Methods based on the anchor tend to generate better performance under three different met-
rics in most cases on multi-view datasets with large scales compared with general graph-
based methods, which demonstrates that buiding the graph based on the anchor is helpful
to handle the multi-view datasets with large scales.
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Table 3: Clustering results based on F1-score (%) on all datasets. “N/A ” denotes out of memory.

Dataset AMGL SFMC BMVC LMVSC MSGL FPMVS EOMSC-CA OMSC Ours

ORL 51.20±0.03 30.60±0.05 30.50±0.04 45.90±0.09 51.50±0.20 38.40±0.15 62.10±0.00 63.20±0.10 65.00±0.00
Mfeat 79.80±0.05 71.10±0.15 58.80±0.01 72.50±0.02 70.10±0.02 76.00±0.40 77.00±0.01 78.20±0.00 79.90±0.00

Caltech101-20 21.80±0.05 31.60±0.02 11.40±0.20 25.60±0.50 41.80±0.05 66.00±0.05 64.70±0.20 65.00±0.10 66.79±0.20
Caltech101-all 4.05±0.10 4.65±0.10 18.00±0.05 10.50±0.05 8.60±0.04 17.90±0.03 10.80±0.03 15.00±0.00 18.20±0.15

SUNRGBD 6.40±0.40 12.10±0.00 10.20±0.01 11.60±0.20 9.50±0.15 16.00±0.05 15.30±0.05 17.00±0.00 19.20±0.00
NUSWIDEOBJ N/A 11.50±0.01 8.80±0.02 9.30±0.05 8.50±0.05 13.50±0.07 13.60±0.05 14.50±0.00 15.60±0.10

AWA N/A 4.60±0.03 5.59±0.02 3.60±0.05 4.20±0.01 6.20±0.05 5.90±0.05 6.20±0.00 7.00±0.20
YoutubeFace N/A N/A 5.80±0.02 8.30±0.01 15.00±0.10 14.00±0.05 16.40±0.01 17.10±0.00 18.50±0.00

. The proposed method produces consitently better results than other methods based on the
anchor for most of the multi-view datasets, which validates the necessarity of ensuring the
robustness of learned consensus anchors for efficient multi-view subspace clustering and
exploring the correlation among the learned consensus anchors with the guidance of view-
specific projection in the manner of encouraging the grouping effect and grouping highly
correlated anchors together.

3.3 SENSITIVITY INVESTIGATION AND ROBUSTNESS STUDY

We investigate how the total number of anchors impacts the clustering results in this part. For
simplicity, we fix the shared dimension and conduct the sensity analysis for the number of anchors
on several datasets in terms of different metrics. According to Fig. 3, we find that the proposed
method is not significantly influenced by the number of anchors and the clustering results with
different number of anchors are relatively stable.

We also study the robustness of the proposed method on different datasets. To be specific, we
randomly select half of the multi-view dataset to be corrupted with white Gaussian noise. This type
of noise is added to the selected data point xp

i via x̃p
i = xp

i + pj, where x̃p
i ∈ [0, 255], p denotes

the corrupted ratio and j is the noise satisfying the standard Gaussian distribution. According to
Fig. 4, we can observe that the proposed method is robust on different datasets compared with other
methods and performs better on these datasets, which can be explained by the fact that the ensuring
the robustness of learned consensus anchors in the affine subspace for efficient multi-view subspace
clustering is helpful in achieving satisfied performance.

3.4 RUNNING TIME

We report the execution times of the compared methods and ours on different datasets. Note that
Caltech101-20 and Caltech101-all are two versions of Caltech101 dataset and we just list the running
time of Caltech101-all for simplicity. As shown in Fig. 5, it is observed that the proposed method
has shown comparable logarithm of running time cost to the existing efficient methods on most of
the multi-view datasets, i.e., MSGL. Thus, our method can obtain advantageous clustering results
on various datasets while maintaining relatively competitive efficiency. It can be explained by the
fact that jointly modeling the robust consensus anchors and the common cluster structure in a unified
framework is crucial to guide the efficiency for multi-view clustering. The extra clustering algorithm
is not needed to obtain the final results, i.e., spectral clustering.

4 CONCLUSION

We propose a novel RCSC in this work. We theoretically demonstrate that a block-diagonal anchor
graph is obtained if the objective function satisfies certain conditions. As a special case, we give a
model based on Frobenius norm, non-negative and affine constraints in consensus anchors learning,
which guarantees the robustness of learned consensus anchors for efficient multi-view clustering
and investigates the specific local distribution of cluster in the affine subspace. We jointly perform
the robust anchor learning, partition and anchor graph construction in a unified framework. We then
give an alternate minimizing algorithm for solving the formulated problem and analyze the time
complexity of the proposed method. Extensive experiments verify the effectiveness and efficiency
of the proposed method on different multi-view datasets under three metrics.
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