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Abstract—Person Re-identification (re-ID) in computer vision
aims to recognize and track individuals across different cameras.
While previous research has mainly focused on challenges like
pose variations and lighting changes, the impact of extreme cap-
ture conditions is often not adequately addressed. These extreme
conditions, including varied lighting, camera styles, angles, and
image distortions, can significantly affect data distribution and
re-ID accuracy.

Current research typically improves model generalization
under normal shooting conditions through data augmentation
techniques such as adjusting brightness and contrast. However,
these methods pay less attention to the robustness of models
under extreme shooting conditions. To tackle this, we propose
a multi-mode synchronization learning (MMSL) strategy . This
approach involves dividing images into grids, randomly selecting
grid blocks, and applying data augmentation methods like con-
trast and brightness adjustments. This process introduces diverse
transformations without altering the original image structure,
helping the model adapt to extreme variations. This method
improves the model’s generalization under extreme conditions
and enables learning diverse features, thus better addressing the
challenges in re-ID. Extensive experiments on a simulated test
set under extreme conditions have demonstrated the effectiveness
of our method. This approach is crucial for enhancing model
robustness and adaptability in real-world scenarios, supporting
the future development of person re-identification technology.

Index Terms—Data Augmentation, Person Re-identification

I. INTRODUCTION

With the rapid development of computer vision and deep
learning technologies, person-centric wide-area surveillance
systems play a crucial role in public safety and industrial
monitoring [1]–[4]. Wide-area surveillance involves monitor-
ing and analyzing large-scale environments through different
camera setups, providing essential information for decision-
making and security. However, the models in these applica-
tion scenarios face increased demands for robustness due to
extreme shooting conditions.

In industrial settings, especially in construction sites, mining
areas, and manufacturing plants, challenges such as dust or
smoke, extreme lighting, temperature variations, vibrations,
and pollution pose severe obstacles for machine vision sys-
tems [5]–[8]. These conditions demand special requirements
for the accuracy and robustness of visual models, particularly
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in tasks like quality control and safety monitoring, where
precise identification of target objects under diverse lighting
and background conditions is crucial to avoid potential major
accidents. Consequently, researchers need to develop algo-
rithms that can adapt to these challenging conditions and train
and test these models with real-world industrial data to ensure
reliability under various circumstances.

In applications like urban surveillance, traffic monitoring,
and border security, where different camera settings, complex
lighting, and extensive scene coverage are common, mod-
els are susceptible to color domain deviations. Additionally,
surveillance systems often operate under extreme conditions
such as adverse weather, low lighting, or long-distance shoot-
ing. The impact of these factors often leads to unstable model
performance, as they impose high demands on the visual
robustness of the models. Therefore, the key research question
becomes how to enhance the performance of these surveillance
systems under various extreme conditions using advanced
image processing techniques and deep learning.

Currently, to improve model performance under different
conditions, researchers typically employ various data aug-
mentation [5]–[7] techniques such as adjusting brightness,
contrast, and adding noise to simulate extreme conditions. This
approach aims to train models to better generalize to various
input conditions. In some cases, research focuses on specific
types of extreme conditions, such as nighttime or image recog-
nition under adverse weather conditions. These studies often
involve developing or adjusting models to adapt specifically
to these particular contexts. In fields like autonomous vehicles
and drone navigation, models need to maintain accuracy
and reliability in various extreme environments. Therefore,
research in these application areas poses special requirements
for the robustness of models under actual physical conditions.

Person Re-identification (re-ID) [1]–[3], [6], [12], [13],
[32]–[35], as a crucial security monitoring technology, faces
the aforementioned challenges. Therefore, this paper focuses
on studying the robustness of models under extreme shooting
conditions with re-ID as the target. Current research in re-ID
often improves model generalization under normal shooting
conditions through data augmentation techniques like adjust-
ing brightness and contrast. However, these methods pay less
attention to the robustness of models under extreme shooting



Fig. 1. The first row in the image consists of normal capture images. In ’Extreme Capture’, we present example images simulating extreme shooting conditions.
These include simulations of low lighting or heavy fog, camera style shifts, overexposure, data corruption, and camera position faults, among other extreme
factors. In ’Our Methods’, schematic representations of the proposed approach are provided. This approach progressively learns various extreme shooting
conditions by randomly applying different augmentation methods to different image grids.

conditions [5], [6]. To address this issue, we propose a multi-
mode synchronization learning strategy based on the idea of
data augmentation [6]. This method involves dividing images
into a grid, randomly selecting grid blocks, and applying
data augmentation methods such as contrast and brightness
adjustments. This process introduces diverse transformations
without altering the original image structure, helping the model
adapt to extreme variations. The proposed method enhances
the model’s generalization under extreme conditions, enabling
it to learn diverse features to better address the challenges
in re-ID. Extensive experiments conducted under simulated
extreme conditions have demonstrated the effectiveness of our
approach. This method is crucial for enhancing the robustness
and adaptability of models in real-world scenarios, supporting
the future development of person re-identification technology.

The main contributions of this paper are summarized as
follows:
• We propose a novel learning strategy termed Multi-

Mode Synchronization Learning (MMSL) to enhance the
robustness of person re-identification (re-ID) models under
extreme shooting conditions. This strategy involves partition-
ing images into grids, randomly selecting grid blocks, and
applying data augmentation techniques such as contrast and
brightness adjustments. It introduces diverse transformations
without altering the original image structure, aiding the model
in adapting to extreme variations.
• Addressing the challenges posed by extreme shooting con-

ditions in wide-area surveillance systems, our proposed strat-
egy contributes to improving the robustness and adaptability of

models in real-world scenarios. Wide-area surveillance plays a
crucial role in industrial production and safety monitoring, and
extreme shooting conditions can lead to model performance
instability. Our method provides an effective approach to
mitigate this issue.
• We conduct extensive experiments to validate the effec-

tiveness of the proposed strategy. Particularly in simulated
extreme conditions, our method demonstrates improved model
generalization, enabling the learning of diverse features to
better address the challenges in re-ID tasks. This empirical
evidence supports the practical applicability of our approach.

II. RELATED WORK

In the context of varied visual scenarios, the intrinsic com-
plexity of tasks introduces a comparable complexity in their
data requirements. Failing to adequately address these intricate
data needs can result in issues such as model overfitting
and insufficient generalization to the training data. Enhancing
generalization capabilities has consistently remained a central
focus of convolutional neural network (CNN) research, and
data augmentation has demonstrated notable effectiveness in
enhancing the model’s generalization ability.

1) Person Re-identification: Person Re-identification (re-
ID) stands as a pivotal task in computer vision, focusing on
the recognition and tracking of individuals across different
time points and camera views within video sequences or
images. This task holds significant applications in surveil-
lance, video analysis, and intelligent transportation systems.
However, re-ID faces formidable challenges, encompassing



Fig. 2. Diagram illustrating the Multi-Mode Synchronization Learning (MMSL) strategy. Initially, partition the images in the training dataset into a grid of
rows × cols. Next, randomly select a subset of tiles. For these chosen image tiles, randomly pick the corresponding number of data augmentations from the
AutoAugment library and apply them to the selected image regions.

pose variations, changes in lighting conditions, occlusions, and
low resolutions [23]. The subtle discrepancies in pedestrian
appearances further compound the difficulty of distinguishing
between distinct individuals. Addressing the intricacies of re-
ID necessitates the extraction of robust features from images
or video frames.

Deep learning, particularly CNNs, is widely employed to
learn high-level features from images within the domain of
re-ID. Feature extraction networks tailored for this task often
integrate pre-trained CNN architectures, such as ResNet [24]
and PCB. Metric learning is a key technology in re-ID, crucial
for quantifying the similarity between two pedestrian images.
Commonly used metric learning methods include Euclidean
distance and cosine similarity. Learning a suitable metric
ensures that the feature representations of the same individual
are closely aligned, while those of different individuals are dis-
tinctly separated. This emphasis on metric learning contributes
to the efficacy of re-ID systems.

The importance of re-ID extends beyond mere technological
advancements, finding practical applications in surveillance,
video analytics, and the optimization of intelligent trans-
portation systems. By overcoming challenges related to pose
variations, lighting changes, occlusions, and low resolutions,
robust feature extraction through deep learning methodologies,
and effective metric learning techniques, re-ID systems play a
critical role in enhancing the security and efficiency of various
real-world scenarios.

2) Data Augmentation: Data augmentation is a widely
employed technique, especially in the field of computer vision.
It enhances the diversity of a dataset by applying a series of
transformations to the original data. This not only aids the
model in learning more robust and generalized features but
also contributes to improving model performance on limited
datasets.

Commonly utilized data augmentation techniques include:

Random Cropping [14], by randomly cropping a part of an
image, the model focuses on different regions, enhancing
its ability to recognize local features. This is particularly
beneficial for tasks like object detection and classification.
Horizontal Flipping and Rotation [15], flipping images hor-
izontally or vertically and rotating them helps the model learn
orientation invariance, crucial for understanding the direction
and shape of objects within images. Scale Transformation,
scaling images aids the model in recognizing objects of various
sizes, especially important in tasks like object detection. Noise
Injection [20], adding random noise to images improves the
model’s robustness, enabling it to handle imperfections in
real-world images more effectively. Geometric Transforma-
tions [22], introducing geometric transformations, such as
skewing or distorting, allows the model to learn more complex
geometric deformations. Shearing, moving a part of an image
through shearing creates new perspectives and compositions,
assisting the model in understanding different combinations of
objects. CutMix [16], an advanced data augmentation method,
goes beyond simple cropping and pasting of image blocks;
it replaces a region of one image with that of another. Such
mixing aids the model in better understanding relationships be-
tween different regions. Introducing noise blocks or randomly
deleting pixels in the image helps regularize the network,
preventing the model from overly relying on specific parts
and addressing occlusion issues.

The application of these data augmentation techniques
enhances the dataset’s variability, leading to a more robust
and versatile model capable of handling a wide range of
scenarios in computer vision tasks. In enhancing the model’s
robustness under extreme shooting conditions, Color Jitter-
ing [21] involves altering the image’s brightness, contrast,
and saturation to better adapt the model to varying lighting
and color conditions. Random Erasing [17] achieves regu-
larization by introducing noise blocks or randomly deleting



Algorithm 1: Multi-Mode Synchronization Learning
Strategy

Input:
Image i,
Grid Size: (rows, cols),
Max Number of Tiles n,
Total Probability pt,
Global Probability pg .

Output:
Augmentation Image I .

Initialization:
pg ← Rand(0, 1),p← Rand(0, 1).

if pg ≤ p then
• Randomly select a data augmentation method

from the augmentation library and apply it to I .
return I .

else if pt < p then
N ← Rand(0, n),
for num in range(0, N) do
• Randomly pick a grid from the set of grids
Pi with [rows × cols].
• Randomly select a data augmentation method

from the augmentation library and apply it to
the grid Pi.

return I .

pixels in the image, preventing the model from excessive
dependence on specific regions and aiding in overcoming
occlusion challenges. AutoAugment [18] is an automated data
augmentation strategy that integrates a series of augmentation
methods. By searching for suitable augmentation strategies,
such as image cropping transformations, color adjustments,
and brightness/contrast adjustments, it aims to enhance model
performance. It is widely applied to address issues related
to significant dataset domain disparities. AugMix [19] aims
to enhance the performance and robustness of deep learning
models by introducing diversity and complexity. The method
involves applying multiple data augmentation operations to the
input image and blending these distorted images in a mixed
form, creating diverse versions of the original training images.
Please note that AugMix involves the blending of images
from different samples, disrupting the original structure of the
images. Consequently, as demonstrated in our subsequent ex-
periments, its performance under extreme shooting conditions
is less than ideal. In contrast, our proposed method avoids
compromising the structural integrity of the original images.
Simultaneously, it enables the model to learn various extreme
variations, enhancing the robustness of the model to extreme
shooting conditions. In future work, we will also consider
integrating evolutionary computation techniques [27]–[31] to
extend our method for adaptive optimization.

III. PROPOSED METHOD

Drawing inspiration from AutoAugment [18], this study
introduces a novel augmentation strategy called multi-mode

synchronization learning (MMSL). In comparison to its pre-
decessor, it enables the model to learn and adapt to extreme
variations in data distribution more efficiently. This approach
enhances the model’s generalization ability under extreme
conditions, allowing it to capture invariant features in data
with drastic variations and thereby improving robustness to
visual challenges.

Our MMSL strategy consists of two components, namely
global differentiation learning and multi-grid differentiation
learning. global differentiation learning is a specific case of
multi-grid differentiation learning.

1) Global differentiation learning: AutoAugment integrates
a series of data augmentation operations, including ShearX
and ShearY for horizontal or vertical shear transformations,
introducing variations in the shapes of objects within images.
This aids the model in learning to handle images from dif-
ferent angles and perspectives, thereby improving the model’s
robustness. TranslateX and TranslateY perform horizontal or
vertical translation transformations, causing the movement of
the image’s object positions. This enhances the model’s adapt-
ability to changes in object positions and improves robustness
to spatial transformations. Additionally, rotating the image by
a certain angle helps the model adapt to rotational transforma-
tions, addressing issues related to rotational invariance.

In addition to these operations, AutoAugment includes
color-related operations such as Color, Posterize, Solarize,
Contrast, Sharpness, and Brightness. These operations enrich
the color features of images, strengthening the model’s re-
silience to changes in lighting conditions and color. Intro-
ducing AutoContrast, Equalize, and Invert further achieves
automatic adjustments to contrast, histogram equalization,
and color inversion, helping enhance the recognizability of
images. The overall goal of these data augmentation opera-
tions is to introduce diversity into the training data, thereby
enhancing the model’s generalization ability. This enables the
model to better adapt to different visual scenarios, lighting
conditions, angles, and positional transformations, ultimately
improving performance in practical applications. Furthermore,
the enhanced diversity of data aids in mitigating the model’s
sensitivity to overfitting.

In the data loading, it randomly samples Q images of per
person and M identities to constitute a training batch, which
size is B = Q × M . The set is denoted as I = {Ik|k =
1, 2, ..., Q×M}.

The proposed method randomly performs global transfor-
mation on the training batch with a probability, and then
inputs the processed images into the model for training. This
transformation process can be defined as:

I ′k = t(Ik) (1)

where t(•) represents the augmentation function, which ran-
domly selects one augmentation method from the AutoAug-
ment library to transform the image. yk is the label of the
sample, the label of converted image remains unchanged, so

(Ik|yk) = (I ′k|yk) (2)



2) multi-grid differentiation learning: In this methodology,
we divide the images in the training dataset into a grid of
rows × cols. Subsequently, a random number N is generated
from the range of the maximum number of tiles n, determining
how many grid regions in the image will undergo transforma-
tions. For these selected N image tiles, we randomly extract
the corresponding number of data augmentations from the
AutoAugment library and apply them to the chosen image
regions. The entire process can be expressed through the
following equations:

P = RandPatch(Grid(Ik, rows, cols), n), (3)

Here, Grid(Ik, rows, cols) partitions the image Ik into a
grid of rows × cols. Additionally, RandPatch(•, n) randomly
selects n blocks from all image grid blocks for image trans-
formations.

P ′
i = RandAugment(Ik(Pi))(P

′ = [P ′
i |i = 1, 2, ..., n]),

(4)
random data augmentation is applied to the i-th selected image
block Pi from the image Ik, where the augmentation methods
are drawn from the AutoAugment data augmentation library.
The transformed image block is denoted as P ′

i . The overall
image transformation process for our MMSL strategy can be
expressed as follows:

I ′k = Ik − P + P ′. (5)

yk is the label of the sample, the label of converted image
remains unchanged, so

(Ik|yk) = (I ′k|yk) (6)

During the model training phase, our Multi-Mode Synchro-
nization Learning (MMSL) strategy is stochastically applied to
the training batch, introducing diverse modes within the same
image while preserving the structural integrity of objects.

IV. EXPERIMENTAL ANALYSIS

This section will demonstrate the effectiveness of the pro-
posed method through a series of qualitative, comparative
experiments, and black-box attack experiments.

A. Datasets and Evaluation Criteria

The proposed method undergoes evaluation on two per-
son re-identification (ReID) datasets: Market-1501 [9] and
DukeMTMC [10]. These datasets are widely acknowledged
as the most representative and extensively employed in ReID
research. The Market-1501 dataset comprises 12,936 images
with 751 identities for training, 19,732 images with 750
identities, and 3,368 query images for testing. DukeMTMC-
reID includes 16,522 training images of 702 identities, 2,228
query images of the other 702 identities, and 17,661 gallery
images.

Consistent with prior research [9], the evaluation uti-
lizes Rank-k precision, Cumulative Matching Characteristics
(CMC), and mean Average Precision (mAP) as standard met-
rics. Rank-1 precision represents the average accuracy of the

top-ranked result corresponding to each cross-modality query
image. mAP signifies the mean average accuracy, calculated by
sorting query results based on similarity. The closer the correct
result is to the top of the list, the higher the precision. These
metrics collectively offer a comprehensive assessment of the
proposed method’s performance in comparison to existing
works.

To simulate extreme shooting conditions and showcase the
superiority of our proposed method over existing approaches,
we directly apply AutoAugment to transform the gallery set
of the test set in the original dataset. It is worth noting
that, intuitively, evaluating performance on a dataset config-
ured in this way would obviously favor models trained with
AutoAugment. However, subsequent experiments demonstrate
that even in such an unfair test, our proposed method still
outperforms AutoAugment. This substantiates that our method
can effectively enhance existing data augmentation techniques,
exhibiting superior gains.

B. Parameter Configuration and Ablation Experiments

There are several parameters to be determined in our strat-
egy, including the probability p1 of global augmentation, the
size of the grid, the number of blocks k for local transfor-
mations, and the probability p2 of local augmentation. In our
experiments, we use [25] as the baseline.

In order to determine at which ratio models trained under
different augmentations exhibit better robustness in extreme
shooting conditions, we experimented with various augmen-
tation proportions. Regarding the probability of global aug-
mentation, we conducted quantitative analysis experiments.
We performed experiments with pg set to 5%, 10%, 15%, ...,
50%. The experimental results are shown in Fig. 3(a). From the
graph, it can be observed that the performance is optimal when
the probability of global augmentation is probability = 0.2.
Therefore, unless otherwise specified, we default to using
pg = 0.2 in our subsequent experiments.

Regarding the settings for the grid size and the number of
local enhancement blocks, we conducted quantitative analysis
experiments. We performed experiments with grid sizes 2×2,
3 × 3, ..., 6 × 6 to quantitatively analyze the optimal ratio
of local enhancement blocks to the entire image for each
corresponding grid size. We determined the optimal number of
blocks for the respective sizes by analyzing quantitatively for
the cases of 3×3. The experimental results are shown in Fig.4.
From the graph, it can be observed that the performance is
optimal when the grid size is 5×5. Additionally, from Fig.3(c),
it can be observed that the performance is optimal when the
optimal ratio of local enhancement blocks to the entire image
is 1/3 (The number of grid cells is 3). Hence, unless stated
otherwise, we adopt the use of the corresponding number of
blocks with a ratio of 1/3 as the default configuration in our
subsequent experiments.

When the optimal parameters for the global augmentation
probability pg and the number of blocks for local transforma-
tions are determined, we fix the above parameters to evaluate
the probability of local transformations. As shown in Fig. 3(b),



Fig. 3. Multi-Mode Synchronization Learning (MMSL) strategy ablation study. (a) Experiment on setting the probability of global augmentation. (b) Experiment
on setting the probability of local augmentation. (c) Experiment on the ratio of local augmentation blocks in a 3× 3 grid.

Fig. 4. Grid Size Ablation Study: Our Multi-Mode Synchronization Learning (MMSL) strategy showcases training curve graphs when training the model
with different grid sizes, illustrating training loss and error rates of top-1 retrieval results.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON THE ORIGINAL MARKET1501 DATASET AND THE SIMULATED EXTREME CAPTURE

CONDITIONS MARKET1501 DATASET. RANK AT r ACCURACY (%) AND MAP (%) ARE REPORTED.

Settings Original Extreme Capture
Method Venue r = 1 r = 5 r = 10 mAP r = 1 r = 5 r = 10 mAP
baseline TMM 88.84 95.36 97.15 71.59 65.79 86.04 84.10 40.74
AugMix ICLR 86.10 95.07 96.97 67.12 68.73 88.37 86.96 42.09
AutoAugment CVPR 85.89 94.41 96.46 66.44 82.30 93.02 95.75 46.84
Our Method ——— 89.19 95.99 97.47 73.80 81.50 92.96 95.69 45.52

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON THE ORIGINAL DUKE DATASET AND THE SIMULATED EXTREME CAPTURE CONDITIONS DUKE

DATASET. RANK AT r ACCURACY (%) AND MAP (%) ARE REPORTED.

Settings Original Extreme Capture
Method Venue r = 1 r = 5 r = 10 mAP r = 1 r = 5 r = 10 mAP
baseline TMM 79.48 89.04 92.10 61.96 73.74 85.68 89.00 35.36
AugMix ICLR 73.24 84.64 88.24 52.42 70.57 82.35 86.55 42.47
AutoAugment CVPR 74.14 85.09 88.06 53.04 71.40 83.30 87.07 47.93
Our Method ——— 79.26 88.78 91.92 61.57 71.45 84.42 88.46 49.21



TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS IN CROSS-DOMAIN

TESTING BETWEEN THE ORIGINAL MARKET1501 AND ORIGINAL DUKE
DATASETS.

Settings Original
Method State r = 1 r = 5 r = 10 mAP

Market->Duke

baseline 33.43 48.11 54.66 17.53
AugMix 30.87 46.09 53.59 15.36
AutoAugment 38.06 54.62 60.86 19.08
Ours 41.2 57.49 64.13 22.34

Duke->Market

baseline 43.58 61.43 68.61 18.21
AugMix 40.10 58.82 65.78 14.43
AutoAugment 44.19 62.42 70.04 17.41
Ours 44.21 62.52 70.13 17.89

the model achieves optimal performance when the probability
of local transformations is 0.3. Therefore, unless otherwise
specified, we default to using pt = pg +0.3 in our subsequent
experiments.

C. Comparison experiment

We compared our method with two relevant approaches,
AutoAugment [18] and AugMix [19]. As shown in Tab. I,
on the Market1501 dataset, our proposed method not only
does not degrade the model’s performance on the original
dataset but also improves it, while other methods affect the
model’s performance to varying degrees. In ’Extreme Capture,’
it can be observed that although extreme testing is simulated
using AutoAugment, AutoAugment does not have a significant
advantage in this test. Additionally, from Tab. II, consistent
performance is observed on the Duke dataset.

In addition to the aforementioned tests, we conducted cross-
domain testing to better evaluate the model’s generalization
performance. Cross-domain person reidentification aims at
adapting the model trained on a labeled source domain dataset
to another target domain dataset without any annotation. It is
pointed out by [26] that the higher accuracy of the model
does not mean that it has better generalization capacity. In
response to the above potential problems, we use cross-domain
tests to verify the robustness of the model. ’Market->Duke’
indicates training on the Market dataset and testing on the
Duke dataset, while ’Duke->Market’ represents the reverse
scenario. As observed in Tab. III, in the ’Market->Duke’
scenario, our proposed method outperforms AutoAugment by
3.26% in mAP. In the ’Duke->Market’ scenario, our proposed
method surpasses AutoAugment by 0.48% in mAP. These
experimental results indicate that the proposed method is more
beneficial for improving the model’s generalization perfor-
mance. Similar experiments were conducted on the simulated
extreme test set, and the results demonstrated a high level of
consistency, as illustrated in Tab. IV.

Through the aforementioned series of experiments, it is evi-
dent that augmenting only local regions in an image surpasses
augmenting the entire image. Our proposed approach repre-
sents a superior implementation of existing data augmentation

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT METHODS IN CROSS-DOMAIN

TESTING BETWEEN THE MARKET1501 AND DUKE DATASETS UNDER
SIMULATED EXTREME CAPTURE CONDITIONS.

Settings Extreme Capture
Method State r = 1 r = 5 r = 10 mAP

Market->Duke

baseline 17.41 28.86 34.73 4.98
AugMix 22.30 37.20 43.62 7.62
AutoAugment 31.53 49.50 56.77 14.01
Ours 31.50 49.32 56.06 13.83

Duke->Market

baseline 22.52 36.93 45.82 6.57
AugMix 26.75 44.71 52.93 8.21
AutoAugment 33.58 53.27 62.87 11.15
Ours 33.70 53.94 63.03 11.87

methods. It embodies an optimized form of augmentation,
demonstrating outstanding performance.

V. CONCLUSION

In this paper, we proposed a novel approach, Multi-Mode
Synchronization Learning (MMSL) strategy, to enhance the
robustness of person re-identification (re-ID) models under ex-
treme shooting conditions. Unlike conventional data augmen-
tation methods that focus on normal shooting conditions, our
strategy introduces diverse transformations to adapt models to
extreme variations in data distribution. The MMSL strategy
incorporates two key components, namely Global Differentia-
tion Learning and Multi-Grid Differentiation Learning.

In the Global Differentiation Learning, we drew inspiration
from AutoAugment to perform random global transformations
on the training batch, addressing challenges such as shear,
translation, rotation, and color variations. This component
contributes to the model’s ability to generalize under vary-
ing perspectives, angles, and lighting conditions, ultimately
improving its robustness.

The Multi-Grid Differentiation Learning component in-
volved dividing images into a grid, randomly selecting grid
blocks, and applying data augmentation methods. This method
introduces diverse transformations without altering the original
image structure, aiding the model in adapting to extreme
variations in data distribution. Through extensive experiments
under simulated extreme conditions, we demonstrated the
effectiveness of our approach in improving model general-
ization and addressing challenges in re-ID tasks. Our pro-
posed MMSL strategy contributes to the field of person re-
identification by providing an effective method to enhance
model robustness and adaptability in real-world scenarios. The
ability to handle extreme shooting conditions is crucial for the
practical deployment of re-ID models in wide-area surveillance
systems, industrial monitoring, and security applications. The
empirical evidence from our experiments supports the prac-
tical applicability of the proposed approach, showcasing its
potential to significantly improve the performance of person
re-identification models in challenging environments.

In future work, we plan to further explore the integration
of additional data augmentation techniques and investigate



the adaptability of the MMSL strategy to different fields.
Additionally, we aim to conduct experiments with real-world
data under extreme conditions to validate the robustness and
practical utility of our approach in diverse application sce-
narios. The ongoing development of person re-identification
technology demands innovative strategies to address emerging
challenges, and we believe that the proposed MMSL strategy
represents a step forward in this direction.
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