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Abstract

The aim of Inverse Reinforcement Learning (IRL) is to infer a reward function
R from a policy π. To do this, we need a model of how π relates to R. In the
current literature, the most common models are optimality, Boltzmann rationality,
and causal entropy maximisation. One of the primary motivations behind IRL is to
infer human preferences from human behaviour. However, the true relationship
between human preferences and human behaviour is much more complex than any
of the models currently used in IRL. This means that they are misspecified, which
raises the worry that they might lead to unsound inferences if applied to real-world
data. In this paper, we provide a mathematical analysis of how robust different
IRL models are to misspecification, and answer precisely how the demonstrator
policy may differ from each of the standard models before that model leads to
faulty inferences about the reward function R. We also introduce a framework for
reasoning about misspecification in IRL, together with formal tools that can be
used to easily derive the misspecification robustness of new IRL models.

1 Introduction

Inverse Reinforcement Learning (IRL) is an area of machine learning concerned with inferring what
objective an agent is pursuing based on the actions taken by that agent (Ng and Russell 2000). An IRL
algorithm must make assumptions about how the preferences of an agent relate to its behaviour. Most
IRL algorithms are based on one of three models; optimality, Boltzmann rationality, or causal entropy
maximisation. These behavioural models are very simple, whereas the true relationship between a
person’s preferences and their actions of course is incredibly complex. In fact, there are observable
differences between human data and data synthesised using these standard assumptions (Orsini et al.
2021). This means that the behavioural models are misspecified, which raises the concern that they
might systematically lead to flawed inferences if applied to real-world data.

In this paper, we study how robust the behavioural models in IRL are to misspecification. To do this,
we first introduce a theoretical framework for analysing misspecification robustness in IRL. We then
derive a number of formal tools for inferring the misspecification robustness of IRL models, and apply
these tools to exactly characterise what forms of misspecification the standard IRL models are (or
are not) robust to. Our analysis is general, as it is carried out in terms of behavioural models, rather
than algorithms, which means that our results will apply to any algorithm based on these models.
Moreover, the tools we introduce can also be used to easily derive the misspecification robustness of
new behavioural models, beyond those we consider in this work.

1.1 Related Work

It is well-known that the standard behavioural models of IRL are misspecified in most applications.
However, there has nonetheless so far not been much research on this topic. Freedman, Shah, and
Dragan 2021 study the effects of choice set misspecification in IRL (and reward inference more
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broadly), following the formalism of Jeon, Milli, and Dragan 2020. Our work is wider in scope, and
aims to provide necessary and sufficient conditions which fully describe the kinds of misspecification
to which each behavioural model is robust. In the field of statistics more broadly, misspecification is
a widely studied issue White 1994.

There has been a lot of work on reducing misspecification in IRL. One approach to this is to manually
add more detail to the models (Evans, Stuhlmueller, and Goodman 2015; Chan, Critch, and Dragan
2019), and another approach is to try to learn the behavioural model from data (Armstrong and
Mindermann 2019; Shah et al. 2019). In contrast, our work aims to understand how sensitive IRL is
to misspecification (and thus to answer how much misspecification has to be removed).

1.2 Preliminaries

We assume the reader to be familiar with the basics of reinforcement learning, which can be found in
Sutton and Barto 2018. A summary of our choice of notation can be found in Appendix C. In this
paper, we assume that all states are reachable, and that the set of states and actions both are finite.

An IRL algorithm also needs a behavioural model of how π relates to R. In the current IRL literature,
the most common models are:

1. Optimality: We assume that π is optimal under R (e.g. Ng and Russell 2000).

2. Boltzmann Rationality: We assume that P(π(s) = a) ∝ eβQ
⋆(s,a), where β is a temperature

parameter (e.g. Ramachandran and Amir 2007).
3. Maximal Causal Entropy: We assume that π maximises the causal entropy objective, which

is given by E[
∑∞
t=0 γ

t(R(st, at, st+1) + αH(π(st+1)))], where α is a weight and H is the
Shannon entropy function (e.g. Ziebart 2010).

Finally, we will also refer to several ways to transform reward functions. First recall potential shaping
Ng, Harada, and Russell 1999:
Definition 1.1 (Potential Shaping). A potential function is a function Φ : S → R, where Φ(s) = 0 if
s is a terminal state. Given a discount γ, we say that R2 ∈ R is produced by potential shaping of
R1 ∈ R if for some potential Φ, R2(s, a, s

′) = R1(s, a, s
′) + γ · Φ(s′)− Φ(s).

Potential shaping is widely used for reward shaping. We next define two classes of transformations
that were used by Skalse et al. 2022, starting with S′-redistribution.
Definition 1.2 (S′-Redistribution). Given a transition function τ , R2 ∈ R is produced by S′-
redistribution of R1 ∈ R if ES′∼τ(s,a) [R1(s, a, S

′)] = ES′∼τ(s,a) [R2(s, a, S
′)].

We next consider optimality-preserving transformations:
Definition 1.3. Given a transition function τ and a discount γ, we say that R2 ∈ R is produced by
an optimality-preserving transformation of R1 ∈ R if there exists a function ψ : S → R such that
ES′∼τ(s,a)[R2(s, a, S

′) + γ · ψ(S′)] ≤ ψ(s), with equality if and only if a ∈ argmaxa∈AA
⋆
1(s, a).

2 Theoretical Framework

We here introduce the theoretical framework that we will use to analyse how robust various be-
havioural models are to misspecification. For a given set of states S and a given set of actions A, let
R be the set of all reward functions R : S×A×S → R. We will use the following definitions:

1. A reward object is a function f : R → X , where X is any set.
2. Given partition P of R, we say that f is P -admissible if f(R1) = f(R2) =⇒ R1 ≡P R2.
3. Given a partition P of R, we say that f is P -robust to misspecification with g if f is
P -admissible, f ̸= g, Im(g) ⊆ Im(f), and f(R1) = g(R2) =⇒ R1 ≡P R2.

4. A reward transformation is a function t : R → R.

These definitions give us a way to analyse misspecification robustness in the limit of infinite data.
We provide some justification and intuition for these definitions in Appendix B. Next, we give a
fundamental lemma that we will later use to prove our core results. All of our proofs are provided in
the appendix, which also contains several additional results about our framework.
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Lemma 2.1. If f is P -admissible, and T is the set of all reward transformations that preserve P ,
then f is P -robust to misspecification with g if and only if g = f ◦ t for some t ∈ T where f ◦ t ̸= f .

This lemma gives us a very powerful tool for characterising the misspecification robustness of reward
objects. Specifically, we can derive the set of objects to which f is P -robust by first deriving the set
T of all transformations that preserve P , and then composing f with each t ∈ T .

3 Reward Function Equivalence Classes

Our definition of misspecification robustness is given relative to an equivalence relation on
R. In this section, we characterise two important equivalence classes. Given an environment
M = ⟨S,A, τ, µ0, _, γ⟩ and two reward functions R1, R2, we say that R1 ≡OPTM R2 if
⟨S,A, τ, µ0, R1, γ⟩ and ⟨S,A, τ, µ0, R2, γ⟩ have the same optimal policies, and thatR1 ≡ORDM R2

if they have the same ordering of policies. 1 Skalse et al. 2022 showed that R1 ≡OPTM R2 if and
only if R1 and R2 differ by an optimality-preserving transformation (their Theorem 3.16). We
characterise the transformations that preserve ORDM, which is a novel contribution.

Theorem 3.1. R1 ≡ORDM R2 if and only if R1 and R2 differ by potential shaping, S′-redistribution,
and positive linear scaling (applied in any order).

This theorem fully characterises when R1 and R2 have the same ordering of policies in a given MDP.
It is also worth noting that this directly implies that R1 and R2 have the same ordering of policies for
all τ if and only if they differ by potential shaping and positive linear scaling.

4 Misspecification Robustness of Behavioural Policies

We here give our main results on the misspecification robustness of IRL, starting with the Boltzmann-
rational model. Let Π+ be the set of all policies such that π(a | s) > 0 for all s, a, let M =
⟨S,A, τ, µ0, _, γ⟩, and let FM be the set of all functions fM : R → Π+ that, given R, returns
a policy π which satisfies argmaxa∈Aπ(a | s) = argmaxa∈AQ

⋆(s, a), where Q⋆ is the optimal
Q-function in ⟨S,A, τ, µ0, R, γ⟩. In other words, FM is the set of functions that generate policies
which take each action with positive probability, and that take the optimal actions with the highest
probability. This class includes e.g. Boltzmann-rational policies (for any β).

Theorem 4.1. Let fM ∈ FM be surjective onto Π+. Then fM is OPTM-robust to misspecification
with g if and only if g ∈ FM and g ̸= fM.

Boltzmann-rational policies are surjective onto Π+,2 so Theorem 4.1 exactly characterises the
misspecification to which the Boltzmann-rational model is OPTM-robust.

We next turn our attention to the misspecification to which the Boltzmann-rational model is ORDM-
robust. Let ψ : R → R+ be any function from reward functions to positive real numbers, and let
bMψ : R → Π+ be the function that, given R, returns the Boltzmann-rational policy with temperature
ψ(R) in ⟨S,A, τ, µ0, R, γ⟩. Moreover, let BM = {bMψ : ψ ∈ R → R+} be the set of all such
functions bMψ . This set includes Boltzmann-rational policies; just let ψ return a constant β for all R.

Theorem 4.2. If bMψ ∈ BM then bMψ is ORDM-robust to misspecification with g if and only if
g ∈ BM and g ̸= bMψ .

This means that the Boltzmann-rational model is ORDM-robust to misspecification of the temperature
parameter β, but not to any other form of misspecification.

We next turn our attention to optimal policies. First of all, a policy is optimal if and only if it only
gives support to optimal actions, and if an optimal policy gives support to multiple actions in some
state, then we would normally not expect the exact probability it assigns to each action to convey any
information about the reward function. We will therefore only look at the actions that the optimal

1By this, we mean that J1(π) > J1(π
′) if and only if J2(π) > J2(π

′), for all pairs of policies π, π′.
2If a policy π takes each action with positive probability, then its action probabilities are always the softmax

of some Q-function, and any Q-function corresponds to some reward function.
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policy takes, and ignore the relative probability it assigns to those actions. Formally, we will treat
optimal policies as functions π⋆ : S → P(argmaxa∈AA

⋆) − {∅}; i.e. as functions that for each
state return a non-empty subset of the set of all actions that are optimal in that state. Let OM be the
set of all functions that return such policies, and let oMm ∈ OM be the function that, given R, returns
the function that maps each state to the set of all actions which are optimal in that state. Intuitively,
oMm corresponds to optimal policies that take all optimal actions with positive probability.
Theorem 4.3. No function in OM is ORDM-admissible. The only function in OM that is OPTM-
admissible is oMm , but oMm is not OPTM-robust to any misspecification.

This essentially means that the optimality model is not robust to any form of misspecification. We
finally turn our attention to causal entropy maximising policies. As before, let ψ : R → R+ be any
function from reward functions to positive real numbers, and let cMψ : R → Π+ be the function
that, given R, returns the causal entropy maximising policy with weight ψ(R) in ⟨S,A, τ, µ0, R, γ⟩.
Furthermore, let CM = {cMψ : ψ ∈ R → R+} be the set of all such functions cMψ . This set includes
causal entropy maximising policies; just let ψ return a constant α for all R.
Theorem 4.4. If cMψ ∈ CM then cMψ is ORDM-robust to misspecification with g if and only if
g ∈ CM and g ̸= cMψ .

In other words, the maximal causal entropy model is ORDM-robust to misspecification of the weight
α, but not to any other kind of misspecification.

Finally, let us briefly discuss the misspecification to which the maximal causal entropy model is
OPTM-robust. Lemma 2.1 tells us that cMψ ∈ CM is OPTM-robust to misspecification with g if
g = cMψ ◦ t for some transformation t : R → R that preserves optimal policies in M. In other words,
if g(R1) = π then there must exist an R2 such that π maximises causal entropy with respect to R2,
and such that R1 and R2 have the same optimal policies. It seems hard to express this as an intuitive
property of g, so we have refrained from stating this result as a theorem.

5 Extensions

The analysis in Section 4 can be extended in several ways. In Appendix D.2, we analyse what
happens if R is restricted to some subset of all possible reward functions; we find that this does not
fundamentally change any of the results in Section 4. In Appendix D.1, we analyse misspecification
of the MDP dynamics. In Appendix D.3, we discuss how to analyse the case when we have known
priors concerning R, and in Appendix D.4, we discuss the issue of transfer to new environments.

6 Discussion

We have shown how to exactly characterise the misspecification robustness of the behavioural
models in IRL. First, for ORDM-robustness, we find that the Boltzmann-rational model is robust to
misspecification of the temperature parameter, that the maximal causal entropy model is robust to
misspecification of the weight parameter, and that the optimality model lacks any misspecification
robustness. Next, for OPTM-robustness, we find that the Boltzmann-rational model only requires
that the observed policy always takes the most valuable action with the highest probability, that the
optimality model again lacks any misspecification robustness, and that the maximal causal entropy
model is robust to some misspecification, but that it is hard to define it in an intuitive way. It is
noteworthy that no model is robust to misspecification of the discount parameter, γ. In addition to
these contributions, we have also provided several formal tools for deriving the misspecification
robustness of new behavioural models, in the form of the lemmas in Section 2.

Our analysis makes a few simplifying assumptions, that could be ideally lifted in future work. First
of all, we have been working with equivalence relations on R: it might be fruitful to instead consider
distance metrics on R. Another notable direction for extensions could be to study the misspecification
robustness in the context where we have particular priors concerning R. Finally, we have studied the
behaviour of algorithms in the limit of infinite data. Another possible extension could be to more
rigorously examine the properties of these models in the case of finite data.
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1. An advanced AI can be well-modelled as optimising the world according to some criterion.

2. If some criterion other than human values were to be optimised with sufficiently great
optimisation power, then that would lead to catastrophic consequences.

3. Human values are very difficult to specify.

Each of these points seem reasonably likely, and if one accepts all three, then it follows that we
must develop methods for aligning AI systems with human values, before we develop AI systems
which are too advanced. The version of the argument which we give above is greatly simplified, but a
more extensive and nuanced version can be found in e.g. Bostrom 2014 and Russell 2019. Another
noteworthy recent reference is Yudkowsky 2022.

The next question is, of course, how we can develop methods for aligning AI systems with human
values. Call this the alignment problem. It seems reasonably likely that a solution to the alignment
problem must include a solution to the problem of how to specify human values. Of course, the
alignment problem also includes other problems, see e.g. Hubinger et al. 2019. Moreover, there might
be ways to solve the alignment problem without figuring out how to specify human values – we will
discuss this possibility further down. But, nonetheless, it seems at least reasonably likely that solving
the alignment problem requires first solving the problem of how to specify human values.

The next question is how we can specify human values. It seems incredibly (and probably pro-
hibitively) difficult to specify this directly. A hope is therefore that we might be able to learn human
values from data, using ML. In particular, there is hope that this problem could be solved using IRL
(e.g. Russell 2019). The next issue which presents itself is that human values are unobservable, which
means that they only can be a latent variable in any kinds of data we could collect. This is true of
IRL, and also of any other learning method we might device. This, in turn, means that an ML method
designed to learn human values must make assumptions about the relationship between human values
and the observed data. For example, an IRL algorithm must make assumptions about how human
values relate to human behaviour, and so on.

The next question is then how to specify a model of the relationship between human values and some
appropriate source of data. At first, it was hoped that this model might itself be learnable using RL.
However, Armstrong and Mindermann 2019 demonstrated that the task of simultaneously learning
both a model of a persons preferences, and a model of their rationality, from a single stream of data,
is impossible. Their paper was written with a focus on IRL, and assumed that the learning algorithm
would use a joint simplicity prior, but the proof strategy generalises far beyond these two assumptions.
Another possibility might be to first learn a model of human rationality, and then in a separate step
learn a model of human preferences. This approach might be possible, but also faces many difficulties
in practice, see Shah et al. 2019. In short, in order to learn a model of how a persons preferences
relate to their behaviour, you would have to find situations where you are sure of their preferences,
and then measure their behaviour. However, those situations are rare, if they even exist at all. This
means that this approach will put a lot of pressure on the ability of the rationality model to generalise
correctly far outside the training distribution, which seems unreliable.

We thus have two options; try to correctly specify a model of human rationality, or try to learn a
correct model, in spite of the difficulties we just described. Neither option seems very promising.
However, there is a crucial question which the argument has so far overlooked, namely, how robust
is the value learning problem to misspecification of the relationship between human values and the
observed data? In particular, how robust is IRL to misspecification of the behavioural model? If the
answer is that this inference problem is very sensitive to such misspecification, then it seems unlikely
that we will be able to create a behavioural model of sufficient quality, regardless of whether we try
to specify it directly, or learn it using ML. In that case, we should give up on value learning, and any
approach to solving the alignment problem which relies on it. If, on the other hand, it turns out that
IRL is very robust to misspecification of the behavioural model, then the situation would instead be
very hopeful. In the more extreme case, it might even be enough to just use a broadly plausible model
of bounded rationality. In that case, we should expect to be able to construct such a model, and to
able to learn human values with IRL.

This paper is a first step towards answering this question, and determining how robust the value
learning problem is to misspecification. It is not yet a solution to that question, but it is progress on
the way. An answer to this question will be advantageous for guiding future research, and determining
what strategies for value alignment are more promising or less promising. Moreover, it will also be
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necessary in order to trust the result of any value learning method — misspecification is ubiquitous
in reward learning, and while it can be decreased, it cannot be eliminated. Therefore, how reliable a
reward learning method is will invariably in part depend on how robust the value learning problem is
to misspecification. This explains the context of this paper within the broader research landscape on
risk from advanced AI.

The next question is whether our research might fail to contribute to reducing existential risk from
advanced AI, or even increase it. We will start with the latter question, by providing a story of how
our research could be net harmful. First, the notion of “human values” is incredibly subtle, as is the
question of what makes an outcome good or bad. After all, this is why Ethics is a field of study. One
could worry that the existing field of value learning conflates the question of what is good with the
question of what is in accordance with a person’s current desires. That is, one could worry that it
conflates human values and human preferences. Moreover, one could then also worry that aligning an
advanced AI with the latter essentially would amount to misalignment. If this is true, then the risk of
this outcome is increased by any research that improves the capabilities of reward learning methods,
and by any research that instils false confidence in these methods. This paper could plausibly belong
to the latter category. At least, this is the most plausible scenario we can see in which this paper would
end up being net harmful. Then, there is of course also opportunity cost. For example, it is possible
that value alignment is nearly impossible, and that the best way to solve the alignment problem is
to try to develop “docile” AI systems which do not attempt to optimise the world (i.e., an AI which
defies assumption 1 in the argument above). In that case, any research which draws attention away
from this strategy, and towards e.g. value learning, could be seen as net bad. However, on the whole,
we still expect our research to be a positive contribution to the task of solving the alignment problem.

B Intuition

In this appendix, we explain and justify each of the definitions in Section 2. First of all, anything
that can be computed from a reward function can be seen as a reward object. For example, we could
consider a function b that, given a reward R, returns the Boltzmann-rational policy with temperature
β in the MDP ⟨S,A, τ, µ0, R, γ⟩, or a function r that, from R, gives the return function G in the
MDP ⟨S,A, τ, µ0, R, γ⟩. This makes reward objects a versatile abstract building block for more
complex constructions. We will mainly, but not exclusively, consider reward objects with the type
R → Π, i.e. functions that compute policies from rewards.

We can use reward objects to create an abstract model of a reward learning algorithm L as follows;
first, we assume, as reasonable, that there is a true underlying reward function R⋆, and that the
observed training data is generated by a reward object g, so that L observes g(R⋆). Here g(R⋆) could
be a distribution, which models the case where L observes a sequence of random samples from some
source, but it could also be a single, finite object. Next, we suppose that L has a model f of how
the observed data relates to R⋆, where f is also a reward object, and that L learns (or converges
to) a reward function RH such that f(RH) = g(R⋆). If f ̸= g then f is misspecified, otherwise f
is correctly specified. Note that this primarily is a model of the asymptotic behaviour of learning
algorithms, in the limit of infinite data.

There are two ways to interpret Am(f). First, we can see it as a bound on the amount of information
we can get about R⋆ by observing (samples from) f(R⋆). For example, multiple reward functions
might result in the same Boltzmann-rational policy, thus observing trajectories from that policy could
never let us distinguish between them: this ambiguity is described by Am(b). We can also see Am(f)
as the amount of information we need to have about R⋆ to construct f(R⋆). Next, if f ⪯ g, this
means that we get less information aboutR⋆ by observing g(R⋆) than f(R⋆), and that we would need
more information to construct f(R⋆) than g(R⋆). For an extensive discussion about these notions,
see Skalse et al. 2022.

Intuitively, we want to say that a behavioural model is robust to some type of misspecification if an
algorithm based on that model will learn a reward function that is “close enough” to the true reward
function when subject to that misspecification. To formalise this intuitive statement, we first need a
definition of what it should mean for two reward functions to be “close enough”. In this work, we
have chosen to define this in terms of equivalence classes. Specifically, we assume that we have
a partition P of R (which, of course, corresponds to an equivalence relation), and that the learnt
reward function RH is “close enough” to the true reward function R⋆ if they’re in the same class,
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RH ≡P R⋆. We will for now leave open the question of which partition P of R to pick, and later
revisit this question in Section 3.

Given this, we can now see that our definition of P -admissibility is equivalent to stating that a learning
algorithm L based on f is guaranteed to learn a reward function that is P -equivalent to the true reward
function when there is no misspecification. Furthermore, our definition of P -robustness says that f is
P -robust to misspecification with g if any learning algorithm L based on f is guaranteed to learn a
reward function that is P -equivalent to the true reward function when trained on data generated from
g. The requirement that Im(g) ⊆ Im(f) ensures that the learning algorithm L is never given data
that is impossible according to its model. Depending on how L reacts to such data, it may be possible
to drop this requirement. We include it, since we want our analysis to apply to all algorithms. The
requirement that f is P -admissible is included to rule out some uninteresting edge cases.

Reward transformations can be used to characterise the ambiguity of reward objects, or define other
partitions of R. Specifically, we say that a partition P corresponds to a set of reward transformations
TP if TP contains all reward transformations t that satisfy t(R) ≡P R. If P is the ambiguity of f
then TP would be the set of all reward transformations that satisfy f(R) = f(t(R)). Note that if T
corresponds to a partition of R then T must contain the identity map, be closed under composition,
and contain inverses.

C Notation

In this appendix, we list all of our notation. A Markov Decision Processes (MDP) is a tuple
(S,A, τ, µ0, R, γ) where S is a set of states, A is a set of actions, τ : S×A ⇝ S is a transition
function, µ0 ∈ ∆(S) is an initial state distribution, R : S×A×S → R is a reward function and
γ ∈ (0, 1] is a discount rate. Here f : X ⇝ Y denotes a probabilistic mapping from X to Y . In this
paper, we assume that S and A are finite. A state s is terminal if τ(s, a) = s and R(s, a, s′) = 0
for all a, s′. A policy is a function π : S ⇝ A. A trajectory ξ = ⟨s0, a0, s1, a1 . . . ⟩ is a possible
path in an MDP. The return function G gives the cumulative discounted reward of a trajectory,
G(ξ) =

∑∞
t=0 γ

tR(st, at, st+1), and the evaluation function J gives the expected trajectory return
given a policy, J (π) = Eξ∼π [G(ξ)]. A policy maximising J is an optimal policy. The value
function V π : S → R of a policy encodes the expected future discounted reward from each state
when following that policy. The Q-function is Qπ(s, a) = E [R(s, a, S′) + γV π(S′)], and the
advantage function is Aπ(s, a) = Qπ(s, a) − V π(s). Q⋆, V ⋆, and A⋆ denote the Q-, value, and
advantage functions of the optimal policies. In this paper, we assume that all states in S are reachable
under τ and µ0. Moreover, we will often talk about pairs or sets of reward functions. In these cases,
we will give each reward function a subscript Ri, and use Ji, V ⋆i , and V πi , and so on, to denote Ri’s
evaluation function, optimal value function, and π value function, and so on.

D Generalising the Analysis

In this appendix, we discuss different ways to generalise our results.

D.1 Misspecified MDPs

A reward object can be parameterised by a γ or τ , implicitly or explicitly. For example, the reward
objects in Section 4 are parameterised by M = ⟨S,A, τ, µ0, _, γ⟩. In this section, we explore what
happens if these parameters are misspecified. We show that nearly all behavioural models are sensitive
to this type of misspecification.

Theorems 4.1-4.4 already tell us that the standard behavioural models are not (ORDM or OPTM)
robust to misspecified γ or τ , since the sets FM, BM, and CM, all are parameterised by γ and τ .
We will generalise this further. To do this, we first derive two lemmas. We say that τ is trivial if for
each s ∈ S, τ(s, a) = τ(s, a′) for all a, a′ ∈ A.

Lemma D.1. If fτ1 = fτ1 ◦ t for all t ∈ S′Rτ1 then fτ1 is not OPTM-admissible for M =
⟨S,A, τ2, µ0, _, γ⟩ unless τ1 = τ2.

Lemma D.2. If fγ1 = fγ1 ◦ t for all t ∈ PSγ1 then fγ1 is not OPTM-admissible for M =
⟨S,A, τ, µ0, _, γ2⟩ unless γ1 = γ2 or τ is trivial.
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Note that if f is not OPTM-admissible then f is also not ORDM-admissible, and similarly for
misspecification robustness. From these lemmas, we get the following result:
Theorem D.3. If fτ1 = fτ1 ◦ t for all t ∈ S′Rτ1 then fτ1 is not OPTM-robust to misspecification
with fτ2 for any M. Moreover, if fγ1 = fγ1 ◦ t for all t ∈ PSγ1 then fγ1 is not OPTM-robust to
misspecification with fγ2 for any M whose transition function τ is non-trivial.

The statement of this theorem can be explained in words as follows. The first part shows that if
a behavioural model says that the policy is insensitive to S′-redistribution, then that model is not
OPTM-robust (and therefore also not ORDM-robust) to misspecification of the transition function
τ . Similarly, the second part shows that if the behavioural model says that the policy is insensitive
to potential shaping, then that model is not OPTM-robust (and therefore also not ORDM-robust)
to misspecification of the discount parameter γ. Note that all transformations in S′Rτ and PSγ
preserve the ordering of policies. This means that an IRL algorithm must specify τ and γ correctly
in order to guarantee that the learnt reward function RH has the same optimal policies as the true
underlying reward function R∗, unless the algorithm is based on a behavioural model which says that
the observed policy depends on features of R which do not affect its policy ordering. This should
encompass most natural behavioural models.

That being said, we note that this result relies on the requirement that the learnt reward function
should have exactly the same optimal policies, or ordering of policies, as the true reward function.
If γ1 ≈ γ2 and τ1 ≈ τ2, then the learnt reward function’s optimal policies and policy ordering will
presumably be similar to that of the true reward function. Analysing this case is beyond the scope of
this paper, but we consider it to be an important topic for further work.

D.2 Restricted Reward Functions

Here, we discuss what happens if the reward function is restricted to belong to some subset of R, i.e.
if we know that R ∈ R̂ for some R̂ ⊆ R. For example, it is common to consider reward functions
that are linear in some state features. It is also common to define the reward function over a restricted
domain, such as S×A; this would correspond to restricting R to the set of reward functions such that
R(s, a, s′) = R(s, a, s′′) for all s, a, s′, s′′. As we will see, our results are largely unaffected by such
restrictions.

We first need to generalise the framework, which is straightforward. Given partitions P , Q of R,
reward objects f , g, and set R̂ ⊆ R, we say that P ⪯ Q on R̂ if R1 ≡P R2 implies R1 ≡Q R2

for all R1, R2 ∈ R̂, that f is P -admissible on R̂ if Am(f) ⪯ P on R̂, and that f is P -robust to
misspecification with g on R̂ if f is P -admissible on R̂, f |R̂ ̸= g|R̂, Im(g|R̂) ⊆ Im(f |R̂), and
f(R1) = g(R2) =⇒ R1 ≡P R2 for all R1, R2 ∈ R̂.

The theorems in Section 4 also carry over very directly:
Theorem D.4. If f is P -robust to misspecification with g on R̂ then f is P -robust to misspecification
with g′ on R for some g′ where g′|R̂ = g|R̂, unless f is not P -admissible on R. If f is P -robust to
misspecification with g on R then f is P -robust to misspecification with g on R̂, unless f |R̂ = g|R̂.

The intuition for this theorem is that if f is P -robust to misspecification with g if and only if g ∈ G,
then f is P -robust to misspecification with g′ on R̂ if and only if g′ behaves like some g ∈ G for all
R ∈ R̂. Restricting R does therefore not change the problem in any significant way.

If an equivalence relation P of R is characterised by a set of reward transformations T , then the
corresponding equivalence relation on R̂ is characterised by the set of reward transformations
{t ∈ T : Im(t|R̂) ⊆ R̂}; this can be used to generalise Theorem 3.1. However, here there is a
minor subtlety to be mindful of: (A ◦ B) − C is not necessarily equal to (A − C) ◦ (B − C).
This means that if we wish to specify {t ∈ A ◦ B : Im(t|R̂) ⊆ R̂}, then we cannot do this by
simply removing the transformations where Im(t|R̂) ̸⊆ R̂ from each of A and B. For example,
consider the transformations S′Rτ ◦ PSγ restricted to the space R̂ of reward functions where
R(s, a, s′) = R(s, a, s′′), i.e. to reward functions over the domain S×A. The only transformation
in S′Rτ on R̂ is the identity mapping, and the only transformations in PSγ on R̂ are those where
Φ is constant over all states. However, S′Rτ ◦ PSγ on R̂ contains all transformations where Φ is
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selected arbitrarily, and t(R)(s, a, s′) is set to R(s, a, s′)+γE [Φ(S′)]−Φ(s). This means that there
probably are no general shortcuts for deriving {t ∈ T : Im(t|R̂) ⊆ R̂} for arbitrary R̂.

It should be noted that negative results might not hold if R is restricted. Recall that f is not P -robust
to misspecification with g if there exist R1, R2 such that g(R1) = f(R2), but R1 ̸≡P R2. If R is
restricted, it could be the case that all such counterexamples are removed. For example, if we restrict
R to e.g. the set R̂ of reward functions that only reward a single transition, then Lemma D.2, and
the corresponding part of Theorem D.3, no longer apply.3 This means that, if the reward function is
guaranteed to lie in this set R̂, then a behavioural model may still be OPTM-robust to a misspecified
discount parameter. However, the reason for this is simply that the discount parameter no longer
affects which policies are optimal if there is only a single transition that has non-zero reward.

D.3 Known Prior and Inductive Bias

So far, we have assumed that we do not know which distribution R is sampled from, or which
inductive bias the learning algorithm L has. In this section, we discuss what might happen if we lift
these assumptions.

To some extent, our results from Appendix D.2 can be used to understand this setting as well. Suppose
we have a set R̂ ⊆ R of “likely” reward functions, such that P(R⋆ ∈ R̂) = 1 − δ, and such that
the learning algorithm L returns a reward function RH in R̂ if there exists an RH ∈ R̂ such that
f(RH) = g(R⋆). Then if f is P -robust to misspecification with g on R̂, it follows that L returns an
RH such that RH ≡P R⋆ with probability at least 1− δ.

So, for example, suppose R̂ is the set of all reward functions that are “sparse”, for some way of
formalising that property. Then this tells us, informally, that if the underlying reward function is
likely to be sparse, and if L will attempt to fit a sparse reward function to its training data, then it
is sufficient that f is P -robust to misspecification with g on the set of all sparse reward functions,
to ensure that the learnt reward function RH is P -equivalent to the true reward function with high
probability. It seems likely that more specific claims could be made about this setting, but we leave
such analysis as a topic for future work.

D.4 Transfer to New Environments

The equivalence relations we have worked with (OPTM and ORDM) only guarantee that the learnt
reward function RH has the same optimal policies, or ordering of policies, as the true reward R⋆ in a
given environment M = ⟨S,A, τ, µ0, _, γ⟩. A natural question is what happens if we strengthen this
requirement, and demand that RH has the same optimal policies, or ordering of policies, as R⋆, for
any choice of τ , µ0, or γ. We discuss this setting here.

In short, it is impossible to guarantee transfer to any τ or γ within our framework, and trivial to
guarantee transfer to any µ0. First, the lemmas provided in Appendix D.1 tell us that none of the
standard behavioural models are OPTM-admissible when τ or γ is different from that of the training
environment. This means that none of them can guarantee that RH has the same optimal policies
(or ordering of policies) as R⋆ if τ or γ is changed, with or without misspecification. Second, if
R1 ≡ORDM R2 or R1 ≡OPTM R2, then this remains the case if µ0 is changed. We can thus trivially
guarantee transfer to arbitrary µ0.

E proofs

In this Appendix, we provide the proofs of all our results, as well as of some additional lemmas.

Before giving the proofs, we must first specify several sets of reward transformations:

1. Let PSγ be the set of all reward transformations t such that t(R) is given by potential
shaping of R relative to the discount γ.

2. Let S′Rτ be the set of all reward transformations t such that t(R) is given by S′-
redistribution of R relative to the transition function τ .

3The reason for this is that there are no R1, R2 ∈ R̂ where R1 = t(R2) for some t ∈ PSγ .
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3. Let LS be the set of all reward transformations t that scale each reward function by some
positive constant, i.e. for each R there is a c ∈ R+ such that t(R)(s, a, s′) = c ·R(s, a, s′).

4. Let CS be the set of all reward transformations t that shift each reward function by some
constant, i.e. for each R there is a c ∈ R such that t(R)(s, a, s′) = R(s, a, s′) + c.

5. Let OPτ,γ be the set of all reward transformations t such that t(R) is given by an optimality-
preserving transformation of R relative to τ and γ.

Note that these sets are defined in a way that allows their transformations to be “sensitive” to the
reward function it takes as input. For example, a transformation t ∈ PSγ might apply one potential
function Φ1 to R1, and a different potential function Φ2 to R2. Similarly, a transformation t ∈ LS
might scale R1 by a positive constant c1, and R2 by a different constant c2, etc.

E.1 Fundamental Lemmas

We here prove a number of results about our framework. Our proofs in this section are given relative
to the somewhat more general definitions of P -robustness and refinement given in Appendix D.2,
rather than those given in Section 2.

Lemma E.1. For any f and h, if f is not P -admissible on R̂ then h ◦ f is not P -admissible on R̂.

Proof. If f is not P -admissible on R̂ then there are R1, R2 ∈ R̂ such that f(R1) = f(R2), but
R1 ̸≡P R2. But if f(R1) = f(R2) then h ◦ f(R1) = h ◦ f(R2), so there are R1, R2 ∈ R̂ such that
h ◦ f(R1) = h ◦ f(R2), but R1 ̸≡P R2. Thus h ◦ f is not P -admissible on R̂.

Lemma E.2. If f is P -robust to misspecification with g on R̂ then g is P -admissible on R̂.

Proof. Suppose for contradiction that f is P -robust to misspecification with g on R̂, but that
g is not P -admissible on R̂. Since g is not P -admissible on R̂, there are R1, R2 ∈ R̂ where
g(R1) = g(R2) but R1 ̸≡P R2. Since Im(g|R̂) ⊆ Im(f |R̂) there is an R3 ∈ R̂ such that
f(R3) = g(R1) = g(R2). But then either R3 ̸≡P R1 or R3 ̸≡P R2, which is a contradiction, since
f is P -robust to misspecification with g on R̂.

Lemma E.3. If f is P -robust to misspecification with g on R̂ and Im(f |R̂) = Im(g|R̂) then g is
P -robust to misspecification with f on R̂.

Proof. If f is P -robust to misspecification with g on R̂ then this immediately implies that fR̂ ̸= g|R̂,
and that if f(R1) = g(R2) for some R1, R2 ∈ R̂ then R1 ≡P R2. Lemma E.2 implies that g is
P -admissible on R̂, and if Im(f |R̂) = Im(g|R̂) then Im(f |R̂) ⊆ Im(g|R̂). This means that g is
P -robust to misspecification with f on R̂.

Lemma E.4. f is P -admissible on R̂ but not P -robust to any misspecification on R̂ if and only if
Am(f) = P on R̂.

Proof. First suppose Am(f) = P on R̂. This immediately implies that f is P -admissible on R̂.
Next, assume that f is P -robust to misspecification with g on R̂, let R1 be any element of R̂, and
consider g(R1). Since Im(g|R̂) ⊆ Im(f |R̂), there is an R2 ∈ R̂ such that f(R2) = g(R1). Since f
is P -robust to misspecification with g on R̂, this implies that R2 ≡P R1. Moreover, if Am(f) = P
then R2 ≡P R1 if and only if f(R2) = f(R1), so it must be the case that f(R2) = f(R1). Now,
since f(R2) = f(R1) and f(R2) = g(R1), we have that g(R1) = f(R1). Since R1 was chosen
arbitrarily, this implies that f |R̂ = g|R̂, which is a contradiction. Hence, if Am(f) = P on R̂ then f
is P -admissible on R̂ but not P -robust to any misspecification on R̂.

For the other direction, suppose that f is P -admissible on R̂ and that Am(f) ̸= P on R̂. If
Am(f) ̸= P on R̂ then there are R1, R2 ∈ R̂ such that R1 ≡P R2 but f(R1) ̸= f(R2). We
can then construct a g as follows; let g(R1) = f(R2), g(R2) = f(R1), and g(R) = f(R) for all
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R ̸= R1, R2. Now f is P -robust to misspecification with g on R̂. Hence, if f is P -admissible on R̂
but not P -robust to any misspecification on R̂ then Am(f) = P on R̂.

Lemma E.5. If f is not P -robust to misspecification with g on R̂, and Im(g|R̂) ⊆ Im(f |R̂), then
for any h, h ◦ f is not P -robust to misspecification with h ◦ g on R̂.

Proof. If f is not P -robust to misspecification with g on R̂, and Im(g|R̂) ⊆ Im(f |R̂), then either f
is not P -admissible on R̂, or f |R̂ = g|R̂, or f(R1) = g(R2) but R1 ̸≡P R2 for some R1, R2 ∈ R̂.

In the first case, if f is not P -admissible on R̂ then h◦f is not P -admissible on R̂, as per Lemma E.1.
This implies that h ◦ f is not P -robust to any misspecification (including with h ◦ g) on R̂.

In the second case, if f |R̂ = g|R̂ then h ◦ f |R̂ = h ◦ g|R̂. This implies that h ◦ f is not P -robust to
misspecification with h ◦ g on R̂.

In the last case, suppose f(R1) = g(R2) but R1 ̸≡P R2 for some R1, R2 ∈ R̂. If f(R1) = g(R2)

then h ◦ f(R1) = h ◦ g(R2), so there are R1, R2 ∈ R̂ such that h ◦ f(R1) = h ◦ g(R2), but
R1 ̸≡P R2. This implies that h ◦ f is not P -robust to misspecification with h ◦ g on R̂.

Lemma E.6. Let f be P -admissible on R̂, and let T be the set of all reward transformations that
preserve P on R̂. Then f is P -robust to misspecification with g on R̂ if and only if g = f ◦ t for
some t ∈ T such that f ◦ t|R̂ ̸= f |R̂.

Proof. First suppose that f is P -robust to misspecification with g on R̂ — we will construct a t
that fits our description. For each y ∈ Im(g|R̂), let Ry ∈ R̂ be some reward function such that
f(Ry) = y; since Im(g|R̂) ⊆ Im(f |R̂), such an Ry ∈ R̂ always exists. Now let t be the function
that maps each R ∈ R̂ to Rg(R). Since by construction g(R) = f(Rg(R)), and since f is P -robust
to misspecification with g on R̂, we have that R ≡P Rg(R). This in turn means that t ∈ T , since t
preserves P on R̂. Finally, note that g = f ◦ t, which means that we are done.

For the other direction, suppose g = f ◦ t for some t ∈ T where f ◦ t|R̂ ̸= f |R̂. By assumption
we have that f is P -admissible on R̂, and that g|R̂ ̸= f |R̂. Moreover, we clearly have that
Im(g|R̂) ⊆ Im(f |R̂). Finally, if g(R1) = f(R2) then f ◦ t(R1) = f(R2), which means that
R1 ≡P R3 for some R3 ∈ R̂ such that f(R3) = f(R2). Since f is P -admissible on R̂ it follows
that R3 ≡P R2, which then implies that R1 ≡P R2. Thus f is P -robust to misspecification with g
on R̂, so we are done.

E.2 Reward Function Equivalence Classes

In this section we will prove Theorem 3.1, which turns out to be quite involved. We start by proving
several lemmas, which we will need for the main proof.

E.2.1 Lemmas Concerning Reward Transformations

Here, we provide some lemmas concerning reward transformations.
Lemma E.7. If γ1 ̸= γ2 then PSγ1 ∩ PSγ2 = CS.

Proof. First, it is straightforward that CS ⊆ PSγ for all γ. Suppose t ∈ CS, and let ΦR(s) =
cR/(1 − γ) for all s, where cR is the constant that t shifts R by. Then t(R) is given by potential
shaping R with ΦR, which means that t ∈ PSγ . Hence CS ⊆ PSγ1 ∩ PSγ2 .

For the other direction, suppose t ∈ PSγ1 ∩ PSγ2 , and let s1, s2 ∈ S. We have that:

Φ1(s1)− γ1Φ1(s2) = Φ2(s1)− γ2Φ2(s2)

Φ1(s2)− γ1Φ1(s1) = Φ2(s2)− γ2Φ2(s1)

Φ1(s1)− γ1Φ1(s1) = Φ2(s1)− γ2Φ2(s1)

Φ1(s2)− γ1Φ1(s2) = Φ2(s2)− γ2Φ2(s2)
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By substituting, we can show that

Φ1(s1)− γ1Φ1(s2) = Φ2(s1)− γ2Φ2(s2)

=

(
1− γ1
1− γ2

)
Φ1(s1)− γ1

(
1− γ1
1− γ2

)
Φ1(s2)

=⇒
(
1− 1− γ1

1− γ2

)
Φ(s1) =

(
γ1 − γ2

1− γ1
1− γ2

)
Φ1(s2)

=⇒ Φ1(s1) = Φ1(s2).

By induction, we get that Φ1 has a constant value for all s (and by symmetry, that this is true of Φ2 as
well). Hence t ∈ CS, and so we have proven that PSγ1 ∩ PSγ2 = CS.

Lemma E.8. (F ◦H) ∩ (G ◦H) = (F ∩G) ◦H

Proof. If (F ◦H) ∩ (G ◦H) then t can be expressed as a finite sequence t1 ◦ · · · ◦ tn, where each
ti is in F or H , and each ti is in G or H . Equivalently, each ti is in both F and G, or in H , which
implies that t ∈ (F ∩G) ◦H , and so (F ◦H) ∩ (G ◦H) ⊆ (F ∩G) ◦H . An analogous argument
shows that (F ∩G) ◦H ⊆ (F ◦H) ∩ (G ◦H), and so (F ◦H) ∩ (G ◦H) = (F ∩G) ◦H .

E.2.2 Lemmas Concerning State-Action Visit Counts

Here we provide some lemmas about the topological structure of MDPs. Recall that we assume that
all states in S are reachable.

Let Π be the set of all policies. Moreover, given τ and µ0, let mτ,µ0 : Π → R|S||A| be a map that
sends each policy π to a vector dπ , such that

dπ[s, a] =

∞∑
t=0

γtPξ∼π (St, At = s, a) .

In other words, let mτ,µ0
(π) be a vector that records the expected discounted “density” of π’s

trajectories in each state-action pair (under τ and µ0).

Given a reward function R and a transition function τ , let R⃗τ ∈ R|S||A| be the vector where
R⃗τ [s, a] = ES′∼τ(s,a)[R(s, a, S

′)]. Moreover, note that J (π) = mτ,µ0
(π) · R⃗τ .

Let Π̄ ⊂ Π be the set of all policies that visit each state with positive probability.

Lemma E.9. mτ,µ0
is injective on Π̄.

Proof. Suppose mτ,µ0
(π) = mτ,µ0

(π′) for some π, π′ ∈ Π̄. Next, given τ, µ0, define wπ as

wπ(s) =

∞∑
t=0

γtPξ∼π(St = s).

Note that if mτ,µ0
(π) = mτ,µ0

(π′) then wπ = wπ′ , and moreover that

mτ,µ0
(π)[s, a] = wπ(s)π(a | s).

This means that if wπ(s) ̸= 0 for all s, which is the case for all π ∈ Π̄, then we can express π as

π(a | s) = mτ,µ0
(π)[s, a]

wπ(s)
.

This means that if mτ,µ0
(π) = mτ,µ0

(π′) for some π, π′ ∈ Π̄ then π = π′.

Note that mτ,µ0 is not injective on Π; if there is some state s that π reaches with probability 0, then
we can alter the behaviour of π at s without changing mτ,µ0

(π).

Lemma E.10. Im(mτ,µ0
) is located in an affine space with |S|(|A| − 1) dimensions.

13



Proof. To show that Im(mτ,µ0) is located in an affine space with |S|(|A| − 1) dimensions, first note
there is no π such that m(π) is the zero vector. This means that the smallest affine space which
contains Im(mτ,µ0) does not contain the origin.

Next, recall if R2 is produced by shaping R1 with Φ, and ES0∼µ0
[Φ(S0)] = 0, then J1(π) = J2(π)

for all π. This means that knowing the value of J (π) for all π determines R⃗ modulo at least |S| − 1
free variables, which means that Im(mτ,µ0

) contains at most |S|(|A| − 1) + 1 linearly independent
vectors. Since the smallest affine space that contains Im(mτ,µ0

) does not contain the origin, this
means that Im(mτ,µ0

) is located in an affine space with |S|(|A| − 1) dimensions.

For the next lemma, let Π̃ ⊂ Π be the set of all policies that take all actions with positive probability
in each state, and note that Π̃ ⊂ Π̄ (i.e., a policy that takes every action with positive probability in
each state visits every state with positive probability).

Lemma E.11. mτ,µ0
(Π̃) is open in R|S|(|A|−1), and mτ,µ0

is a homeomorphism between Π̃ and
mτ,µ0

(Π̃).

Proof. By the Invariance of Domain Theorem (Brouwer, 1912), if

1. U is an open subset of Rn, and

2. f : U → Rn is an injective continuous map,

then f(U) is open in Rn and f is a homeomorphism between U and f(U). We will show that m and
Π̃ satisfy the requirements of this theorem.

We begin by noting that Π can be represented as a set of points in R|S|(|A|−1). We do this by
considering each policy π as a vector π⃗ of length |S||A|, where π⃗[s, a] = π(a | s). Moreover, since∑
a∈A π(a | s) = 1 for all s, we can remove one dimension, and embed Π in R|S|(|A|−1).

Π̃ is an open set in R|S|(|A|−1). By Lemma E.10, we have that mτ,µ0 is a mapping mτ,µ0 : Π̃ →
R|S|(|A|−1). By Lemma E.9, we have that mτ,µ0

is injective on Π̃. Finally, mτ,µ0
is continuous.

We can therefore apply the Invariance of Domain Theorem, and conclude that mτ,µ0
(Π̃) is open in

R|S|(|A|−1), and that mτ,µ0 is a homeomorphism between Π̃ and mτ,µ0(Π̃).

Note that lemma E.11 holds for all τ and µ0.

E.2.3 Results Concerning the Policy Order

In this section, we prove our results concerning the policy orderings. First, we need to define a new
set of transformations. Let PSkγ,µ0

be the set of all potential shaping transformations t that, for each
R, apply a potential function Φ such that ES0∼µ0 [Φ(S0)] = k.

Lemma E.12. J1 = J2 if and only if R1 = t(R2) for some t ∈ PS0γ,µ0
◦ S′Rτ .

Proof. First suppose R1 = t(R2) for some t ∈ PS0γ,µ0
◦S′Rτ . Then V π1 (s) = V π2 (s)−Φ(s), where

Φ is the potential shaping function applied by t (see e.g. Lemma B1 in Skalse et al. 2022). Hence
J1(π) = J2(π)− Es0∼µ0

[Φ(s0)] = J2(π), and so we have proven the first direction.

For the other direction, recall that since J (π) = mτ,µ0
(π) · R⃗τ , we have that J determines

the value of mτ,µ0
(π) · R⃗τ for each mτ,µ0

(π) ∈ Im(mτ,µ0
). This means that if we can pick n

linearly independent vectors from Im(mτ,µ0), then that determines that R⃗τ is located in some affine
space with (|S||A| − n) dimensions. Lemma E.11 says that Im(mτ,µ0

) is open in R|S|(|A|−1),
which means that Im(mτ,µ0

) contains |S| − 1 linearly independent vectors. We know that J is
preserved by transformations in PS0γ,µ0

, and each such transformation is specified by |S|−1 variables
(corresponding to the value of Φ in each state, which is determined for one of the initial states). This
means that Im(mτ,µ0

) · R⃗τ determines R⃗τ modulo exactly |S|− 1 degrees of freedom, which we can
identify with the values of Φ for the transformations in PS0γ,µ0

. Hence Im(mτ,µ0
) · R⃗τ (and therefore

14



J ) are preserved by transformations in PS0γ,µ0
and transformations that preserve R⃗τ , and no other

transformations. R⃗τ is of course preserved by S′-redistribution, and no other transformations. We
have hence proven the other direction.

We can now finally prove (a somewhat generalised version of) Theorem 3.1.

Theorem E.13. The invariance of ORDM is exactly characterised by the following transformations:

1. R ≡ORDM t(R) for all R if and only if t ∈ S′Rτ ◦ PSγ ◦ LS.

2. R ≡ORDM t(R) for all R and τ if and only if t ∈ PSγ ◦ LS.

3. R ≡ORDM t(R) for all R and γ if and only if t ∈ S′Rτ ◦ CS ◦ LS.

4. R ≡ORDM t(R) for all R, τ , and γ if and only if t ∈ CS ◦ LS.

Moreover, if t ∈ S′Rτ ◦ PSγ ◦ LS then R ≡ORDM t(R) for all R and µ0.

Proof. We begin by proving Claim 1. First, R1 ≡ORDM R2 if and only if J1 is a monotonic
transformation of J2. Next, since J (π) = mτ,µ0(π) · R⃗τ we have that J has a “hidden linear
structure” which implies that affine transformations are the only possible monotonic transformations
of J . Hence R1 ≡ORDM R2 if and only if J1 = a · J2 + b for some a ∈ R+, b ∈ R.

We next show that J1 = a · J2 + b for some a ∈ R+, b ∈ R if and only if R1 = t(R2) for some
t ∈ S′Rτ ◦ PSγ ◦ LS. The first direction is straightforward. First, if R1 = t(R2) for some t ∈ S′Rτ
then J1 = J2. Next, if R1 = t(R2) for some t ∈ PSγ then J1 = J2 − ES0∼µ0 [Φt(S0)] (see e.g.
Lemma B1 in Skalse et al. 2022). Finally, if R1 = t(R2) for some t ∈ LS then J1 = c · J2 for
some c ∈ R+. Hence if R1 = t(R2) for some t ∈ S′Rτ ◦ PSγ ◦ LS then J1 = a · J2 + b for some
a ∈ R+, b ∈ R, which means that R1 ≡ORDM R2.

For the other direction, suppose J1 = a · J2 + b for some a ∈ R+, b ∈ R. Consider the reward
function R3 given by first scaling R2 by a, and then shape the resulting reward with the potential
function Φ that is equal to −b for all initial states, and equal to 0 elsewhere. Now J3 = J1, so
(by Lemma E.12) there is a t′ ∈ PS0γ,µ0

◦ S′Rτ such that R1 = t′(R3). By composing t′ with the
transformation that produced R3 from R2, we obtain a t ∈ S′Rτ ◦ PSγ ◦ LS such that R1 = t(R2).
Hence if R1 ≡ORDM R2 then R1 = t(R2) for some t ∈ S′Rτ ◦ PSγ ◦ LS. We have thus proven
both directions, and hence Claim 1.

Claim 2-4 follows from Claim 1 and Lemma E.7 and E.8. The remark at the end is straightforward.

E.3 Misspecified Behavioural Models

In this section, we prove our results from Section 4.

Theorem E.14. Let fM ∈ FM be surjective onto Π+. Then fM is OPTM-robust to misspecification
with g if and only if g ∈ FM and g ̸= fM.

Proof. fM is OPTM-robust to misspecification with g in M if and only if fM is OPTM-
admissible, g ̸= fM, Im(g) ⊆ Im(f), and for all π ∈ Im(g) we have that all R ∈ Amg(π)
and all R ∈ Amf (π) have the same optimal policies in M.

For all f ∈ FM and all R, argmaxa∈Af(R)(a | s) = argmaxa∈AQ
⋆(s, a). Since fM ∈ FM,

this means that if fM(R1) = fM(R2) then argmaxa∈AQ
⋆
1(s, a) = argmaxa∈AQ

⋆
2(s, a) in M.

Moreover, R1 and R2 have the same optimal policies in M if and only if argmaxa∈AQ
⋆
1(s, a) =

argmaxa∈AQ
⋆
2(s, a) in M. Therefore, if fM(R1) = fM(R2) then R1 ≡OPTM R2, and so fM is

OPTM-admissible.

Let g ∈ FM and g ̸= fM. Since g is a function R → Π+, and since fM is surjective onto Π+,
we have that Im(g) ⊆ Im(f). Next, by the same argument as above, if fM(R1) = g(R2) then
argmaxa∈AQ

⋆
1(s, a) = argmaxa∈AQ

⋆
2(s, a), which implies that R1 ≡OPTM R2. This means that

fM is OPTM-robust to misspecification with g.

15



Next, suppose fM is OPTM-robust to misspecification with g. This means that Im(g) ⊆
Im(f) and that if fM(R1) = g(R2) then argmaxa∈AQ

⋆
1(s, a) = argmaxa∈AQ

⋆
2(s, a). Since

Im(g) ⊆ Im(f) implies that g is a function R → Π+, and since fM(R1) = g(R2) implies that
argmaxa∈Af

M(R)(a | s) = argmaxa∈Ag(R)(a | s), this implies that g ∈ FM.

Theorem E.15. Let bMψ ∈ BM. Then bMψ is ORDM-robust to misspecification with g if and only if
g ∈ BM and g ̸= bMψ .

Proof. As per Theorem 3.3 in Skalse et al. 2022, Am(bMψ ) is characterised by PSγ ◦ S′Rτ , and as
per Theorem 3.1, ORDM is characterised by PSγ ◦ LS ◦ S′Rτ . Hence bMψ is ORDM-admissible,
which means that Lemma 2.1 implies that bMψ is ORDM-robust to misspecification with g if and
only if g ̸= bMψ , and there exists a t ∈ PSγ ◦ LS ◦ S′Rτ such that g = bMψ ◦ t. Recall that bMψ (R) is
given by

bMψ (R)(a | s) = expψ(R)AR(s, a)∑
a∈A expψ(R)AR(s, a)

.

where AR is the optimal advantage function of R in M. If g(R) = bMψ ◦ t(R) for some t ∈
PSγ ◦ LS ◦ S′Rτ , then we have that

g(R)(a | s) =
expψ(t(R))At(R)(s, a)∑
a∈A expψ(t(R))At(R)(s, a)

=
expψ(t(R))cRAR(s, a)∑
a∈A expψ(t(R))cRAR(s, a)

,

where cR is the linear scaling factor that t applies to R. Note that the advantage function A is
preserved by both potential shaping and S′-redistribution. Now let ψ′(R) = ψ(t(R)) · cR, and we
can see that g = bMψ′ ∈ BM. We have hence shown that bMψ is strongly robust to misspecification
with g in M if and only if g ∈ BM and g ̸= bMψ .

Theorem E.16. No function in OM is ORDM-admissible. The only function in OM that is OPTM-
admissible is oMm , and this function is not OPTM-robust to any misspecification.

Proof. This Theorem largely follows from Lemma E.4. First, if oM ∈ OM then oM has a finite
codomain, whereas there is an uncountable number of ORDM-equivalence classes. This means that
oM cannot be ORDM-admissible. Moreover, Am(oMm ) = OPTM. Therefore, by Lemma E.4, oMm
is OPTM-admissible, but not OPTM-robust to any misspecification. Finally, if oM ∈ OM but
oM ̸= oMm , then there is a pigeonhole argument to show that there must be at least two R1, R2 such
that oM(R1) = oM(R2) but R1 ̸≡OPTM R2. This means that oM is not OPTM-admissible.

The pigeonhole argument goes like this: the codomain of each oM ∈ OM has (2|A|− 1)|S| elements,
and there are (2|A|−1)|S| OPTM-equivalence classes. This means that if oM is OPTM-admissible,
then there must be a one-to-one correspondence between OPTM-equivalence classes and elements of
oM’s codomain, so that there for each equivalence class C is a yC such that oM(R) = yC if and only
if R ∈ C. Further, say that if f, g : X → P(Y ) are set-valued functions, then f ⊆ g if f(x) ⊆ g(x)
for all x ∈ X , and f ⊂ g if f ⊆ g but g ̸⊆ f . Then if oM ∈ OM we have that oM(R) ⊆ oMm (R)
for all R — a policy is optimal if and only if it takes only optimal actions, but it need not take all
optimal actions. Moreover, if oM ̸= oMm then there is an R1 such that oM(R1) ⊂ oMm (R1). Let
R2 be a reward function so that oMm (R2) = oM(R1) — for any function S → P(A) − ∅, there
is a reward function for which those are the optimal actions, so there is always some R2 such that
oMm (R2) = oM(R1). Now either oM(R2) = oM(R1) or oM(R2) ⊂ oM(R1), since all actions
that are optimal under R2 are optimal under R1. In the first case, since oM(R1) = oM(R2) but
R1 ̸≡OPTM R2, we have that oM is not OPTM-admissible. In the second case, let R3 be a reward
function so that oMm (R3) = oM(R2), and repeat the same argument. Since there can only be a
finite sequence oM(Rn) ⊂ · · · ⊂ oM(R2) ⊂ oM(R1), we have that we must eventually find two
Rn, Rn−1 such that oM(Rn) = oM(Rn−1) but Rn ̸≡OPTM Rn−1. This means that oM cannot be
OPTM-admissible.
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Theorem E.17. Let cMψ ∈ CM. Then cMψ is ORDM-robust to misspecification with g if and only if
g ∈ CM and g ̸= cMψ .

Proof. As per Theorem 3.4 in Skalse et al. 2022, Am(cMψ ) is characterised by PSγ ◦ S′Rτ , and as
per Theorem 3.1, ORDM is characterised by PSγ ◦ LS ◦ S′Rτ . Hence cMψ is ORDM-admissible,
which means that Lemma 2.1 implies that cMψ is ORDM-robust to misspecification with g if and
only if g ̸= cMψ , and there exists a t ∈ PSγ ◦ LS ◦ S′Rτ such that g = cMψ ◦ t. Moreover, cMψ (R) is
the unique policy that maximises the maximal causal entropy objective;

JMCE
ψ(R) (π) = JR(π)− ψ(R)ESt∼π,τ,µ0

[γtH(π(St))].

Therefore, if g(R) = cMψ ◦ t(R) then g(R) is the policy that maximises the objective

JMCE
ψ(t(R))(π)

=Jt(R)(π)− ψ(t(R))ESt∼π,τ,µ0 [γ
tH(π(St))]

=cR · JR(π)− ψ(t(R))ESt∼π,τ,µ0
[γtH(π(St))]

where cR is the linear scaling factor that t applies toR. Note that JR is preserved by S′-redistribution,
and potential shaping can only change JR by inducing a uniform constant shift of JR for all policies.
This means that linear scaling is the only transformation in PSγ ◦ LS ◦ S′Rτ that could affect the
maximal causal entropy objective. Finally, let ψ′ be the function ψ′(R) = ψ(t(R)) · cR, and we can
see that g = cMψ′ ∈ CM. We have hence shown that cMψ is ORDM-robust to misspecification with g
in M if and only if g ∈ CM and g ̸= cMψ .

E.4 Misspecified MDPs

We here prove our results from Appendix D.1. The first of these proofs is straightforward.

Lemma E.18. If fτ1 = fτ1 ◦ t for all t ∈ S′Rτ1 then fτ1 is not OPTM-admissible for M =
⟨S,A, τ2, µ0, _, γ⟩ unless τ1 = τ2.

Proof. This follows directly from Theorem 4.2 in Skalse et al. 2022.

To prove the next result, we first need a supporting lemma. We say that a state s is controllable
relative to a transition function τ , initial state distribution µ0, and discount γ, if there exist two
policies π, π′ such that

∞∑
t=1

γtPξ∼π(st = s) ̸=
∞∑
t=1

γtPξ∼π′(st = s).

Note that the sum starts from t = 1. It can therefore be viewed as summing the discounted probability
that π and π′ enter s at each time step. Recall also that τ is trivial if for all s ∈ S and a, a′ ∈ A, we
have τ(s, a) = τ(s, a′).
Lemma E.19. For any µ0, γ, and τ , there exists a controllable state if and only if τ is non-trivial.

Proof. It is straightforward to see that if τ is trivial then there are no controllable states.

For the other direction, suppose there are no controllable states. This in turn implies that every policy
is optimal under any reward function defined over the domain S . Formally, if R is a reward function
such that for each s ∈ S, we have that R(s, a1, s1) = R(s, a2, s2) for all s1, s2 ∈ S, a1, a2 ∈ A,
and if there are no controllable states, then every policy is optimal under R. In particular, every
deterministic policy is optimal under all such reward functions.

Given a reward function defined over the domain S, let R⃗ ∈ R|S| be the vector such that R⃗[s] is the
reward that R assigns to transitions leaving s. Moreover, given a deterministic policy π, let Tπ be
the |S| × |S|-dimensional transition matrix that describes the transitions of π under τ . Then if all
deterministic policies are optimal under R, we can apply Theorem 3 from Ng and Russell 2000 and
conclude that

(Tπ − Tπ
′
)(I − γTπ)−1R⃗ = 0
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for all deterministic policies π, π′. If this holds for all R⃗, we then have that (Tπ − Tπ
′
)(I − γTπ)−1

is the zero matrix for all deterministic policies π, π′. Moreover, since (I − γTπ)−1 has no zero
eigenvalues, this then means that (Tπ − Tπ

′
) must be the zero matrix for all pairs of deterministic

policies π, π′. This, in turn, implies that τ must be trivial.

We can now prove the second lemma from Appendix D.1.

Lemma E.20. If fγ1 = fγ1 ◦ t for all t ∈ PSγ1 then fγ1 is not OPTM-admissible for M =
⟨S,A, τ, µ0, _, γ2⟩ unless γ1 = γ2 or τ is trivial.

Proof. As per Lemma E.19, if τ is non-trivial then there is a state s that is controllable relative to τ ,
µ0, and γ2. Let R1 be any reward function, and let R2 be the reward that is obtained by potential
shaping R1 with the discount γ1 and the potential function that is equal to X on s (where X ̸= 0),
and 0 on all other states. Note that there is a t ∈ PSγ1 such that R2 = t(R1), which means that
fγ1(R1) = fγ1(R2). Next, let ∆π = J2(π)− J1(π), evaluated in M. Moreover, given a policy π,
let

nπ2 =

∞∑
t=0

γt2P(π enters s at time t),

xπ2 =

∞∑
t=0

γt2P(π exits s at time t).

We then have that ∆π = X · (γ1nπ2 − xπ2 ). We will use p to denote µ0(s). If γ1 = γ2 then we know
that ∆π = −X · p , which gives that

X · (γ2nπ2 − xπ2 ) = −X · p
γ2n

π
2 − xπ2 = −p

xπ2 = γ2n
π
2 + p

By plugging this into the above, and rearranging, we obtain

∆π = Xnπ2 (γ1 − γ2) + pX.

Moreover, if s is controllable then there are π, π′ such that nπ2 ̸= nπ
′

2 , which means that ∆π ̸= ∆π′
.

In particular, there are π, π′ such that ∆π ̸= ∆π′
, and π is optimal under R1, but π′ is not. Now, if

γ1 ̸= γ2 then by makingX sufficiently large or sufficiently small, we can make it so that π′ is optimal
under R2, but π is not. Hence ⟨S,A, τ, µ0, R1, γ2⟩ and ⟨S,A, τ, µ0, R2, γ2⟩ have different optimal
policies. This means that there are two reward functions R1, R2, such that fγ1(R1) = fγ1(R2), but
R1 ̸≡OPTM R2. Therefore, if γ1 ̸= γ2 and τ is non-trivial then fγ1 is not OPTM-admissible.

It is worth noting that the above lemma works even if fγ1 is only invariant to γ1-based potential
shaping whose potential is 0 for all initial states, provided that τ gives control over some non-initial
state. This can be used to generalise the lemma somewhat, since there are some reward objects which
are invariant only to such potential shaping; see Skalse et al. 2022.

Using these two lemmas, we can now prove the theorem:

Theorem E.21. If fτ1 = fτ1 ◦ t for all t ∈ S′Rτ1 then fτ1 is not OPTM-robust to misspecification
with fτ2 for any M. Moreover, if fγ1 = fγ1 ◦ t for all t ∈ PSγ1 then fγ1 is not OPTM-robust to
misspecification with fγ2 for any M whose transition function τ is non-trivial.

Proof. Let M = ⟨S,A, τ, µ0, _, γ⟩. If f is OPTM-robust to misspecification with g then f must by
definition be OPTM-admissible. Moreover, Lemma E.2 says that g must be OPTM-admissible as
well. This proof will proceed by showing that in each case, at least one of the relevant reward objects
fails to be OPTM-admissible.

If fτ1 = fτ1 ◦ t for all t ∈ S′Rτ1 then Lemma D.1 says that fτ1 is not OPTM-admissible unless
τ1 = τ , and similarly for fτ2 . If τ1 ̸= τ2 then either τ1 ̸= τ or τ2 ̸= τ . Hence either fτ1 or fτ2 is not
OPTM-admissible, which means that fτ1 is not OPTM-robust to misspecification with fτ2 .
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Similarly, if fγ1 = fγ1 ◦ t for all t ∈ PSγ1 then Lemma D.2 says that fγ1 is not OPTM-admissible
unless γ1 = γ or τ is trivial, and similarly for fγ2 . If γ1 ̸= γ2 then either γ1 ̸= γ or γ2 ̸= γ.
Hence either fγ1 or fγ2 is not OPTM-admissible, unless τ is trivial, which means that fγ1 is not
OPTM-robust to misspecification with fγ2 , unless τ is trivial.

E.5 Restrictions on the Reward Function

Here, we prove our results from Appendix D.2.

Theorem E.22. If f is P -robust to misspecification with g on R̂ then f is P -robust to misspecification
with g′ on R for some g′ where g′|R̂ = g|R̂, unless f is not P -admissible on R, and if f is P -robust
to misspecification with g on R then f is P -robust to misspecification with g on R̂, unless f |R̂ = g|R̂.

Proof. Suppose f is P -robust to misspecification with g on R̂, and that f is P -admissible on R. We
construct a g′ as follows; let g′(R) = g(R) for all R ∈ R̂, and let g′(R) = f(R) for all R ̸∈ R̂.
Now f is P -robust to misspecification with g′ on R, and g(R) = g′(R) for all R ∈ R̂. The other
direction is straightforward.
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