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ABSTRACT

We present a unified convergence theory for gradient-based training of neural net-
work methods for partial differential equations (PDEs), covering both physics-
informed neural networks (PINNs) and the Deep Ritz method. For linear PDEs,
we extend the neural tangent kernel (NTK) framework for PINNs to establish
global convergence guarantees for a broad class of linear operators. For non-
linear PDEs, we prove convergence to critical points via the Łojasiewicz in-
equality under the random feature model, eliminating the need for strong over-
parameterization and encompassing both gradient flow and implicit gradient de-
scent dynamics. Our results further reveal that the random feature model exhibits
an implicit regularization effect, preventing parameter divergence to infinity. The-
oretical findings are corroborated by numerical experiments, providing new in-
sights into the training dynamics and robustness of neural network PDE solvers.

1 INTRODUCTION

Partial differential equations (PDEs) form the mathematical foundation for modeling phenomena
across physics, engineering, and applied sciences. While linear PDEs are relatively well-understood,
nonlinear PDEs, ubiquitous in modeling complex systems, pose significant analytical and compu-
tational challenges due to their lack of superposition principles and potential for solution singular-
ities (Evans, 2022; Johnson, 2009). Recent advances in machine learning have introduced neural
PDE solvers, such as physics-informed neural networks (Raissi et al., 2019) and the Deep Ritz
method (E & Yu, 2018), as flexible alternatives to traditional numerical methods. These approaches
have demonstrated empirical success in high-dimensional and nonlinear settings (Lawal et al., 2022;
Karniadakis et al., 2021; Liao & Ming, 2021; Liu et al., 2023), but their theoretical convergence
guarantees remain limited, especially for nonlinear PDEs.

Most existing convergence analyses for physics-informed neural networks are developed within the
neural tangent kernel framework (Jacot et al., 2018; Li et al., 2020), which primarily provides guar-
antees for second-order linear PDEs using over-parameterized networks (Gao et al., 2023; Xu et al.,
2024a;b). While it is commonly believed that NTK-based results could be extended to broader
classes of linear PDEs, rigorous proofs beyond the second-order setting are still lacking. For
the Deep Ritz method, convergence analyses typically rely on coercivity of the bilinear form and
Rademacher complexity estimates (Duan et al., 2022; Jiao et al., 2024; Lu et al., 2021); however,
these approaches are mostly confined to linear elliptic equations with convex energy functionals, and
the extension to general variational problems remains underexplored. Crucially, neither framework
currently offers provable convergence guarantees for solving nonlinear PDEs. In particular, when
PINNs are used to solve equations with nonlinear differential operators, the associated NTK matrix
evolves dynamically during training and, as shown in Bonfanti et al. (2024), fails to converge to a
deterministic kernel in the infinite-width limit. For the Deep Ritz method, the non-convexity inher-
ent in nonlinear PDEs further complicates the analysis. This theoretical gap poses a major challenge
to our understanding of neural PDE solvers in nonlinear regimes.

In this work, we overcome the aforementioned theoretical limitations by establishing a systematic
convergence theory for neural PDE solvers across both linear and nonlinear regimes. For linear
PDEs, we extend the NTK framework to establish convergence guarantees for PINNs solving a broad
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class of linear operators, surpassing results limited to second-order cases. For nonlinear PDEs, we
introduce a new approach using the Łojasiewicz inequality (Haraux, 2012) to rigorously characterize
optimization dynamics and guarantee convergence to critical points for important nonlinear cases.
This provides the first convergence theory unifying PINNs and Deep Ritz methods in nonlinear
settings. More precisely, the main contributions of this paper are as follows:

(i) We establish convergence to global minima for over-parameterized PINNs in solving a broad
class of linear PDEs, thereby significantly extending existing NTK-based results that are limited to
second-order cases (Theorem 1).

(ii) We provide a convergence framework for PINN and Deep Ritz solvers under both gradient flow
and implicit gradient descent dynamics, assuming coercivity of the loss function (Proposition 1).

(iii) Under the random feature model, we prove convergence to critical points for both PINN and
Deep Ritz solvers when applied to a wide range of PDEs, including all evolutionary equations and
several fundamental classes of nonlinear PDEs (Theorems 3 and 4). Moreover, our analysis reveals
an intrinsic regularization effect induced by the random feature model.

This paper is organized as follows. In Section 2, we review related works on machine learning-
based PDE solvers and existing convergence analyses. Section 3 introduces the problem setting,
and establishes general convergence results. Section 4 presents our main convergence results for
solving nonlinear PDEs under different cases. Section 5 provides experimental evidence supporting
our theoretical findings. Finally, Section 6 concludes the paper and discusses potential directions for
future research. Technical proofs and supplementary materials are included in the appendix.

2 RELATED WORKS

Machine learning PDE solvers. There are various machine learning-based solvers for PDEs,
among which physics-informed neural networks (Raissi et al., 2019) and Deep Ritz method (E &
Yu, 2018) are the most widely used. PINNs incorporate the PDE structure directly into the loss
function, while Deep Ritz leverages the variational form of certain problems. Both methods have
demonstrated remarkable empirical performance in solving a wide variety of nonlinear PDEs includ-
ing, for example, the Allen–Cahn equation (Wight & Zhao, 2021) and Schrödinger equation (Qiu
et al., 2025) across numerous applications (Chen et al., 2024; Tang et al., 2023; Savović et al.,
2023). Despite their success, theoretical understanding of their convergence properties, particularly
for nonlinear PDEs, remains limited and is an active area of ongoing research.

Existing convergence analysis using NTK framework. The neural tangent kernel (NTK) frame-
work, which approximates over-parameterized neural networks as linear models with an almost con-
stant Gram matrix during training, underpins much of the existing convergence analysis (Jacot et al.,
2018; Li et al., 2020). NTK was initially applied to study gradient descent in supervised learning
settings (Du et al., 2019a; Luo & Yang, 2024; Du et al., 2019b), and has been extended to analyze
the convergence of PINNs for second-order linear PDEs (Gao et al., 2023; Xu et al., 2024a;b). These
results typically show that, for highly over-parameterized NTK-scaled neural networks, the training
loss converges to zero with gradient-based optimization methods.

Convergence analysis using Łojasiewicz inequality. The Łojasiewicz inequality (Haraux, 2012)
is a fundamental analytical tool in the field of optimization, especially for studying the convergence
properties of gradient-based algorithms (Bolte et al., 2007; Alaa & Pierre, 2013). Traditionally, it
has been widely used to analyze the convergence in various non-convex and nonsmooth optimization
problems (Schneider & Uschmajew, 2015; Attouch et al., 2010; Karimi et al., 2016). In recent
years, the Łojasiewicz inequality has also been increasingly applied in the context of supervised
learning (Forti et al., 2006; Li et al., 2023a). Researchers have leveraged this inequality to study the
convergence behavior of machine learning algorithms, providing theoretical guarantees for global
or local convergence under mild assumptions (Lee et al., 2016; Ahmadova, 2023).

3 MATHEMATICAL SETUP AND GENERAL SUPPORTING RESULTS

In this section, we present the basic mathematical setup and introduce both PINNs and Deep Ritz
solvers. In Section 3.2, we establish two main results: first, a rigorous global convergence guarantee
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for PINNs in solving a broad class of linear PDEs based on the NTK approach; second, a more
general convergence result to critical points, which serves as the foundation for our subsequent
analysis of nonlinear PDEs.

3.1 PROBLEM SETTING

We consider a general class of partial differential equations defined on an open bounded domain
Ω ⊂ Rd with d > 1, taking the following form:{

Lu = f, x ∈ Ω,

Bu = g, x ∈ ∂Ω,
(1)

where L represents a differential operator that may be linear or nonlinear, and f ∈ L∞(Ω) denotes
the source term. For evolutionary PDE, we adopt the convention where the first component of x rep-
resents the temporal dimension while the remaining components correspond to spatial coordinates,
thus naturally satisfying d > 1. The boundary conditions are encoded through the operator B, which
we specify as Robin-type: αu(x) + β ∂u∂n (x) = g(x) for x ∈ ∂Ω, where α, β ∈ R are not both zero,
g ∈ L2(∂Ω) is the prescribed boundary data, and ∂u

∂n denotes the outward normal derivative.

In this work, we focus on two neural network-based approaches for solving PDEs: physics-informed
neural networks (PINNs) and the Deep Ritz method. Both leverage the expressive power of deep
networks to approximate the solution u. In PINNs, a neural network uθ(x) parameterized by θ is
trained by minimizing the composite loss:

JPINN(θ) =

∫
Ω

(Luθ(x)− f(x))
2
dx+ λ

∫
∂Ω

(Buθ(x)− g(x))
2
dx, (2)

where λ ≥ 0 balances the PDE residual and boundary losses. The Deep Ritz method, applicable to
PDEs with variational structure E(u), seeks a minimizer uθ of the loss function:

JRitz(θ) = E(uθ) + λ

∫
∂Ω

(Buθ(x)− g(x))
2
dx. (3)

In our theoretical framework, we employ a two-layer neural network with tanh activation function
to approximate the solution to Eq.(1). Specifically, the network takes the form:

uθ(x) =
∑m

k=1
ak tanh(wT

kx+ bk), (4)

where θ = {(ak, wk, bk)}mk=1 denotes all parameters, with ak ∈ R, wk ∈ Rd and bk ∈ R. The tanh
activation function is particularly well-suited for our analysis due to its analyticity and bounded
derivatives. More crucially, it satisfies a key property (see Lemma 1) that, in combination with its
other features, underpins our convergence theory. The following lemma is proved in Section B.
Lemma 1 (Linear independence). Let m be a positive integer, and let α, β ∈ R be not both zero.
Given real numbers p1, . . . , pm such that pi ̸= ±pj for 1 ≤ i ̸= j ≤ m, and q1, . . . , qm ∈ R, the
functions α tanh(p1t+ q1)+β tanh

′(p1t+ q1) , . . . , α tanh(pmt+ qm)+β tanh′(pmt+ qm) are
linearly independent over R.
Remark 1 (On the choice of activation functions). Our analysis relies on three key properties of the
activation function: bounded derivatives, analyticity, and the linear independence property stated
in Lemma 1. These hold for a broad class of analytic activations, such as sigmoid and arctan. The
theoretical framework can be readily extended to any activation function satisfying these conditions.

3.2 GENERAL CONVERGENCE RESULTS

This subsection presents two convergence results for neural PDE solvers. While the NTK framework
guarantees global convergence for solving most linear PDEs, it can not extend to nonlinear cases.
This limitation motivates our alternative approach based on Łojasiewicz analysis, which establishes
critical point convergence beyond the linear setting.

3.2.1 NTK-BASED CONVERGENCE FOR MOST LINEAR PDES

While prior PINN convergence theories have mainly focused on second-order linear PDEs, such as
the heat equation, we extend existing analytical techniques to establish the first global convergence
guarantees for solving a broad class of linear PDEs. We begin by introducing some notations.
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Notation: Let ξ = (ξ1, . . . , ξd) ∈ Nd be a d-dimensional multi-index, where N denotes the set of
non-negative integers. Given a vector x = (x1, . . . , xd)

T ∈ Rd, we define the ξ-th power of x as
xξ :=

∏d
i=1 x

ξi
i . For a sufficiently smooth function u : Rd → R, its ξ-th partial derivative is denoted

by ∂ξu := ∂|ξ|u

∂x
ξ1
1 ···∂xξd

d

, where |ξ| :=
∑d
i=1 ξi represents the order of the derivative. For two positive

functions f1(n) and f2(n), we use f1(n) = O(f2(n)), f2(n) = Ω(f1(n)), or f1(n) ≲ f2(n) to
indicate that f1(n) ≤ Cf2(n), where C is a universal constant. If we further omit some logarithmic
terms with the existence of polynomial terms, we adopt f1(n) = Õ(f2(n)) and f2(n) = Ω̃(f1(n)).
Definition 1 (Admissible linear operators). Let L be a linear differential operator of the form
Lu(x) =

∑∞
k=0

∑
|ξ|=k cξ(x) ∂

ξu, where only finitely many coefficients cξ are nonzero. We re-

quire that all nonzero cξ ∈ L∞(Ω), and that there exists a maximal multi-index ξ̃ such that cξ̃ ̸= 0

and |ξ̃| > |ξ| for all other ξ with cξ ̸= 0.

Under the neural tangent kernel framework, we use a rescaled two-layer neural network of the form:

uθ(x) =
1√
m

∑m

k=1
ak tanh(w

T
k x+ bk), (5)

where the scaling factor 1√
m

ensures proper normalization for theoretical analysis. Within the PINN
framework, the empirical loss combines PDE residual and boundary terms on collocation points as
follows,

Jemp(θ) =
1

n1

n1∑
i=1

1

2

∣∣∣Luθ (x(1)i )− f
(
x
(1)
i

)∣∣∣2 + λ

n2

n2∑
j=1

1

2

∣∣∣Buθ (x(2)j )− g
(
x
(2)
j

)∣∣∣2 , (6)

with collocation points {x(1)i }n1
i=1 ⊂ Ω and {x(2)j }n2

j=1 ⊂ ∂Ω. Under gradient flow training, we show
that Jemp(θ(t)) converges to the global minimum of the empirical loss if L is admissible.
Theorem 1 (Convergence for admissible linear PDEs). Assume that the linear differential opera-
tor L is admissible. Consider the gradient flow dynamics for Eq.(6), dθ(t)

dt = −∇Jemp(θ). Given
training samples {x(1)i }n1

i=1 ⊂ Ω and {x(2)j }n2
j=1 ⊂ ∂Ω, initialize the parameters in Eq.(5) as

ak ∼ Unif{−1, 1}, wk ∼ N (0, Id), bk ∼ N (0, 1) i.i.d. Then, with probability at least 1− δ,

Jemp(θ(t)) ≤ exp
(
− (λ0 + λ̃0)t

)
Jemp(θ(0)), ∀t ≥ 0,

provided that m = Ω̃

(
1

(λ0+λ̃0)
2 d4|ξ̃|

(
log
(
n1+n2

δ

))4|ξ̃| d3

min{λ2
0, λ̃

2
0}

)
.

Remark 2. The proof of this theorem is provided in Section G. As shown in the proof, λ0, λ̃0 are
actually the minimum eigenvalues of the Gram matrices respectively.
Remark 3 (Various extensions). Theorem 1 can extend to several broader contexts:

(1) Other training dynamics: Leveraging the NTK analysis, the theorem applies to gradient descent
with sufficiently small step sizes, implicit gradient descent, and other initialization schemes. Possible
extensions to SGD are discussed in Section J.1.

(2) More complex network architectures: The proof strategy adapts to deeper networks, following
extensions of NTK theory in the supervised learning (Du et al., 2019b); see also Section H.1.

(3) Broader classes of linear operators: While we focus on admissible linear operators, similar
techniques apply to a broader class of linear operators. Further details are omitted for brevity.

3.2.2 FROM LINEAR TO NONLINEAR PDES

Our NTK-based convergence theory for linear PDEs relies on the near-constancy of the Gram matrix
during training, a property that does not hold for nonlinear PDEs as proved in Bonfanti et al. (2024).
To illustrate this point more intuitively, we present a numerical experiment. Consider the viscous
Burgers’ equation: 

ut + uux = 0.01
π uxx, t ∈ (0, 1), x ∈ (−1, 1),

u(0, x) = − sin(πx), x ∈ (−1, 1),

u(t,−1) = u(t, 1) = 0, t ∈ (0, 1).

(7)
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We demonstrate the failure of NTK theory for Burgers’ equation using a neural network with ar-
chitecture described in Eq.(5) (with width m = 1000); detailed experimental settings are provided
in Section I.2. For simplicity, we train only the outer-layer parameters a = (a1, . . . , am)⊤ using
implicit gradient descent (see Section I.1 for algorithmic details). During training, we track the
evolution of two NTK matrices:

(i) The interior NTK matrix KΩ(t) = (Kij) is computed from the derivatives of the PDE
residual evaluated at 100 interior collocation points, X(1) = {(t(1)k , x

(1)
k )}100k=1 ⊂ (0, 1) ×

(−1, 1). Specifically, Kij =
〈
∂arθ(t

(1)
i , x

(1)
i ), ∂arθ(t

(1)
j , x

(1)
j )
〉
, i, j = 1, . . . , 100,

where the PDE residual is rθ(t, x) =
(
∂tuθ + uθ∂xuθ − 0.01

π ∂xxuθ
)
(t, x).

(ii) The boundary NTK matrix K∂Ω(t) = (K̃ij) is computed from the derivatives of the
network output at 20 sampled boundary points, X(2) = {(t(2)k , x

(2)
k )}20k=1. Specifically,

K̃ij =
〈
∂auθ(t

(2)
i , x

(2)
i ), ∂auθ(t

(2)
j , x

(2)
j )
〉
, i, j = 1, . . . , 20.

The IGD algorithm is run for 100 iterations with a step size of 0.5, where each inner optimization
problem is approximately solved by applying the L-BFGS optimizer for 10 steps. As shown in
Figure 1, KΩ(t) undergoes significant changes from its initial state within just a few iterations,
whereas K∂Ω(t) remains nearly unchanged, as the boundary operator is linear.

Figure 1: Evolution of relative Frobenius norm for two NTK matrices.

Thus, new mathematical tools are required to analyze the convergence of PINNs and Deep Ritz
methods for solving nonlinear PDEs. Given that strong overparameterization is difficult to verify
in practice, we forgo this assumption and instead employ the Łojasiewicz inequality to establish
convergence to critical points, albeit with weaker guarantees.

3.2.3 CONVERGENCE UNDER COERCIVITY

We now present a general result showing that coercivity of the loss function implies convergence.
In the subsequent section, we demonstrate the coercivity of the loss function, with a focus on those
arising in nonlinear PDEs, thus allowing us to apply the general convergence result obtained here.
Definition 2 (Coercivity). A function J (θ) is said to be coercive if lim∥θ∥→+∞ J (θ) = +∞.

The coercivity help to ensure boundedness of minimizing sequences, a crucial property for conver-
gence analysis. We next introduce the Łojasiewicz inequality, which is fundamental to our analysis.
Theorem 2 (Łojasiewicz inequality, Theorem 1.1 in Haraux (2012)). Let U be an open subset of
RN and F : U → R be a real analytic function. Then for any x in U such that ∇F (x) = 0, there
exist a neighbourhoodW of x and a real number ϵ ∈ (0, 12 ] for which ∀y ∈W, |F (y)−F (x)|1−ϵ ≤
∥∇F (y)∥. We call ϵ the Łojasiewicz exponent of F at x.

We denote the loss function of either PINN Eq.(2) or Deep Ritz Eq.(3) as

J = residual (variational) term+ λ

∫
∂Ω

(B(uθ)− g)2 dx. (8)

5
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For this loss function, we consider two types of training dynamics. The first is gradient flow,
θ′(t) = −∇J (θ). (9)

which provides a continuous-time perspective on optimization. The second is implicit gradient
descent (IGD), which we disscuss in detail in Section I.1,

θk+1 = θk − η∇J (θk+1), k = 0, 1, . . . (10)
where η is the step size. As introduced in Li et al. (2023b), IGD enjoys greater stability compared to
standard gradient descent and is particularly well-suited for multi-scale problems. We now establish
convergence results for both dynamics under coercivity. The proof of the following proposition is
provided in Section C.
Proposition 1 (Convergence under coercivity). Suppose J (θ) is coercive in θ. Then:

(a) The solution θ(t) to the gradient flow Eq.(9) converges to a critical point θ∗ of J (θ) as t→ ∞.

(b) The sequence {θk} generated by Eq.(10) converges to a critical point θ∗ of J (θ) as k → ∞.

Furthermore, let ϵ denote the Łojasiewicz exponent of J (θ) at θ∗. The convergence rates are as
follows:

(i) If ϵ ∈ (0, 12 ), then for some C > 0 and integer k0,

∥θ(t)− θ∗∥2 ≤ C t−
ϵ

1−2ϵ , ∀t > 0; ∥θk − θ∗∥2 ≤ C (kη)−
ϵ

1−2ϵ , ∀k > k0.

(ii) If ϵ = 1
2 , then for some C > 0 and integer k0,

∥θ(t)− θ∗∥2 ≤ C e−t, ∀t > 0; ∥θk − θ∗∥2 ≤ C e−kη, ∀k > k0.

Remark 4. The convergence rate deteriorates as ϵ approaches zero. A similar phenomenon is
observed in NTK-based analyses: when the minimum eigenvalue of the NTK matrix is close to zero,
convergence also slows down.
Remark 5. Our convergence results hold for gradient descent with proper step size choices (omitted
for brevity), while implicit gradient descent offers additional advantages as it maintains uncondi-
tional stability and better preserves the solution structure throughout training.
Remark 6 (Advantages of implicit regularization). While explicit L2 regularization, adding a term
such as γ∥θ∥22 to the loss, ensures coercivity, modern PDE solvers like PINNs and the Deep Ritz
method predominantly rely on implicit regularization induced by gradient-based optimization al-
gorithms. This offers several key advantages: it naturally promotes low-norm solutions without the
need for careful tuning of γ, preserves the physical interpretability of the loss, and avoids artificially
restricting the solution space. Importantly, implicit regularization adapts robustly to multiscale fea-
tures (such as sharp gradients and boundary layers) that are common in practical PDE problems.
Extensive empirical results demonstrate that this implicit effect often yields a better trade-off be-
tween training stability and solution accuracy across a wide range of benchmarks.

4 CONVERGENCE FOR SOLVING NONLINEAR PDES

In this section, we present a rigorous coercivity analysis of the loss function for DNN-based solvers,
including both PINNs and the Deep Ritz method. By Proposition 1, establishing coercivity is crucial
for guaranteeing the convergence when solving a broad class of PDEs, especially nonlinear ones.

4.1 RANDOM FEATURE MODEL

Even for two-layer neural networks Eq.(4), the loss function for complex nonlinear PDEs can
be highly intricate. As a first step, we focus on the random feature model (Chen et al., 2023).
In this setting, the network structure remains as in Eq.(4), but the inner-layer parameters wk =
(wk,1, . . . , wk,d)

T ∈ Rd and bk ∈ R are randomly initialized and kept fixed during training; only
the outer-layer coefficients a = (a1, · · · , am)T are trainable.

In typical physics-informed learning methods, the loss function naturally admits the decomposition
J (a) = JΩ(a) + λJ∂Ω(a), where JΩ(a) enforces either the PDE residual (for PINNs) or the
variational functional (for the Deep Ritz method) in the interior of the domain, and J∂Ω(a) =∫
∂Ω

(B(uθ)− g)
2
dx imposes the boundary conditions. Based on this decomposition, we reveal

two distinct mechanisms by which J exhibits coercivity with respect to a:

6
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Case 1 (Boundary-induced coercivity): Under mild assumptions, the boundary term J∂Ω(a)
dominates in such a way that there exists a constant C > 0 such that J∂Ω(a) ≥ C∥a∥22. So the loss
function J (a) is coercive with respect to a.

Case 2 (Interior-induced coercivity): For certain second-order nonlinear PDEs, the interior term
JΩ(a) provides coercivity, i.e., there exists C > 0 such that JΩ(a) ≥ C∥a∥22.
The following subsections establish precise sufficient conditions for each case, thereby covering
most practical PDEs encountered in applications.

4.2 BOUNDARY-INDUCED COERCIVITY

We begin by specifying our geometric assumptions on the domain Ω. The key requirement is that
the boundary ∂Ω contains a sufficiently regular portion that can be transformed into a flat segment.
Formally, we make the following assumption:
Assumption 1 (Local flat boundary). There exists an invertible affine transformation Aff : x 7→
Ax+ w0 such that the transformed domain Ω̃ = Aff(Ω) satisfies:

(i) local flatness: for some point y∗ ∈ ∂Ω̃ and r > 0, ∂Ω̃ ∩ B(y∗, r) = {y ∈ B(y∗, r) : yd = γ},
where B(y∗, r) denotes the open ball of radius r centered at y∗ in Rd, yd is the d-th coordinate of
y, and γ is a constant.

(ii) non-degeneracy: the flat boundary portion has positive (d-1)-dimensional measure, i.e.,
λd−1(∂Ω̃ ∩B(y∗, r)) > 0. We denote Γ := Aff−1(∂Ω̃ ∩B(y∗, r)) as the corresponding boundary
portion in the original coordinates.
Remark 7. This assumption is naturally satisfied for evolutionary PDEs, where Γ can be taken as
the initial time slice {t = 0}. In practical settings, local flat boundaries are common. For instance,
they naturally appear in domains with piecewise smooth or polyhedral boundaries. Therefore, As-
sumption 1 introduces only a weak and broadly applicable geometric condition.

For notational simplicity, we will work in coordinates where Aff is the identity transformation, i.e.,
A = Id ∈ Rd×d, w0 = 0 ∈ Rd. This does not affect the generality of our results due to the
affine invariance of the coercivity property. To establish coercivity, we first characterize a class of
well-behaved neural network inner-layer parameters that guarantee desirable properties.
Definition 3 (Admissible inner-layer parameters). Denote the first d−1 coordinates of wk as w̃k =
(wk,1, . . . , wk,d−1)

T. The parameter set {(wk, bk)}mk=1 is called admissible inner-layer parameters
if the following two conditions are satisfied:

(i) distinct directional components: w̃i ̸= ±w̃j for any 1 ≤ i < j ≤ m;

(ii) non-degenerate normal components: wi,d ̸= 0 for any 1 ≤ i ≤ m.

We now establish the coercivity of the loss function J (a) under the admissible inner-layer parame-
ters condition, as formalized in the following result proved in Section D.1.
Proposition 2 (Boundary linear independence). For admissible inner-layer parameters, the func-
tions
α tanh(w⊤

1 x+b1)+βw1,d tanh
′(wT

1 x+b1) , . . . , α tanh(w⊤
mx+bm)+βwm,d tanh

′(wT
mx+bm)

are linearly independent in L2(Γ). Furthermore, recall that uθ =
∑m
k=1 ak tanh(w

T
kx + bk), then

there exits a constant C > 0 such that ∥a∥2 ≤ C
∥∥αuθ + β ∂uθ

∂n

∥∥
L2(Γ)

.

The significance of this result lies at the core of our analysis. By astutely exploiting the linear
independence of these functions, we are able to rigorously bound ∥a∥2 using the boundary data.
Based on this estimate, we are able to establish the following convergence theorem.

Random Initialization Inner-layer parameters {(wk, bk)}mk=1 are randomly initialized according
to the following rule: wi ∼ N (0, Id) i.i.d. ; bi ∼ N (0, 1) i.i.d. for 1 ≤ i ≤ m.
Theorem 3 (Almost sure convergence via admissible initialization). Under Assumption 1, regard-
less of the specific form of the differential operator L in the PDE, we can initialize the inner pa-
rameters {(wk, bk)}mk=1 with probability 1 such that (i) J is coercive with respect to a; and (ii) all
convergence results of Proposition 1 hold.
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Proof. By construction, for randomly initialized inner parameters, the admissibility condition of
Definition 3 is satisfied almost surely. Then, for almost surely inner parameters, by Proposition 2,
there exists C > 0 such that ∥a∥2 ≤ C

∥∥αuθ + β ∂uθ

∂n

∥∥
L2(Γ)

, where uθ =
∑m
k=1 ak tanh(w

⊤
k x +

bk). This directly implies that J (a) → +∞ as ∥a∥ → +∞, i.e., J is coercive with respect to a.
Consequently, by invoking Proposition 1, we conclude that, for almost every realization of the inner
parameters, the convergence results therein hold. This completes the proof.

This theorem ensures that random initialization almost surely yields admissible parameters satisfy-
ing the coercivity condition. As a result, the convergence results apply generically to both PINNs
and the Deep Ritz method, regardless of the choice of differential operator in the PDE. A similar
statement for the empirical loss is discussed in Section D.2.

Remark 8. Extensions to deeper networks and the challenges arising when inner-layer parameters
are also trainable are discussed in Section H.2. Further discussion of the possibilities and difficulties
of extending these results to SGD appears in Section J.2.

4.3 INTERIOR-INDUCED COERCIVITY FOR SPECIFIC PDES

We now discuss in detail the coercivity of the interior loss introduced in Case 2 above; analogous
results for Deep Ritz solvers are given in Section F. Consider the following prototypical nonlinear
operators with homogeneous Dirichlet conditions (u|∂Ω = 0):

(i) − div(|∇u|p−2∇u) + q(x)u+ h(u), p ≥ 2, q ≥ 0, h(u)u ≥ 0;

(ii) − div((1 + u2)∇u) + q(x)u+ h(u), q ≥ 0, h(u)u ≥ 0.
(11)

To strictly enforce homogeneous Dirichlet conditions, we multiply the neural network by a cutoff
function φ(x) that vanishes on ∂Ω. Let φ(x) be a smooth function such that 0 ≤ φ(x) ≤ 1 on Ω ,
φ(x) = 0 on ∂Ω and φ(x) ≡ 1 on some open set U ⊂ Ω. The modified ansatz ũθ(x) := φ(x)uθ(x)
automatically satisfies the boundary conditions, allowing us to focus on learning the interior.

Proposition 3 (Interior L2 control). For operators in Eq.(11), there exists C > 0 such that

∥u∥L2(U) ≤ C(∥Lũ− f∥L2(Ω) + ∥f∥L2(Ω)).

The proof of this proposition is provided in Section E. This stability estimate directly enables co-
ercivity through interior terms alone, complementing our boundary-based results. By applying the
same techniques as in the previous section, we can conclude the following theorem.

Theorem 4 (Almost sure convergence for PINNs). Using PINNs to solve Lu = f with homoge-
neous Dirichlet boundary condition, where L is defined as in Eq.(11), we can initialize the inner
parameters {(wk, bk)}mk=1 with probability 1 such that

(i) wi ̸= ±wj for 1 ≤ i < j ≤ m, then {tanh(wT
kx+ bk)}mk=1 are linearly independent in L2(U);

(ii) the loss function JPINN defined in Eq.(2) is coercive about a;

(iii) all convergence results of Proposition 1 hold.

Proof. Fix any choice of inner-layer parameters {(wk, bk)}mk=1. By Proposition 3, we have

∥uθ∥L2(U) ≤ C
(
∥Lũ− f∥L2(Ω) + ∥f∥L2(Ω)

)
≤ C

(
J (a) + ∥f∥L2(Ω)

)
.

According to Lemma 1, the functions {tanh(w⊤
k x + bk)}mk=1 are linearly independent in L2(U)

provided wi ̸= ±wj for all i ̸= j. Standard linear algebra then yields

∥a∥2 ≤ C∥uθ∥L2(U) ≤ C
(
J (a) + ∥f∥L2(Ω)

)
.

Since the set of parameters {(wk, bk)}mk=1 with wi ̸= ±wj for all i ̸= j has full measure under
random initialization, this estimate holds almost surely. Thus, the loss JPINN is coercive with
respect to a for almost every initialization. The convergence result of Proposition 1 then follows.

8
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Implicit regularization of random feature model. Establishing coercivity is crucial for our anal-
ysis. The direct application of Łojasiewicz inequality implies that optimization dynamics for all
trainable parameters will either converge to a critical point or diverge to infinity. Coercivity rules
out the latter by guaranteeing boundedness of the parameter sequence. Importantly, even in the
presence of highly complex loss landscapes as encountered in PINNs or Deep Ritz frameworks,
our results establish that, under the assumptions of Theorem 3 or Theorem 4, the random feature
model provides inherent implicit regularization: both gradient flow and implicit gradient descent
dynamics remain constrained within a bounded region, precluding divergence of the parameters or
their gradients. Thus, no additional regularization technique is needed to prevent parameter or gradi-
ent explosion when using random feature models, even in these challenging settings. These results
underscore the robustness of the random feature model in maintaining well-behaved optimization
trajectories solely due to its intrinsic structural properties under mild conditions.

5 NUMERICAL EXPERIMENTS

As discussed earlier, time-dependent PDEs naturally satisfy Assumption 1. To validate Theorem 3,
we test three representative time-dependent equations: the Burgers’, Allen–Cahn, and Fisher–KPP
equations. Detailed results for the Allen–Cahn and Fisher–KPP equations are given in Section I.3.1
and Section I.3.2, respectively. Here, we focus on the convergence behavior of the random feature
model within the PINN framework for the Burgers’ equation Eq.(7). A comprehensive summary
of experimental hyperparameters is provided in Section I.2. Notably, our results do not rely on
network over-parameterization. We train a network with m = 100 hidden units using implicit
gradient descent (IGD) with a step size of 0.5 for sufficient iterations, employing 10, 000 interior
collocation points and 100 boundary points. The final ℓ2-norm of the loss gradient is 1.13 × 10−3,
confirming convergence to a critical point even with a comparatively large step size.

Next, we consider the second equation in Eq.(11), which is also solved using the PINN framework
with the random feature model, trained by IGD for sufficient iterations (see Section I.4 for further
details). Table 1 summarizes the ℓ2-norm of the loss gradient with respect to the model parameters
after training from different random initializations.

Table 1: Norm of the loss gradient with respect to a after training from different initializations.

Initialization ∥∇J (a)∥2

Xavier normal for wk, Xavier uniform for ak 2.44× 10−4

Standard normal for wk, uniform [−1, 1] for ak 1.45× 10−4

LeCun normal initialization for both wk and ak 1.37× 10−4

These results consistently demonstrate a small loss gradient norm, further supporting convergence
to a critical point as established in Theorem 4.

6 CONCLUSION

In this paper, we develop a unified convergence analysis for neural network-based PDE solvers,
encompassing both linear and nonlinear equations. Leveraging the neural tangent kernel framework
and the Łojasiewicz inequality within the random feature model, we establish rigorous convergence
guarantees and highlight the intrinsic implicit regularization effect of the random feature approach.
Our theoretical results show that both gradient flow and implicit gradient descent can achieve reliable
convergence under mild conditions, even for nonlinear problems. While our current analysis for
nonlinear PDEs focuses on random feature models, future work will seek to extend these results to
fully-trainable architectures under suitable assumptions. We also intend to investigate optimization
dynamics near saddle points and clarify the conditions distinguishing convergence to local versus
global minima. Pursuing these directions will further strengthen the theoretical foundations and
enhance the practical reliability of neural network-based PDE solvers.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (GPT-4) to polish the language of the manuscript. Specifically, we
drafted the initial versions of all sections ourselves, and then employed GPT-4 to refine the wording
and clarity of selected passages—primarily introductory and expository paragraphs. The model did
not contribute to research ideation, methodology, experiments, analyses, or conclusions.

B PROOF OF LEMMA 1

We provide the proof of Lemma 1, which establishes an important property of the tanh activation
function. More importantly, this ensures that our convergence results apply to neural networks with
tanh activation, whether used in PINN or Deep Ritz solvers.

Proof. We first note that the tanh function is an odd function and tanh′ = 1 − tanh2 is an even
function. So without loss of generality, we can assume that p1, . . . , pm are distinct positive numbers,
otherwise, we replace tanh(prt+qr) by − tanh(−prt−qr) and tanh′(prt+qr) by tanh′(−prt−qr).
We can also assume that p1 < p2 < · · · < pm . We divide the proof into two cases according to
whether β = 0 or β ̸= 0.
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Case 1: β = 0. Given any positive integer m, for any set of m real numbers

{pi : pi ̸= ±pj , ∀1 ≤ i < j ≤ m}
and any real numbers q1, . . . , qm, we need to prove that the functions

tanh(p1t+ q1), · · · , tanh(pmt+ qm)

are linear independent.

Take c1, . . . , cm to be real numbers such that

c1 tanh(p1t+ q1) + · · ·+ cm tanh(pmt+ qm) = 0, ∀t ∈ R. (12)

In the above equation, letting t→ ∞ and noting that all pr are positive real numbers, we obtain

c1 + · · ·+ cm = 0. (13)

Substituting tanh(t) = e2t−1
e2t+1 into Eq.(12), we obtain

m∑
k=1

ck
e2(pkt+qk) − 1

e2(pkt+qk) + 1
= 0, ∀t ∈ R.

Multiplying both sides of the above equality by
∏m
l=1(e

2(plt+ql) + 1), we have
m∑
k=1

ck(e
2(pkt+qk) − 1)

m∏
l=1,l ̸=k

(e2(plt+ql) + 1) = 0, ∀t ∈ R. (14)

In fact, each term in the above expression can be written in the following form:

c̃Ke2
∑

k∈K(pkt+qk),

where K is a subset of {1, . . . ,m} and c̃K is a constant.

Let us focus on one of these terms in particular, e2(p1t+q1). By observing Eq.(14), we see that the
coefficient in front of this term is c1 −

∑
l ̸=1 cl. Moreover, since p1 < p2 < . . . < pm, we know

that for any nonempty {1} ̸= K ⊂ {1, . . . ,m} , pm <
∑
k∈K pk.

Thus, we can conclude that the coefficient c1−
∑
l ̸=1 cl in front of e2(p1t+q1) is non-zero. Otherwise,

there exist constants αK such that

e2(p1t+q1) =
∑

K ̸={1}

αKe
2
∑

k∈K(pkt+qk),

which contradicts the fact that for any n, the set eait, ai ̸= aj if i ̸= j}ni=1 is linear independent.

Combining the above arguments, we can conclude that
∑m
l=1 cl = 0 and c1 −

∑
l ̸=1 cl = 0, thereby

c1 = 0. Following the same reasoning, we can similarly obtain c2 = 0, . . . , cm = 0. Thus, this case
is proved.

Case 2: β ̸= 0. The underlying idea of the proof remains unchanged, but a more detailed treatment
of the coefficient in front of e2(p1t+q1) is required. We need to prove that the functions

α tanh(p1t+ q1) + β tanh′(p1t+ q1) , . . . , α tanh(pmt+ qm) + β tanh′(pmt+ qm)

are linear independent. Let us assume β ̸= − 1
2 . If this is not the case, we can multiply α and β by

a common factor to arrange it so.

Take c1, . . . , cm to be real numbers such that
m∑
k=1

ck
(
α tanh(pkt+ qk) + β tanh′(pkt+ qk)

)
= 0, ∀t ∈ R. (15)

In the above equation, letting t→ ∞ and noting that all pr are positive real numbers, we obtain

c1 + · · ·+ cm = 0. (16)
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Substituting tanh(t) = e2t−1
e2t+1 and tanh′(t) = 4e2t

(e2t+1)2 into Eq.(15), we obtain
m∑
k=1

ck

[
α
e2(pkt+qk) − 1

e2(pkt+qk) + 1
+ β

4e2(pkt+qk)

(e2(pkt+qk) + 1)2

]
= 0, ∀t ∈ R.

Multiplying both sides of the above equality by
∏m
l=1(e

2(plt+ql) + 1)2, we have
m∑
k=1

ck

[
α
(
e4(pkt+qk) − 1

)
+ 4βe2(pkt+qk)

] m∏
l=1,l ̸=k

(e2(plt+ql) + 1)2 = 0, ∀t ∈ R. (17)

In fact, each term in Eq.(17) can be written in the following form:

c̃Ke
2
∑

k∈K(pkt+qk),

whereK is any multiset of the elements from {1, . . . ,m} in which each element may appear at most
twice and c̃K is a constant.

By observing Eq.(17), we see that the coefficient in front of this term is 4βc1 − 2
∑
l ̸=1 cl = 0.

Combining the above arguments, we can conclude that
∑m
l=1 cl = 0 and 4βc1 − 2

∑
l ̸=1 cl = 0,

thereby (4β + 2)c1 = 0, i.e., c1 = 0 because of β ̸= − 1
2 . Following the same reasoning, we can

similarly obtain c2 = 0, . . . , cm = 0. Thus, the lemma is proved.

C PROOF OF PROPOSITION 1

Proof. We provide a detailed proof in the case of the gradient flow.

θ(t) is the solution to the gradient flow. Thus, the loss function is monotonically decreasing along
the trajectory θ(t). So there exists a constant C such that

∥θ(t)∥2 ≤ C, ∀t > 0.

because the loss function J is coercive.

Because θ(t) is uniformly bounded, there exists a subsequence tn → ∞ such that θ(tn) → θ∗,
which is a critical point of J .

We now have
d

dt
(J (θ(t))− J (θ∗)) = −∥∇J (θ(t))∥2.

We first consider the case when ϵ ∈ (0, 12 ). Since J (θ(t)) is nonincreasing, we have z(t) :=
J (θ(t))− J (θ∗) ≥ 0, and as a consequence of Theorem 2,

z′(t) ≤ −(z(t))2(1−ϵ) =⇒ J (θ(t))− J (θ∗) = z(t) ≤ K1t
− 1

1−2ϵ . (18)

Now since
∥θ′(t)∥2 = −z′(t),

we have ∫ 2t

t

∥θ′(s)∥2ds = z(t)− z(2t) ≤ z(t) ≤ K1t
− 1

1−2ϵ .

Then by the Cauchy–Schwarz inequality,∫ 2t

t

∥θ′(s)∥ds ≤ K1t
− ϵ

1−2ϵ .

Indeed it implies for all t < tn,

∥θ(t)− θ(tn)∥2 = ∥
∫ T

t

θ′(s)ds∥ ≤
∫ T

t

∥θ′(s)∥ds ≤ K1

∞∑
0

(2kt)−
ϵ

1−2ϵ

= K1

∞∑
0

2−
ϵ

1−2ϵkt−
ϵ

1−2ϵ = K2t
− ϵ

1−2ϵ .
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Letting n tend to infinity in the above expression completes the proof.

If α = 1
2 , we rewrite Eq.(18) as

J (θ(t))− J (θ∗) ≤ K1 exp(−t).

The rest of the proof is basically the same.

It is worth noting that implicit gradient descent (IGD) can be viewed as the backward Euler dis-
cretization of the gradient flow. Several works have studied the convergence properties of the back-
ward Euler scheme. Applying Theorem 2.4 and Proposition 2.5 from Merlet & Pierre (2010), we
can establish the desired result.

D EXTENSION TO SECTION 4.2

D.1 PROOF OF PROPOSITION 2

We now present the proof for the Proposition 2 in Section 4.2. Essentially, we need to process the
functions so that it depends on a single variable, and then we can apply Lemma 1, which has already
been proven.

Proof. Let {(wk, bk)}mk=1 be the admissible inner-layer parameters of the neural network, where
wk ∈ Rd and bk ∈ R.

Take c1, . . . , cm such that
∑m
i=1 ci

(
α tanh(w⊤

i x+ bi) + βwi,d tanh
′(wT

i x+ bi)
)
= 0 in L2(Γ).

Because of continuty, we obtain that
∑m
i=1 ci

(
α tanh(w⊤

i x+ bi) + βwi,d tanh
′(wT

i x+ bi)
)
≡ 0

on Γ.

We denote the first d− 1 components of the vector x ∈ Rd by a new (d− 1)-dimensional vector x̃,
i.e., x = (x̃T, xd)

T. Using Assumption 1, we can rewrite the above equality as
m∑
i=1

ci
(
α tanh(w̃⊤

i x̃+ γwi,d + bi) + βwi,d tanh
′(w̃⊤

i x̃+ γwi,d + bi)
)
= 0, ∀x = (x̃T, γ)T ∈ Γ.

Note that λd−1(Γ) > 0, so there exists an open ball B contained in Rd−1, such that
m∑
i=1

ci
(
α tanh(w̃⊤

i x+ γwi,d + bi) + βwi,d tanh
′(w̃⊤

i x+ γwi,d + bi)
)
= 0, ∀x̃ ∈ B.

which is equivalent to
m∑
i=1

ci
(
α tanh(w̃⊤

i x+ γwi,d + bi) + βwi,d tanh
′(w̃⊤

i x+ γwi,d + bi)
)
= 0, ∀x̃ ∈ Rd−1. (19)

because tanh is an analytic function.

For any 1 ≤ k < j ≤ m, define Ak,j , Bk,j as follows:

Ak,j = {x̃ ∈ Rd−1 : (w̃k − w̃j)
Tx̃ = 0}, Bk,j = {x̃ ∈ Rd−1 : (w̃k + w̃j)

Tx̃ = 0}.

The sets Ak,j , Bk,j are subspaces of dimension d − 2, so
⋃

1≤k<j≤m(Ak,j ∪ Bk,j) has λd−1 -
measure zero. This implies that we can choose some e ∈ Rd−1 with ∥e∥2 = 1 such that for all
1 ≤ k < j ≤ m,

pk := w̃T
k e ̸= ±w̃T

j e =: pj .

By Eq.(19), we have for ε ∈ R and x̃ = εe,
m∑
i=1

ci
(
α tanh(w̃⊤

i eε+ γwi,d + bi) + βwi,d tanh
′(w̃⊤

i eε+ γwi,d + bi)
)
= 0, ∀x̃ ∈ Rd−1.
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Note that pk ̸= ±pj for all 1 ≤ k < j ≤ m, we can obtain that ck = 0 for all 1 ≤ k ≤ m by using
Lemma 1.

So we can conclude that the functions
α tanh(w⊤

1 x+ b1)+βw1,d tanh
′(wT

1 x+ b1), . . . , α tanh(w⊤
mx+ bm)+βwm,d tanh

′(wT
mx+ bm)

are linearly independent in L2(Γ).

Recall that u =
∑m
k=1 akσ(w

T
kx + bk). Under Assumption 1, without loss of generality, we can

express the outward normal vector as n = (0, . . . , 0, 1) on the flat segment Γ. Then we can rewrite
the outward derivative ∂u

∂n as

∂u

∂n
=

m∑
k=1

akwk,dσ
′(wT

kx+ bk).

Define Gram matrix G = (Gij)1≤i,j≤m, where

Gij =

∫
Γ

(
α tanh(w⊤

i x+ bi) + βwi,d tanh
′(wT

i x+ bi)
)

(
α tanh(w⊤

j x+ bj) + βwj,d tanh
′(wT

j x+ bj)
)
dx.

The Gram matrix G is positive definite by the linear independence, and we denote the smallest
eigenvalue of G as λmin > 0.

Then we have∥∥∥∥αu+ β
∂u

∂n

∥∥∥∥2
L2(Γ)

=

∥∥∥∥∥
m∑
k=1

ak
(
α tanh(w⊤

k x+ bk) + βwk,d tanh
′(wT

kx+ bk)
)∥∥∥∥∥

2

L2(Γ)

= aTGa ≥ λmin∥a∥22.

(20)

D.2 DISCUSSION ON EMPIRICAL LOSS FUNCTION

In practice, we approximate the loss function equation 8 using discrete sample points. Let X(1) =

{x(1)k }n1

k=1 ⊂ Ω (interior points) and X(2) = {x(2)k }n2

k=1 ⊂ ∂Ω (boundary points). Under Dirichlet
boundary condition, the empirical loss is written as:

Jemp(a) =
1

n1

n1∑
k=1

(
Luθ(x(1)k )− f(x

(1)
k )
)2

+
λ

n2

n2∑
k=1

(
uθ(x

(2)
k )− g(x

(2)
k )
)2
. (21)

Under Assumption 1, we assume n2 ≥ m and consider a subset X̃(2) = {x(2)k }mk=1 ⊂ Γ. For each
1 ≤ k ≤ m, define the activation vector,

σk(X̃
(2)) =

(
tanh(w⊤

k x
(2)
1 + bk), . . . , tanh(w

⊤
k x

(2)
m + bk)

)⊤
.

Then we can establish the following result, which is a discrete version of Proposition 2. However,
the techniques needed are not the same.
Proposition 4 (Linear independence on discrete points). For any m vectors {w̃k}mk=1 ⊂ Rd−1 with
w̃i ̸= ±w̃j (i ̸= j), and for sufficiently small wk,d, bk ∈ R, the vectors {σk(X̃(2))}mk=1 are linearly
independent for almost all X̃(2) ∈ Γm.

Here, ”almost all” means the condition holds generically, making it practically feasible to find suit-
able sample points. This leads to our main convergence guarantee for the empirical loss.
Theorem 5 (Global convergence of empirical loss). Under Assumption 1 , we consider the empir-
ical loss Jemp(a) in equation 21 with randomly sampled point sets X(1), X(2). When inner-layer
parameters {(wk, bk)}mk=1 are initialized as: w̃i ∼ N (0, Id−1) i.i.d ; |wi,d|, |bi| < δ (sufficiently
small) then with probability 1, all convergence results of Proposition 1 hold for both gradient flow
equation 9 and implicit gradient descent equation 10.

We prove the above proposition and theorem in Section D.2.1.
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D.2.1 PROOF OF PROPOSITION 4 AND THEOREM 5

The proof of Proposition 4 requires special treatment for the selection of boundary sampling points.
We first prove the following lemma, which shows that there exist suitable sampling points to ensure
linear independence.

Lemma 2. For any choice of m vectors w̃1, . . . , w̃m ∈ Rd−1 such that w̃i ̸= ±w̃i if i ̸= j,
and for sufficiently small scalars w1,d, . . . , wm,d ∈ R and b1, . . . , bm ∈ R , there exists a set
X = {xk}mk=1 ⊂ Γ such that the vectors σ1(X), . . . , σm(X) are linearly independent , where
wr = (w̃T

r , wr,d)
T.

Proof. Let vi = (tanh(wT
1 xi+ b1), . . . , tanh(w

T
mxi+ bm))T . We want to seeek {xi}mi=1 such that

v1, . . . , vm are linear independent. We use induction to sequentially find appropriate x1, x2, . . . , xm.

First, we can choose x1 arbitrarily in Γ such that wT
1 x1 + b1 ̸= 0. Because tanh(wT

1 x1 + b1) ̸= 0,
v1 is linear independent.

Next, we assume that x1, . . . , xk−1 have been chosen such that v1, . . . , vk−1 are linearly indepen-
dent. We need to choose xk such that v1, . . . , vk are linearly independent.

Choose e ∈ Rd−1 with ∥e∥2 = 1 such that pk := w̃T
k e ̸= ±w̃T

j e =: pj for all 1 ≤ k < j ≤ m.

Note that Γ = ∂Ω∩B(x0, r), we take xk = ((x̃0+εe)
T, β)T which is naturally in Γ for sufficiently

small ε.

Take any non-zero vector b ∈ Rm such that b is orthogonal to v1, . . . , vk−1, i.e., bTvi = 0 for all
1 ≤ i ≤ k − 1.

Consider the function F (ε) =
∑m
i=1 bi tanh(piε+wi,dγ+ bi). Because b ̸= 0, F (ε) is not constant

zero by Lemma 1.

Take any ε0 such that F (ε0) ̸= 0 and xk = ((x̃0 + εe)T, γ)T, then we can obtain vk /∈ span{vj :
1 ≤ j ≤ k − 1}. Otherwise, b is orthogonal to vk and then F (ε0) = 0.

So by induction we can obtain a set X = {xi}mi=1 ⊂ Γ such that v1, . . . , vm are linear independent,
which is equivalent to σ1(X), . . . , σm(X) are linear independent.

The proof of the Proposition 4 is given below. That is, based on the existence, we further show that
such sampling points are almost everywhere.

Proof. Define matrix σ(X) = (σ1(X), . . . , σm(X)). We want to show that for almost all X =
(x1, ...., xn) ∈ Γn, σ(X) is full-rank.

By Lemma 2, we can find a set X∗ = {x∗k}mk=1 ⊂ Γ such that σ1(X∗), . . . , σm(X∗) are linear
independent, i.e. det(σ(X∗)) ̸= 0. Note that detσ(·) is an analytic function defined on Γm, so
its zero set is of zero measure. This means that for almost all X = (x1, ...., xm) ∈ Γm, σ(X) is
full-rank.

Then for any n ≥ m,for almost all X = (x1, ...., xn) ∈ Γn, σ(X) is full-rank.

Below, based on the previous conclusions, we present the proof of Theorem 5.

Proof. We only prove the second conclusion.

Because we can, with probability 1, select sampling points X̃(2) and internal parameters that satisfy
the conditions of the above lemma. By linear independence, the Gram matrix G = (Gij)

m
i,j=1 is

positive definite, we Gij = σi(X̃
(2))Tσj(X̃

(2)).

So Jemp(a) ≥ λ
n2
aTGa ≥ λ

n2
λmin(G)∥a∥22, which implies J is coercive. And then we can apply

Proposition 1.
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E PROOF OF PROPOSITION 3

Proof. We take

Lu = −div(|∇u|p−2∇u) + q(x)u+ h(u), where p ≥ 2, q(x) ≥ 0, h(u)u ≥ 0 (22)

as an example for the proof.

Note that in L2(Ω) inner-product space, we have

⟨L(ũ), ũ⟩ =⟨−div(|∇ũ|p−2∇ũ) + q(x)ũ+ h(ũ), ũ⟩

=

∫
Ω

∥ũ∥p + q(x)ũ2 + h(ũ)ũ dx (by integration by parts)

≥
∫
Ω

∥ũ∥p dx (by the assumption of q(x) and h(u))

≥C∥ũ∥2L2(Ω) (by the Sobolev inequality)

where C is a constant depending on the domain Ω and the Sobolev embedding constant.

On the other hand, using the Cauchy–Schwarz inequality, we have

⟨L(ũ), ũ⟩ ≤ ∥L(ũ)∥L2(Ω)∥ũ∥L2(Ω).

So we can conclude that there exists a constant C > 0 such that

∥u∥L2(U) ≤ ∥ũ∥L2(U) ≤ ∥ũ∥L2(Ω) ≤ C∥L(ũ)∥L2(Ω) ≤ C(∥L(ũ)− f∥L2(Ω) + ∥f∥L2(Ω))

F DEEP RITZ-TYPE INTERIOR CONTROL

The Deep Ritz method employs the energy functional E(uθ) as its interior loss. We demonstrate
coercivity through two canonical examples.

Example 1: p-Laplace equation The p-Laplace equation

−div(|∇u|p−2∇u) = f(x) (23)

generalizes the classical Laplace equation (p = 2) to model nonlinear diffusion processes. It arises
in non-Newtonian fluid dynamics (1 < p < 2 for shear-thinning fluids) and image processing (edge-
preserving denoising). The associated energy functional

E(u) =
∫
Ω

1

p
|∇u|p − f(x)u dx (24)

exhibits p-growth conditions, making its analysis distinct from quadratic elliptic problems. A fun-
damental result of the variational theory: the energy functional Eq.(24) is coercive, i.e., there exist
constants c, C,

E(u) ≥ c∥u∥p
H1,p

0

− C.

Example 2: stationary Allen–Cahn equation This phase-field model

−ϵ2∆u+ (u3 − u) = 0 (25)

describes phase separation in binary alloys, with ϵ controlling interface width. Its double-well po-
tential energy

E(u) =
∫
Ω

ϵ2

2
|∇u|2 + 1

4
(u2 − 1)2 dx (26)

forces solutions toward ±1 (pure phases) with transition zones of O(ϵ) width. Also, the energy
functional Eq.(26) is coercive, i.e., there exist constants c, C,

E(u) ≥ c∥u∥2H1 − C.

Therefore, we can use the technique from Section 4.3 to prove that the loss function J is coercive
with respect to a, thereby establishing the convergence of Deep Ritz method.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G PROOF OF THEOREM 1

Here we provide the proof of Theorem 1, with the main idea inspired by previous works Gao et al.
(2023); Xu et al. (2024a). However, since we deal with more general linear operators, some cal-
culations require greater care compared to the procedures in previous works. Although the proof
strategy is clear, the details are quite involved. We first give a brief outline of the approach, and then
rigorously justify each step through a series of lemmas.

Let us first review some notations from the main text and introduce several new ones. We focus on
the linear PDE with the following form:{∑+∞

k=0

∑
|ξ|=k cξ(x)∂

ξu = f, x ∈ Ω,

αu+ β ∂u∂n = g, x ∈ ∂Ω,
(27)

where the linear operator L satisfies Definition 1, and f, g are bounded continuous functions. In the
following, we assume that ∥x∥2 ≤

√
3
2 for x ∈ Ω.

We consider a two-layer neural network of the following form,

uθ(x) =
1√
m

m∑
k=1

ak tanh(wT
kx+ bk).

To handle the bias term more conveniently, we consider augmenting both x and the PDE. We define
y = (xT, 12 )

T for x ∈ Ω , then we have ∥y∥2 ≤ 1. For Eq.(27), we will rewrite the equation about
y, and for simplicity, we still use the same notation:{∑+∞

k=0

∑
|ξ|=k cξ(y)∂

ξu = f, y ∈ Ω× { 1
2},

αu+ β ∂u∂n = g, y ∈ ∂Ω× { 1
2},

(28)

where the original d-dimensional multi-index ξ is augmented to (d + 1)-dimensional multi-index ,
which is still denoted as ξ = (ξ, 0). And we rewrite the neural network as

uθ(x) =
1√
m

m∑
k=1

ak tanh(wT
k y), (29)

where ak ∈ R and wk ∈ Rd+1 for ≤ k ≤ m.

In the framework of PINNs, we focus on the empirical risk minimization problem. Given training
samples {y(1)p }n1

p=1 ⊂ Ω× { 1
2} and {y(2)p }n2

p=1 ⊂ ∂Ω× { 1
2}, we aim to minimize the empirical loss

function as follows,

Jemp(θ) =
1

n1

n1∑
i=1

1

2

∣∣∣∣∣∣
+∞∑
k=0

∑
|ξ|=k

cξ(y)∂
ξuθ

(
y
(1)
i

)
− f

(
y
(1)
i

)∣∣∣∣∣∣
2

+
λ

n2

n2∑
j=1

1

2

∣∣∣∣∣∣αuθ
(
y
(2)
j

)
+ β

∂uθ

(
y
(2)
j

)
∂n

− g
(
y
(2)
j

)∣∣∣∣∣∣
2

.

(30)

where θ = {(ak, wk)}mk=1 ∈ Rm(d+2) are all trainable parameters in Eq.(29).

We consider the gradient flow training dynamics: for 1 ≤ k ≤ m

dwk(t)

dt
= −

∂Jemp(θ(t))

∂wk
,

dak(t)

dt
= −

∂Jemp(θ(t))

∂ak
. (31)

Let

sp(θ) =
1

√
n1

+∞∑
k=0

∑
|ξ|=k

cξ(y)∂
ξuθ

(
y(1)p

)
− f

(
y(1)p

) , ∀1 ≤ p ≤ n1,
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and

hj(θ) =

√
λ

n2

αuθ (y(2)j )+ β
∂uθ

(
y
(2)
j

)
∂n

− g
(
y
(2)
j

) , ∀1 ≤ j ≤ n2.

Then we have
Jemp(θ) =

1

2
(∥s(θ)∥22 + ∥h(θ)∥22),

where vectors s(θ) = (s1(θ), . . . , sn1(θ))
T and h(θ) = (h1(θ), . . . , hn2(θ))

T. Therefore, for 1 ≤
k ≤ m,

dwk
dt

= −
∂Jemp(θ)

∂wk

= −
n1∑
p=1

sp(θ) ·
∂sp(θ)

∂wk
−

n2∑
k=1

hk(θ) ·
∂hk(θ)

∂wk
,

and
dak
dt

= −
∂Jemp(θ)

∂ak

= −
n1∑
p=1

sp(θ) ·
∂sp(θ)

∂ak
−

n2∑
k=1

hk(θ) ·
∂hk(θ)

∂ak
.

Using the chain rule, after simple computation, we can derive the following dynamics:

d

dt

[
s(θ)
h(θ)

]
= −

(
G(θ) + G̃(θ)

)[
s(θ)
h(θ)

]
, (32)

where G(θ) and G̃(θ) are the Gram matrices for the dynamics, defined as

G(θ) = D⊤D, D =
[
∂s1
∂W · · · ∂sn1

∂W
∂h1

∂W · · · ∂hn2

∂W

]
, (33)

where W = (wT
1 , . . . , w

T
m)T, and

G̃(θ) = D̃⊤D̃, D̃ =
[
∂s1
∂a · · · ∂sn1

∂a
∂h1

∂a · · · ∂hn2

∂a

]
, (34)

where a = (a1, . . . , am)T. Moreover, we rewrite θ = (W,a) and define

G∞ = EW∼N (0,I),a∼Unif({−1,1}m)G(W,a)

and
G̃∞ = EW∼N (0,I),a∼Unif({−1,1}m)G̃(W,a).

Now that we have established all the basic definitions, we will first outline our proof strategy.

Proof sketch:

(i) To prove that the expectation of the Gram matrices G∞, G̃∞ are positive definite
(Lemma 3).

(ii) To show that, with high probability, the Gram matrix at initialization G(W(0),a(0)),
G̃(W(0),a(0)) are close to G∞, G̃∞ respectively, thereby implying that the Gram matrix
G(W(0),a(0)), G̃(W(0),a(0)) are positive definite with high probability (Lemma 4).

(iii) To prove that the Gram matrix G(W,a), G̃(W,a) are stable with respect to W and a,
that is, if the parameters are perturbed slightly, the corresponding Gram matrix remains
close to the original (Lemma 5).

(iv) To prove that, during the evolution by gradient flow Eq.(31), the parameters do not change
much. Combining this with the previous three results, we know that the Gram matrix
G(W(t),a(t)), G̃(W(t),a(t)) remain positive definite with high probability throughout
the evolution, and we can estimate its minimal eigenvalue. This allows us to prove that the
loss decreases at a certain rate.
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Next, we will carry out the above proof strategy step by step through a series of lemmas.

Lemma 3 (Positive definiteness of G∞, G̃∞). The expectation of the Gram matrices G∞, G̃∞ are
positive definite.

Proof. Part 1: we first prove the positive definiteness of G∞.

We denote φ(y;w) =
∑+∞
k=0

∑
|ξ|=k cξ(y) tanh

(|ξ|)(wTy)wξ, where w ∈ Rd+1. Then,

∂sp
∂wk

=
1

√
n1

ak√
m

∂φ(y
(1)
p ;wk)

∂w
.

Similarly, let ψ(y;w) = α tanh(wT y) + β tanh′(wTy)wTn(y), where n(y) is the outer normal
direction on the point y ∈ ∂Ω× { 1

2}. Then

∂hj
∂wk

=
1

√
n2

ak√
m

∂ψ(y
(2)
j ;wk)

∂w
.

With these notations, we deduce that

G∞
p,j =



1
n1

Ew∼N (0,I)

〈
∂φ(y(1)p ;w)

∂w ,
∂φ(y

(1)
j ;w)

∂w

〉
, 1 ≤ p ≤ n1, 1 ≤ j ≤ n1,

1√
n1n2

Ew∼N (0,I)

〈
∂φ(y(1)p ;w)

∂w ,
∂ψ(y

(2)
j ;w)

∂w

〉
, 1 ≤ p ≤ n1, n1 + 1 ≤ j ≤ n1 + n2,

1
n2

Ew∼N (0,I)

〈
∂ψ(y(2)p ;w)

∂w ,
∂ψ(y(2)p ;w)

∂w

〉
, n1 + 1 ≤ p, j ≤ n1 + n2,

where G∞
p,j denotes the (p, j)-th entry of G∞.

To prove this lemma, we need tools from functional analysis. Let H be a Hilbert space of integrable
(d + 1)-dimensional vector fields on Rd+1, i.e., f ∈ H if Ew∼N (0,I)[∥f(w)∥22] < ∞. The inner
product for any two elements f, g ∈ H is Ew∼N (0,I)[⟨f(w), g(w)⟩]. Thus, to show that G∞ is
strictly positive definite, it suffices to demonstrate that

∂φ(y
(1)
1 ;w)

∂w
, . . . ,

∂φ(y
(1)
n1 ;w)

∂w
,
∂ψ(y

(2)
1 ;w)

∂w
, . . . ,

∂ψ(y
(2)
n2 ;w)

∂w
∈ H

are linearly independent. Suppose there exist coefficients c(1)1 , . . . , c
(1)
n1 , c

(2)
1 , . . . , c

(2)
n2 ∈ R such that

c
(1)
1

∂φ(y
(1)
1 ;w)

∂w
+ · · ·+ c(1)n1

∂φ(y
(1)
n1 ;w)

∂w
+ c

(2)
1

∂ψ(y
(2)
1 ;w)

∂w
+ · · ·+ c(2)n2

∂ψ(y
(2)
n2 ;w)

∂w
= 0 in H.

This implies that

c
(1)
1

∂φ(y
(1)
1 ;w)

∂w
+ · · ·+ c(1)n1

∂φ(y
(1)
n1 ;w)

∂w
+ c

(2)
1

∂ψ(y
(2)
1 ;w)

∂w
+ · · ·+ c(2)n2

∂ψ(y
(2)
n2 ;w)

∂w
= 0 (35)

for all w ∈ Rd+1.

We first compute the derivatives of φ and ψ. Differentiating ψ(y;w) l times with respect to w, we
have

∂lψ(y;w)

∂wl
= α tanh(l)(wT y)y⊗(l) + β

l∑
s=0

tanh(l−s+1)(wTy)y⊗(l−s) ⊗ ∂swTn(y)

∂ws
,

where ⊗ denotes the tensor product.

Differentiating φ(y;w) l times with respect to w, similar to the Leibniz rule for the l-th derivative
of the product of two scalar functions, we obtain

∂lφ(y;w)

∂wl
=
∑
k

∑
|ξ|=k

cξ(y)

l∑
s=0

tanh(l−s+|ξ|)(wTy)y⊗(l−s) ⊗ ∂swα

∂ws
.
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Note that, the set

y
(1),⊗(n1+n2−1)
1 , . . . , y(1),⊗(n1+n2−1)

n1
, y

(2),⊗(n1+n2−1)
1 , . . . , y(2),⊗(n1+n2−1)

n2

is independent (see Lemma G.6 in Du et al. (2019a)).

This observation motivates us to differentiate both sides of Eq.(35) exactly l−1 = n1+n2−1+d|ξ̃|
times for w, where ξ̃ is defined in Definition 1. Thus, we have

c
(1)
1

∂lφ(y
(1)
1 ;w)

∂wl
+ · · ·+ c(1)n1

∂lφ(y
(1)
n1 ;w)

∂wl
+ c

(2)
1

∂lψ(y
(2)
1 ;w)

∂wl
+ · · ·+ c(2)n2

∂lψ(y
(2)
n2 ;w)

∂wl
= 0.

By substituting the previous results into this equation, we have

n1∑
p=1

c(1)p
∑
k

∑
|ξ|=k

cξ(y
(1)
p )

d|ξ̃|∑
s=0

tanh(l−s+|ξ|)(wTy(1)p )y(1),⊗(l−s)
p ⊗ ∂swα

∂ws
+

n2∑
j=1

c
(2)
j[

α tanh(l)(wT y
(2)
j )y

(2),⊗(l)
j + β

d∑
s=0

tanh(l−s+1)(wTy
(2)
j )y

(2),⊗(l−s)
j ⊗

∂swTn(y
(2)
j )

∂ws

]
= 0,

where some higher-order derivative terms naturally vanish, so we have omitted them from the ex-
pression. Reorganizing the above equality as a linear combination in terms of

y
(1),⊗(n1+n2−1)
1 , . . . , y(1),⊗(n1+n2−1)

n1
, y

(2),⊗(n1+n2−1)
1 , . . . , y(2),⊗(n1+n2−1)

n2
,

we explicitly list the coefficient in front of each term as follows:d|ξ̃|∑
s=0

∑
k

∑
|ξ|=k

cξ(y
(1)
p ) tanh(l−s+|ξ|)(wTy(1)p )y(1),⊗(l−s)

p ⊗ ∂swα

∂ws

 c(1)p = 0, ∀1 ≤ p ≤ n1, (36)

and for 1 ≤ j ≤ n2,[
α tanh(l)(wT y

(2)
j )y

(2),⊗(l)
j + β

d∑
s=0

tanh(l−s+1)(wTy
(2)
j )y

(2),⊗(l−s)
j ⊗

∂swTn(y
(2)
j )

∂ws

]
c
(2)
j = 0.

(37)
Note that under Definition 1, the term inside the braces [] has a leading order. Therefore, as w
approaches infinity, the term in the brackets will not vanish. As a result, we can obtain

c(1)p = 0, c
(2)
j = 0, ∀1 ≤ p ≤ n1, 1 ≤ j ≤ n2.

So we can obtain that

∂φ(y
(1)
1 ;w)

∂w
, . . . ,

∂φ(y
(1)
n1 ;w)

∂w
,
∂ψ(y

(2)
1 ;w)

∂w
, . . . ,

∂ψ(y
(2)
n2 ;w)

∂w
∈ H

are linearly independent. And G∞ is positive definite.

Part 2: we prove that G̃∞ is positive definite. Note that

∂sp
∂ak

=
1

√
n1

ak√
m
φ(y(1)p ;wk), and

∂hj
∂ak

=
1

√
n2

ak√
m
ψ(y

(2)
j ;wk).

Therefore, the subsequent proof proceeds in the same way as before.

Lemma 4. Define λ0, λ̃0 to be the minimal eigenvalue of G∞, G̃∞ respectively. If m =

Ω
(

d2|ξ̃|

min{λ2
0,λ̃

2
0}

log
(
n1+n2

δ

))
, then with probability at least 1− δ, we have

∥G(0)−G∞∥2 ≤ λ0
4

and ∥G̃(0)− G̃∞∥2 ≤ λ̃0
4
.
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To prove this lemma, we need to make some preliminary preparations.

Let g be a non-decreasing function with g(0) = 0. The g-Orlicz norm of a real-valued random
variable X is defined as

∥X∥g := inf

{
t > 0 : E

[
g

(
|X|
t

)]
≤ 1

}
.

A random variable X is said to be sub-Weibull of order α > 0, denoted as sub-Weibull(α), if
∥X∥ψα

<∞, where
ψα(x) := ex

α

− 1, for x ≥ 0.

The following result is a commonly used inequality in mathematical fields.

If X1, · · · , Xn are independent mean zero random variables with ∥Xi∥ψα
< ∞ for all 1 ≤ i ≤ n

and some α > 0, then for any vector a = (a1, · · · , an) ∈ Rn, the following holds true:

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ 2eC(α)∥b∥2
√
t+ 2eL∗

n(α)t
1/α∥b∥β(α)

)
≤ 2e−t, for all t ≥ 0, (38)

where b = (a1∥X1∥ψα , · · · , an∥Xn∥ψα) ∈ Rn,

C(α) := max
{√

2, 21/α
}{√8(2π)1/4e1/24(e2/e/α)1/α, if α < 1,

4e + 2(log 2)1/α, if α ≥ 1,

and for β(α) = ∞ when α ≤ 1 and β(α) = α/(α− 1) when α > 1,

Ln(α) :=
41/α√
2∥b∥2

×
{
∥b∥β(α), if α < 1,

4e∥b∥β(α)/C(α), if α ≥ 1.

and L∗
n(α) = Ln(α)C(α)∥b∥2/∥b∥β(α).

Proof. We focus on the proof about G(0).

Since ∥G(0)−G∞∥2 ≤ ∥G(0)−G∞∥F , it suffices to bound each entry of G(0)−G∞, which is
of the form

m∑
r=1

〈
∂sp
∂wr

,
∂sj
∂wr

〉
− Ew∼N (0,I),a∼Unif{−1,1}

m∑
r=1

〈
∂sp
∂wr

,
∂sj
∂wr

〉
, (39)

or
m∑
r=1

〈
∂sp
∂wr

,
∂hj
∂wr

〉
− Ew∼N (0,I),a∼Unif{−1,1}

m∑
r=1

〈
∂sp
∂wr

,
∂hj
∂wr

〉
, (40)

or
m∑
r=1

〈
∂hp
∂wr

,
∂hj
∂wr

〉
− Ew∼N (0,I),a∼Unif{−1,1}

m∑
r=1

〈
∂hp
∂wr

,
∂hj
∂wr

〉
. (41)

Note that

∂sp
∂wr

=
ar√
mn1

∑
k

∑
|ξ|=k

cξ(y
(1)
p )

[
tanh(1+|ξ|)(wT

r y
(1)
p )wξry

(1)
p + tanh(|ξ|)(wT

r y
(1)
p )

∂wξr
∂wr

]
and

∂hj
∂wr

=
ar
√
λ

√
mn2

[
α tanh′(wT

r y
(2)
j )y

(2)
j + β tanh

′′
(wT

r y
(2)
j )wT

r n(y
(2)
j ) + β tanh′(wT

r y
(2)
j )n(y

(2)
j )
]
.

For the first form Eq.(39), let

Yr(p) =
∑
k

∑
|ξ|=k

cξ(y
(1)
p )

[
tanh(1+|ξ|)(wT

r y
(1)
p )wξry

(1)
p + tanh(|ξ|)(wT

r y
(1)
p )

∂wξr
∂wr

]
, ∀1 ≤ p ≤ n1
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and
Xr(ij) = ⟨Yr(i), Yr(j)⟩, 1 ≤ i, j ≤ n1.

Then we have
m∑
r=1

〈
∂sp
∂wr

,
∂sj
∂wr

〉
−Ew∼N (0,I),a∼Unif{−1,1}

m∑
r=1

〈
∂sp
∂wr

,
∂sj
∂wr

〉
=

1

n1m

m∑
r=1

(Xr(ij)− EXr(ij)) .

Note that |Xr(ij)| ≲ 1 + ∥wr(0)∥2|ξ̃|2 , thus

∥Xr(ij)∥ψ 1
|ξ̃|

≲ 1 +
∥∥∥∥wr(0)∥2|ξ̃|2

∥∥∥
ψ 1

|ξ̃|

≲ 1 +
∥∥∥wr(0)∥22∥∥|ξ̃|ψ1

≲ d|ξ̃|.

For the centered random variable, the property of ψ 1
|ξ̃|

quasi-norm implies that

∥Xr(ij)− E[Xr(ij)]∥ψ 1
|ξ̃|

≲ ∥Xr(ij)∥ψ 1
|ξ̃|

+ ∥E[Xr(ij)]∥ψ 1
|ξ̃|

≲ d|ξ̃|.

Therefore, applying Eq.(38) (taking α = 1
|ξ̃| ) yields that with probability at least 1− δ,∣∣∣∣∣ 1m

m∑
r=1

(Xr(ij)− E[Xr(ij)])

∣∣∣∣∣ ≲ d|ξ̃|√
m

√
log

2

δ
+
d|ξ̃|

m

(
log

2

δ

)|ξ̃|

,

which directly leads to∣∣∣∣∣
m∑
r=1

〈
∂si
∂wr

,
∂sj
∂wr

〉
− E(w, a)

m∑
r=1

〈
∂si
∂wr

,
∂sj
∂wr

〉∣∣∣∣∣ ≲ d|ξ̃|

n1
√
m

√
log

2

δ
+

d|ξ̃|

n1m

(
log

2

δ

)|ξ̃|

.

For the second form Eq.(40) and third form Eq.(41), in a similar manner, we can obtain the same
result.

Combining the results for the three forms, we can deduce that with probability at least 1− δ,

∥G(0)−G∞∥22 ≤ ∥G(0)−G∞∥2F

≲
d2|ξ̃|

m
log

2(n1 + n2)

δ
+
d2|ξ̃|

m2

(
log

2(n1 + n2)

δ

)2|ξ̃|

≲
d2|ξ̃|

m
log

2(n1 + n2)

δ
.

Thus when
√

d2|ξ̃|

m log 2(n1+n2)
δ ≲ λ0

4 , i.e.,

m = Ω

(
d2|ξ̃|

λ20
log

(
n1 + n2

δ

))
,

we have λmin(G(0)) ≥ 3
4λ0.

Lemma 5. Let R ∈ (0, 1], if w1(0), · · · , wm(0) are i.i.d. generated from N (0, Id+1), then with
probability at least 1 − δ, the following holds. For any set of weight vectors W = (wT

1 , . . . , w
T
m)T

and a = (a1, · · · , am)T satisfying that for any 1 ≤ r ≤ m, ∥wr−wr(0)∥2 ≤ R and ∥a−a(0)∥2 ≤
R, then the induced Gram matrices G(W,a), G̃(W,a) satisfy

∥G(W,a)−G(0)∥2 ≤ CR

(
1 +

d|ξ̃|√
m

√
log

2

δ
+
d|ξ̃|

m

(
log

2

δ

)|ξ̃|
)
,

and

∥G̃(W,a)− G̃(0)∥2 ≤ CR

(
1 +

d|ξ̃|√
m

√
log

2

δ
+
d|ξ̃|

m

(
log

2

δ

)|ξ̃|
)

where C is a universal constant.
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Proof. As ∥G(W,a)−G(0)∥2 ≤ ∥G(W,a)−G(0)∥F , it suffices to bound each entry.

Note that
∂sp
∂wr

=
ar√
mn1

∑
k

∑
|ξ|=k

cξ(y
(1)
p )

[
tanh(1+|ξ|)(wT

r y
(1)
p )wξry

(1)
p + tanh(|ξ|)(wT

r y
(1)
p )

∂wξr
∂wr

]
and

∂hj
∂wr

=
ar
√
λ

√
mn2

[
α tanh′(wT

r y
(2)
j )y

(2)
j + β tanh

′′
(wT

r y
(2)
j )wT

r n(y
(2)
j ) + β tanh′(wT

r y
(2)
j )n(y

(2)
j )
]
.

For 1 ≤ i, j ≤ n1, noticing that all higher-order derivatives of tanh are bounded and R ∈ (0, 1], we
have

|Gij(W,a)−Gij(0)|

=

∣∣∣∣∣
m∑
r=1

〈
∂si(W,a)

∂wr
,
∂sj(W,a)

∂wr

〉
−
〈
∂si(W(0),a(0))

∂wr
,
∂sj(W(0),a(0))

∂wr

〉∣∣∣∣∣
≲ R

1

n1m

m∑
r=1

(∥wr(0)∥2|ξ̃|2 + 1).

For 1 ≤ i ≤ n1, n1 + 1 ≤ j ≤ n1 + n2, we also have

|Gij(W,a)−Gij(0)|

=

∣∣∣∣∣
m∑
r=1

〈
∂si(W,a)

∂wr
,
∂hj(W,a)

∂wr

〉
−
〈
∂si(W(0),a(0))

∂wr
,
∂hj(W(0),a(0))

∂wr

〉∣∣∣∣∣
≲ R

1
√
n1n2m

m∑
r=1

(∥wr(0)∥2|ξ̃|2 + 1).

For n1 + 1 ≤ i, j ≤ n1 + n2, we still have

|Gij(W,a)−Gij(0)|

=

∣∣∣∣∣
m∑
r=1

〈
∂hi(W,a)

∂wr
,
∂hj(W,a)

∂wr

〉
−
〈
∂hi(W(0),a(0))

∂wr
,
∂hj(W(0),a(0))

∂wr

〉∣∣∣∣∣
≲ R

1

n2m

m∑
r=1

(∥wr(0)∥22 + 1)

≲ R
1

n2m

m∑
r=1

(∥wr(0)∥2|ξ̃|2 + 1).

Combining above results yields that

∥G(W,a)−G(0)∥22 ≤ ∥G(W,a)−G(0)∥2F ≲ R2 +R2

(
1

m

m∑
r=1

∥wr(0)∥|ξ̃|2

)2

.

For the second term, applying Eq.(38) implies that with probability at least 1− δ,

1

m

m∑
r=1

∥wr(0)∥2|ξ̃|2 ≲
d|ξ̃|√
m

√
log

2

δ
+
d|ξ̃|

m

(
log

2

δ

)|ξ̃|

. (42)

Finally, we can deduce that with probability at least 1− δ,

∥G(W,a)−G(0)∥2 ≤ CR

(
1 +

d|ξ̃|√
m

√
log

2

δ
+
d|ξ̃|

m

(
log

2

δ

)|ξ̃|
)
,

where C is a universal constant.
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Lemma 6 (Bounded initial loss). With probability at least 1− δ, we have

Jemp(0) ≤ C

(
d2|ξ̃| log

(
n1 + n2

δ

)
+
d2|ξ̃|

m

(
log

(
n1 + n2

δ

))2|ξ̃|
)
, (43)

where C is a universal constant.

Proof. For the initial value of PINN, we have

Jemp(0) =
1

2

n1∑
p=1

s2p(W(0),a(0)) +
1

2

n2∑
j=1

h2j (W(0),a(0))

=
1

2n1

n1∑
p=1

 1√
m

m∑
r=1

ar(0)

+∞∑
k=0

∑
|ξ|=k

cξ(y
(1)
p ) tanh(|ξ|)(wr(0)

Ty(1)p )wξ − f(y(1)p )

2

+
1

2n2

n2∑
j=1

(
1√
m

m∑
r=1

ar(0)(α tanh(wT y
(2)
j ) + β tanh′(wTy

(2)
j )wTn(y

(2)
j ))− g(y

(2)
j )

)2

≤ 1

n1

n1∑
p=1

 1√
m

m∑
r=1

ar(0)

+∞∑
k=0

∑
|ξ|=k

cξ(y
(1)
p ) tanh(|ξ|)(wr(0)

Ty(1)p )wξ

2

+ (f(y(1)p ))2

+
1

n2

n2∑
j=1

(
1√
m

m∑
r=1

ar(0)α tanh(wT y
(2)
j )

)2

+
1

n2

n2∑
j=1

(
1√
m

m∑
r=1

ar(0)β tanh
′(wTy

(2)
j )wTn(y

(2)
j )

)2

+ (g(y
(2)
j ))2.

(44)

For the first term in Eq.(44), note that E
[
ar(0)

∑+∞
k=0

∑
|ξ|=k cξ(y

(1)
p ) tanh(|ξ|)(wr(0)

Ty
(1)
p )wξ

]
=

0 and ∣∣∣∣∣∣ar(0)
+∞∑
k=0

∑
|ξ|=k

cξ(y
(1)
p ) tanh(|ξ|)(wr(0)

Ty(1)p )wξ

∣∣∣∣∣∣ ≲ 1 + ∥wr(0)∥|ξ̃|2 .

Therefore, we have∥∥∥∥∥∥ar(0)
+∞∑
k=0

∑
|ξ|=k

cξ(y
(1)
p ) tanh(|ξ|)(wr(0)

Ty(1)p )wξ

∥∥∥∥∥∥
ψ 1

|ξ̃|

≲ 1 +
∥∥∥∥wr(0)∥|ξ̃|2

∥∥∥
ψ 1

|ξ̃|

≲ d|ξ̃|.

Let Xr = ar(0)
∑+∞
k=0

∑
|ξ|=k cξ(y

(1)
p ) tanh(|ξ|)(wr(0)

Ty
(1)
p )wξ, then with probability at least 1−

δ, ∣∣∣∣∣
m∑
r=1

Xr√
m

∣∣∣∣∣ ≲ d|ξ̃|
√
log

2

δ
+
d|ξ̃|√
m

(
log

2

δ

)|ξ̃|

.

As for the second term, we have E[ar(0)α tanh(wr(0)
T y

(2)
j )] = 0 and by Lipschitz continuty,

|ar(0)α tanh(wr(0)
T y

(2)
j )| ≲ |wr(0)T y(2)j |.

Thus
∥ar(0)α tanh(wr(0)

T y
(2)
j )∥ψ2 ≤ C,

as wr(0)T y
(2)
j ∼ N (0, ∥y(2)j ∥22).
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Let Yr = ar(0)α tanh(wr(0)
T y

(2)
j ), applying Eq.(38) yields that with probability at least 1− δ,∣∣∣∣∣

m∑
r=1

Yr√
m

∣∣∣∣∣ ≲
√

log

(
1

δ

)
+

1√
m

log

(
1

δ

)
.

Finally, similar to the approach used for the first term, we can also control the third term. Let
Zr = ar(0)β tanh

′(wTy
(2)
j )wTn(y

(2)
j ), then with probability at least 1− δ,∣∣∣∣∣

m∑
r=1

Zr√
m

∣∣∣∣∣ ≲ d

√
log

2

δ
+

d√
m

log
2

δ
.

Combining all results above yields that

Jemp(0) ≲ d2|ξ̃| log

(
n1 + n2

δ

)
+
d2|ξ̃|

m

(
log

(
n1 + n2

δ

))2|ξ̃|

holds with probability at least 1− δ.

Lemma 7. With probability at least 1− δ,

∥wr(0)∥22 ≤ C

(
d+

√
d log

(m
δ

)
+ log

(m
δ

))
:= R′2 (45)

holds for all 1 ≤ r ≤ m and C is a universal constant.

Proof. From Eq.(38), we can deduce that for fixed r,

∥wr(0)∥22 ≤ C

(
d+

√
d log

(
1

δ

)
+ log

(
1

δ

))
holds with probability at least 1− δ.

Therefore, the following holds with probability at least 1− δ.

∥wr(0)∥22 ≤ C

(
d+

√
d log

(m
δ

)
+ log

(m
δ

))
, ∀r ∈ [m].

Lemma 8. Let R = O
(

min{λ0,λ̃0}
d|ξ̃|(log 2

δ )
|ξ̃|

)
. If

m = Ω

 1(
λ0 + λ̃0

)2 · d2|ξ̃|
(
log

(
n1 + n2

δ

))2|ξ̃|

· R
′6

R2

 ,

and assuming |ar(τ)| ≤ 2, ∥wr(τ)∥2 ≤ 2R′, λmin(G(W(τ),a(τ))) ≥ λ0

2 , and
λmin(G̃(W(τ),a(τ))) ≥ λ̄0

2 for all 0 ≤ τ ≤ t, then ∥wr(τ)−wr(0)∥2 ≤ R and |ar(τ)−ar(0)| ≤
R for all r ∈ [m] and 0 ≤ τ ≤ t.

Proof. The proof follows the same approach as Lemma B.2 in the paper Gao et al. (2023) and is
omitted here for brevity.

After the preparation of the previous lemmas, we now present the complete proof of Theorem 1.
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Proof. Finally, for all r ∈ [m], wr(t) and a(t) will remain within the balls B(wr(0), R) and
B(a(0), R), respectively. Without loss of generality, let us assumeR′ ≥ R, so that ∥wr(τ)∥2 ≤ 2R′

if wr(τ) stays inside B(wr(0), R). Lemma 8 shows that if

m = Ω

 1(
λ0 + λ̃0

)2 · d2|ξ̃|
(
log

(
n1 + n2

δ

))2|ξ̃|

· R
′6

R2


= Ω̃

 1(
λ0 + λ̃0

)2 · d4|ξ̃|
(
log

(
n1 + n2

δ

))4|ξ̃|

· d3

min{λ20, λ̃20}

 ,

then for all t > 0 and 1 ≤ r ≤ m, we have ∥wr(t) − wr(0)∥2 ≤ R, ∥a(t) − a(0)∥2 ≤ R,
λmin(G(W(t),a(t))) ≥ λ0

2 , and λmin(G̃(W(t),a(t))) ≥ λ̄0

2 . Then we have

dJemp(W(t),a(t))

dt
=

1

2

d

dt

∥∥∥∥(s(W(t),a(t))
h(W(t),a(t))

)∥∥∥∥2
2

= −
[
s(W(t),a(t))⊤, h(W(t),a(t))⊤

]
·
(
G(W(t),a(t)) + G̃(W(t),a(t))

)
·
(
s(W(t),a(t))
h(W(t),a(t))

)
≤ −1

2
(λ0 + λ̃0) ·

∥∥∥∥(s(W(t),a(t))
h(W(t),a(t))

)∥∥∥∥2
2

= −(λ0 + λ̃0) · Jemp(W(t),a(t)).

Furthermore,
Jemp(W(t),a(t)) ≤ exp

(
−(λ0 + λ̄0) · t

)
· Jemp(w(0), a(0)),

for all t > 0.

H EXTENSION TO DEEPER NETWORKS

In this section, we discuss how our main results (Theorem 1 and Theorem 3) can be extended to
deeper neural network architectures. For linear PDEs, the convergence analysis grounded in neural
tangent kernel (NTK) theory naturally generalizes to multi-layer networks, leveraging established
results from the NTK literature. In the context of nonlinear PDEs, we address the critical issue of the
linear independence of neuron functions (Lemma 1) and summarize recent theoretical advances that
provide sufficient conditions for preserving this property in deeper networks, especially three-layer
architectures. The relevant literature and further details are reviewed below.

H.1 CONVERGENCE RESULTS FOR SOLVING LINEAR PDES WITH DEEPER NEURAL
NETWORKS

Previous works (Gao et al., 2023; Li et al., 2023b) on the convergence of PINN frameworks for
second-order elliptic equations, both for gradient descent and implicit gradient descent, have been
primarily limited to two-layer neural networks. In contrast, Du et al. (2019b) establishes conver-
gence of the loss function for over-parameterized, multi-layer fully connected networks in the su-
pervised learning setting, fundamentally relying on the neural tangent kernel (NTK) theory for deep
networks. By combining the proof strategy of our result Theorem 1 with the layer-wise NTK analy-
sis from Du et al. (2019b), the convergence guarantees within the PINN framework can be extended
to over-parameterized, multi-layer fully connected networks, provided either implicit gradient de-
scent or gradient descent with a sufficiently small step size is used.

Below, we state an informal theorem (omitting explicit over-parameterization bounds), as in practice
it suffices to select the network width large enough to observe the convergence behavior, rather than
strictly adhering to theoretical minima.

Theorem 6 (Informal: Convergence of Multi-layer PINNs for Certain Linear PDEs). Consider a
physics-informed neural network (PINN) with a deep (multi-layer) architecture used to approximate
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the solution of an admissible linear PDE, where the empirical loss is defined analogously to Eq.(6),
and assume standard random initialization for all weights and biases. Under gradient flow training
and with a sufficiently wide network, the empirical loss Jemp(θ(t)) decreases to zero as t → ∞,
with a convergence rate governed by the spectrum of the neural tangent kernel associated with the
multi-layer architecture.

Furthermore, Du et al. (2019b) also extends convergence analyses to convolutional and ResNet
architectures in the supervised learning setting. This indicates that similar convergence results for
PINNs could potentially be obtained for these more advanced architectures, which is a promising
direction for future research.

H.2 CONVERGENCE RESULTS FOR SOLVING NONLINEAR PDES WITH THREE-LAYER
NEURAL NETWORKS

To the best of our knowledge, our work is the first to investigate the convergence of PINNs for solv-
ing nonlinear PDEs, even though it is restricted to the two-layer random feature model. Following
the structure of Section 4.2 in the main text, we note that the central step in the proof of Theorem 3
is to establish the coercivity of the loss function with respect to the trainable parameter a. This step
fundamentally depends on demonstrating the linear independence of the neuron basis functions (see
Proposition 2), which, in turn, relies on Lemma 1.

Extending Theorem 3 to multi-layer random feature models—where all hidden layer parameters are
fixed randomly—thus essentially reduces to ensuring that Lemma 1 holds for multi-layer architec-
tures. In this context, the recent work Zhang (2024) provides a relevant discussion and establishes
the following result.

Proposition 5 (Proposition 5.3 in Zhang (2024)). Given d,m, n ∈ N. Let {(w(1)
k , b

(1)
k )}mk=1 ⊂

Rmd+m be such that (w(1)
k1
, b

(1)
k1

)±(w
(1)
k2
, b

(1)
k2

) ̸= 0 for all distinct k1, k2 ∈ {1, . . . ,m} andw(1)
k ̸= 0

for all k ∈ {1, . . . ,m}. Let {(w(2)
j , b

(2)
j )}nj=1 ⊂ Rmn+n be such that (w(2)

j1
, b

(2)
j1

)± (w
(2)
j2
, b

(2)
j2

) ̸= 0

for all distinct j1, j2 ∈ {1, . . . , n} and w(2)
j ̸= 0 for all j ∈ {1, . . . , n}. Then for σ being a sigmoid

or tanh activation function, the three-layer neurons{
σ

(
m∑
k=1

w
(2)
jk σ

(
w

(1)
k z + b

(1)
k

)
+ b

(2)
j

)}n
j=1

are linearly independent.

Although the three-layer result is more general than our Lemma 1, the proof of Lemma 1 is much
more straightforward, while the three-layer result relies on elaborate arguments in the cited work.
Therefore, by applying the above result and following the proof strategy of Theorem 3, we can
obtain the following convergence theorem.

Random Initialization (Three-layer Network) Inner-layer parameters {(w(1)
k , b

(1)
k )}mk=1 and

{(w(2)
j , b

(2)
j )}nj=1 are randomly initialized as follows:

w
(1)
k ∼ N (0, Id) i.i.d., w

(2)
j ∼ N (0, Id) i.i.d.,

b
(1)
k ∼ N (0, 1) i.i.d., b

(2)
j ∼ N (0, 1) i.i.d.

for 1 ≤ k ≤ m, 1 ≤ j ≤ n.
Theorem 7 (Almost sure convergence via admissible initialization for three-layer networks). Under
Assumption 1, regardless of the specific form of the differential operator L in the PDE with Dirichlet
boundary condition, we can initialize the inner parameters {(w(1)

k , b
(1)
k )}mk=1 and {(w(2)

j , b
(2)
j )}nj=1

with probability 1 such that:

(i) J is coercive about a;

(ii) All convergence results of Proposition 1 hold for the three-layer setting.
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As for more complex network architectures, we are currently unable to provide a rigorous theoretical
result, and this will be the subject of future research. It is also worth noting that when the inner-layer
parameters are trainable, even in the two-layer case, current theory only guarantees either divergence
to infinity or convergence to a critical point. Without imposing additional assumptions, it is not yet
possible to rule out parameter divergence, and thus convergence cannot be ensured.

I ADDITIONAL EXPERIMENTS

In this section, we provide experimental details and results to supplement the main text. We begin
by presenting the pseudocode for implementing PINNs with implicit gradient descent, followed by a
detailed description of the experimental setup for the Burgers’ equation. Finally, we provide further
experimental setups and results for high-dimensional test problems. In addition, all experiments in
this paper were conducted on a desktop computer equipped with a single 4060Ti GPU.

I.1 PSEUDOCODE FOR IGD

Compared to standard optimization algorithms such as gradient descent or stochastic gradient de-
scent, implicit gradient descent is less commonly used and may be less familiar to readers. There-
fore, we provide a detailed explanation here. Let θ denote all trainable parameters in the network
and J (θ) represent the empirical loss function. The iteration rule for implicit gradient descent is
given by:

θk+1 = θk − η∇J (θk+1), k = 0, 1, 2, . . . .

This update step can be interpreted as solving the following optimization problem:

min
ξ

ηJ (ξ) +
1

2
∥ξ − θk∥22. (46)

The first-order optimality condition for this problem is equivalent to the IGD update rule. Conse-
quently, regardless of the step size, the parameter sequence generated by IGD guarantees a monoton-
ically decreasing loss value. This inherent stability allows IGD to impose much weaker restrictions
on the choice of step size compared to standard gradient descent.

It is important to note that the operator I + η∇J may not be invertible for arbitrary loss functions.
However, when J is convex, proximal point theory ensures that the subproblem above always admits
a solution for any step size η. In practice, PINNs often employ second-order solvers such as L-
BFGS to efficiently solve the subproblem Eq.(46), even when convexity is not strictly satisfied.
This practical approach makes IGD a robust and effective choice for real-world applications. The
pseudocode for implementing the IGD algorithm is provided below in Algorithm 1.

Algorithm 1 Mini-batch implicit gradient descent (IGD)

1: Input:
Training dataset D; Batch size B;
Number of outer iterations K1; Number of inner iterations K2;
Outer (IGD) step size η; Inner (solver) step size γ; Initial parameters θ0.

2: for k = 0 to K1 − 1 do
3: Sample a batch Bk of size B from D
4: Define empirical loss function Jk(θ) on Bk
5: Inner loop:

Use L-BFGS optimizer to approximately solve Eq.(46) with K2 iterations and (internal) step
size γ.
Let ξ0 = θk.

6: for t = 0 to K2 − 1 do
7: ξt+1 is obtained by applying one L-BFGS step to ξt on the objective in Eq.(46).
8: end for
9: Set θk+1 = ξK2 as the output of the inner loop

10: end for
11: Output: Final parameters θK1
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I.2 EXPERIMENT SETUP FOR BURGERS’ EQUATION

In the main text, for the sake of brevity, we only presented the results of our partial experiments.
Here, to ensure the reliability and reproducibility of our findings, we provide comprehensive details
of the experimental setup, including the specific hyperparameter choices.

Experiment setup for Figure 1. The primary goal of Figure 1 is to illustrate that the neural tangent
kernel (NTK) matrix induced by the loss corresponding to the nonlinear differential operator evolves
significantly during training, while the NTK matrix corresponding to the linear boundary operator
remains nearly unchanged. To demonstrate this effect, we used a scaled two-layer neural network
as the model architecture:

u(t, x; θ) =
1√
1000

1000∑
k=1

ak tanh
(
w⊤
k (t, x)

)
.

The weight parameters wk were initialized using the standard normal distribution, while the outer
parameters ak were initialized uniformly over the interval [−1, 1]. The training dataset consisted of
100 interior points and 20 boundary points. The relatively small number of data points, compared
to the network width, was chosen to satisfy the overparameterization conditions assumed in NTK
theory. Throughout training, no mini-batching was used; instead, full-batch updates were performed
at every iteration.

The implicit gradient descent (IGD) algorithm was used to optimize the network parameters a =
(ak)1≤k≤1000, while the weights w = (wk)1≤k≤1000 were kept fixed throughout training. The outer
IGD iterations were performed for 100 steps with a step size of η = 0.5. At each outer iteration,
the inner subproblem Eq.(46) was solved using the L-BFGS optimizer, with a step size of 0.1 and
10 iterations per outer step. The result shown in Figure 1 was generated under these settings. A
summary of the chosen hyperparameters is provided in Table 2 for reference.

Table 2: Hyperparameter settings for the experiment in Figure 1.

Component Value Description

Interior points 100 Training data points (domain)
Boundary points 20 Training data points (boundary)
Batching Full No mini-batch
Outer IGD steps 100 Total optimization iterations
IGD step size 0.5 Step size for outer loop
Inner solver L-BFGS Optimizer for each IGD step
L-BFGS steps 10 Inner iterations per IGD step
L-BFGS step size 0.1 Step size for L-BFGS

Experiment setup for convergence validation on Burgers’ equation. This experiment aims to
empirically validate Theorem 3, which concerns the convergence of the random feature model when
solving nonlinear equations. The neural network used is a two-layer model with width 100:

u(t, x; θ) =

100∑
k=1

ak tanh
(
w⊤
k (t, x)

)
.

The weights wk were initialized from a standard normal distribution, while the coefficients ak were
initialized uniformly in the interval [−1, 1]. The training dataset contains 10,000 interior points and
100 boundary points, clearly not in an overparameterized regime. Full-batch training is employed
for this experiment.

IGD algorithm is used to optimize the outer-layer parameters. The step size of the outer iteration
is η = 0.5 for 10000 steps. Each IGD subproblem is approximately solved using the L-BFGS
optimizer (20 inner steps per outer loop) with a step size of 0.01. A summary of the key settings is
provided in Table 3.
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Table 3: Hyperparameter settings of the experiment for convergence validation on Burgers’ equation.

Component Value

Parameter initialization wk ∼ N (0, I2), ak ∼ U [−1, 1]
Interior points 10,000
Boundary points 100
Batching Full batch
Optimizer (IGD) Outer steps: 10000, step size η = 0.5
Inner solver (IGD) L-BFGS, 20 steps/outer step, step size = 0.01

I.3 HIGH-DIMENSIONAL EXPERIMENTS

To further validate the theoretical results presented in the main text, we conduct experiments on
high-dimensional nonlinear partial differential equations. In particular, we consider both the Allen–
Cahn and Fisher–KPP equations as representative examples. These experiments are designed to test
whether our theoretical insights hold in more challenging, high-dimensional scenarios. The detailed
settings and results for each equation are presented in the following subsections.

I.3.1 ALLEN–CAHN EQUATION

We consider the two-dimensional Allen–Cahn equation,

ut = ϵ2∆u− (u3 − u) + S(x, y, t), (47)

on (x, y) ∈ [−1, 1]× [−1, 1], t ∈ [0, 1], with ϵ = 0.1. The exact solution we set is

u(x, y, t) = [sin(πx) cos(πy) + 0.1 sin(10πx) cos(10πy)]e−t,

from which S(x, y, t), initial, and boundary conditions are determined.

Experiment 1: NTK failure in the random feature model for nonlinear PDEs.

To solve Eq.(47) within the PINN framework, we use a shallow neural network of the form

uθ =
1√
1000

1000∑
k=1

ak tanh
(
w⊤
k x+ bk

)
,

where x = (x, y, t)⊤. The inner parameters (wk, bk) are initialized as standard Gaussian and kept
fixed, while the outer coefficients ak are initialized uniformly in (−1, 1) and optimized by the IGD
algorithm. The dataset consists of 50 boundary and 200 interior points, with full-batch training.
Optimization is performed for 100 outer steps of step size 0.5 (each with 10 L-BFGS inner iterations
of step size 0.1). We track the relative Frobenius norm of the NTK matrices during training, as
shown in Figure 2. The results indicates that while the NTK remains stable for the linear (boundary)
operator, it changes significantly for the nonlinear (interior) operator, reflecting a breakdown of the
NTK regime even in the random feature model for nonlinear problems.

Experiment 2: Convergence in the random feature model.

In this experiment, we continue to use the random feature model uθ =
∑1000
k=1 ak tanh(w⊤

k x+ bk),
with (wk, bk) fixed after Gaussian initialization and ak initialized uniformly in (−1, 1) and opti-
mized by IGD. The dataset contains 500 boundary and 10,000 interior points. Training is performed
in full batch for 2,000,000 total steps (50,000 IGD outer steps with step size 0.5, each with 40
L-BFGS inner steps of step size 0.1).

At the end of training, the ℓ2-norm of the loss gradient with respect to parameters is about 1.86 ×
10−3, indicating convergence to a critical point, which is consistent with our theoretical analysis in
Theorem 3. We note that the norm is not zero, likely due to the problem’s multiscale nature and the
finite training budget: even 2,000,000 steps are sometimes insufficient for full convergence in such
stiff problems (prior works have reported using up to 5,000,000 steps).

Experiment 3: IGD outperforms Adam on multi-scale problems with large step sizes.
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Figure 2: Relative Frobenius norm of two NTK matrices for Allen–Cahn equation.

We further assess the performance of IGD and Adam on a more expressive model: a fully connected
neural network comprising four layers with 100 neurons each. Biases are initialized to zero, and
all other weights are initialized using Xavier normal initialization. Both IGD and Adam employ
the same initialization scheme. The training data contains 500 boundary points and 20,000 interior
points, with mini-batch sizes of 32 and 256 for boundary and interior points, respectively.

Both optimizers are trained for a total of 1,000,000 steps. For IGD, this corresponds to 25,000 outer
steps (learning rate 0.1), with each outer step followed by 40 L-BFGS inner iterations (learning rate
0.1). Adam uses a constant learning rate of 0.1 throughout all iterations.

Figure 3 shows the loss curves over the entire training process for both IGD and Adam algorithms.
With a step size of 0.1, IGD exhibits steady and stable loss reduction, whereas Adam experiences
severe oscillations and fails to make substantive progress on this multiscale problem. These results
further underscore the robustness and effectiveness of IGD in challenging multiscale settings. Fur-
thermore, Figure 4 shows the solutions obtained by IGD at three representative time points. As
shown, the learned solution captures some key features of the ground truth.

Figure 3: Loss curves for IGD and Adam on Allen–Cahn equation.
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(a) t = 0.25

(b) t = 0.5

(c) t = 0.75

Figure 4: Numerical solutions obtained by IGD at 3 different time points for Allen–Cahn equation.

I.3.2 FISHER–KPP EQUATION

To further supplement our main results, we present experiments on the classical two-dimensional
Fisher–KPP equation, a widely studied reaction-diffusion model. The equation is given by

ut = ∆u+ u(1− u) + S(x, y, t),

where (x, y) ∈ [−1, 1]2 and t ∈ [0, 1]. The exact solution is selected as u(x, y, t) = e−(x2+y2+t),
from which the source term S(x, y, t) as well as the initial and boundary conditions can be directly
determined.

Experiment 1: NTK Failure in the random feature model for Nonlinear PDEs.

In this experiment, we use a two-layer neural network,

uθ =
1√
1000

1000∑
k=1

ak tanh
(
w⊤
k x+ bk

)
,

where x = (x, y, t)⊤. The inner parameters (wk, bk) are initialized as standard Gaussian random
variables and then fixed, and the outer coefficients ak are initialized uniformly in (−1, 1) and op-
timized by the IGD algorithm. The dataset consists of 50 boundary and 200 interior points (full
batch). Training is performed over 100 outer steps of learning rate 0.5 (each with 10 L-BFGS inner
steps of learning rate 0.1). We report the relative Frobenius norm of the NTK matrices during train-
ing in Figure 5, illustrating that the NTK theory breaks down for the nonlinear (interior) component,
as evidenced by significant changes in the NTK matrix throughout training.

Experiment 2: Convergence in the random feature model.
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Figure 5: Relative Frobenius norm of two NTK matrices for Fisher–KPP equation.

Here we retain the random feature structure but remove the 1√
1000

normalization, using uθ =∑1000
k=1 ak tanh(w

⊤
k x + bk). As before, (wk, bk) are fixed after Gaussian initialization and ak are

initialized uniformly in (−1, 1) and trained by IGD. The data comprises 500 boundary points and
10,000 interior points (full batch).

Training is performed for a total of 100,000 steps (2500 IGD outer steps, each with 40 L-BFGS inner
steps; outer and inner step sizes are 0.5 and 0.1, respectively). At the end of training, the ℓ2-norm of
the loss gradient with respect to the parameters is 6.74× 10−4, indicating that a has converged to a
critical point (gradient nearly zero), in accord with the theoretical results presented in Theorem 3.

Experiment 3: IGD demonstrates superior stability to Adam under large step sizes

We compare the performance of IGD and Adam in solving the Fisher–KPP equation using a four-
layer fully connected neural network with 100 neurons per hidden layer. The biases are initialized
to zero, and all other trainable parameters are initialized using Xavier normal initialization. The
training dataset consists of 500 boundary points and 20,000 interior points, with batch sizes of 32
and 256 for the boundary and interior, respectively.

Training is performed for 200,000 steps. Specifically, IGD is run for 5,000 outer iterations with a
learning rate of 0.1, each comprising 40 inner L-BFGS steps (also with learning rate 0.1). Adam is
trained for the full 200,000 steps with a fixed learning rate of 0.1. As shown in Figure 6, Adam’s loss
curve exhibits substantial oscillations during training, whereas the loss for IGD decreases smoothly
and steadily, highlighting the superior stability of IGD. In addition, Figure 7 presents the solu-
tions obtained by IGD alongside the exact solutions at three representative time points. The results
demonstrate that IGD yields solutions in close agreement with the exact solution.

I.4 EXPERIMENT TO VALIDATE THEOREM 4

To verify the convergence result stated in Theorem 4, we solve the following PDE within the PINN
framework:

−div
(
(1 + u2)∇u

)
+ q(x)u+ h(u) = f(x), q ≥ 0, h(u)u ≥ 0, (x, y) ∈ B(0, 1),

with homogeneous Dirichlet boundary conditions.

For this experiment, we set q = 1 and h(u) = u3, and the chosen exact solution is

u(x, y) = 1− x2 − y2.

We can canculate the corresponding source term f(x, y) accordingly. The neural network employed
is a random feature model, specifically a two-layer network given by

uθ =

100∑
k=1

ak tanh
(
w⊤
k x
)
,
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Figure 6: Loss curves for IGD and Adam on Fisher–KPP equation.

(a) t = 0.25

(b) t = 0.5

(c) t = 0.75

Figure 7: Numerical solutions obtained by IGD at 3 different time points for Fisher–KPP equation.

where x = (x, y)T, ak denotes the trainable outer parameters. Only the residual loss is considered,
with training points sampled uniformly from 10, 000 locations inside B(0, 1). The homogeneous
Dirichlet boundary condition can be enforced by multiplying the network output by a cutoff function
φ that vanishes on the boundary.
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We optimize the outer parameters a using the IGD algorithm sufficiently to ensure convergence.
Specifically, IGD updates are performed with a step size of 0.5 for outer steps, and at each step the
subproblem is solved by L-BFGS with a step size of 0.1 for 40 inner iterations. Under this proto-
col, we test the convergence behavior starting from different random initializations of parameters.
We report the Euclidean 2-norm of the residual loss gradient with respect to a at the end of train-
ing for each initialization, as shown in Table 4. The results confirm the convergence predicted by
Theorem 4.

Table 4: Loss gradient norms and IGD steps for different initializations.

Initialization ∥∇J (a)∥2 Outer IGD Steps

Xavier normal for wk, Xavier uniform for ak 2.44× 10−4 10000
Standard normal for wk, uniform [−1, 1] for ak 1.45× 10−4 200000
LeCun normal initialization for both wk and ak 1.37× 10−4 200000

We note that the latter two initializations require more IGD steps to reach convergence. This is
because their initial losses are relatively large, resulting in longer optimization trajectories.

J CONVERGENCE ANALYSIS FOR SGD

In this section, we investigate whether the convergence results established for full-batch optimization
in the main text (Theorem 1 and Theorem 3) can be extended to stochastic gradient descent (SGD).
We specifically compare convergence behaviors under SGD for linear and nonlinear PDEs, and
highlight the key challenges and open questions arising in the stochastic setting.

J.1 SGD CONVERGENCE FOR SOLVING LINEAR PDES

As discussed throughout this work, convergence analysis for linear PDEs is fundamentally based on
NTK theory. Notably, Xu & Zhu (2024) demonstrated that, in supervised learning, one-pass SGD
with streaming data—where each iteration samples a fresh, non-repeating point from a continuously
distributed dataset—admits a deterministic limit kernel. This insight strongly motivates the use
of NTK-based arguments for analyzing the convergence of overparameterized neural networks for
linear PDEs within the PINN framework.

However, extending rigorous theoretical results to PINNs in the SGD setting is significantly more
complex. Formal proofs demand careful treatment of the interplay between the data distribution,
sampling procedure, and network overparameterization, which is beyond the scope of this work. We
leave such comprehensive theoretical analysis for future studies.

J.2 SGD CONVERGENCE FOR NONLINEAR PDES

For nonlinear PDEs, NTK theory is generally inapplicable, and our main text relies instead on
the Łojasiewicz inequality for convergence analysis. Recently, works such as Dereich & Kassing
(2021); An & Lu (2023) have established convergence guarantees for SGD under certain condi-
tions, notably the boundedness of trajectories, by leveraging the Łojasiewicz inequality as the key
tool. While these results provide a natural foundation, applying them directly in the PINN context
presents new challenges. In standard supervised learning, the required trajectory conditions can hold
with probability one under suitable assumptions; however, for PINNs, it is only straightforward to
establish that the probability of bounded SGD trajectories is positive, without control over its mag-
nitude. Quantifying this probability and fully characterizing convergence probabilities remains an
open question in the PINN setting.

In summary, while the foundational tools for extending convergence results to SGD exist, a com-
plete understanding—especially for nonlinear PDEs—requires further investigation. In particular,
characterizing the likelihood of favorable SGD behavior in the PINN setting represents an important
direction for future research.
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