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ABSTRACT

We present a unified convergence theory for gradient-based training of neural net-
work methods for partial differential equations (PDEs), covering both physics-
informed neural networks (PINNs) and the Deep Ritz method. For linear PDEs,
we extend the neural tangent kernel (NTK) framework for PINNs to establish
global convergence guarantees for a broad class of linear operators. For non-
linear PDEs, we prove convergence to critical points via the L.ojasiewicz in-
equality under the random feature model, eliminating the need for strong over-
parameterization and encompassing both gradient flow and implicit gradient de-
scent dynamics. Our results further reveal that the random feature model exhibits
an implicit regularization effect, preventing parameter divergence to infinity. The-
oretical findings are corroborated by numerical experiments, providing new in-
sights into the training dynamics and robustness of neural network PDE solvers.

1 INTRODUCTION

Partial differential equations (PDEs) form the mathematical foundation for modeling phenomena
across physics, engineering, and applied sciences. While linear PDEs are relatively well-understood,
nonlinear PDEs, ubiquitous in modeling complex systems, pose significant analytical and compu-
tational challenges due to their lack of superposition principles and potential for solution singular-
ities (Evans, [2022} Johnson, 2009). Recent advances in machine learning have introduced neural
PDE solvers, such as physics-informed neural networks (Raissi et al., 2019) and the Deep Ritz
method (E & Yu,[2018)), as flexible alternatives to traditional numerical methods. These approaches
have demonstrated empirical success in high-dimensional and nonlinear settings (Lawal et al., 2022
Karniadakis et al.| 2021; Liao & Ming, [2021}; Liu et al, [2023)), but their theoretical convergence
guarantees remain limited, especially for nonlinear PDEs.

Most existing convergence analyses for physics-informed neural networks are developed within the
neural tangent kernel framework (Jacot et al., 2018 |L1 et al., [2020), which primarily provides guar-
antees for second-order linear PDEs using over-parameterized networks (Gao et al.} 2023} |Xu et al.,
2024ajb). While it is commonly believed that NTK-based results could be extended to broader
classes of linear PDEs, rigorous proofs beyond the second-order setting are still lacking. For
the Deep Ritz method, convergence analyses typically rely on coercivity of the bilinear form and
Rademacher complexity estimates (Duan et al., 2022} Jiao et al., 2024; |Lu et al., 2021); however,
these approaches are mostly confined to linear elliptic equations with convex energy functionals, and
the extension to general variational problems remains underexplored. Crucially, neither framework
currently offers provable convergence guarantees for solving nonlinear PDEs. In particular, when
PINNSs are used to solve equations with nonlinear differential operators, the associated NTK matrix
evolves dynamically during training and, as shown in Bonfanti et al.| (2024), fails to converge to a
deterministic kernel in the infinite-width limit. For the Deep Ritz method, the non-convexity inher-
ent in nonlinear PDEs further complicates the analysis. This theoretical gap poses a major challenge
to our understanding of neural PDE solvers in nonlinear regimes.

In this work, we overcome the aforementioned theoretical limitations by establishing a systematic
convergence theory for neural PDE solvers across both linear and nonlinear regimes. For linear
PDEs, we extend the NTK framework to establish convergence guarantees for PINNs solving a broad
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class of linear operators, surpassing results limited to second-order cases. For nonlinear PDEs, we
introduce a new approach using the Lojasiewicz inequality (Haraux}|2012) to rigorously characterize
optimization dynamics and guarantee convergence to critical points for important nonlinear cases.
This provides the first convergence theory unifying PINNs and Deep Ritz methods in nonlinear
settings. More precisely, the main contributions of this paper are as follows:

(1) We establish convergence to global minima for over-parameterized PINNs in solving a broad
class of linear PDEs, thereby significantly extending existing NTK-based results that are limited to

second-order cases (Theorem 1)).

(i1) We provide a convergence framework for PINN and Deep Ritz solvers under both gradient flow
and implicit gradient descent dynamics, assuming coercivity of the loss function (Proposition IJ).

(iii) Under the random feature model, we prove convergence to critical points for both PINN and
Deep Ritz solvers when applied to a wide range of PDEs, including all evolutionary equations and
several fundamental classes of nonlinear PDEs and ). Moreover, our analysis reveals
an intrinsic regularization effect induced by the random feature model.

This paper is organized as follows. In we review related works on machine learning-
based PDE solvers and existing convergence analyses. introduces the problem setting,
and establishes general convergence results. [Section 4] presents our main convergence results for
solving nonlinear PDEs under different cases. [Section 5| provides experimental evidence supporting
our theoretical findings. Finally, [Section 6]concludes the paper and discusses potential directions for
future research. Technical proofs and supplementary materials are included in the appendix.

2 RELATED WORKS

Machine learning PDE solvers. There are various machine learning-based solvers for PDEs,
among which physics-informed neural networks (Raissi et al.| 2019) and Deep Ritz method (E &
Yu, 2018)) are the most widely used. PINNs incorporate the PDE structure directly into the loss
function, while Deep Ritz leverages the variational form of certain problems. Both methods have
demonstrated remarkable empirical performance in solving a wide variety of nonlinear PDEs includ-
ing, for example, the Allen—Cahn equation (Wight & Zhao, 2021) and Schrédinger equation (Q1iu
et al.l [2025)) across numerous applications (Chen et al., [2024; Tang et al., 2023} |Savovic et al.,
2023)). Despite their success, theoretical understanding of their convergence properties, particularly
for nonlinear PDEs, remains limited and is an active area of ongoing research.

Existing convergence analysis using NTK framework. The neural tangent kernel (NTK) frame-
work, which approximates over-parameterized neural networks as linear models with an almost con-
stant Gram matrix during training, underpins much of the existing convergence analysis (Jacot et al.,
2018 |ILi et al.,[2020). NTK was initially applied to study gradient descent in supervised learning
settings (Du et al.l [2019a; Luo & Yang| 2024} Du et al., [2019b)), and has been extended to analyze
the convergence of PINNSs for second-order linear PDEs (Gao et al., 2023 |Xu et al.,[2024ab). These
results typically show that, for highly over-parameterized NTK-scaled neural networks, the training
loss converges to zero with gradient-based optimization methods.

Convergence analysis using Lojasiewicz inequality. The Lojasiewicz inequality (Haraux| [2012)
is a fundamental analytical tool in the field of optimization, especially for studying the convergence
properties of gradient-based algorithms (Bolte et al.l [2007; |Alaa & Pierre, |2013). Traditionally, it
has been widely used to analyze the convergence in various non-convex and nonsmooth optimization
problems (Schneider & Uschmajewl 2015} |Attouch et al.l 2010; Karimi et al.| 2016). In recent
years, the Lojasiewicz inequality has also been increasingly applied in the context of supervised
learning (Forti et al., 2006} L1 et al., 2023a). Researchers have leveraged this inequality to study the
convergence behavior of machine learning algorithms, providing theoretical guarantees for global
or local convergence under mild assumptions (Lee et al., 20165 Ahmadova, 2023).

3 MATHEMATICAL SETUP AND GENERAL SUPPORTING RESULTS

In this section, we present the basic mathematical setup and introduce both PINNs and Deep Ritz
solvers. In|Section 3.2} we establish two main results: first, a rigorous global convergence guarantee



Under review as a conference paper at ICLR 2026

for PINNSs in solving a broad class of linear PDEs based on the NTK approach; second, a more
general convergence result to critical points, which serves as the foundation for our subsequent
analysis of nonlinear PDEs.

3.1 PROBLEM SETTING

We consider a general class of partial differential equations defined on an open bounded domain
Q c R? with d > 1, taking the following form:

Lu=f x€e,
Bu =g, x€df,

where L represents a differential operator that may be linear or nonlinear, and f € L>°(2) denotes
the source term. For evolutionary PDE, we adopt the convention where the first component of x rep-
resents the temporal dimension while the remaining components correspond to spatial coordinates,
thus naturally satisfying d > 1. The boundary conditions are encoded through the operator B, which
we specify as Robin-type: cu(z) + Bg—:ﬁ(x) = g(x) for z € 99, where «, 8 € R are not both zero,

g € L?(99Q) is the prescribed boundary data, and 2% denotes the outward normal derivative.
on

(D

In this work, we focus on two neural network-based approaches for solving PDEs: physics-informed
neural networks (PINNs) and the Deep Ritz method. Both leverage the expressive power of deep
networks to approximate the solution w. In PINNs, a neural network wy(z) parameterized by 6 is
trained by minimizing the composite loss:

Torn (0) = /Q (Lug(z) — f(x))*dz + X /(9 (Bug(z) — g(x))* dz, )

Q
where A > 0 balances the PDE residual and boundary losses. The Deep Ritz method, applicable to
PDEs with variational structure £(u), seeks a minimizer ug of the loss function:

Tritz(0) = E(ug) + )\/ (Bug(z) — g(x))? da. (3)

o0

In our theoretical framework, we employ a two-layer neural network with tanh activation function
to approximate the solution to[Eq.(T)] Specifically, the network takes the form:

ug(x) = 2:21 ay, tanh(w} z + by,), 4)

where 0 = {(ay, wy, bx) }7, denotes all parameters, with a; € R, wy, € R? and by, € R. The tanh
activation function is particularly well-suited for our analysis due to its analyticity and bounded
derivatives. More crucially, it satisfies a key property (see that, in combination with its
other features, underpins our convergence theory. The following lemma is proved in

Lemma 1 (Linear independence). Let m be a positive integer, and let o, f € R be not both zero.
Given real numbers p1, ..., Dm such that p; # xp; for 1 <i# j <m,and q1,...,qm € R, the
functions actanh(pit +q1) + Btanh’(pit+q1) , ..., atanh(pnt + ¢m) + B tanh’ (p,t + g ) are
linearly independent over R.

Remark 1 (On the choice of activation functions). Our analysis relies on three key properties of the
activation function: bounded derivatives, analyticity, and the linear independence property stated
in[Lemma 1| These hold for a broad class of analytic activations, such as sigmoid and arctan. The

theoretical framework can be readily extended to any activation function satisfying these conditions.

3.2 GENERAL CONVERGENCE RESULTS

This subsection presents two convergence results for neural PDE solvers. While the NTK framework
guarantees global convergence for solving most linear PDEs, it can not extend to nonlinear cases.
This limitation motivates our alternative approach based on Lojasiewicz analysis, which establishes
critical point convergence beyond the linear setting.

3.2.1 NTK-BASED CONVERGENCE FOR MOST LINEAR PDEs

While prior PINN convergence theories have mainly focused on second-order linear PDEs, such as
the heat equation, we extend existing analytical techniques to establish the first global convergence
guarantees for solving a broad class of linear PDEs. We begin by introducing some notations.
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Notation: Let& = (£1,...,&4) € N? be a d-dimensional multi-index, where N denotes the set of
non-negative integers. Given a vector z = (z1,...,24)' € R%, we define the &-th power of z as

PAE Hle J:f For a sufficiently smooth function u : R? — R, its ¢-th partial derivative is denoted

l€l I .
by 0%u := ﬁ where £ := Z?zl &, represents the order of the derivative. For two positive

functions f1(n) and fa(n), we use f1(n) = O(f2(n)), fa(n) = Q(f1(n)), or fi(n) < fa2(n) to

indicate that fy(n) < Cf2(n), where C is a universal constant. If we further omit some logarithmic
terms with the existence of polynomial terms, we adopt f1(n) = O(f2(n)) and fo(n) = Q(f1(n)).
Definition 1 (Admissible linear operators). Let L be a linear differential operator of the form
Lu(z) = Y02, 2jej=k ce(@) O%u, where only finitely many coefficients c¢ are nonzero. We re-
quire that all nonzero cg € L* (), and that there exists a maximal multi-index § such that g #0
and €| > |€| for all other & with c¢ # 0.

Under the neural tangent kernel framework, we use a rescaled two-layer neural network of the form:
1 m T
ug(x) = 7= ZH ay, tanh(w} x + by,), (5)

where the scaling factor \/% ensures proper normalization for theoretical analysis. Within the PINN
m

framework, the empirical loss combines PDE residual and boundary terms on collocation points as
follows,

ni

o) = 535 e (+7) - ()4 235 [ (:57) = (+7)

n
L)

2

o (0

with collocation points {:Ugl) M C Qand {x;z) 121 C 0% Under gradient flow training, we show
that Jemp(6(t)) converges to the global minimum of the empirical loss if £ is admissible.
Theorem 1 (Convergence for admissible linear PDESs). Assume that the linear differential opera-

tor L is admissible. Consider the gradient flow dynamics for|Eq.(6) di(tt) = —VTemp(0). Given

training samples {xgl)}?:ll C Q and {x§2)}?i1 C 09, initialize the parameters in |Eq.(5)| as
ar ~ Unif{—1,1}, wi, ~ N(0,1y), by, ~ N(0,1) i.i.d. Then, with probability at least 1 — 6,

Temp(8(1)) < exp (= (Ao + X)t) Temp(6(0)),  VE >0,

' — QO —1 gl ny+ns ) ) 4l¢] &
provided that m Q((Ao+5\o)2d (10g( : )) '

min{A3, A3}
Remark 2. The proof of this theorem is provided in As shown in the proof, \g, Xo are

actually the minimum eigenvalues of the Gram matrices respectively.
Remark 3 (Various extensions). can extend to several broader contexts:

(1) Other training dynamics: Leveraging the NTK analysis, the theorem applies to gradient descent
with sufficiently small step sizes, implicit gradient descent, and other initialization schemes. Possible

extensions to SGD are discussed in|Section J. I

(2) More complex network architectures: The proof strategy adapts to deeper networks, following
extensions of NTK theory in the supervised learning (Du et al',[2019b)); see also[Section H.1|

(3) Broader classes of linear operators: While we focus on admissible linear operators, similar
techniques apply to a broader class of linear operators. Further details are omitted for brevity.

3.2.2 FROM LINEAR TO NONLINEAR PDEs

Our NTK-based convergence theory for linear PDEs relies on the near-constancy of the Gram matrix
during training, a property that does not hold for nonlinear PDEs as proved in|[Bonfanti et al.[(2024).
To illustrate this point more intuitively, we present a numerical experiment. Consider the viscous
Burgers’ equation:

w4 uug = L0y, te(0,1), z € (—-1,1),

u(0,x) = —sin(mwz), x € (—1,1), 7

u(t,—1) =u(t,1) =0, te(0,1).
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We demonstrate the failure of NTK theory for Burgers’ equation using a neural network with ar-
chitecture described in (with width m = 1000); detailed experimental settings are provided
in For simplicity, we train only the outer-layer parameters a = (a1,...,a,,)  using
implicit gradient descent (see for algorithmic details). During training, we track the
evolution of two NTK matrices:

(i) The interior NTK matrix Kq(t) = (K;;) is computed from the derivatives of the PDE
. o . . n
residual evaluated at 100 interior collocation points, X (1) = {(t;C ), x,(f ))},1€0:1 C (0,1) x
(~1,1). Specifically, K;; = <aar9(t§1), zM), Daro (1S, a:§.1>)> . dj = 1,...,100,
where the PDE residual is rg (¢, z) = (8tue + ugOrug — %amue) (t,z).

(i) The boundary NTK matrix Kpq(t) = (kK;;) is computed from the derivatives of the

network output at 20 sampled boundary points, X (2 = {(t,(f), xf)) 20 |. Specifically,

Kij = (Bauo (7, 2), 0uo(t?,2)) . ij=1....,20.
The IGD algorithm is run for 100 iterations with a step size of 0.5, where each inner optimization
problem is approximately solved by applying the L-BFGS optimizer for 10 steps. As shown in
[Figure 1} Kq(t) undergoes significant changes from its initial state within just a few iterations,
whereas Kpq(t) remains nearly unchanged, as the boundary operator is linear.

Relative Frobenius norm for two NTK matrices
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Figure 1: Evolution of relative Frobenius norm for two NTK matrices.

Thus, new mathematical tools are required to analyze the convergence of PINNs and Deep Ritz
methods for solving nonlinear PDEs. Given that strong overparameterization is difficult to verify
in practice, we forgo this assumption and instead employ the Lojasiewicz inequality to establish
convergence to critical points, albeit with weaker guarantees.

3.2.3 CONVERGENCE UNDER COERCIVITY

We now present a general result showing that coercivity of the loss function implies convergence.
In the subsequent section, we demonstrate the coercivity of the loss function, with a focus on those
arising in nonlinear PDEs, thus allowing us to apply the general convergence result obtained here.

Definition 2 (Coercivity). A function J (0) is said to be coercive if limg|| 400 J () = +00.

The coercivity help to ensure boundedness of minimizing sequences, a crucial property for conver-
gence analysis. We next introduce the Lojasiewicz inequality, which is fundamental to our analysis.

Theorem 2 (Lojasiewicz inequality, Theorem 1.1 in Haraux| (2012)). Let U be an open subset of
RN and F : U — R be a real analytic function. Then for any x in U such that VF (z) = 0, there
exist a neighbourhood W of © and a real number e € (0, 3] for whichVy € W, |F(y)— F(z)|~¢ <
IVE (y)||. We call e the Lojasiewicz exponent of F at .

We denote the loss function of either PINN [Eq.(2)|or Deep Ritz[Eq.(3)|as

J = residual (variational) term + )\/ (B(ug) — g)* da. (8)
00
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For this loss function, we consider two types of training dynamics. The first is gradient flow,
0'(t) = —V.J(6). )
which provides a continuous-time perspective on optimization. The second is implicit gradient

descent (IGD), which we disscuss in detail in[Section L1}
OF 1 = 9% — Vg (O, k=0,1,... (10)
where 7) is the step size. As introduced in|Li et al.|(2023b), IGD enjoys greater stability compared to

standard gradient descent and is particularly well-suited for multi-scale problems. We now establish
convergence results for both dynamics under coercivity. The proof of the following proposition is

provided in|[Section C

Proposition 1 (Convergence under coercivity). Suppose J () is coercive in 0. Then:
(a) The solution 0(t) to the gradient flow |Eq.(9) converges to a critical point 0* of J(0) as t — oc.
(b) The sequence {0} generated by|Eq.(10)|converges to a critical point 0* of J (0) as k — oo.

Furthermore, let € denote the Lojasiewicz exponent of J(0) at 0*. The convergence rates are as
follows:

(i) If € € (0, 3), then for some C > 0 and integer ky,
10(t) — 0|2 < Ot~ T2, ¥t >0; |0 — 0% || < C (kn) T2, Vk > k.

(ii) If e = % then for some C' > 0 and integer ky,
10(t) — 0%l < Ce b, ¥t >0; ||0% —0%s < Ce ™, VEk > k.
Remark 4. The convergence rate deteriorates as € approaches zero. A similar phenomenon is

observed in NTK-based analyses: when the minimum eigenvalue of the NTK matrix is close to zero,
convergence also slows down.

Remark 5. Our convergence results hold for gradient descent with proper step size choices (omitted
for brevity), while implicit gradient descent offers additional advantages as it maintains uncondi-
tional stability and better preserves the solution structure throughout training.

Remark 6 (Advantages of implicit regularization). While explicit L? regularization, adding a term
such as ||0]|3 to the loss, ensures coercivity, modern PDE solvers like PINNs and the Deep Ritz
method predominantly rely on implicit regularization induced by gradient-based optimization al-
gorithms. This offers several key advantages: it naturally promotes low-norm solutions without the
need for careful tuning of vy, preserves the physical interpretability of the loss, and avoids artificially
restricting the solution space. Importantly, implicit regularization adapts robustly to multiscale fea-
tures (such as sharp gradients and boundary layers) that are common in practical PDE problems.
Extensive empirical results demonstrate that this implicit effect often yields a better trade-off be-
tween training stability and solution accuracy across a wide range of benchmarks.

4 CONVERGENCE FOR SOLVING NONLINEAR PDES

In this section, we present a rigorous coercivity analysis of the loss function for DNN-based solvers,
including both PINNs and the Deep Ritz method. By [Proposition I} establishing coercivity is crucial
for guaranteeing the convergence when solving a broad class of PDEs, especially nonlinear ones.

4.1 RANDOM FEATURE MODEL

Even for two-layer neural networks the loss function for complex nonlinear PDEs can
be highly intricate. As a first step, we focus on the random feature model (Chen et al., 2023).
In this setting, the network structure remains as in [Eq.(4)] but the inner-layer parameters wy =
(Wi, .- wEq)" € RY and by, € R are randomly initialized and kept fixed during training; only
the outer-layer coefficients a = (ay,--- ,a,,)" are trainable.

In typical physics-informed learning methods, the loss function naturally admits the decomposition

J(a) = Jala) + X Joa(a), where Jqo(a) enforces either the PDE residual (for PINNs) or the
variational functional (for the Deep Ritz method) in the interior of the domain, and Jpn(a) =

S (B(ug) — g)2 dx imposes the boundary conditions. Based on this decomposition, we reveal
two distinct mechanisms by which 7 exhibits coercivity with respect to a:

6
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Case 1 (Boundary-induced coercivity): Under mild assumptions, the boundary term Jsq(a)
dominates in such a way that there exists a constant C' > 0 such that Jpq(a) > C/||al|3. So the loss
function J (a) is coercive with respect to a.

Case 2 (Interior-induced coercivity): For certain second-order nonlinear PDEs, the interior term
Ja(a) provides coercivity, i.e., there exists C' > 0 such that Jqo(a) > C/|al|3.

The following subsections establish precise sufficient conditions for each case, thereby covering
most practical PDEs encountered in applications.

4.2 BOUNDARY-INDUCED COERCIVITY

We begin by specifying our geometric assumptions on the domain 2. The key requirement is that
the boundary OS2 contains a sufficiently regular portion that can be transformed into a flat segment.
Formally, we make the following assumption:

Assumption 1 (Local flat boundary). There exists an invertible affine transformation Aff : z —
Ax + wy such that the transformed domain Q) = Aff (Q) satisfies:

(i) local flamess: for some point y* € dQ and r > 0, QN B(y*,r) = {y € B(y*,r) : ya = v},
where B(y*,r) denotes the open ball of radius r centered at y* in RY, yq is the d-th coordinate of
y, and 7y is a constant.

(ii) non-degeneracy: the flat boundary portion has positive (d-1)-dimensional measure, Ii.e.,
Xa—1(0Q N B(y*, 1)) > 0. We denote T := A~ (0Q N B(y*,r)) as the corresponding boundary
portion in the original coordinates.

Remark 7. This assumption is naturally satisfied for evolutionary PDEs, where I" can be taken as
the initial time slice {t = 0}. In practical settings, local flat boundaries are common. For instance,
they naturally appear in domains with piecewise smooth or polyhedral boundaries. Therefore,
introduces only a weak and broadly applicable geometric condition.

For notational simplicity, we will work in coordinates where Aff is the identity transformation, i.e.,
A =1d € R™ w, = 0 € R?% This does not affect the generality of our results due to the
affine invariance of the coercivity property. To establish coercivity, we first characterize a class of
well-behaved neural network inner-layer parameters that guarantee desirable properties.

Definition 3 (Admissible inner-layer parameters). Denote the first d — 1 coordinates of wy, as wy, =
(Wi, -y Wka—1)". The parameter set {(wy, by) Y7, is called admissible inner-layer parameters
if the following two conditions are satisfied:

(i) distinct directional components: W; # £Ww; forany 1l <i <j <m;
(ii) non-degenerate normal components: w; q # 0 forany1 <i < m.

We now establish the coercivity of the loss function 7 (a) under the admissible inner-layer parame-
ters condition, as formalized in the following result proved in

Proposition 2 (Boundary linear independence). For admissible inner-layer parameters, the func-
tions

atanh(w] z+by) + fwy gtanh’ (wiz+b1), ..., atanh(w, z+by) 4+ Bw,y, 4 tanh’ (w) x+b,,)

are linearly independent in L*(T). Furthermore, recall that ug = > ;.| ai tanh(w} z + by,), then

there exits a constant C > 0 such that ||a||s < C Hozue + B%HU(F) .

The significance of this result lies at the core of our analysis. By astutely exploiting the linear
independence of these functions, we are able to rigorously bound ||a||s using the boundary data.
Based on this estimate, we are able to establish the following convergence theorem.

Random Initialization Inner-layer parameters {(wy, by)}7* , are randomly initialized according
to the following rule: w; ~ N(0,14) i.i.d. ; b; ~ N(0,1) i.id. for 1 <i < m.

Theorem 3 (Almost sure convergence via admissible initialization). Under[Assumption 1| regard-
less of the specific form of the differential operator L in the PDE, we can initialize the inner pa-

m

rameters {(wy, by) }1_, with probability 1 such that (i) J is coercive with respect to a; and (ii) all

convergence results of|Proposition 1|hold.
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Proof. By construction, for randomly initialized inner parameters, the admissibility condition of

is satisfied almost surely. Then, for almost surely inner parameters, by

there exists C' > 0 such that [|allz < C ||aug + 6%”&(1“) , where ug = Y"}" | aj tanh(w]  +

bi). This directly implies that 7 (a) — +oo as ||a|| — 400, i.e., J is coercive with respect to a.
Consequently, by invoking we conclude that, for almost every realization of the inner
parameters, the convergence results therein hold. This completes the proof. O

This theorem ensures that random initialization almost surely yields admissible parameters satisfy-
ing the coercivity condition. As a result, the convergence results apply generically to both PINNs
and the Deep Ritz method, regardless of the choice of differential operator in the PDE. A similar

statement for the empirical loss is discussed in

Remark 8. Extensions to deeper networks and the challenges arising when inner-layer parameters
are also trainable are discussed in[Section H.2} Further discussion of the possibilities and difficulties
of extending these results to SGD appears in|Section J.2|

4.3 INTERIOR-INDUCED COERCIVITY FOR SPECIFIC PDES

We now discuss in detail the coercivity of the interior loss introduced in Case 2 above; analogous
results for Deep Ritz solvers are given in Consider the following prototypical nonlinear
operators with homogeneous Dirichlet conditions (u|sqo = 0):

(i) —div([VulPVu) +q(@)u+h(u), p>2,q>0, h(u)u>0;

(i)  —div((1 +u*)Vu) + q(z)u+ h(uw), ¢ >0, h(u)u > 0. (an

To strictly enforce homogeneous Dirichlet conditions, we multiply the neural network by a cutoff
function o (z) that vanishes on 9f2. Let ¢(z) be a smooth function such that 0 < p(z) < 1on 2,
o(z) = 0on 9 and ¢(x) = 1 on some open set U C 2. The modified ansatz iy (z) := ¢(x)ug(x)
automatically satisfies the boundary conditions, allowing us to focus on learning the interior.

Proposition 3 (Interior L? control). For operators in[Eq.(11)] there exists C > 0 such that
lull 2@y < CUI1L0 — fllz2@) + 1 fll2(@))-

The proof of this proposition is provided in This stability estimate directly enables co-
ercivity through interior terms alone, complementing our boundary-based results. By applying the
same techniques as in the previous section, we can conclude the following theorem.

Theorem 4 (Almost sure convergence for PINNs). Using PINNs to solve Lu = f with homoge-
neous Dirichlet boundary condition, where L is defined as in[Eq.(IT)] we can initialize the inner
parameters {(wy, by) } 1, with probability 1 such that

(i) w; # +w; for1 <i < j <m, then {tanh(w]z + by)}{", are linearly independent in L*(U);
(ii) the loss function Jpyy defined in@l is coercive about a;
(iii) all convergence results of[Proposition 1| hold.

Proof. Fix any choice of inner-layer parameters { (wy, bx) }- . By [Proposition 3} we have
lugllp2y < C(IIL0 = fllrz) + 1 fll2@) < C(T (@) + [ fllL2))-
According to the functions {tanh(w; = + by)}7, are linearly independent in L?(U)

provided w; # £w; for all ¢ # j. Standard linear algebra then yields

lall2 < Cllugll 2wy < C(T (@) + £l L2(0))-

Since the set of parameters {(wy, bx)}7r, with w; # Zw, for all ¢ # j has full measure under
random initialization, this estimate holds almost surely. Thus, the loss Jpinn is coercive with
respect to a for almost every initialization. The convergence result of then follows. [
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Implicit regularization of random feature model. Establishing coercivity is crucial for our anal-
ysis. The direct application of Lojasiewicz inequality implies that optimization dynamics for all
trainable parameters will either converge to a critical point or diverge to infinity. Coercivity rules
out the latter by guaranteeing boundedness of the parameter sequence. Importantly, even in the
presence of highly complex loss landscapes as encountered in PINNs or Deep Ritz frameworks,
our results establish that, under the assumptions of [Theorem 3| or [Theorem 4] the random feature
model provides inherent implicit regularization: both gradient flow and implicit gradient descent
dynamics remain constrained within a bounded region, precluding divergence of the parameters or
their gradients. Thus, no additional regularization technique is needed to prevent parameter or gradi-
ent explosion when using random feature models, even in these challenging settings. These results
underscore the robustness of the random feature model in maintaining well-behaved optimization
trajectories solely due to its intrinsic structural properties under mild conditions.

5 NUMERICAL EXPERIMENTS

As discussed earlier, time-dependent PDEs naturally satisfy To validate [Theorem 3]
we test three representative time-dependent equations: the Burgers’, Allen—Cahn, and Fisher—-KPP

equations. Detailed results for the Allen—-Cahn and Fisher—KPP equations are given in
and respectively. Here, we focus on the convergence behavior of the random feature
model within the PINN framework for the Burgers’ equation A comprehensive summary
of experimental hyperparameters is provided in Notably, our results do not rely on
network over-parameterization. We train a network with m = 100 hidden units using implicit
gradient descent (IGD) with a step size of 0.5 for sufficient iterations, employing 10, 000 interior
collocation points and 100 boundary points. The final £3-norm of the loss gradient is 1.13 x 1073,
confirming convergence to a critical point even with a comparatively large step size.

Next, we consider the second equation in[Eq.(TT)] which is also solved using the PINN framework
with the random feature model, trained by IGD for sufficient iterations (see for further
details). summarizes the ¢2-norm of the loss gradient with respect to the model parameters
after training from different random initializations.

Table 1: Norm of the loss gradient with respect to a after training from different initializations.

Initialization IVI(a)|l2

Xavier normal for wy,, Xavier uniform for ay, 2.44 x 107*
Standard normal for wy, uniform [—1, 1] for a, 1.45 x 1074
LeCun normal initialization for both wy and a;,  1.37 x 10~%

These results consistently demonstrate a small loss gradient norm, further supporting convergence

to a critical point as established in

6 CONCLUSION

In this paper, we develop a unified convergence analysis for neural network-based PDE solvers,
encompassing both linear and nonlinear equations. Leveraging the neural tangent kernel framework
and the Lojasiewicz inequality within the random feature model, we establish rigorous convergence
guarantees and highlight the intrinsic implicit regularization effect of the random feature approach.
Our theoretical results show that both gradient flow and implicit gradient descent can achieve reliable
convergence under mild conditions, even for nonlinear problems. While our current analysis for
nonlinear PDEs focuses on random feature models, future work will seek to extend these results to
fully-trainable architectures under suitable assumptions. We also intend to investigate optimization
dynamics near saddle points and clarify the conditions distinguishing convergence to local versus
global minima. Pursuing these directions will further strengthen the theoretical foundations and
enhance the practical reliability of neural network-based PDE solvers.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (GPT-4) to polish the language of the manuscript. Specifically, we
drafted the initial versions of all sections ourselves, and then employed GPT-4 to refine the wording
and clarity of selected passages—primarily introductory and expository paragraphs. The model did
not contribute to research ideation, methodology, experiments, analyses, or conclusions.

B PROOF OF[LEMMA 1]

We provide the proof of which establishes an important property of the tanh activation
function. More importantly, this ensures that our convergence results apply to neural networks with
tanh activation, whether used in PINN or Deep Ritz solvers.

Proof. We first note that the tanh function is an odd function and tanh’ = 1 — tanh? is an even

function. So without loss of generality, we can assume that p1, . . ., p,, are distinct positive numbers,
otherwise, we replace tanh(p,t+¢,) by — tanh(—p,t—g,) and tanh’(p,t+¢,) by tanh’(—p,t—g,).
We can also assume that p; < p2 < --- < p,, . We divide the proof into two cases according to

whether 8 = 0 or 8 # 0.

12
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Case 1: § = 0. Given any positive integer m, for any set of m real numbers
{pi 1 pi # £p;,V1 <i<j<m}
and any real numbers ¢, . . ., ¢, We need to prove that the functions
tanh(pit + q1),- -+, tanh(pmt + gm)
are linear independent.
Take c1, ..., ¢, to be real numbers such that

¢y tanh(pit + q1) + - + ¢ tanh(pmt + ¢m) =0, Vi € R. (12)

In the above equation, letting ¢ — oo and noting that all p,. are positive real numbers, we obtain

cL+ -+ ey =0. (13)

Substituting tanh(t) = CQt_H into[Eq.(12)} we obtain

Q(Pkt-HIk -1
Z % Srtra) T 1 =0, VteR.

Multiplying both sides of the above equality by [, (e>Pt!+4) 4+ 1), we have

cp(e®Pritar) — 1) JT (2 1) =0, VteR. (14)
k=1 1=1,1#k

In fact, each term in the above expression can be written in the following form:

5Ke2 ZkeK(pkt+qk=)’
where K is a subset of {1,...,m} and ¢k is a constant.

Let us focus on one of these terms in particular, e2(P1#+91) By observing [Eq.(14)| we see that the
coefficient in front of this term is ¢; — Zz 21 Cl- Moreover, since p1 < p2 < ... < pPm, We know

that for any nonempty {1} # K C {1,...,m}, pm < D ;cx Pk-

Thus, we can conclude that the coefficient ¢; — 11 €l in front of e2(P1t+41) is non-zero. Otherwise,
there exist constants a i such that
e2(p1t+¢h) _ Z OéK€2 ZkeK(PktJqu)’
K#{1}
which contradicts the fact that for any n, the set e*i*, a; # a; if i # j}_, is linear independent.

Combining the above arguments, we can conclude that ) ;" ¢; =0and ¢; — ), 21 ¢ = 0, thereby
c1 = 0. Following the same reasoning, we can similarly obtain co = 0, ..., ¢, = 0. Thus, this case
is proved.

Case 2: § # 0. The underlying idea of the proof remains unchanged, but a more detailed treatment
of the coefficient in front of e2(P1t+1) is required. We need to prove that the functions

atanh(pit + q1) + Btanh’(pit + ql) ooy atanh(ppt + gp) + B tanh’ (Pt + ¢i)
are linear independent. Let us assume 3 # —= . If this is not the case, we can multiply « and /3 by
a common factor to arrange it so.
Take cq, . . ., ¢, to be real numbers such that
Ck (a tanh(pyt + qx) + B tanh’(pit + qk)) =0, VteR. (15)
k=1

In the above equation, letting ¢ — co and noting that all p,. are positive real numbers, we obtain

e+ +epm=0. (16)

13
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Substituting tanh(t) = &7+ and tanh’ () = ¢y into[Eq.(15)) we obtain

™ [ e2(prt+ar) _ q 4e2(Prt+ar)

;Ck Y 2ntra) 11 T (e2(Prttar) 4-1)2

Multiplying both sides of the above equality by [, (e>®**9) + 1)2, we have

Z Cr [oz <e4(Pkt+Qk) _ 1) + 4682(Pkt+‘1k):| H (62(Pzt+qz) + 1)2 =0, VteR. A7)
k=1 I=1,l#k
In fact, each term in[Eq.(T7)| can be written in the following form:
Gree? Lnex (Pritar)

]—0, vVt € R.

where K is any multiset of the elements from {1, ..., m} in which each element may appear at most
twice and Cx is a constant.

By observing|Eq.(17), we see that the coefficient in front of this term is 43¢, — 2}, 210 =0

Combining the above arguments, we can conclude that ;" ¢; = 0 and 48¢; — 23, 210 =0,

thereby (45 + 2)c; = 0, i.e., ¢; = 0 because of 3 # —%. Following the same reasoning, we can
similarly obtain co = 0, ..., ¢;, = 0. Thus, the lemma is proved.

O

C PROOF OF[PROPOSITION 1]

Proof. We provide a detailed proof in the case of the gradient flow.

6(t) is the solution to the gradient flow. Thus, the loss function is monotonically decreasing along
the trajectory 6(t). So there exists a constant C' such that

16(t)[l2 < C, ¥t > 0.
because the loss function .7 is coercive.

Because 6(t) is uniformly bounded, there exists a subsequence ¢,, — oo such that 6(t,,) — 6%,
which is a critical point of 7.

‘We now have

d
- (T 0@®) =T () = =IIVIT O @®)II*.
We first consider the case when e € (0, 3). Since J(6(t)) is nonincreasing, we have z(t) :=
J(0(t)) — J(0*) > 0, and as a consequence of [Theorem 2}
() < —(2(1)217) = TOF) - T(0%) = 2(t) < Kit~ T, (18)
Now since

16" ()1 = —2'(1),

we have o
|18 1Pds = 20 - 2(20) < 5(0) < Kot~
t

Then by the Cauchy—Schwarz inequality,

2t
/ 10/(s)lds < Kyt~ T,
t

Indeed it implies for all t < ¢,,,

€

T T ')
10(t) — 0(ta)]1> = | / 0'(s)ds| < / 10(s)llds < Ki 3 (2h)~
t t 0

= Klzg—ﬁk‘t—ﬁ = Kyt T,
0
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Letting n tend to infinity in the above expression completes the proof.
Ifa=3;,we rewrlte as

JO(t)) = T (07) < Ky exp(—t).
The rest of the proof is basically the same.

It is worth noting that implicit gradient descent (IGD) can be viewed as the backward Euler dis-
cretization of the gradient flow. Several works have studied the convergence properties of the back-
ward Euler scheme. Applying Theorem 2.4 and Proposition 2.5 from Merlet & Pierre| (2010), we
can establish the desired result. O

D EXTENSION TO

D.1  PROOF OF[PROPOSITION 2|

We now present the proof for the [Proposition 2|in|Section 4.2| Essentially, we need to process the
functions so that it depends on a single variable, and then we can apply [Lemma 1] which has already
been proven.

Proof. Let {(wy, bx) 7~ be the admissible inner-layer parameters of the neural network, where
wg € R< and b, € R.

Take ¢y, ..., cp such that 37" | ¢; (atanh(w; @ + b;) + Bw; 4 tanh’(w]z + b;)) = 0in L*(T).

Because of continuty, we obtain that Y ., ¢; (a tanh(w; z + b;) + Bw; g tanh’(w]z + bZ)) =0
onT.

We denote the first d — 1 components of the vector x € R¢ by a new (d — 1)-dimensional vector 7,
ie,x= (2", 2q4)". Using we can rewrite the above equality as

Z C; atanh w T+ ywiq+b)+ Pwig tanh'(ﬂ);j + yw; g + bi)) =0, Vo = (i‘T,V)T erl.
i=1

Note that A\;_1(T") > 0, so there exists an open ball B contained in R4-1, such that
Z C (a tanh(ﬂ)iT:c +yw; g + b;) + Bw; g tanh'(ﬁ);x + yw;.q + bz)) =0, VzeB.
i=1

which is equivalent to
Z C; atanh w T+ yw; g+ b;) + Pwig tanh'(u?;ra: + yw; g + bi)) =0, VzeR¥l (19
i=1

because tanh is an analytic function.

Forany 1 < k < j < 'm, define Ay ;, By ; as follows:
Ap; = {2 €R¥7 : (W), —w))"3 =0}, Bpy={7 € R : (y + ;)% =0}.

The sets Ay, j, By, ; are subspaces of dimension d — 2, so Ulgkqgm(AkJ U By,;) has Ag—1 -
measure zero. This implies that we can choose some e € RY~! with ||e[s = 1 such that for all
1<k<j<m,

D = zf)ge #+ :I:lI)]Te =:pj.

By[Eq.(19)] we have fore € R and & = ee,

Z ¢i (o tanh(w, ec + yw; g + b;) + Bw; g tanh’ (@, es + yw; g + b)) =0, Vze R,
i=1
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Note that p,, # £p; forall 1 < k < j < m, we can obtain that ¢, = 0 for all 1 < k£ < m by using

So we can conclude that the functions
atanh(w] x +by) + Bwy g tanh’(w]z +b1), ..., atanh(w,) z + by,) 4+ Bwm 4 tanh’ (w2 +b,,)

are linearly independent in L?(T").

Recall that u = Y ;° | axo(wiz + by). Under |Assumption 1} without loss of generality, we can

express the outward normal vector as n = (0, ..., 0, I) on the flat segment I". Then we can rewrite
the outward derivative g—x as

ou - 1 T
— = arwi.qo (w, T + by).
o Z KWk, q0 (wy, k)
k=1
Define Gram matrix G = (G;;)1<i,j<m, Where

Gij = / (atanh(w, = + b;) + Bw;,q tanh’(w] z + b;))
r

(a tanh(ijx +b;) + Bwjq tanh/(ijx +b;)) da.

The Gram matrix G is positive definite by the linear independence, and we denote the smallest
eigenvalue of G as Ay, > 0.

Then we have
2

ou||” .
au + 5% = Z ax (atanh(wy © + bg) + Bwy, g tanh' (wlz + by)) 20
L3(T) k=1 L2(I) ( )
=a'Ga > Apinl|al|3.
O

D.2 DISCUSSION ON EMPIRICAL LOSS FUNCTION

In practice, we approximate the loss function equation using discrete sample points. Let X (1) =

{x,il)}z;l C Q (interior points) and X(®) = {x,(f)}Z?:l C 052 (boundary points). Under Dirichlet
boundary condition, the empirical loss is written as:

1 ni 2 A no 2
Teup(@) = =3~ (Luo(a) = () + 23 (wolei?) — o) @D
k=1 k=1

Under , we assume 1, > m and consider a subset X (?) = {xf)}kmzl C I'. For each

1 < k < m, define the activation vector,
. T
or(X®) = (tanh(w,jmgz) +bg), . . ., tanh(w] =2 + bk))

Then we can establish the following result, which is a discrete version of However,
the techniques needed are not the same.

Proposition 4 (Linear independence on discrete points). For any m vectors {w}};"; C R~ with
Wy # £W; (1 # j), and for sufficiently small wy, q, b, € R, the vectors {ak(X(g))}ZL:l are linearly
independent for almost all X(?) € T™,

Here, ”almost all” means the condition holds generically, making it practically feasible to find suit-
able sample points. This leads to our main convergence guarantee for the empirical loss.

Theorem 5 (Global convergence of empirical loss). Under, we consider the empir-
ical loss Jomp(a) in equation |21\ with randomly sampled point sets XV, X (). When inner-layer
parameters {(wy, by) }7, are initialized as: w; ~ N(0,14_1) i.i.d ; |w;ql, |b;i| < & (sufficiently

small) then with probability 1, all convergence results of [Proposition 1| hold for both gradient flow
equation[9and implicit gradient descent equation[I0)

We prove the above proposition and theorem in
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D.2.1 PROOF OF|PROPOSITION 4| AND [THEOREM 3|

The proof of requires special treatment for the selection of boundary sampling points.
We first prove the following lemma, which shows that there exist suitable sampling points to ensure

linear independence.

Lemma 2. For any choice of m vectors Wy,..., W, € R such that w; # +w; if i # 7,
and for sufficiently small scalars wi 4, ..., Wmqa € R and by,...,b,, € R, there exists a set

X = {xx}i, C T such that the vectors 01(X),...,0m(X) are linearly independent , where

wy = (W), w.q)7.

Proof. Letv; = (tanh(w{z; +b1), ..., tanh(w, x; +b,,))T . We want to seeek {z;}™, such that
v1, ..., Uy, are linear independent. We use induction to sequentially find appropriate x1, x2, . . ., Zp,.

First, we can choose x; arbitrarily in I" such that wlT:zrl + b1 # 0. Because tanh(wlTxl +b1) #0,
v is linear independent.

Next, we assume that x1, ..., x,_1 have been chosen such that vq,...,v;_1 are linearly indepen-
dent. We need to choose xj, such that vy, ..., vy are linearly independent.

Choose e € R*~! with [[e[|2 = 1 such that py, := wje # £w]e =: p; forall 1 <k < j <m.
Note that I' = 9Q N B(zo, ), we take 3, = ((Z9+ee)T, 8)T which is naturally in T for sufficiently
small €.

Take any non-zero vector b € R™ such that b is orthogonal to vy, ..., v,_1, i.e., b v; = 0 for all
1<i<k-—1.

Consider the function F'(¢) = Y. | b; tanh(p;e +w; a7y + b;). Because b # 0, F'(£) is not constant
zero by[Lemma 1

Take any e¢ such that F(go) # 0 and 2, = ((Zo + €€)',v)T, then we can obtain vy & span{v; :
1 < j <k —1}. Otherwise, b is orthogonal to vy, and then F'(gg) = 0.

So by induction we can obtain a set X = {x;}7, C I" such that vy, ..., vy, are linear independent,
which is equivalent to o1(X), ..., 0,,(X) are linear independent.

O

The proof of the [Proposition 4]is given below. That is, based on the existence, we further show that
such sampling points are almost everywhere.

Proof. Define matrix o(X) = (01(X),...,0m(X)). We want to show that for almost all X =
(15 ey Tp) € I, 0(X) is full-rank.

By Lemma |2} we can find a set X* = {z}}7*, C T such that 01(X*),...,0,,(X*) are linear
independent, i.e. det(c(X*)) # 0. Note that det o(-) is an analytic function defined on I'™, so

its zero set is of zero measure. This means that for almost all X = (z1,....,zm) € I'™, o(X) is
full-rank.
Then for any n > m,for almost all X = (z1,....,x,) € I'", 0(X) is full-rank. O

Below, based on the previous conclusions, we present the proof of

Proof. We only prove the second conclusion.

Because we can, with probability 1, select sampling points X2 and internal parameters that satisfy
the conditions of the above lemma. By linear independence, the Gram matrix G = (Gij);’fj:l is

positive definite, we Gi; = 0;(X ) To,;(X?).

S0 Jemp(a) > 2-aTGa > 2-Anin(G)l|al|3, which implies J is coercive. And then we can apply

u

17
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E PROOF OF [PROPOSITION 3

Proof. We take

Lu = —div(|VuP"2Vu) + q(z)u + h(u), where p > 2, ¢(x) > 0, h(u)u > 0 (22)
as an example for the proof.
Note that in L2(£2) inner-product space, we have

(L(a), ) =(=div(|Val’~Va) + q(x)d + h(a), a)

:/ |||? 4 q(z)@? + (@)@ dz (by integration by parts)
Q

2/ |Z||” dz (by the assumption of g(z) and h(u))
Q

>C ”ﬂ”%Z(Q) (by the Sobolev inequality)
where C is a constant depending on the domain {2 and the Sobolev embedding constant.
On the other hand, using the Cauchy—Schwarz inequality, we have
(L), a) < ||L(T)||L2)lltll L2
So we can conclude that there exists a constant C' > 0 such that

lullL2@y < llalle@y < allzz) < ClIL(@)||2@) < CUIL(@) — fllLe) + 11 fllz2@)
O

F DEEP RITZ-TYPE INTERIOR CONTROL

The Deep Ritz method employs the energy functional £(ug) as its interior loss. We demonstrate
coercivity through two canonical examples.

Example 1: p-Laplace equation The p-Laplace equation
—div(|Vul|P72Vu) = f(z) (23)

generalizes the classical Laplace equation (p = 2) to model nonlinear diffusion processes. It arises
in non-Newtonian fluid dynamics (1 < p < 2 for shear-thinning fluids) and image processing (edge-
preserving denoising). The associated energy functional

E(u) = /Q ]19|vu|p ~ f(@)uds (24)

exhibits p-growth conditions, making its analysis distinct from quadratic elliptic problems. A fun-
damental result of the variational theory: the energy functional is coercive, i.e., there exist

constants ¢, C,

E(u) > ¢||ull - C.

P
HyP
Example 2: stationary Allen—Cahn equation This phase-field model

—2Au+ (u® —u) =0 (25)

describes phase separation in binary alloys, with e controlling interface width. Its double-well po-
tential energy

2
1
E(u) = / SV 4 S (- 1)2 da (26)
Q 2 4
forces solutions toward +1 (pure phases) with transition zones of O(¢) width. Also, the energy
functional [Eq.(26)|is coercive, i.e., there exist constants ¢, C,
E(u) > dl|ulF — C.

Therefore, we can use the technique from [Section 4.3|to prove that the loss function 7 is coercive
with respect to a, thereby establishing the convergence of Deep Ritz method.

18
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G PROOF OF[THEOREM

Here we provide the proof of with the main idea inspired by previous works|Gao et al.
(2023); [ Xu et al.| (2024a). However, since we deal with more general linear operators, some cal-
culations require greater care compared to the procedures in previous works. Although the proof
strategy is clear, the details are quite involved. We first give a brief outline of the approach, and then
rigorously justify each step through a series of lemmas.

Let us first review some notations from the main text and introduce several new ones. We focus on
the linear PDE with the following form:

S 2 l=k ce(®)0u=f, e, @7
au—&-ﬁg—;‘:g, x € 01,

where the linear operator £ satisfies|Definition 1| and f, g are bounded continuous functions. In the
following, we assume that [|z[|s < %2 for z € Q0.

We consider a two-layer neural network of the following form,

1 m
ug(z) = — Z ay tanh(w} z + by).
v

To handle the bias term more conveniently, we consider augmenting both x and the PDE. We define
y = (27,1)T forz € Q, then we have |[y||> < 1. For[Eq.(27)| we will rewrite the equation about
y, and for 51mp1101ty, we stlll use the same notation:

{z;:fz S jejop e ()Ou = £, yeQx{i},

28
au+ I =g, y €00 x {11, (28)

where the original d-dimensional multi-index ¢ is augmented to (d + 1)-dimensional multi-index ,
which is still denoted as £ = (£, 0). And we rewrite the neural network as

1 m
ug(xz) = T Z ay, tanh(w}y), (29)
k=1

where a;, € R and w;, € R4 for < k < m.

In the framework of PINNs, we focus on the empirical risk minimization problem. Given training

samples {yz(j1 L, CQx {3} and {yp2)} 2, C 0Q x {4}, we aim to minimize the empirical loss
function as follows

Teanp(60) = nZ chg fug (7)) = £ ()

i=1 " |k=0|¢|=k

) (30)
A -1 oy, 0 (47) @)
T 2z | (47) + o5~ (47
where 0 = {(ay, wy,)}{_, € R™@2) are all trainable parameters in[Eq.(29)]
We consider the gradient flow training dynamics: for 1 < k < m
dwn(t) _ 0%nn0(1)  daxlt) _ 0Twn(®(1) an

dt 8wk ’ dt 8ak
Let

0=k (£ 5 et ()1 () <.
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and

Then we have

Tanp(6) = 5 (I5(6) 1+ [11(6)3),

where vectors s(0) = (s1(0), ..., s,,(0))" and h(0) = (h1(0),..., hn,(0))7. Therefore, for 1 <

k<m,
dwy, _ajemp(a)
dt N 5‘wk
o Dsp(0) Oh(0)
- Zl SP(Q) awk Z h’k (0) aUJk 9
p= k=1
and
dap _ _5$mp(9)
dt oay.
= D5 ( Ohy,(0)
= Z sp(8) - p Z hi( a];k .
p=1

Using the chain rule, after simple computation, we can derive the following dynamics:
d [s(0)| =~ s(0)
i [h(a)] = - (60) +G0)) [h(e) !

where G(0) and G (0) are the Gram matrices for the dynamics, defined as

=DT = |2 9sny  Oh Ohn
G(#)=D'D, D_{a&l/ W oW awz}’
where W = (w],...,w] )T, and
GO =D'D. D=2 dsny  OR dha
G(9) =D'D, D—[% L P o 8;},
where a = (ay,...,a,,)". Moreover, we rewrite # = (W, a) and define

G = Ew~n(0,1),a~tnif({-1,13m) G(W, a)
and ~ _
G = Ew~n(0,1),a~Unif({~1,13) G(W, a).

Now that we have established all the basic definitions, we will first outline our proof strategy.

Proof sketch:

(32)

(33)

(34)

(i) To prove that the expectation of the Gram matrices G, G are positive definite

(Lemma 3J).

(ii) To show that, with high probability, the Gram matrix at initialization G(W (0), a(0)),
G(W(0),a(0)) are close to G, G* respectively, thereby implying that the Gram matrix
G(W(0),a(0)), G(W(0),a(0)) are positive definite with high probability ||

(iii) To prove that the Gram matrix G(W,a), G(W,a) are stable with respect to W and a,
that is, if the parameters are perturbed slightly, the corresponding Gram matrix remains

close to the original (Lemma 5.

(iv) To prove that, during the evolution by gradient flow the parameters do not change
much. Combining this with the previous three results, we know that the Gram matrix
G(W(t),a(t)), G(W(t),a(t)) remain positive definite with high probability throughout
the evolution, and we can estimate its minimal eigenvalue. This allows us to prove that the

loss decreases at a certain rate.
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Next, we will carry out the above proof strategy step by step through a series of lemmas.

Lemma 3 (Positive definiteness of G, éoo). The expectation of the Gram matrices G, G are
positive definite.

Proof. Part 1: we first prove the positive definiteness of G*°.

We denote p(y; w) = ZZ:(; ek Ce(y) tanh{D (wTy)ws, where w € R4, Then,

asp L ag 890(yp ; W)

8wk f \/> ow

Similarly, let ¥ (y;w) = atanh(wTy) + Btanh’(w y)w n(y), where n(y) is the outer normal
direction on the point y € 9Q x {3}. Then

oh, 1 ap Dy w)
owy VN2 J/m Ow '

With these notations, we deduce that

do(yVsw) Doyl iw) .
nlleNN(o7I)< ¢aw =, o ) 1<p<n,1<j<ny,
Dp(yfsw) (Y w) .
Gy = ﬁEwNN(o,z)< T , 1<p<ni;,n +1<j<ng+ny,

OY(yysw) I (ys sw) :
,;Ew~./\f(0,l)< T S TN, ny+1<p,j<ni+ng,

where G7°; denotes the (p, j)-th entry of G™.

To prove this lemma, we need tools from functional analysis. Let  be a Hilbert space of integrable
(d + 1)-dimensional vector fields on R4, ie., f € H if Eypno,n)[||f(w)]|3] < oo. The inner
product for any two elements f,g € H is E,nr0,1)[(f(w), g(w))]. Thus, to show that G is
strictly positive definite, it suffices to demonstrate that

Aoy w) Aoy w) 9yt w) A (Y ; w)

o ey Em , o e w0 eH
are linearly independent. Suppose there exist coefficients cgl), .. 61(111)’ c§2), .. c%) € R such that
(1) (1) (2)
1) 0p(yy s w) ) Op(ynsw) | (2)0Y(y; s w) 2 V(yngsw)
G g PN gyt gy b el T o
This implies that
9o(yD: o 7(11). IR ) 7(1
Cgl) Sp(yl 1w) R C,Ell) (p(y 1 ’w) 4 652) ¢(yl 1w) et 6512) ¢(y 2 7w) 0 (35)
ow ! ow ow 2 ow

for all w € R4+1,

We first compute the derivatives of ¢ and 1. Differentiating ¢ (y; w) [ times with respect to w, we
have

0" (y; w)
ow!

d*wn(y)

!
= atanh® (wTy)y®® + ﬁZtanh(l_s*'l)(wTy)y@(l*S) ® ETE

s=0
where ® denotes the tensor product.

Differentiating ¢ (y;w) [ times with respect to w, similar to the Leibniz rule for the [-th derivative
of the product of two scalar functions, we obtain

[

l
8 Y; —s . 8S'LU
%wz =D D ce(y) Y tanh D Ty o0 @ S
K olg=k =0
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Note that, the set

y§1)7®(n1+n2—1)’ o 7yr(gl),@(nﬁnz—1)7 y§2),®(n1+n2—1)’ o 7y$122),®(n1+n2—1)

is independent (see Lemma G.6 in |Du et al.|(2019a)).

This observation motivates us to differentiate both sides of [Eq.(35)[exactly I —1 = n; +nga—1+d |§: |
times for w, where £ is defined in Thus, we have

Lo (D) ! (2) !
n ey, s w) Do) sw) | 20y w) 0 0V(yls;w)
1T+ +()T+cl T+ +%2T—O.
By substituting the previous results into this equation, we have
dlé| ”
D3 SRR Sl SV SRR oS 903
ko lgl=k
D) (T (2,280 (1=s51) () T, (2, (2).0(1-5) 8sz"(%('2))
atanh™ (w” y;”)y; —i—ﬁZtanh (w'y;”)y; ®T =0,

s=0

where some higher-order derivative terms naturally vanish, so we have omitted them from the ex-
pression. Reorganizing the above equality as a linear combination in terms of

y£1)7®(n1+n271), . ,y( ),Q(n1+no— 1) 5 ), ®(n1+n271), o y1(122) (n1+n2_1)’

we explicitly list the coefficient in front of each term as follows:
di€|

s 5 . 0°w®
ZZ Z (:g(yz()l))tanh(l +|€|)(wTyI()1)) (1).®(1-s) o Z W e ) =0, ¥1 < p<ni, (36)
=0k |e]=k

and for 1 < 5 < no,

95wT n(y (2))

A (., T, (2)y,(2),0() (I—s+1) (2)y,,(2),®(—s)
atanh™ (w”y;™ )y, +BZtanh (w’ Y)Y, ® P

s=0

c§»2) =0.
(37
Note that under [Definition 1| the term inside the braces [| has a leading order. Therefore, as w
approaches infinity, the term in the brackets will not vanish. As a result, we can obtain
) =0,dP =0, Vi<p<n, 1<j<ns

So we can obtain that

Aoyt w) oyt iw) awyw)  a(ylw)

e , ey €eH
ow ow ow ow

are linearly independent. And G is positive definite.
Part 2: we prove that G™ is positive definite. Note that

Osp 1 ag 1) Oh; 1 ag (2)

i d —L = — Z (¢t )

o, ~ iy A G = )
Therefore, the subsequent proof proceeds in the same way as before. O

Lemma 4. Define Xo, Ao fo be the minimal eigenvalue of G‘X’,éo" respectively. If m =

Q ( - ‘ﬁ?;\z} log (”1+"2 )) then with probability at least 1 — 6, we have
min{\g,

A = ~ A
1G(0) = G2 < ZO and ||G(0) — G| < 22,
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To prove this lemma, we need to make some preliminary preparations.

Let g be a non-decreasing function with g(0) = 0. The g-Orlicz norm of a real-valued random

variable X is defined as
X := inf t>0:E|g —l | <1;.
H ||g 1

A random variable X is said to be sub-Weibull of order & > 0, denoted as sub-Weibull(«), if
I X ||, < 00, where

Volz) :=e*" —1, forz > 0.

The following result is a commonly used inequality in mathematical fields.

If Xq,---,X, are independent mean zero random variables with || X;||y4, < coforalll <i <n
and some « > 0, then for any vector a = (a1, -+ ,a,) € R, the following holds true:
P ( > aiXi| > 2eC(a)|bll2VE + 2eL:iL(oz)t1/a||b||ﬁ(a)> <27t forallt >0,  (38)
i=1

where b = (a1 || X1|

Yo T aanHXn“wa) € Rn’

/4,1/24(.2/e 1/ :
.: 1a [VBEm)VA 2 (/e fa)l/e, if < 1,
C(a) : maX{\/i 2 } {46 + 2(10g2)1/0¢, if o Z 1,

and for f(a) = oo when a < 1 and f(a) = /(v — 1) when o > 1,

Lo(a) == e {||b|5<a), if o < 1,
V2|bllz — 4ellbllga)/Cla), ifa>1.

and L, () = Ln («)C(a)[[bl2/[181] 5(c)

Proof. We focus on the proof about G(0).
Since ||G(0) — G|z < ||G(0) — G|| p, it suffices to bound each entry of G(0) — G°°, which is

of the form .
; <085Z’ gj}i> Ew~nr(0,1),a~Unif{—1,1} Z <§i§ gj}i> (39
or
§<§Zp§$> Eop AV (0,1)aUrie 11};@;’: aZJ, > (40)
or . .
; <§ZI;, gZ]T> Ewnnr(0,1),a~Unif{—1,1} ; <8wr 8wr> 41
Note that
9sp _ 3 ) [tanh“*'i')( Ty DYty 4 tanh(E (T y0 >)a“ﬂ
ow, \/Tl el P w,
and
gZi = \a/% {atanh'(wTyJ(Q)) 52) + Btanh’ (wTyj( )) n(y](?)) + Btanh’(w,] yJ(Q)) ( §2))} .
For the first form [Eq.(39)] let

ows
=3 > celyM) {tanh““)(wjyﬁf))wfyﬁ) +tanh('5')(wly§1))%] Vi<p<n
b El=k r

23



Under review as a conference paper at ICLR 2026

and
X, (i) = (Y, (1), Yo (5)), 1<4,5 <ny.
Then we have

- 0sp,  0s; Osp, 0s; 1 .. ..
Z <Bw,,’ BwT> Ew~n(0,1),a~Unif{ 1,1} Z <(“)w,« B, = nlim Z (X, (ij) —EX,.(ij)) -

r=1

Note that [ X, (i) < 1+ [[w, (0] 2], thus

. [ 3
1), 1+ [lee @] S 1+ @] 5 0
3 1

For the centered random variable, the property of ¢ 1+ quasi-norm implies that
H

1%, (i7) = BIX (i)l S 1Xe@)llw o + IEIX ()]l S d€.

1€] 1€l 1€l

Therefore, applying [Eq.(38)| (taking oo =

S (Xelig) ~ X (i) £

‘ —

) yields that with probability at least 1 — 4,
dlél 2 dlél b [
LA CHIR
which directly leads to
"/ ds; O, LNy T dlél 2 dll 2\
— ) —E LA < ———4/log= + — (log = .
;<8wT’8wT> (w’a);<8wT’8wT> ~ niy/m Og5+n1m o8

For the second form [Eq.(40)| and third form [Eq.(4T)] in a similar manner, we can obtain the same
result.

El

Combining the results for the three forms, we can deduce that with probability at least 1 — 4,
1G(0) = G| < 1G(0) - G|
21¢| 21¢| 21|
< d 1 2(n1 + TLQ) n d (10g 2(?11 + TLQ))

~om o8 0 m2 0

< dmé‘ 2(711 +TL2)

Thus when %r‘f' log M < 2ie,
d2|é| ni + N
=Q 1
" ( N < 5 ) ’
we have Ap,in (G(0)) > 3
O
Lemma 5. Ler R € (0,1], if w1(0),- - ,w(0) are i.i.d. generated from N (0,1a+1), then with
probability at least 1 — 6, the following holds. For any set of weight vectors W = (w7, ..., wI)T
anda = (ay,--- ,am,)" satisfying that for any 1 < r < m, ||w, —w,(0)|2 < Rand ||a—a(0)||s <

R, then the induced Gram matrices G(W , a), (-}(W, a) satisfy

3 [€]
||G<w,a>—G<o>||2s0fz<1 o 1og2+d: (1og 5) )

and ~
G(W G CR|14+— d- 1 2 + —d 1 2\
— < 1 -
[G(W,a) )2 < o og (Ogé)

where C' is a universal constant.
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Proof. As||G(W,a) — G(0)]2 < ||G(W,a) — G(0)||r, it suffices to bound each entry.
Note that

Osp y0) [ (HED) (T Owj

= c tanh (1) ( ) + tanh(€D 1)

e = T Z;}k (y (w? g ws (wiy) 5,

and

Oh; arVA T (2)y (2) T (2) (2) 100 T, (2) ()
o = NG {a tanh’(w, y;”)y; + Btanh’ (w Y, w n(yj ) + B tanh’(w, y;~ )n(y; )} )

For 1 < ¢, j < ny, noticing that all higher-order derivatives of tanh are bounded and R € (0, 1], we
have

Gi;(W,a) — Gi;(0)]
" /0si(W,a) 0s;(W,a) ~ /9s;(W(0),a(0)) 9s;(W(0),a(0))
> )¢ ’ )

— ow, = Ow, ow, ow,
1 2|¢]
<SR— 3 (lw +1).
~ T:l(Hw (0)[I2 )

For1l <i<ni,ng+1<j5 <ni+ nsy, we also have
|Gi;(W,a) — Gy;(0)]

Zm: <8sz‘(W,a) th(W,a)> _ <8Si(W(0)7a(0)) 8hj(W(0),a(0))>|

— ow, = Ow, ow, ’ ow,
1 m
<R 2/¢| 1
SRS O 1)

Forn; +1 <4,5 < ny + no, we still have
|Gi;(W,a) — Gi;(0)]
i Ohi(W,a) Oh;j(W,a)\ /8hi(W(0),a(0)) 9h;(W(0),a(0))
o ow, = Ow, ow, ’ ow,
1 m

SR—> (llw (0)]3 +1)

nom
2 r=1

< R—L S, (0)2 + 1),

noam

r=1

Combining above results yields that

m ~ 2
|G(W,a) = G(0)[3 < [|G(W, a) - G(0)|[} S R? + R? (:ﬂ > ||wr<o>|'§'> :
r=1

For the second term, applying |[Eq.(38)|implies that with probability at least 1 — 4,

dlé] 2 Jlél 1€l
—le w O3 S T flos 5+ (1og5) . “2)

Finally, we can deduce that with probability at least 1 —

€]
|G(W,a) - <>||2<0R<1+f 2 d'g'( )5)

where C is a universal constant. ]
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Lemma 6 (Bounded initial loss). With probability at least 1 — §, we have

3 2|€] 2|€]
Tom(0) < C (dzg log (m —(&;na) N dm (log (m js-m)) ) 7 43)

where C'is a universal constant.

Proof. For the initial value of PINN, we have

1 1 &
Jemp(0) = 5 s}i(W(O),a(O)H§Zh§(W(0),a(0))
p=1 j=1
2
1 < S () tanh (<) Ty (1)
=—> = al ce(y§)) tanh 14D (w, (0) Ty )ws — f(y)
2m =1 (‘Fr—l k=0 |¢|=k 3 3
2
1 no 1 m
+ 5 ( ar(0) (e tamh(w” ) + § tank (wy}? w n(y;”) g<y§2>>>
N2 i mi3
2
1 ni m
= - TZ ZZ% M) tanh <D (w, (0)TySNw |+ (f(5)))?
Lp=1 r=1 k=0 |¢|=k
na m 2
+ i (12a (0)a tanh(w T (2))>
Nno 4 m
j=1 r=1
no m 2
1 1
+ o (mz +(0)5 tank! (w ) n<y§2>>) + (90"
J=1 r=1

(44)

For the first term in|Eq.(44)| note that E [a,,(O) Z;:O% Dl =k C (y,()l)) tanh(I¢) (wT(O)Tyz()l))wf} =
0 and

Z 3 ce(yV) tanh 14D (w, (0)TyS)ws | < 14 [fw, (015,

k=0 |¢|=k

Therefore, we have

+oo )
03 3 celylV) tanh€0 (w, (0) Tyt yws <14 H”w” ||I£|H < dlél

k=0 |¢|=k o
1€1

Let X, = a,(0) 1% 2 l=k ce(y5") tanh €D (w,.(0)TySY )we, then with probability at least 1 —

57

X g 2 4 dlél €l
2l < dlEly 1oe 2 1 )

2 Jm |~ 85t Jm o8 ; 5

r=1

As for the second term, we have E[a, (0)« tanh(wT(O)TyEQ))] = 0 and by Lipschitz continuty,

ja,(0)avtanh (w, (0) )| < Jwn (0)7 5y
Thus .
lar(0)a tanh (w,(0)"y{?) |y, < C,
as w, (0)Tys? ~ N0, 9 [13).
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T (2)), applying [Eq.(38)|yields that with probability at least 1 — 6,
m YT

Yj
;m < ,/1og((15> +\/1mlog((ls>.

Finally, similar to the approach used for the first term, we can also control the third term. Let
(2)), then with probability at least 1 — ¢,

(2))an(yj

Let Y, = a,(0)atanh(w,(0)

2

Z, = a,(0)Btanh’(w'y
2 d

<dy/log = + —log —.

~ Ogé + o Og(5

Z,
=R

m
r=1

ny + n2>>2|€|

Combining all results above yields that

g ny + no d2|é|

\7emp(0> < a?el log ( 5 ) + m lo 5
holds with probability at least 1 — 4. O
Lemma 7. With probability at least 1 — 9,
2 m YY) . pe
||wr<o)||2_c(d+,/dlog(5)+1og(5) R (45)
holds for all 1 < r < m and C'is a universal constant.
Proof. From|[Eq.(38), we can deduce that for fixed r,
) 1 1
|wr(0)[]2 < C' | d+4/dlog 5)T log 3
holds with probability at least 1 — 4.
Therefore, the following holds with probability at least 1 — 6.
2< m m :
[, (0)|2 < © <d+ dlog ( : ) +log ( 5) |V € [m]
O
_ min{ Ao, Ao}
Lemma8. Let R =0 (d\é\ (log()%)[ié‘ ) If
N 218l pre
m=g| L <1Og <n1§nz>> . %’2 7
(/\0 + )\0)
and assuming la.(T)] < 2, |Jw-(7)|l2 < 2R, Anin(G(W(7),a(r))) > % and
)\min(é(W(T)7a(T))) > 22 forall 0 < 7 <, then ||w,(7) —w,(0)||2 < Rand |a,(T) — a,(0)] <
do< <t
O

R for all v € [m] an
Proof. The proof follows the same approach as Lemma B.2 in the paper |Gao et al.| (2023)) and is

omitted here for brevity.
After the preparation of the previous lemmas, we now present the complete proof of
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Proof. Finally, for all » € [m], w,(¢) and a(t) will remain within the balls B(w,(0), R) and
B(a(0), R), respectively. Without loss of generality, let us assume R’ > R, so that ||w,(7)]|2 < 2R’

if w, (7) stays inside B(w,(0), R). shows that if

_ 2|¢] 16
m = %.aﬂlél (log (nl—gm)> %
()\0 + )\0)

()\0 + )\0) Y min{A3, A3}

then for all # > 0 and 1 < r < m, we have ||[w,(t) — w-(0)[l2 < R, [Ja(t) — a(0)]2 < R,
Amin(G(W(t),a(t))) > %, and Amin (G(W(2),a(t))) > 22 Then we have
ATep (W (), (1)) ,a |’

dt 2dt t),a(t) /||,

1 < s(W(t),a(t
e )
~(Mo + Ao) - Temp(W(2), a(1)).

Furthermore, B
Temp(W(t),a(t)) < exp (=(Xo + Xo) - t) - Temp(w(0), a(0)),
for all ¢ > 0. O

H EXTENSION TO DEEPER NETWORKS

In this section, we discuss how our main results (Theorem 1] and [Theorem 3] can be extended to
deeper neural network architectures. For linear PDEs, the convergence analysis grounded in neural
tangent kernel (NTK) theory naturally generalizes to multi-layer networks, leveraging established
results from the NTK literature. In the context of nonlinear PDEs, we address the critical issue of the
linear independence of neuron functions and summarize recent theoretical advances that
provide sufficient conditions for preserving this property in deeper networks, especially three-layer
architectures. The relevant literature and further details are reviewed below.

H.1 CONVERGENCE RESULTS FOR SOLVING LINEAR PDES WITH DEEPER NEURAL
NETWORKS

Previous works (Gao et al, 2023} [Li et al.l 2023b) on the convergence of PINN frameworks for
second-order elliptic equations, both for gradient descent and implicit gradient descent, have been
primarily limited to two-layer neural networks. In contrast, |Du et al,| (2019b) establishes conver-
gence of the loss function for over-parameterized, multi-layer fully connected networks in the su-
pervised learning setting, fundamentally relying on the neural tangent kernel (NTK) theory for deep
networks. By combining the proof strategy of our result[Theorem I|with the layer-wise NTK analy-
sis from Du et al.|(2019b)), the convergence guarantees within the PINN framework can be extended
to over-parameterized, multi-layer fully connected networks, provided either implicit gradient de-
scent or gradient descent with a sufficiently small step size is used.

Below, we state an informal theorem (omitting explicit over-parameterization bounds), as in practice
it suffices to select the network width large enough to observe the convergence behavior, rather than
strictly adhering to theoretical minima.

Theorem 6 (Informal: Convergence of Multi-layer PINNs for Certain Linear PDEs). Consider a
physics-informed neural network (PINN) with a deep (multi-layer) architecture used to approximate
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the solution of an admissible linear PDE, where the empirical loss is defined analogously to[Eq.(6)]
and assume standard random initialization for all weights and biases. Under gradient flow training
and with a sufficiently wide network, the empirical loss Jemp(8(t)) decreases to zero as t — oo,
with a convergence rate governed by the spectrum of the neural tangent kernel associated with the
multi-layer architecture.

Furthermore, [Du et al| (2019b)) also extends convergence analyses to convolutional and ResNet
architectures in the supervised learning setting. This indicates that similar convergence results for
PINNSs could potentially be obtained for these more advanced architectures, which is a promising
direction for future research.

H.2 CONVERGENCE RESULTS FOR SOLVING NONLINEAR PDES WITH THREE-LAYER
NEURAL NETWORKS

To the best of our knowledge, our work is the first to investigate the convergence of PINNs for solv-
ing nonlinear PDEs, even though it is restricted to the two-layer random feature model. Following
the structure of in the main text, we note that the central step in the proof of
is to establish the coercivity of the loss function with respect to the trainable parameter a. This step
fundamentally depends on demonstrating the linear independence of the neuron basis functions (see
IProposition 2)), which, in turn, relies on[Lemma

Extending [Theorem 3|to multi-layer random feature models—where all hidden layer parameters are
fixed randomly—thus essentially reduces to ensuring that[Cemma 1] holds for multi-layer architec-
tures. In this context, the recent work [Zhang| (2024)) provides a relevant discussion and establishes
the following result.

Proposition 5 (Proposition 5.3 in Zhang| (2024)). Given d,m,n € N. Let {(w,gl), bg))}}f":l C
R™A+™ be such that (w,(:l), b,(:)) +(wy, (1) b(l)) # 0 for all distinct k1, ko € {1,...,m} and w,(:) #0

2 2 mn+n 2 2 2 2
forallk € {1,...,m}. Let {(w ( ),bg )) C R™™*" be such that (w 51),1)51)) ( ](2),b§2)) #0
for all distinct j1,j2 € {1,. .. ,n} and wj( ) 7& Oforall j € {1,...,n}. Then for o being a sigmoid
or tanh activation function, the three-layer neurons

{ (Z wjk o (wkl)z + b(l)) + b(2)> }
j=1

are linearly independent.

Although the three-layer result is more general than our the proof of is much
more straightforward, while the three-layer result relies on elaborate arguments in the cited work.
Therefore, by applying the above result and following the proof strategy of we can
obtain the following convergence theorem.

Random Initialization (Three-layer Network) Inner-layer parameters {(w,(cl),b,(:)) 7, and
{(w (2)7b(2)) ™_, are randomly initialized as follows:

M~ N(0,1d) iid,  wl® ~ N(0,1d) iid.,

Vo N(0,1)iid, b~ N(0,1) Lid.
forl1<k<m,1<j5<n.

Theorem 7 (Almost sure convergence via admissible initialization for three-layer networks). Under
regardless of the specific form of the differential operator L in the PDE with Dirichlet

boundary condition, we can initialize the inner parameters {(w,gl), bé,l))}}?:l and {(w ,(.2) b(Z)) -
with probability I such that:

(i) J is coercive about a;

(ii) All convergence results of[Proposition I|hold for the three-layer setting.
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As for more complex network architectures, we are currently unable to provide a rigorous theoretical
result, and this will be the subject of future research. It is also worth noting that when the inner-layer
parameters are trainable, even in the two-layer case, current theory only guarantees either divergence
to infinity or convergence to a critical point. Without imposing additional assumptions, it is not yet
possible to rule out parameter divergence, and thus convergence cannot be ensured.

I ADDITIONAL EXPERIMENTS

In this section, we provide experimental details and results to supplement the main text. We begin
by presenting the pseudocode for implementing PINNs with implicit gradient descent, followed by a
detailed description of the experimental setup for the Burgers’ equation. Finally, we provide further
experimental setups and results for high-dimensional test problems. In addition, all experiments in
this paper were conducted on a desktop computer equipped with a single 4060Ti GPU.

I.1 PSEUDOCODE FOR IGD

Compared to standard optimization algorithms such as gradient descent or stochastic gradient de-
scent, implicit gradient descent is less commonly used and may be less familiar to readers. There-
fore, we provide a detailed explanation here. Let 6 denote all trainable parameters in the network
and J (6) represent the empirical loss function. The iteration rule for implicit gradient descent is
given by:

OFtt = oF — VT (0, k=0,1,2,....

This update step can be interpreted as solving the following optimization problem:
. 1
min 17 (&) + 5 /1€ - 6. (46)

The first-order optimality condition for this problem is equivalent to the IGD update rule. Conse-
quently, regardless of the step size, the parameter sequence generated by IGD guarantees a monoton-
ically decreasing loss value. This inherent stability allows IGD to impose much weaker restrictions
on the choice of step size compared to standard gradient descent.

It is important to note that the operator I + V.7 may not be invertible for arbitrary loss functions.
However, when J is convex, proximal point theory ensures that the subproblem above always admits
a solution for any step size 7. In practice, PINNs often employ second-order solvers such as L-
BFGS to efficiently solve the subproblem even when convexity is not strictly satisfied.
This practical approach makes IGD a robust and effective choice for real-world applications. The

pseudocode for implementing the IGD algorithm is provided below in[Algorithm T}

Algorithm 1 Mini-batch implicit gradient descent (IGD)

1: Input:
Training dataset D; Batch size B;
Number of outer iterations /7; Number of inner iterations K;
Outer (IGD) step size 7; Inner (solver) step size +; Initial parameters 6°.
2: fork=0to K; — 1do
3:  Sample a batch By, of size B from D
4:  Define empirical loss function J;,(6) on By,
5:  Inner loop:
Use L-BFGS optimizer to approximately solve[Eq.(46)| with K, iterations and (internal) step
size .
Let £0 = 6%,
fort =0to K5 — 1do
¢4+ is obtained by applying one L-BFGS step to &' on the objective in[Eq.(46)|
end for
9:  Set §*F1 = ¢X2 a5 the output of the inner loop
10: end for
11: Output: Final parameters

® R
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1.2 EXPERIMENT SETUP FOR BURGERS’ EQUATION

In the main text, for the sake of brevity, we only presented the results of our partial experiments.
Here, to ensure the reliability and reproducibility of our findings, we provide comprehensive details
of the experimental setup, including the specific hyperparameter choices.

Experiment setup for[Figure I, The primary goal of [Figure 1|is to illustrate that the neural tangent
kernel (NTK) matrix induced by the loss corresponding to the nonlinear differential operator evolves

significantly during training, while the NTK matrix corresponding to the linear boundary operator
remains nearly unchanged. To demonstrate this effect, we used a scaled two-layer neural network
as the model architecture:

1000

ax tanh (w] (t,)) .
/1000 ;

The weight parameters wy, were initialized using the standard normal distribution, while the outer
parameters aj, were initialized uniformly over the interval [—1, 1]. The training dataset consisted of
100 interior points and 20 boundary points. The relatively small number of data points, compared
to the network width, was chosen to satisfy the overparameterization conditions assumed in NTK
theory. Throughout training, no mini-batching was used; instead, full-batch updates were performed
at every iteration.

u(t,x;0) =

The implicit gradient descent (IGD) algorithm was used to optimize the network parameters a =
(ak)1<k<1000, While the weights w = (wg)1<r<1000 Were kept fixed throughout training. The outer
IGD iterations were performed for 100 steps with a step size of = 0.5. At each outer iteration,
the inner subproblem [Eq.(46)| was solved using the L-BFGS optimizer, with a step size of 0.1 and
10 iterations per outer step. The result shown in [Figure T| was generated under these settings. A
summary of the chosen hyperparameters is provided in[Table 2] for reference.

Table 2: Hyperparameter settings for the experiment in

Component Value Description
Interior points 100 Training data points (domain)
Boundary points 20 Training data points (boundary)
Batching Full No mini-batch
Outer IGD steps 100 Total optimization iterations
IGD step size 0.5 Step size for outer loop
Inner solver L-BFGS Optimizer for each IGD step
L-BFGS steps 10 Inner iterations per IGD step
L-BFGS step size 0.1 Step size for L-BFGS

Experiment setup for convergence validation on Burgers’ equation. This experiment aims to
empirically validate[Theorem 3| which concerns the convergence of the random feature model when
solving nonlinear equations. The neural network used is a two-layer model with width 100:

100

u(t,x;0) = Z ay tanh (w,;r(t, z)) .
k=1

The weights wy, were initialized from a standard normal distribution, while the coefficients a;, were
initialized uniformly in the interval [—1, 1]. The training dataset contains 10,000 interior points and
100 boundary points, clearly not in an overparameterized regime. Full-batch training is employed
for this experiment.

IGD algorithm is used to optimize the outer-layer parameters. The step size of the outer iteration
is = 0.5 for 10000 steps. Each IGD subproblem is approximately solved using the L-BFGS
optimizer (20 inner steps per outer loop) with a step size of 0.01. A summary of the key settings is

provided in
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Table 3: Hyperparameter settings of the experiment for convergence validation on Burgers’ equation.

Component Value
Parameter initialization wg ~ N(0,1), ap ~U[-1,1]
Interior points 10,000
Boundary points 100
Batching Full batch
Optimizer (IGD) Outer steps: 10000, step size n = 0.5
Inner solver (IGD) L-BFGS, 20 steps/outer step, step size = 0.01

1.3 HIGH-DIMENSIONAL EXPERIMENTS

To further validate the theoretical results presented in the main text, we conduct experiments on
high-dimensional nonlinear partial differential equations. In particular, we consider both the Allen—
Cahn and Fisher—KPP equations as representative examples. These experiments are designed to test
whether our theoretical insights hold in more challenging, high-dimensional scenarios. The detailed
settings and results for each equation are presented in the following subsections.

1.3.1 ALLEN—CAHN EQUATION

We consider the two-dimensional Allen—Cahn equation,
up = €2 Au — (u® — u) + S(x,y,1), 47

on (z,y) € [-1,1] x [-1,1], t € [0, 1], with e = 0.1. The exact solution we set is
u(zw,y,t) = [sin(rz) cos(my) + 0.1 sin(107z) cos(10my)]e*,

from which S(z, y, t), initial, and boundary conditions are determined.

Experiment 1: NTK failure in the random feature model for nonlinear PDEs.

To solve within the PINN framework, we use a shallow neural network of the form

1000

1
Uy = \/ﬁ ; ar, tanh (w,;rx + bk) ,

where x = (x,3,t)". The inner parameters (wy, by) are initialized as standard Gaussian and kept
fixed, while the outer coefficients ay are initialized uniformly in (—1, 1) and optimized by the IGD
algorithm. The dataset consists of 50 boundary and 200 interior points, with full-batch training.
Optimization is performed for 100 outer steps of step size 0.5 (each with 10 L-BFGS inner iterations
of step size 0.1). We track the relative Frobenius norm of the NTK matrices during training, as
shown in[Figure 2] The results indicates that while the NTK remains stable for the linear (boundary)
operator, it changes significantly for the nonlinear (interior) operator, reflecting a breakdown of the
NTK regime even in the random feature model for nonlinear problems.

Experiment 2: Convergence in the random feature model.

In this experiment, we continue to use the random feature model wy = Z,lc'flo ay, tanh(w] x + by),
with (wg, bg) fixed after Gaussian initialization and ay, initialized uniformly in (—1,1) and opti-
mized by IGD. The dataset contains 500 boundary and 10,000 interior points. Training is performed
in full batch for 2,000,000 total steps (50,000 IGD outer steps with step size 0.5, each with 40
L-BFGS inner steps of step size 0.1).

At the end of training, the /3-norm of the loss gradient with respect to parameters is about 1.86 x
103, indicating convergence to a critical point, which is consistent with our theoretical analysis in
We note that the norm is not zero, likely due to the problem’s multiscale nature and the
finite training budget: even 2,000,000 steps are sometimes insufficient for full convergence in such
stiff problems (prior works have reported using up to 5,000,000 steps).

Experiment 3: IGD outperforms Adam on multi-scale problems with large step sizes.
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Relative Frobenius norm for two NTK matrices

l B
le-1 4
e —_—
£ lez
S
e le-3
v le-4
2
c . .
g —— Interior NTK matrix
o —— Boundary NTK matrix
w
[+
=
S
fo
[+}}
o
le-12
0 20 40 60 80 100

lteration

Figure 2: Relative Frobenius norm of two NTK matrices for Allen—Cahn equation.

We further assess the performance of IGD and Adam on a more expressive model: a fully connected
neural network comprising four layers with 100 neurons each. Biases are initialized to zero, and
all other weights are initialized using Xavier normal initialization. Both IGD and Adam employ
the same initialization scheme. The training data contains 500 boundary points and 20,000 interior
points, with mini-batch sizes of 32 and 256 for boundary and interior points, respectively.

Both optimizers are trained for a total of 1,000,000 steps. For IGD, this corresponds to 25,000 outer
steps (learning rate 0.1), with each outer step followed by 40 L-BFGS inner iterations (learning rate
0.1). Adam uses a constant learning rate of 0.1 throughout all iterations.

Figure 3|shows the loss curves over the entire training process for both IGD and Adam algorithms.
With a step size of 0.1, IGD exhibits steady and stable loss reduction, whereas Adam experiences
severe oscillations and fails to make substantive progress on this multiscale problem. These results
further underscore the robustness and effectiveness of IGD in challenging multiscale settings. Fur-
thermore, [Figure 4| shows the solutions obtained by IGD at three representative time points. As
shown, the learned solution captures some key features of the ground truth.

Loss Curves of IGD and Adam
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Figure 3: Loss curves for IGD and Adam on Allen—Cahn equation.
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Figure 4: Numerical solutions obtained by IGD at 3 different time points for Allen—Cahn equation.

1.3.2 FISHER-KPP EQUATION

To further supplement our main results, we present experiments on the classical two-dimensional
Fisher—KPP equation, a widely studied reaction-diffusion model. The equation is given by

Uy = Au+u(1 — U) +S<xayat)7

where (z,y) € [~1,1]2 and ¢ € [0, 1]. The exact solution is selected as u(z,y, t) = e~ (@ T¥°+1),
from which the source term S(z, y, t) as well as the initial and boundary conditions can be directly
determined.

Experiment 1: NTK Failure in the random feature model for Nonlinear PDEs.

In this experiment, we use a two-layer neural network,

1000

Ug = \/ﬁ kZ::l aj tanh (w;x + bk) ,

where x = (z,y,t)". The inner parameters (wy, by,) are initialized as standard Gaussian random
variables and then fixed, and the outer coefficients ay, are initialized uniformly in (—1, 1) and op-
timized by the IGD algorithm. The dataset consists of 50 boundary and 200 interior points (full
batch). Training is performed over 100 outer steps of learning rate 0.5 (each with 10 L-BFGS inner
steps of learning rate 0.1). We report the relative Frobenius norm of the NTK matrices during train-
ing in[Figure 3] illustrating that the NTK theory breaks down for the nonlinear (interior) component,
as evidenced by significant changes in the NTK matrix throughout training.

Experiment 2: Convergence in the random feature model.
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Figure 5: Relative Frobenius norm of two NTK matrices for Fisher—KPP equation.

Here we retain the random feature structure but remove the ﬁ normalization, using ug =
1000 . o . .
ot Ok tanh(w] x + by). As before, (wg, by,) are fixed after Gaussian initialization and ay, are

initialized uniformly in (—1,1) and trained by IGD. The data comprises 500 boundary points and
10,000 interior points (full batch).

Training is performed for a total of 100,000 steps (2500 IGD outer steps, each with 40 L-BFGS inner
steps; outer and inner step sizes are 0.5 and 0.1, respectively). At the end of training, the /2-norm of
the loss gradient with respect to the parameters is 6.74 x 10~%, indicating that a has converged to a
critical point (gradient nearly zero), in accord with the theoretical results presented in

Experiment 3: IGD demonstrates superior stability to Adam under large step sizes

We compare the performance of IGD and Adam in solving the Fisher—KPP equation using a four-
layer fully connected neural network with 100 neurons per hidden layer. The biases are initialized
to zero, and all other trainable parameters are initialized using Xavier normal initialization. The
training dataset consists of 500 boundary points and 20,000 interior points, with batch sizes of 32
and 256 for the boundary and interior, respectively.

Training is performed for 200,000 steps. Specifically, IGD is run for 5,000 outer iterations with a
learning rate of 0.1, each comprising 40 inner L-BFGS steps (also with learning rate 0.1). Adam is
trained for the full 200,000 steps with a fixed learning rate of 0.1. As shown in[Figure 6| Adam’s loss
curve exhibits substantial oscillations during training, whereas the loss for IGD decreases smoothly
and steadily, highlighting the superior stability of IGD. In addition, presents the solu-
tions obtained by IGD alongside the exact solutions at three representative time points. The results
demonstrate that IGD yields solutions in close agreement with the exact solution.

1.4 EXPERIMENT TO VALIDATE [HEOREM 4

To verify the convergence result stated in[Theorem 4] we solve the following PDE within the PINN
framework:

—div (1 +u?)Vu) + g(@)u+h(w) = f(@), q=0, h(wu>0, (xy) e BO,1),
with homogeneous Dirichlet boundary conditions.

For this experiment, we set ¢ = 1 and h(u) = u3, and the chosen exact solution is

u(z,y) =1 — 22—y

We can canculate the corresponding source term f(x,y) accordingly. The neural network employed
is a random feature model, specifically a two-layer network given by
100

Ug = Z ar, tanh (w;x) ,
k=1
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Loss Curve for IGD and Adam Optimizer
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Figure 6: Loss curves for IGD and Adam on Fisher—-KPP equation.
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Figure 7: Numerical solutions obtained by IGD at 3 different time points for Fisher—KPP equation.

where x = (, )T, ax denotes the trainable outer parameters. Only the residual loss is considered,
with training points sampled uniformly from 10, 000 locations inside B(0, 1). The homogeneous
Dirichlet boundary condition can be enforced by multiplying the network output by a cutoff function
 that vanishes on the boundary.
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We optimize the outer parameters a using the IGD algorithm sufficiently to ensure convergence.
Specifically, IGD updates are performed with a step size of 0.5 for outer steps, and at each step the
subproblem is solved by L-BFGS with a step size of 0.1 for 40 inner iterations. Under this proto-
col, we test the convergence behavior starting from different random initializations of parameters.
We report the Euclidean 2-norm of the residual loss gradient with respect to a at the end of train-
ing for each initialization, as shown in The results confirm the convergence predicted by

Table 4: Loss gradient norms and IGD steps for different initializations.

Initialization IVJ(a)|l2  Outer IGD Steps
Xavier normal for wy,, Xavier uniform for ay, 2.44 x 1074 10000
Standard normal for wy, uniform [—1,1] for a;,  1.45 x 1074 200000
LeCun normal initialization for both wy, and ;. 1.37 x 10~* 200000

We note that the latter two initializations require more IGD steps to reach convergence. This is
because their initial losses are relatively large, resulting in longer optimization trajectories.

J CONVERGENCE ANALYSIS FOR SGD

In this section, we investigate whether the convergence results established for full-batch optimization
in the main text (Theorem I|and [Theorem 3) can be extended to stochastic gradient descent (SGD).
We specifically compare convergence behaviors under SGD for linear and nonlinear PDEs, and
highlight the key challenges and open questions arising in the stochastic setting.

J.1 SGD CONVERGENCE FOR SOLVING LINEAR PDES

As discussed throughout this work, convergence analysis for linear PDEs is fundamentally based on
NTK theory. Notably, Xu & Zhu|(2024)) demonstrated that, in supervised learning, one-pass SGD
with streaming data—where each iteration samples a fresh, non-repeating point from a continuously
distributed dataset—admits a deterministic limit kernel. This insight strongly motivates the use
of NTK-based arguments for analyzing the convergence of overparameterized neural networks for
linear PDEs within the PINN framework.

However, extending rigorous theoretical results to PINNs in the SGD setting is significantly more
complex. Formal proofs demand careful treatment of the interplay between the data distribution,
sampling procedure, and network overparameterization, which is beyond the scope of this work. We
leave such comprehensive theoretical analysis for future studies.

J.2  SGD CONVERGENCE FOR NONLINEAR PDEs

For nonlinear PDEs, NTK theory is generally inapplicable, and our main text relies instead on
the Lojasiewicz inequality for convergence analysis. Recently, works such as Dereich & Kassing
(2021); |An & Lu (2023) have established convergence guarantees for SGD under certain condi-
tions, notably the boundedness of trajectories, by leveraging the Lojasiewicz inequality as the key
tool. While these results provide a natural foundation, applying them directly in the PINN context
presents new challenges. In standard supervised learning, the required trajectory conditions can hold
with probability one under suitable assumptions; however, for PINNS, it is only straightforward to
establish that the probability of bounded SGD trajectories is positive, without control over its mag-
nitude. Quantifying this probability and fully characterizing convergence probabilities remains an
open question in the PINN setting.

In summary, while the foundational tools for extending convergence results to SGD exist, a com-
plete understanding—especially for nonlinear PDEs—requires further investigation. In particular,
characterizing the likelihood of favorable SGD behavior in the PINN setting represents an important
direction for future research.
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