
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONVERGENCE GUARANTEES FOR GRADIENT-BASED
TRAINING OF NEURAL PDE SOLVERS: FROM LINEAR
TO NONLINEAR PDES

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a unified convergence theory for gradient-based training of neural net-
work methods for partial differential equations (PDEs), covering both physics-
informed neural networks (PINNs) and the Deep Ritz method. For linear PDEs,
we extend the neural tangent kernel (NTK) framework for PINNs to establish
global convergence guarantees for a broad class of linear operators. For non-
linear PDEs, we prove convergence to critical points via the Łojasiewicz in-
equality under the random feature model, eliminating the need for strong over-
parameterization and encompassing both gradient flow and implicit gradient de-
scent dynamics. Our results further reveal that the random feature model exhibits
an implicit regularization effect, preventing parameter divergence to infinity. The-
oretical findings are corroborated by numerical experiments, providing new in-
sights into the training dynamics and robustness of neural network PDE solvers.

1 INTRODUCTION

Partial differential equations (PDEs) form the mathematical foundation for modeling phenomena
across physics, engineering, and applied sciences. While linear PDEs are relatively well-understood,
nonlinear PDEs, ubiquitous in modeling complex systems, pose significant analytical and compu-
tational challenges due to their lack of superposition principles and potential for solution singular-
ities (Evans, 2022; Johnson, 2009). Recent advances in machine learning have introduced neural
PDE solvers, such as physics-informed neural networks (Raissi et al., 2019) and the Deep Ritz
method (E & Yu, 2018), as flexible alternatives to traditional numerical methods. These approaches
have demonstrated empirical success in high-dimensional and nonlinear settings (Lawal et al., 2022;
Karniadakis et al., 2021; Liao & Ming, 2021; Liu et al., 2023), but their theoretical convergence
guarantees remain limited, especially for nonlinear PDEs.

Most existing convergence analyses for physics-informed neural networks are developed within the
neural tangent kernel framework (Jacot et al., 2018; Li et al., 2020), which primarily provides guar-
antees for second-order linear PDEs using over-parameterized networks (Gao et al., 2023; Xu et al.,
2024a;b). While it is commonly believed that NTK-based results could be extended to broader
classes of linear PDEs, rigorous proofs beyond the second-order setting are still lacking. For
the Deep Ritz method, convergence analyses typically rely on coercivity of the bilinear form and
Rademacher complexity estimates (Duan et al., 2022; Jiao et al., 2024; Lu et al., 2021); however,
these approaches are mostly confined to linear elliptic equations with convex energy functionals, and
the extension to general variational problems remains underexplored. Crucially, neither framework
currently offers provable convergence guarantees for solving nonlinear PDEs. In particular, when
PINNs are used to solve equations with nonlinear differential operators, the associated NTK matrix
evolves dynamically during training and, as shown in Bonfanti et al. (2024), fails to converge to a
deterministic kernel in the infinite-width limit. For the Deep Ritz method, the non-convexity inher-
ent in nonlinear PDEs further complicates the analysis. This theoretical gap poses a major challenge
to our understanding of neural PDE solvers in nonlinear regimes.

In this work, we overcome the aforementioned theoretical limitations by establishing a systematic
convergence theory for neural PDE solvers across both linear and nonlinear regimes. For linear
PDEs, we extend the NTK framework to establish convergence guarantees for PINNs solving a broad

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

class of linear operators, surpassing results limited to second-order cases. For nonlinear PDEs, we
introduce a new approach using the Łojasiewicz inequality (Haraux, 2012) to rigorously characterize
optimization dynamics and guarantee convergence to critical points for important nonlinear cases.
This provides the first convergence theory unifying PINNs and Deep Ritz methods in nonlinear
settings. More precisely, the main contributions of this paper are as follows:

(i) We establish convergence to global minima for over-parameterized PINNs in solving a broad
class of linear PDEs, thereby significantly extending existing NTK-based results that are limited to
second-order cases (Theorem 1).

(ii) We provide a convergence framework for PINN and Deep Ritz solvers under both gradient flow
and implicit gradient descent dynamics, assuming coercivity of the loss function (Proposition 1).

(iii) Under the random feature model, we prove convergence to critical points for both PINN and
Deep Ritz solvers when applied to a wide range of PDEs, including all evolutionary equations and
several fundamental classes of nonlinear PDEs (Theorems 3 and 4). Moreover, our analysis reveals
an intrinsic regularization effect induced by the random feature model.

This paper is organized as follows. In Section 2, we review related works on machine learning-
based PDE solvers and existing convergence analyses. Section 3 introduces the problem setting,
and establishes general convergence results. Section 4 presents our main convergence results for
solving nonlinear PDEs under different cases. Section 5 provides experimental evidence supporting
our theoretical findings. Finally, Section 6 concludes the paper and discusses potential directions for
future research. Technical proofs and supplementary materials are included in the appendix.

2 RELATED WORKS

Machine learning PDE solvers. There are various machine learning-based solvers for PDEs,
among which physics-informed neural networks (Raissi et al., 2019) and Deep Ritz method (E &
Yu, 2018) are the most widely used. PINNs incorporate the PDE structure directly into the loss
function, while Deep Ritz leverages the variational form of certain problems. Both methods have
demonstrated remarkable empirical performance in solving a wide variety of nonlinear PDEs includ-
ing, for example, the Allen–Cahn equation (Wight & Zhao, 2021) and Schrödinger equation (Qiu
et al., 2025) across numerous applications (Chen et al., 2024; Tang et al., 2023; Savović et al.,
2023). Despite their success, theoretical understanding of their convergence properties, particularly
for nonlinear PDEs, remains limited and is an active area of ongoing research.

Existing convergence analysis using NTK framework. The neural tangent kernel (NTK) frame-
work, which approximates over-parameterized neural networks as linear models with an almost con-
stant Gram matrix during training, underpins much of the existing convergence analysis (Jacot et al.,
2018; Li et al., 2020). NTK was initially applied to study gradient descent in supervised learning
settings (Du et al., 2019a; Luo & Yang, 2024; Du et al., 2019b), and has been extended to analyze
the convergence of PINNs for second-order linear PDEs (Gao et al., 2023; Xu et al., 2024a;b). These
results typically show that, for highly over-parameterized NTK-scaled neural networks, the training
loss converges to zero with gradient-based optimization methods.

Convergence analysis using Łojasiewicz inequality. The Łojasiewicz inequality (Haraux, 2012)
is a fundamental analytical tool in the field of optimization, especially for studying the convergence
properties of gradient-based algorithms (Bolte et al., 2007; Alaa & Pierre, 2013). Traditionally, it
has been widely used to analyze the convergence in various non-convex and nonsmooth optimization
problems (Schneider & Uschmajew, 2015; Attouch et al., 2010; Karimi et al., 2016). In recent
years, the Łojasiewicz inequality has also been increasingly applied in the context of supervised
learning (Forti et al., 2006; Li et al., 2023a). Researchers have leveraged this inequality to study the
convergence behavior of machine learning algorithms, providing theoretical guarantees for global
or local convergence under mild assumptions (Lee et al., 2016; Ahmadova, 2023).

3 MATHEMATICAL SETUP AND GENERAL SUPPORTING RESULTS

In this section, we present the basic mathematical setup and introduce both PINNs and Deep Ritz
solvers. In Section 3.2, we establish two main results: first, a rigorous global convergence guarantee

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

for PINNs in solving a broad class of linear PDEs based on the NTK approach; second, a more
general convergence result to critical points, which serves as the foundation for our subsequent
analysis of nonlinear PDEs.

3.1 PROBLEM SETTING

We consider a general class of partial differential equations defined on an open bounded domain
Ω ⊂ Rd with d > 1, taking the following form:{

Lu = f, x ∈ Ω,

Bu = g, x ∈ ∂Ω,
(1)

where L represents a differential operator that may be linear or nonlinear, and f ∈ L∞(Ω) denotes
the source term. For evolutionary PDE, we adopt the convention where the first component of x rep-
resents the temporal dimension while the remaining components correspond to spatial coordinates,
thus naturally satisfying d > 1. The boundary conditions are encoded through the operator B, which
we specify as Robin-type: αu(x) + β ∂u∂n (x) = g(x) for x ∈ ∂Ω, where α, β ∈ R are not both zero,
g ∈ L2(∂Ω) is the prescribed boundary data, and ∂u

∂n denotes the outward normal derivative.

In this work, we focus on two neural network-based approaches for solving PDEs: physics-informed
neural networks (PINNs) and the Deep Ritz method. Both leverage the expressive power of deep
networks to approximate the solution u. In PINNs, a neural network uθ(x) parameterized by θ is
trained by minimizing the composite loss:

JPINN(θ) =

∫
Ω

(Luθ(x)− f(x))
2
dx+ λ

∫
∂Ω

(Buθ(x)− g(x))
2
dx, (2)

where λ ≥ 0 balances the PDE residual and boundary losses. The Deep Ritz method, applicable to
PDEs with variational structure E(u), seeks a minimizer uθ of the loss function:

JRitz(θ) = E(uθ) + λ

∫
∂Ω

(Buθ(x)− g(x))
2
dx. (3)

In our theoretical framework, we employ a two-layer neural network with tanh activation function
to approximate the solution to Eq.(1). Specifically, the network takes the form:

uθ(x) =
∑m

k=1
ak tanh(wT

kx+ bk), (4)

where θ = {(ak, wk, bk)}mk=1 denotes all parameters, with ak ∈ R, wk ∈ Rd and bk ∈ R. The tanh
activation function is particularly well-suited for our analysis due to its analyticity and bounded
derivatives. More crucially, it satisfies a key property (see Lemma 1) that, in combination with its
other features, underpins our convergence theory. The following lemma is proved in Section B.
Lemma 1 (Linear independence). Let m be a positive integer, and let α, β ∈ R be not both zero.
Given real numbers p1, . . . , pm such that pi ̸= ±pj for 1 ≤ i ̸= j ≤ m, and q1, . . . , qm ∈ R, the
functions α tanh(p1t+ q1)+β tanh

′(p1t+ q1) , . . . , α tanh(pmt+ qm)+β tanh′(pmt+ qm) are
linearly independent over R.
Remark 1 (On the choice of activation functions). Our analysis relies on three key properties of the
activation function: bounded derivatives, analyticity, and the linear independence property stated
in Lemma 1. These hold for a broad class of analytic activations, such as sigmoid and arctan. The
theoretical framework can be readily extended to any activation function satisfying these conditions.

3.2 GENERAL CONVERGENCE RESULTS

This subsection presents two convergence results for neural PDE solvers. While the NTK framework
guarantees global convergence for solving most linear PDEs, it can not extend to nonlinear cases.
This limitation motivates our alternative approach based on Łojasiewicz analysis, which establishes
critical point convergence beyond the linear setting.

3.2.1 NTK-BASED CONVERGENCE FOR MOST LINEAR PDES

While prior PINN convergence theories have mainly focused on second-order linear PDEs, such as
the heat equation, we extend existing analytical techniques to establish the first global convergence
guarantees for solving a broad class of linear PDEs. We begin by introducing some notations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Notation: Let ξ = (ξ1, . . . , ξd) ∈ Nd be a d-dimensional multi-index, where N denotes the set of
non-negative integers. Given a vector x = (x1, . . . , xd)

T ∈ Rd, we define the ξ-th power of x as
xξ :=

∏d
i=1 x

ξi
i . For a sufficiently smooth function u : Rd → R, its ξ-th partial derivative is denoted

by ∂ξu := ∂|ξ|u

∂x
ξ1
1 ···∂xξd

d

, where |ξ| :=
∑d
i=1 ξi represents the order of the derivative. For two positive

functions f1(n) and f2(n), we use f1(n) = O(f2(n)), f2(n) = Ω(f1(n)), or f1(n) ≲ f2(n) to
indicate that f1(n) ≤ Cf2(n), where C is a universal constant. If we further omit some logarithmic
terms with the existence of polynomial terms, we adopt f1(n) = Õ(f2(n)) and f2(n) = Ω̃(f1(n)).
Definition 1 (Admissible linear operators). Let L be a linear differential operator of the form
Lu(x) =

∑∞
k=0

∑
|ξ|=k cξ(x) ∂

ξu, where only finitely many coefficients cξ are nonzero. We re-

quire that all nonzero cξ ∈ L∞(Ω), and that there exists a maximal multi-index ξ̃ such that cξ̃ ̸= 0

and |ξ̃| > |ξ| for all other ξ with cξ ̸= 0.

Under the neural tangent kernel framework, we use a rescaled two-layer neural network of the form:

uθ(x) =
1√
m

∑m

k=1
ak tanh(w

T
k x+ bk), (5)

where the scaling factor 1√
m

ensures proper normalization for theoretical analysis. Within the PINN
framework, the empirical loss combines PDE residual and boundary terms on collocation points as
follows,

Jemp(θ) =
1

n1

n1∑
i=1

1

2

∣∣∣Luθ (x(1)i)− f
(
x
(1)
i

)∣∣∣2 + λ

n2

n2∑
j=1

1

2

∣∣∣Buθ (x(2)j)− g
(
x
(2)
j

)∣∣∣2 , (6)

with collocation points {x(1)i }n1
i=1 ⊂ Ω and {x(2)j }n2

j=1 ⊂ ∂Ω. Under gradient flow training, we show
that Jemp(θ(t)) converges to the global minimum of the empirical loss if L is admissible.
Theorem 1 (Convergence for admissible linear PDEs). Assume that the linear differential opera-
tor L is admissible. Consider the gradient flow dynamics for Eq.(6), dθ(t)

dt = −∇Jemp(θ). Given
training samples {x(1)i }n1

i=1 ⊂ Ω and {x(2)j }n2
j=1 ⊂ ∂Ω, initialize the parameters in Eq.(5) as

ak ∼ Unif{−1, 1}, wk ∼ N (0, Id), bk ∼ N (0, 1) i.i.d. Then, with probability at least 1− δ,

Jemp(θ(t)) ≤ exp
(
− (λ0 + λ̃0)t

)
Jemp(θ(0)), ∀t ≥ 0,

provided that m = Ω̃

(
1

(λ0+λ̃0)
2 d4|ξ̃|

(
log
(
n1+n2

δ

))4|ξ̃| d3

min{λ2
0, λ̃

2
0}

)
.

Remark 2. The proof of this theorem is provided in Section G. As shown in the proof, λ0, λ̃0 are
actually the minimum eigenvalues of the Gram matrices respectively.
Remark 3 (Various extensions). Theorem 1 can extend to several broader contexts:

(1) Other training dynamics: Leveraging the NTK analysis, the theorem applies to gradient descent
with sufficiently small step sizes, implicit gradient descent, and other initialization schemes. Possible
extensions to SGD are discussed in Section J.1.

(2) More complex network architectures: The proof strategy adapts to deeper networks, following
extensions of NTK theory in the supervised learning (Du et al., 2019b); see also Section H.1.

(3) Broader classes of linear operators: While we focus on admissible linear operators, similar
techniques apply to a broader class of linear operators. Further details are omitted for brevity.

3.2.2 FROM LINEAR TO NONLINEAR PDES

Our NTK-based convergence theory for linear PDEs relies on the near-constancy of the Gram matrix
during training, a property that does not hold for nonlinear PDEs as proved in Bonfanti et al. (2024).
To illustrate this point more intuitively, we present a numerical experiment. Consider the viscous
Burgers’ equation: 

ut + uux = 0.01
π uxx, t ∈ (0, 1), x ∈ (−1, 1),

u(0, x) = − sin(πx), x ∈ (−1, 1),

u(t,−1) = u(t, 1) = 0, t ∈ (0, 1).

(7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We demonstrate the failure of NTK theory for Burgers’ equation using a neural network with ar-
chitecture described in Eq.(5) (with width m = 1000); detailed experimental settings are provided
in Section I.2. For simplicity, we train only the outer-layer parameters a = (a1, . . . , am)⊤ using
implicit gradient descent (see Section I.1 for algorithmic details). During training, we track the
evolution of two NTK matrices:

(i) The interior NTK matrix KΩ(t) = (Kij) is computed from the derivatives of the PDE
residual evaluated at 100 interior collocation points, X(1) = {(t(1)k , x

(1)
k)}100k=1 ⊂ (0, 1) ×

(−1, 1). Specifically, Kij =
〈
∂arθ(t

(1)
i , x

(1)
i), ∂arθ(t

(1)
j , x

(1)
j)
〉
, i, j = 1, . . . , 100,

where the PDE residual is rθ(t, x) =
(
∂tuθ + uθ∂xuθ − 0.01

π ∂xxuθ
)
(t, x).

(ii) The boundary NTK matrix K∂Ω(t) = (K̃ij) is computed from the derivatives of the
network output at 20 sampled boundary points, X(2) = {(t(2)k , x

(2)
k)}20k=1. Specifically,

K̃ij =
〈
∂auθ(t

(2)
i , x

(2)
i), ∂auθ(t

(2)
j , x

(2)
j)
〉
, i, j = 1, . . . , 20.

The IGD algorithm is run for 100 iterations with a step size of 0.5, where each inner optimization
problem is approximately solved by applying the L-BFGS optimizer for 10 steps. As shown in
Figure 1, KΩ(t) undergoes significant changes from its initial state within just a few iterations,
whereas K∂Ω(t) remains nearly unchanged, as the boundary operator is linear.

Figure 1: Evolution of relative Frobenius norm for two NTK matrices.

Thus, new mathematical tools are required to analyze the convergence of PINNs and Deep Ritz
methods for solving nonlinear PDEs. Given that strong overparameterization is difficult to verify
in practice, we forgo this assumption and instead employ the Łojasiewicz inequality to establish
convergence to critical points, albeit with weaker guarantees.

3.2.3 CONVERGENCE UNDER COERCIVITY

We now present a general result showing that coercivity of the loss function implies convergence.
In the subsequent section, we demonstrate the coercivity of the loss function, with a focus on those
arising in nonlinear PDEs, thus allowing us to apply the general convergence result obtained here.
Definition 2 (Coercivity). A function J (θ) is said to be coercive if lim∥θ∥→+∞ J (θ) = +∞.

The coercivity help to ensure boundedness of minimizing sequences, a crucial property for conver-
gence analysis. We next introduce the Łojasiewicz inequality, which is fundamental to our analysis.
Theorem 2 (Łojasiewicz inequality, Theorem 1.1 in Haraux (2012)). Let U be an open subset of
RN and F : U → R be a real analytic function. Then for any x in U such that ∇F (x) = 0, there
exist a neighbourhoodW of x and a real number ϵ ∈ (0, 12] for which ∀y ∈W, |F (y)−F (x)|1−ϵ ≤
∥∇F (y)∥. We call ϵ the Łojasiewicz exponent of F at x.

We denote the loss function of either PINN Eq.(2) or Deep Ritz Eq.(3) as

J = residual (variational) term+ λ

∫
∂Ω

(B(uθ)− g)2 dx. (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

For this loss function, we consider two types of training dynamics. The first is gradient flow,
θ′(t) = −∇J (θ). (9)

which provides a continuous-time perspective on optimization. The second is implicit gradient
descent (IGD), which we disscuss in detail in Section I.1,

θk+1 = θk − η∇J (θk+1), k = 0, 1, . . . (10)
where η is the step size. As introduced in Li et al. (2023b), IGD enjoys greater stability compared to
standard gradient descent and is particularly well-suited for multi-scale problems. We now establish
convergence results for both dynamics under coercivity. The proof of the following proposition is
provided in Section C.
Proposition 1 (Convergence under coercivity). Suppose J (θ) is coercive in θ. Then:

(a) The solution θ(t) to the gradient flow Eq.(9) converges to a critical point θ∗ of J (θ) as t→ ∞.

(b) The sequence {θk} generated by Eq.(10) converges to a critical point θ∗ of J (θ) as k → ∞.

Furthermore, let ϵ denote the Łojasiewicz exponent of J (θ) at θ∗. The convergence rates are as
follows:

(i) If ϵ ∈ (0, 12), then for some C > 0 and integer k0,

∥θ(t)− θ∗∥2 ≤ C t−
ϵ

1−2ϵ , ∀t > 0; ∥θk − θ∗∥2 ≤ C (kη)−
ϵ

1−2ϵ , ∀k > k0.

(ii) If ϵ = 1
2 , then for some C > 0 and integer k0,

∥θ(t)− θ∗∥2 ≤ C e−t, ∀t > 0; ∥θk − θ∗∥2 ≤ C e−kη, ∀k > k0.

Remark 4. The convergence rate deteriorates as ϵ approaches zero. A similar phenomenon is
observed in NTK-based analyses: when the minimum eigenvalue of the NTK matrix is close to zero,
convergence also slows down.
Remark 5. Our convergence results hold for gradient descent with proper step size choices (omitted
for brevity), while implicit gradient descent offers additional advantages as it maintains uncondi-
tional stability and better preserves the solution structure throughout training.
Remark 6 (Advantages of implicit regularization). While explicit L2 regularization, adding a term
such as γ∥θ∥22 to the loss, ensures coercivity, modern PDE solvers like PINNs and the Deep Ritz
method predominantly rely on implicit regularization induced by gradient-based optimization al-
gorithms. This offers several key advantages: it naturally promotes low-norm solutions without the
need for careful tuning of γ, preserves the physical interpretability of the loss, and avoids artificially
restricting the solution space. Importantly, implicit regularization adapts robustly to multiscale fea-
tures (such as sharp gradients and boundary layers) that are common in practical PDE problems.
Extensive empirical results demonstrate that this implicit effect often yields a better trade-off be-
tween training stability and solution accuracy across a wide range of benchmarks.

4 CONVERGENCE FOR SOLVING NONLINEAR PDES

In this section, we present a rigorous coercivity analysis of the loss function for DNN-based solvers,
including both PINNs and the Deep Ritz method. By Proposition 1, establishing coercivity is crucial
for guaranteeing the convergence when solving a broad class of PDEs, especially nonlinear ones.

4.1 RANDOM FEATURE MODEL

Even for two-layer neural networks Eq.(4), the loss function for complex nonlinear PDEs can
be highly intricate. As a first step, we focus on the random feature model (Chen et al., 2023).
In this setting, the network structure remains as in Eq.(4), but the inner-layer parameters wk =
(wk,1, . . . , wk,d)

T ∈ Rd and bk ∈ R are randomly initialized and kept fixed during training; only
the outer-layer coefficients a = (a1, · · · , am)T are trainable.

In typical physics-informed learning methods, the loss function naturally admits the decomposition
J (a) = JΩ(a) + λJ∂Ω(a), where JΩ(a) enforces either the PDE residual (for PINNs) or the
variational functional (for the Deep Ritz method) in the interior of the domain, and J∂Ω(a) =∫
∂Ω

(B(uθ)− g)
2
dx imposes the boundary conditions. Based on this decomposition, we reveal

two distinct mechanisms by which J exhibits coercivity with respect to a:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Case 1 (Boundary-induced coercivity): Under mild assumptions, the boundary term J∂Ω(a)
dominates in such a way that there exists a constant C > 0 such that J∂Ω(a) ≥ C∥a∥22. So the loss
function J (a) is coercive with respect to a.

Case 2 (Interior-induced coercivity): For certain second-order nonlinear PDEs, the interior term
JΩ(a) provides coercivity, i.e., there exists C > 0 such that JΩ(a) ≥ C∥a∥22.
The following subsections establish precise sufficient conditions for each case, thereby covering
most practical PDEs encountered in applications.

4.2 BOUNDARY-INDUCED COERCIVITY

We begin by specifying our geometric assumptions on the domain Ω. The key requirement is that
the boundary ∂Ω contains a sufficiently regular portion that can be transformed into a flat segment.
Formally, we make the following assumption:
Assumption 1 (Local flat boundary). There exists an invertible affine transformation Aff : x 7→
Ax+ w0 such that the transformed domain Ω̃ = Aff(Ω) satisfies:

(i) local flatness: for some point y∗ ∈ ∂Ω̃ and r > 0, ∂Ω̃ ∩ B(y∗, r) = {y ∈ B(y∗, r) : yd = γ},
where B(y∗, r) denotes the open ball of radius r centered at y∗ in Rd, yd is the d-th coordinate of
y, and γ is a constant.

(ii) non-degeneracy: the flat boundary portion has positive (d-1)-dimensional measure, i.e.,
λd−1(∂Ω̃ ∩B(y∗, r)) > 0. We denote Γ := Aff−1(∂Ω̃ ∩B(y∗, r)) as the corresponding boundary
portion in the original coordinates.
Remark 7. This assumption is naturally satisfied for evolutionary PDEs, where Γ can be taken as
the initial time slice {t = 0}. In practical settings, local flat boundaries are common. For instance,
they naturally appear in domains with piecewise smooth or polyhedral boundaries. Therefore, As-
sumption 1 introduces only a weak and broadly applicable geometric condition.

For notational simplicity, we will work in coordinates where Aff is the identity transformation, i.e.,
A = Id ∈ Rd×d, w0 = 0 ∈ Rd. This does not affect the generality of our results due to the
affine invariance of the coercivity property. To establish coercivity, we first characterize a class of
well-behaved neural network inner-layer parameters that guarantee desirable properties.
Definition 3 (Admissible inner-layer parameters). Denote the first d−1 coordinates of wk as w̃k =
(wk,1, . . . , wk,d−1)

T. The parameter set {(wk, bk)}mk=1 is called admissible inner-layer parameters
if the following two conditions are satisfied:

(i) distinct directional components: w̃i ̸= ±w̃j for any 1 ≤ i < j ≤ m;

(ii) non-degenerate normal components: wi,d ̸= 0 for any 1 ≤ i ≤ m.

We now establish the coercivity of the loss function J (a) under the admissible inner-layer parame-
ters condition, as formalized in the following result proved in Section D.1.
Proposition 2 (Boundary linear independence). For admissible inner-layer parameters, the func-
tions
α tanh(w⊤

1 x+b1)+βw1,d tanh
′(wT

1 x+b1) , . . . , α tanh(w⊤
mx+bm)+βwm,d tanh

′(wT
mx+bm)

are linearly independent in L2(Γ). Furthermore, recall that uθ =
∑m
k=1 ak tanh(w

T
kx + bk), then

there exits a constant C > 0 such that ∥a∥2 ≤ C
∥∥αuθ + β ∂uθ

∂n

∥∥
L2(Γ)

.

The significance of this result lies at the core of our analysis. By astutely exploiting the linear
independence of these functions, we are able to rigorously bound ∥a∥2 using the boundary data.
Based on this estimate, we are able to establish the following convergence theorem.

Random Initialization Inner-layer parameters {(wk, bk)}mk=1 are randomly initialized according
to the following rule: wi ∼ N (0, Id) i.i.d. ; bi ∼ N (0, 1) i.i.d. for 1 ≤ i ≤ m.
Theorem 3 (Almost sure convergence via admissible initialization). Under Assumption 1, regard-
less of the specific form of the differential operator L in the PDE, we can initialize the inner pa-
rameters {(wk, bk)}mk=1 with probability 1 such that (i) J is coercive with respect to a; and (ii) all
convergence results of Proposition 1 hold.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Proof. By construction, for randomly initialized inner parameters, the admissibility condition of
Definition 3 is satisfied almost surely. Then, for almost surely inner parameters, by Proposition 2,
there exists C > 0 such that ∥a∥2 ≤ C

∥∥αuθ + β ∂uθ

∂n

∥∥
L2(Γ)

, where uθ =
∑m
k=1 ak tanh(w

⊤
k x +

bk). This directly implies that J (a) → +∞ as ∥a∥ → +∞, i.e., J is coercive with respect to a.
Consequently, by invoking Proposition 1, we conclude that, for almost every realization of the inner
parameters, the convergence results therein hold. This completes the proof.

This theorem ensures that random initialization almost surely yields admissible parameters satisfy-
ing the coercivity condition. As a result, the convergence results apply generically to both PINNs
and the Deep Ritz method, regardless of the choice of differential operator in the PDE. A similar
statement for the empirical loss is discussed in Section D.2.

Remark 8. Extensions to deeper networks and the challenges arising when inner-layer parameters
are also trainable are discussed in Section H.2. Further discussion of the possibilities and difficulties
of extending these results to SGD appears in Section J.2.

4.3 INTERIOR-INDUCED COERCIVITY FOR SPECIFIC PDES

We now discuss in detail the coercivity of the interior loss introduced in Case 2 above; analogous
results for Deep Ritz solvers are given in Section F. Consider the following prototypical nonlinear
operators with homogeneous Dirichlet conditions (u|∂Ω = 0):

(i) − div(|∇u|p−2∇u) + q(x)u+ h(u), p ≥ 2, q ≥ 0, h(u)u ≥ 0;

(ii) − div((1 + u2)∇u) + q(x)u+ h(u), q ≥ 0, h(u)u ≥ 0.
(11)

To strictly enforce homogeneous Dirichlet conditions, we multiply the neural network by a cutoff
function φ(x) that vanishes on ∂Ω. Let φ(x) be a smooth function such that 0 ≤ φ(x) ≤ 1 on Ω ,
φ(x) = 0 on ∂Ω and φ(x) ≡ 1 on some open set U ⊂ Ω. The modified ansatz ũθ(x) := φ(x)uθ(x)
automatically satisfies the boundary conditions, allowing us to focus on learning the interior.

Proposition 3 (Interior L2 control). For operators in Eq.(11), there exists C > 0 such that

∥u∥L2(U) ≤ C(∥Lũ− f∥L2(Ω) + ∥f∥L2(Ω)).

The proof of this proposition is provided in Section E. This stability estimate directly enables co-
ercivity through interior terms alone, complementing our boundary-based results. By applying the
same techniques as in the previous section, we can conclude the following theorem.

Theorem 4 (Almost sure convergence for PINNs). Using PINNs to solve Lu = f with homoge-
neous Dirichlet boundary condition, where L is defined as in Eq.(11), we can initialize the inner
parameters {(wk, bk)}mk=1 with probability 1 such that

(i) wi ̸= ±wj for 1 ≤ i < j ≤ m, then {tanh(wT
kx+ bk)}mk=1 are linearly independent in L2(U);

(ii) the loss function JPINN defined in Eq.(2) is coercive about a;

(iii) all convergence results of Proposition 1 hold.

Proof. Fix any choice of inner-layer parameters {(wk, bk)}mk=1. By Proposition 3, we have

∥uθ∥L2(U) ≤ C
(
∥Lũ− f∥L2(Ω) + ∥f∥L2(Ω)

)
≤ C

(
J (a) + ∥f∥L2(Ω)

)
.

According to Lemma 1, the functions {tanh(w⊤
k x + bk)}mk=1 are linearly independent in L2(U)

provided wi ̸= ±wj for all i ̸= j. Standard linear algebra then yields

∥a∥2 ≤ C∥uθ∥L2(U) ≤ C
(
J (a) + ∥f∥L2(Ω)

)
.

Since the set of parameters {(wk, bk)}mk=1 with wi ̸= ±wj for all i ̸= j has full measure under
random initialization, this estimate holds almost surely. Thus, the loss JPINN is coercive with
respect to a for almost every initialization. The convergence result of Proposition 1 then follows.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Implicit regularization of random feature model. Establishing coercivity is crucial for our anal-
ysis. The direct application of Łojasiewicz inequality implies that optimization dynamics for all
trainable parameters will either converge to a critical point or diverge to infinity. Coercivity rules
out the latter by guaranteeing boundedness of the parameter sequence. Importantly, even in the
presence of highly complex loss landscapes as encountered in PINNs or Deep Ritz frameworks,
our results establish that, under the assumptions of Theorem 3 or Theorem 4, the random feature
model provides inherent implicit regularization: both gradient flow and implicit gradient descent
dynamics remain constrained within a bounded region, precluding divergence of the parameters or
their gradients. Thus, no additional regularization technique is needed to prevent parameter or gradi-
ent explosion when using random feature models, even in these challenging settings. These results
underscore the robustness of the random feature model in maintaining well-behaved optimization
trajectories solely due to its intrinsic structural properties under mild conditions.

5 NUMERICAL EXPERIMENTS

As discussed earlier, time-dependent PDEs naturally satisfy Assumption 1. To validate Theorem 3,
we test three representative time-dependent equations: the Burgers’, Allen–Cahn, and Fisher–KPP
equations. Detailed results for the Allen–Cahn and Fisher–KPP equations are given in Section I.3.1
and Section I.3.2, respectively. Here, we focus on the convergence behavior of the random feature
model within the PINN framework for the Burgers’ equation Eq.(7). A comprehensive summary
of experimental hyperparameters is provided in Section I.2. Notably, our results do not rely on
network over-parameterization. We train a network with m = 100 hidden units using implicit
gradient descent (IGD) with a step size of 0.5 for sufficient iterations, employing 10, 000 interior
collocation points and 100 boundary points. The final ℓ2-norm of the loss gradient is 1.13 × 10−3,
confirming convergence to a critical point even with a comparatively large step size.

Next, we consider the second equation in Eq.(11), which is also solved using the PINN framework
with the random feature model, trained by IGD for sufficient iterations (see Section I.4 for further
details). Table 1 summarizes the ℓ2-norm of the loss gradient with respect to the model parameters
after training from different random initializations.

Table 1: Norm of the loss gradient with respect to a after training from different initializations.

Initialization ∥∇J (a)∥2

Xavier normal for wk, Xavier uniform for ak 2.44× 10−4

Standard normal for wk, uniform [−1, 1] for ak 1.45× 10−4

LeCun normal initialization for both wk and ak 1.37× 10−4

These results consistently demonstrate a small loss gradient norm, further supporting convergence
to a critical point as established in Theorem 4.

6 CONCLUSION

In this paper, we develop a unified convergence analysis for neural network-based PDE solvers,
encompassing both linear and nonlinear equations. Leveraging the neural tangent kernel framework
and the Łojasiewicz inequality within the random feature model, we establish rigorous convergence
guarantees and highlight the intrinsic implicit regularization effect of the random feature approach.
Our theoretical results show that both gradient flow and implicit gradient descent can achieve reliable
convergence under mild conditions, even for nonlinear problems. While our current analysis for
nonlinear PDEs focuses on random feature models, future work will seek to extend these results to
fully-trainable architectures under suitable assumptions. We also intend to investigate optimization
dynamics near saddle points and clarify the conditions distinguishing convergence to local versus
global minima. Pursuing these directions will further strengthen the theoretical foundations and
enhance the practical reliability of neural network-based PDE solvers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper adheres to the ICLR Code of Ethics, as acknowledged and committed to by all authors.

REPRODUCIBILITY STATEMENT

All theoretical results in this paper are supported by complete proofs provided in the appendix.
Detailed descriptions of all experimental setups—for both the main text and the appendix—are also
included in the appendix to ensure reproducibility. Moreover, we provide the full source code for all
experiments to further facilitate verification and reproduction of our results.

REFERENCES

Arzu Ahmadova. Convergence results for gradient flow and gradient descent systems in the artificial
neural network training. arXiv preprint arXiv:2306.13086, 2023.

Nour Eddine Alaa and Morgan Pierre. Convergence to equilibrium for discretized gradient-like
systems with analytic features. IMA Journal of Numerical Analysis, 33(4):1291–1321, 2013.

Jing An and Jianfeng Lu. Convergence of stochastic gradient descent under a local Łojasiewicz
condition for deep neural networks. arXiv preprint arXiv:2304.09221, 2023.

Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternating mini-
mization and projection methods for nonconvex problems: An approach based on the Kurdyka-
Łojasiewicz inequality. Mathematics of operations research, 35(2):438–457, 2010.

Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. The Łojasiewicz inequality for nonsmooth suban-
alytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimiza-
tion, 17(4):1205–1223, 2007.

Andrea Bonfanti, Giuseppe Bruno, and Cristina Cipriani. The challenges of the nonlinear regime
for physics-informed neural networks. Advances in Neural Information Processing Systems, 37:
41852–41881, 2024.

Jingrun Chen, Yixin Luo, et al. The random feature method for time-dependent problems. arXiv
preprint arXiv:2304.06913, 2023.

Mo Chen, Yuling Jiao, Xiliang Lu, Pengcheng Song, Fengru Wang, and Jerry Zhijian Yang. Analysis
of Deep Ritz methods for semilinear elliptic equations. Numerical Mathematics: Theory, Methods
and Applications, 17(1):181–209, 2024.

Steffen Dereich and Sebastian Kassing. Convergence of stochastic gradient descent schemes for
Łojasiewicz-landscapes. arXiv preprint arXiv:2102.09385, 2021.

Simon S. Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pp. 1675–
1685. PMLR, 2019a.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2019b.

Chenguang Duan, Yuling Jiao, Yanming Lai, Dingwei Li, Jerry Zhijian Yang, et al. Convergence
rate analysis for Deep Ritz method. Communications in Computational Physics, 31(4):1020–
1048, 2022.

Weinan E and Bing Yu. The Deep Ritz method: A deep learning-based numerical algorithm for
solving variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society,
2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mauro Forti, Paolo Nistri, and Marc Quincampoix. Convergence of neural networks for program-
ming problems via a nonsmooth Łojasiewicz inequality. IEEE Transactions on Neural Networks,
17(6):1471–1486, 2006.

Yihang Gao, Yiqi Gu, and Michael Ng. Gradient descent finds the global optima of two-layer
physics-informed neural networks. In International Conference on Machine Learning, pp. 10676–
10707. PMLR, 2023.

Alain Haraux. Some applications of the Łojasiewicz gradient inequality. Communications in Pure
and Applied Analysis, 11(6):2417–2427, 2012.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in Neural Information Processing Systems, 31, 2018.

Yuling Jiao, Yanming Lai, and Yang Wang. Error analysis of three-layer neural network trained with
PGD for deep Ritz method. arXiv preprint arXiv:2405.11451, 2024.

Claes Johnson. Numerical solution of partial differential equations by the finite element method.
Courier Corporation, 2009.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak-Łojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 795–811. Springer, 2016.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Zaharaddeen Karami Lawal, Hayati Yassin, Daphne Teck Ching Lai, and Azam Che Idris. Physics-
informed neural network (PINN) evolution and beyond: A systematic literature review and bib-
liometric analysis. Big Data and Cognitive Computing, 6(4):140, 2022.

Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent only
converges to minimizers. In Conference on Learning Theory, pp. 1246–1257. PMLR, 2016.

Xiao Li, Andre Milzarek, and Junwen Qiu. Convergence of random reshuffling under the Kurdyka–
Łojasiewicz inequality. SIAM Journal on Optimization, 33(2):1092–1120, 2023a.

Ye Li, Songcan Chen, and Shengjun Huang. Implicit stochastic gradient descent for training physics-
informed neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 8692–8700, 2023b.

Yuanzhi Li, Tengyu Ma, and Hongyang R. Zhang. Learning over-parametrized two-layer neural
networks beyond NTK. In Conference on Learning Theory, pp. 2613–2682. PMLR, 2020.

Yulei Liao and Pingbing Ming. Deep Nitsche Method: Deep Ritz method with essential boundary
conditions. Communications in Computational Physics, 29(5):1365–1384, 2021.

Min Liu, Zhiqiang Cai, and Karthik Ramani. Deep Ritz method with adaptive quadrature for linear
elasticity. Computer Methods in Applied Mechanics and Engineering, 415:116229, 2023.

Yulong Lu, Jianfeng Lu, and Min Wang. A priori generalization analysis of the deep Ritz method
for solving high dimensional elliptic partial differential equations. In Conference on Learning
Theory, pp. 3196–3241. PMLR, 2021.

Tao Luo and Haizhao Yang. Two-layer neural networks for partial differential equations: Optimiza-
tion and generalization theory. In Handbook of Numerical Analysis, volume 25, pp. 515–554.
Elsevier, 2024.

Benoı̂t Merlet and Morgan Pierre. Convergence to equilibrium for the backward Euler scheme and
applications. Communications on Pure and Applied Analysis, 9(3):685–702, 2010.

Weixin Qiu, Zhizeng Si, Dasheng Mou, Chaoqing Dai, Jitao Li, and Wei Liu. Data-driven vector
degenerate and nondegenerate solitons of coupled nonlocal nonlinear Schrödinger equation via
improved PINN algorithm. Nonlinear Dynamics, 113(5):4063–4076, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Svetislav Savović, Miloš Ivanović, and Rui Min. A comparative study of the explicit finite difference
method and physics-informed neural networks for solving the Burgers’ equation. Axioms, 12(10):
982, 2023.

Reinhold Schneider and André Uschmajew. Convergence results for projected line-search methods
on varieties of low-rank matrices via Łojasiewicz inequality. SIAM Journal on Optimization, 25
(1):622–646, 2015.

Siping Tang, Xinlong Feng, Wei Wu, and Hui Xu. Physics-informed neural networks combined
with polynomial interpolation to solve nonlinear partial differential equations. Computers &
Mathematics with Applications, 132:48–62, 2023.

Colby L. Wight and Jia Zhao. Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive
physics informed neural networks. Communications in Computational Physics, 29(3):930–954,
2021.

Jiaming Xu and Hanjing Zhu. Overparametrized multi-layer neural networks: Uniform concentra-
tion of neural tangent kernel and convergence of stochastic gradient descent. Journal of Machine
Learning Research, 25(94):1–83, 2024.

Xianliang Xu, Ting Du, Wang Kong, Ye Li, and Zhongyi Huang. Convergence of implicit
gradient descent for training two-layer physics-informed neural networks. arXiv preprint
arXiv:2407.02827, 2024a.

Xianliang Xu, Ting Du, Wang Kong, Ye Li, and Zhongyi Huang. Convergence analysis of nat-
ural gradient descent for over-parameterized physics-informed neural networks. arXiv preprint
arXiv:2408.00573, 2024b.

Leyang Zhang. Linear independence of generalized neurons and related functions. arXiv preprint
arXiv:2410.03693, 2024.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (GPT-4) to polish the language of the manuscript. Specifically, we
drafted the initial versions of all sections ourselves, and then employed GPT-4 to refine the wording
and clarity of selected passages—primarily introductory and expository paragraphs. The model did
not contribute to research ideation, methodology, experiments, analyses, or conclusions.

B PROOF OF LEMMA 1

We provide the proof of Lemma 1, which establishes an important property of the tanh activation
function. More importantly, this ensures that our convergence results apply to neural networks with
tanh activation, whether used in PINN or Deep Ritz solvers.

Proof. We first note that the tanh function is an odd function and tanh′ = 1 − tanh2 is an even
function. So without loss of generality, we can assume that p1, . . . , pm are distinct positive numbers,
otherwise, we replace tanh(prt+qr) by − tanh(−prt−qr) and tanh′(prt+qr) by tanh′(−prt−qr).
We can also assume that p1 < p2 < · · · < pm . We divide the proof into two cases according to
whether β = 0 or β ̸= 0.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Case 1: β = 0. Given any positive integer m, for any set of m real numbers

{pi : pi ̸= ±pj , ∀1 ≤ i < j ≤ m}
and any real numbers q1, . . . , qm, we need to prove that the functions

tanh(p1t+ q1), · · · , tanh(pmt+ qm)

are linear independent.

Take c1, . . . , cm to be real numbers such that

c1 tanh(p1t+ q1) + · · ·+ cm tanh(pmt+ qm) = 0, ∀t ∈ R. (12)

In the above equation, letting t→ ∞ and noting that all pr are positive real numbers, we obtain

c1 + · · ·+ cm = 0. (13)

Substituting tanh(t) = e2t−1
e2t+1 into Eq.(12), we obtain

m∑
k=1

ck
e2(pkt+qk) − 1

e2(pkt+qk) + 1
= 0, ∀t ∈ R.

Multiplying both sides of the above equality by
∏m
l=1(e

2(plt+ql) + 1), we have
m∑
k=1

ck(e
2(pkt+qk) − 1)

m∏
l=1,l ̸=k

(e2(plt+ql) + 1) = 0, ∀t ∈ R. (14)

In fact, each term in the above expression can be written in the following form:

c̃Ke2
∑

k∈K(pkt+qk),

where K is a subset of {1, . . . ,m} and c̃K is a constant.

Let us focus on one of these terms in particular, e2(p1t+q1). By observing Eq.(14), we see that the
coefficient in front of this term is c1 −

∑
l ̸=1 cl. Moreover, since p1 < p2 < . . . < pm, we know

that for any nonempty {1} ̸= K ⊂ {1, . . . ,m} , pm <
∑
k∈K pk.

Thus, we can conclude that the coefficient c1−
∑
l ̸=1 cl in front of e2(p1t+q1) is non-zero. Otherwise,

there exist constants αK such that

e2(p1t+q1) =
∑

K ̸={1}

αKe
2
∑

k∈K(pkt+qk),

which contradicts the fact that for any n, the set eait, ai ̸= aj if i ̸= j}ni=1 is linear independent.

Combining the above arguments, we can conclude that
∑m
l=1 cl = 0 and c1 −

∑
l ̸=1 cl = 0, thereby

c1 = 0. Following the same reasoning, we can similarly obtain c2 = 0, . . . , cm = 0. Thus, this case
is proved.

Case 2: β ̸= 0. The underlying idea of the proof remains unchanged, but a more detailed treatment
of the coefficient in front of e2(p1t+q1) is required. We need to prove that the functions

α tanh(p1t+ q1) + β tanh′(p1t+ q1) , . . . , α tanh(pmt+ qm) + β tanh′(pmt+ qm)

are linear independent. Let us assume β ̸= − 1
2 . If this is not the case, we can multiply α and β by

a common factor to arrange it so.

Take c1, . . . , cm to be real numbers such that
m∑
k=1

ck
(
α tanh(pkt+ qk) + β tanh′(pkt+ qk)

)
= 0, ∀t ∈ R. (15)

In the above equation, letting t→ ∞ and noting that all pr are positive real numbers, we obtain

c1 + · · ·+ cm = 0. (16)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Substituting tanh(t) = e2t−1
e2t+1 and tanh′(t) = 4e2t

(e2t+1)2 into Eq.(15), we obtain
m∑
k=1

ck

[
α
e2(pkt+qk) − 1

e2(pkt+qk) + 1
+ β

4e2(pkt+qk)

(e2(pkt+qk) + 1)2

]
= 0, ∀t ∈ R.

Multiplying both sides of the above equality by
∏m
l=1(e

2(plt+ql) + 1)2, we have
m∑
k=1

ck

[
α
(
e4(pkt+qk) − 1

)
+ 4βe2(pkt+qk)

] m∏
l=1,l ̸=k

(e2(plt+ql) + 1)2 = 0, ∀t ∈ R. (17)

In fact, each term in Eq.(17) can be written in the following form:

c̃Ke
2
∑

k∈K(pkt+qk),

whereK is any multiset of the elements from {1, . . . ,m} in which each element may appear at most
twice and c̃K is a constant.

By observing Eq.(17), we see that the coefficient in front of this term is 4βc1 − 2
∑
l ̸=1 cl = 0.

Combining the above arguments, we can conclude that
∑m
l=1 cl = 0 and 4βc1 − 2

∑
l ̸=1 cl = 0,

thereby (4β + 2)c1 = 0, i.e., c1 = 0 because of β ̸= − 1
2 . Following the same reasoning, we can

similarly obtain c2 = 0, . . . , cm = 0. Thus, the lemma is proved.

C PROOF OF PROPOSITION 1

Proof. We provide a detailed proof in the case of the gradient flow.

θ(t) is the solution to the gradient flow. Thus, the loss function is monotonically decreasing along
the trajectory θ(t). So there exists a constant C such that

∥θ(t)∥2 ≤ C, ∀t > 0.

because the loss function J is coercive.

Because θ(t) is uniformly bounded, there exists a subsequence tn → ∞ such that θ(tn) → θ∗,
which is a critical point of J .

We now have
d

dt
(J (θ(t))− J (θ∗)) = −∥∇J (θ(t))∥2.

We first consider the case when ϵ ∈ (0, 12). Since J (θ(t)) is nonincreasing, we have z(t) :=
J (θ(t))− J (θ∗) ≥ 0, and as a consequence of Theorem 2,

z′(t) ≤ −(z(t))2(1−ϵ) =⇒ J (θ(t))− J (θ∗) = z(t) ≤ K1t
− 1

1−2ϵ . (18)

Now since
∥θ′(t)∥2 = −z′(t),

we have ∫ 2t

t

∥θ′(s)∥2ds = z(t)− z(2t) ≤ z(t) ≤ K1t
− 1

1−2ϵ .

Then by the Cauchy–Schwarz inequality,∫ 2t

t

∥θ′(s)∥ds ≤ K1t
− ϵ

1−2ϵ .

Indeed it implies for all t < tn,

∥θ(t)− θ(tn)∥2 = ∥
∫ T

t

θ′(s)ds∥ ≤
∫ T

t

∥θ′(s)∥ds ≤ K1

∞∑
0

(2kt)−
ϵ

1−2ϵ

= K1

∞∑
0

2−
ϵ

1−2ϵkt−
ϵ

1−2ϵ = K2t
− ϵ

1−2ϵ .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Letting n tend to infinity in the above expression completes the proof.

If α = 1
2 , we rewrite Eq.(18) as

J (θ(t))− J (θ∗) ≤ K1 exp(−t).

The rest of the proof is basically the same.

It is worth noting that implicit gradient descent (IGD) can be viewed as the backward Euler dis-
cretization of the gradient flow. Several works have studied the convergence properties of the back-
ward Euler scheme. Applying Theorem 2.4 and Proposition 2.5 from Merlet & Pierre (2010), we
can establish the desired result.

D EXTENSION TO SECTION 4.2

D.1 PROOF OF PROPOSITION 2

We now present the proof for the Proposition 2 in Section 4.2. Essentially, we need to process the
functions so that it depends on a single variable, and then we can apply Lemma 1, which has already
been proven.

Proof. Let {(wk, bk)}mk=1 be the admissible inner-layer parameters of the neural network, where
wk ∈ Rd and bk ∈ R.

Take c1, . . . , cm such that
∑m
i=1 ci

(
α tanh(w⊤

i x+ bi) + βwi,d tanh
′(wT

i x+ bi)
)
= 0 in L2(Γ).

Because of continuty, we obtain that
∑m
i=1 ci

(
α tanh(w⊤

i x+ bi) + βwi,d tanh
′(wT

i x+ bi)
)
≡ 0

on Γ.

We denote the first d− 1 components of the vector x ∈ Rd by a new (d− 1)-dimensional vector x̃,
i.e., x = (x̃T, xd)

T. Using Assumption 1, we can rewrite the above equality as
m∑
i=1

ci
(
α tanh(w̃⊤

i x̃+ γwi,d + bi) + βwi,d tanh
′(w̃⊤

i x̃+ γwi,d + bi)
)
= 0, ∀x = (x̃T, γ)T ∈ Γ.

Note that λd−1(Γ) > 0, so there exists an open ball B contained in Rd−1, such that
m∑
i=1

ci
(
α tanh(w̃⊤

i x+ γwi,d + bi) + βwi,d tanh
′(w̃⊤

i x+ γwi,d + bi)
)
= 0, ∀x̃ ∈ B.

which is equivalent to
m∑
i=1

ci
(
α tanh(w̃⊤

i x+ γwi,d + bi) + βwi,d tanh
′(w̃⊤

i x+ γwi,d + bi)
)
= 0, ∀x̃ ∈ Rd−1. (19)

because tanh is an analytic function.

For any 1 ≤ k < j ≤ m, define Ak,j , Bk,j as follows:

Ak,j = {x̃ ∈ Rd−1 : (w̃k − w̃j)
Tx̃ = 0}, Bk,j = {x̃ ∈ Rd−1 : (w̃k + w̃j)

Tx̃ = 0}.

The sets Ak,j , Bk,j are subspaces of dimension d − 2, so
⋃

1≤k<j≤m(Ak,j ∪ Bk,j) has λd−1 -
measure zero. This implies that we can choose some e ∈ Rd−1 with ∥e∥2 = 1 such that for all
1 ≤ k < j ≤ m,

pk := w̃T
k e ̸= ±w̃T

j e =: pj .

By Eq.(19), we have for ε ∈ R and x̃ = εe,
m∑
i=1

ci
(
α tanh(w̃⊤

i eε+ γwi,d + bi) + βwi,d tanh
′(w̃⊤

i eε+ γwi,d + bi)
)
= 0, ∀x̃ ∈ Rd−1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Note that pk ̸= ±pj for all 1 ≤ k < j ≤ m, we can obtain that ck = 0 for all 1 ≤ k ≤ m by using
Lemma 1.

So we can conclude that the functions
α tanh(w⊤

1 x+ b1)+βw1,d tanh
′(wT

1 x+ b1), . . . , α tanh(w⊤
mx+ bm)+βwm,d tanh

′(wT
mx+ bm)

are linearly independent in L2(Γ).

Recall that u =
∑m
k=1 akσ(w

T
kx + bk). Under Assumption 1, without loss of generality, we can

express the outward normal vector as n = (0, . . . , 0, 1) on the flat segment Γ. Then we can rewrite
the outward derivative ∂u

∂n as

∂u

∂n
=

m∑
k=1

akwk,dσ
′(wT

kx+ bk).

Define Gram matrix G = (Gij)1≤i,j≤m, where

Gij =

∫
Γ

(
α tanh(w⊤

i x+ bi) + βwi,d tanh
′(wT

i x+ bi)
)

(
α tanh(w⊤

j x+ bj) + βwj,d tanh
′(wT

j x+ bj)
)
dx.

The Gram matrix G is positive definite by the linear independence, and we denote the smallest
eigenvalue of G as λmin > 0.

Then we have∥∥∥∥αu+ β
∂u

∂n

∥∥∥∥2
L2(Γ)

=

∥∥∥∥∥
m∑
k=1

ak
(
α tanh(w⊤

k x+ bk) + βwk,d tanh
′(wT

kx+ bk)
)∥∥∥∥∥

2

L2(Γ)

= aTGa ≥ λmin∥a∥22.

(20)

D.2 DISCUSSION ON EMPIRICAL LOSS FUNCTION

In practice, we approximate the loss function equation 8 using discrete sample points. Let X(1) =

{x(1)k }n1

k=1 ⊂ Ω (interior points) and X(2) = {x(2)k }n2

k=1 ⊂ ∂Ω (boundary points). Under Dirichlet
boundary condition, the empirical loss is written as:

Jemp(a) =
1

n1

n1∑
k=1

(
Luθ(x(1)k)− f(x

(1)
k)
)2

+
λ

n2

n2∑
k=1

(
uθ(x

(2)
k)− g(x

(2)
k)
)2
. (21)

Under Assumption 1, we assume n2 ≥ m and consider a subset X̃(2) = {x(2)k }mk=1 ⊂ Γ. For each
1 ≤ k ≤ m, define the activation vector,

σk(X̃
(2)) =

(
tanh(w⊤

k x
(2)
1 + bk), . . . , tanh(w

⊤
k x

(2)
m + bk)

)⊤
.

Then we can establish the following result, which is a discrete version of Proposition 2. However,
the techniques needed are not the same.
Proposition 4 (Linear independence on discrete points). For any m vectors {w̃k}mk=1 ⊂ Rd−1 with
w̃i ̸= ±w̃j (i ̸= j), and for sufficiently small wk,d, bk ∈ R, the vectors {σk(X̃(2))}mk=1 are linearly
independent for almost all X̃(2) ∈ Γm.

Here, ”almost all” means the condition holds generically, making it practically feasible to find suit-
able sample points. This leads to our main convergence guarantee for the empirical loss.
Theorem 5 (Global convergence of empirical loss). Under Assumption 1 , we consider the empir-
ical loss Jemp(a) in equation 21 with randomly sampled point sets X(1), X(2). When inner-layer
parameters {(wk, bk)}mk=1 are initialized as: w̃i ∼ N (0, Id−1) i.i.d ; |wi,d|, |bi| < δ (sufficiently
small) then with probability 1, all convergence results of Proposition 1 hold for both gradient flow
equation 9 and implicit gradient descent equation 10.

We prove the above proposition and theorem in Section D.2.1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.2.1 PROOF OF PROPOSITION 4 AND THEOREM 5

The proof of Proposition 4 requires special treatment for the selection of boundary sampling points.
We first prove the following lemma, which shows that there exist suitable sampling points to ensure
linear independence.

Lemma 2. For any choice of m vectors w̃1, . . . , w̃m ∈ Rd−1 such that w̃i ̸= ±w̃i if i ̸= j,
and for sufficiently small scalars w1,d, . . . , wm,d ∈ R and b1, . . . , bm ∈ R , there exists a set
X = {xk}mk=1 ⊂ Γ such that the vectors σ1(X), . . . , σm(X) are linearly independent , where
wr = (w̃T

r , wr,d)
T.

Proof. Let vi = (tanh(wT
1 xi+ b1), . . . , tanh(w

T
mxi+ bm))T . We want to seeek {xi}mi=1 such that

v1, . . . , vm are linear independent. We use induction to sequentially find appropriate x1, x2, . . . , xm.

First, we can choose x1 arbitrarily in Γ such that wT
1 x1 + b1 ̸= 0. Because tanh(wT

1 x1 + b1) ̸= 0,
v1 is linear independent.

Next, we assume that x1, . . . , xk−1 have been chosen such that v1, . . . , vk−1 are linearly indepen-
dent. We need to choose xk such that v1, . . . , vk are linearly independent.

Choose e ∈ Rd−1 with ∥e∥2 = 1 such that pk := w̃T
k e ̸= ±w̃T

j e =: pj for all 1 ≤ k < j ≤ m.

Note that Γ = ∂Ω∩B(x0, r), we take xk = ((x̃0+εe)
T, β)T which is naturally in Γ for sufficiently

small ε.

Take any non-zero vector b ∈ Rm such that b is orthogonal to v1, . . . , vk−1, i.e., bTvi = 0 for all
1 ≤ i ≤ k − 1.

Consider the function F (ε) =
∑m
i=1 bi tanh(piε+wi,dγ+ bi). Because b ̸= 0, F (ε) is not constant

zero by Lemma 1.

Take any ε0 such that F (ε0) ̸= 0 and xk = ((x̃0 + εe)T, γ)T, then we can obtain vk /∈ span{vj :
1 ≤ j ≤ k − 1}. Otherwise, b is orthogonal to vk and then F (ε0) = 0.

So by induction we can obtain a set X = {xi}mi=1 ⊂ Γ such that v1, . . . , vm are linear independent,
which is equivalent to σ1(X), . . . , σm(X) are linear independent.

The proof of the Proposition 4 is given below. That is, based on the existence, we further show that
such sampling points are almost everywhere.

Proof. Define matrix σ(X) = (σ1(X), . . . , σm(X)). We want to show that for almost all X =
(x1,, xn) ∈ Γn, σ(X) is full-rank.

By Lemma 2, we can find a set X∗ = {x∗k}mk=1 ⊂ Γ such that σ1(X∗), . . . , σm(X∗) are linear
independent, i.e. det(σ(X∗)) ̸= 0. Note that detσ(·) is an analytic function defined on Γm, so
its zero set is of zero measure. This means that for almost all X = (x1,, xm) ∈ Γm, σ(X) is
full-rank.

Then for any n ≥ m,for almost all X = (x1,, xn) ∈ Γn, σ(X) is full-rank.

Below, based on the previous conclusions, we present the proof of Theorem 5.

Proof. We only prove the second conclusion.

Because we can, with probability 1, select sampling points X̃(2) and internal parameters that satisfy
the conditions of the above lemma. By linear independence, the Gram matrix G = (Gij)

m
i,j=1 is

positive definite, we Gij = σi(X̃
(2))Tσj(X̃

(2)).

So Jemp(a) ≥ λ
n2
aTGa ≥ λ

n2
λmin(G)∥a∥22, which implies J is coercive. And then we can apply

Proposition 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E PROOF OF PROPOSITION 3

Proof. We take

Lu = −div(|∇u|p−2∇u) + q(x)u+ h(u), where p ≥ 2, q(x) ≥ 0, h(u)u ≥ 0 (22)

as an example for the proof.

Note that in L2(Ω) inner-product space, we have

⟨L(ũ), ũ⟩ =⟨−div(|∇ũ|p−2∇ũ) + q(x)ũ+ h(ũ), ũ⟩

=

∫
Ω

∥ũ∥p + q(x)ũ2 + h(ũ)ũ dx (by integration by parts)

≥
∫
Ω

∥ũ∥p dx (by the assumption of q(x) and h(u))

≥C∥ũ∥2L2(Ω) (by the Sobolev inequality)

where C is a constant depending on the domain Ω and the Sobolev embedding constant.

On the other hand, using the Cauchy–Schwarz inequality, we have

⟨L(ũ), ũ⟩ ≤ ∥L(ũ)∥L2(Ω)∥ũ∥L2(Ω).

So we can conclude that there exists a constant C > 0 such that

∥u∥L2(U) ≤ ∥ũ∥L2(U) ≤ ∥ũ∥L2(Ω) ≤ C∥L(ũ)∥L2(Ω) ≤ C(∥L(ũ)− f∥L2(Ω) + ∥f∥L2(Ω))

F DEEP RITZ-TYPE INTERIOR CONTROL

The Deep Ritz method employs the energy functional E(uθ) as its interior loss. We demonstrate
coercivity through two canonical examples.

Example 1: p-Laplace equation The p-Laplace equation

−div(|∇u|p−2∇u) = f(x) (23)

generalizes the classical Laplace equation (p = 2) to model nonlinear diffusion processes. It arises
in non-Newtonian fluid dynamics (1 < p < 2 for shear-thinning fluids) and image processing (edge-
preserving denoising). The associated energy functional

E(u) =
∫
Ω

1

p
|∇u|p − f(x)u dx (24)

exhibits p-growth conditions, making its analysis distinct from quadratic elliptic problems. A fun-
damental result of the variational theory: the energy functional Eq.(24) is coercive, i.e., there exist
constants c, C,

E(u) ≥ c∥u∥p
H1,p

0

− C.

Example 2: stationary Allen–Cahn equation This phase-field model

−ϵ2∆u+ (u3 − u) = 0 (25)

describes phase separation in binary alloys, with ϵ controlling interface width. Its double-well po-
tential energy

E(u) =
∫
Ω

ϵ2

2
|∇u|2 + 1

4
(u2 − 1)2 dx (26)

forces solutions toward ±1 (pure phases) with transition zones of O(ϵ) width. Also, the energy
functional Eq.(26) is coercive, i.e., there exist constants c, C,

E(u) ≥ c∥u∥2H1 − C.

Therefore, we can use the technique from Section 4.3 to prove that the loss function J is coercive
with respect to a, thereby establishing the convergence of Deep Ritz method.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G PROOF OF THEOREM 1

Here we provide the proof of Theorem 1, with the main idea inspired by previous works Gao et al.
(2023); Xu et al. (2024a). However, since we deal with more general linear operators, some cal-
culations require greater care compared to the procedures in previous works. Although the proof
strategy is clear, the details are quite involved. We first give a brief outline of the approach, and then
rigorously justify each step through a series of lemmas.

Let us first review some notations from the main text and introduce several new ones. We focus on
the linear PDE with the following form:{∑+∞

k=0

∑
|ξ|=k cξ(x)∂

ξu = f, x ∈ Ω,

αu+ β ∂u∂n = g, x ∈ ∂Ω,
(27)

where the linear operator L satisfies Definition 1, and f, g are bounded continuous functions. In the
following, we assume that ∥x∥2 ≤

√
3
2 for x ∈ Ω.

We consider a two-layer neural network of the following form,

uθ(x) =
1√
m

m∑
k=1

ak tanh(wT
kx+ bk).

To handle the bias term more conveniently, we consider augmenting both x and the PDE. We define
y = (xT, 12)

T for x ∈ Ω , then we have ∥y∥2 ≤ 1. For Eq.(27), we will rewrite the equation about
y, and for simplicity, we still use the same notation:{∑+∞

k=0

∑
|ξ|=k cξ(y)∂

ξu = f, y ∈ Ω× { 1
2},

αu+ β ∂u∂n = g, y ∈ ∂Ω× { 1
2},

(28)

where the original d-dimensional multi-index ξ is augmented to (d + 1)-dimensional multi-index ,
which is still denoted as ξ = (ξ, 0). And we rewrite the neural network as

uθ(x) =
1√
m

m∑
k=1

ak tanh(wT
k y), (29)

where ak ∈ R and wk ∈ Rd+1 for ≤ k ≤ m.

In the framework of PINNs, we focus on the empirical risk minimization problem. Given training
samples {y(1)p }n1

p=1 ⊂ Ω× { 1
2} and {y(2)p }n2

p=1 ⊂ ∂Ω× { 1
2}, we aim to minimize the empirical loss

function as follows,

Jemp(θ) =
1

n1

n1∑
i=1

1

2

∣∣∣∣∣∣
+∞∑
k=0

∑
|ξ|=k

cξ(y)∂
ξuθ

(
y
(1)
i

)
− f

(
y
(1)
i

)∣∣∣∣∣∣
2

+
λ

n2

n2∑
j=1

1

2

∣∣∣∣∣∣αuθ
(
y
(2)
j

)
+ β

∂uθ

(
y
(2)
j

)
∂n

− g
(
y
(2)
j

)∣∣∣∣∣∣
2

.

(30)

where θ = {(ak, wk)}mk=1 ∈ Rm(d+2) are all trainable parameters in Eq.(29).

We consider the gradient flow training dynamics: for 1 ≤ k ≤ m

dwk(t)

dt
= −

∂Jemp(θ(t))

∂wk
,

dak(t)

dt
= −

∂Jemp(θ(t))

∂ak
. (31)

Let

sp(θ) =
1

√
n1

+∞∑
k=0

∑
|ξ|=k

cξ(y)∂
ξuθ

(
y(1)p

)
− f

(
y(1)p

) , ∀1 ≤ p ≤ n1,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

and

hj(θ) =

√
λ

n2

αuθ (y(2)j)+ β
∂uθ

(
y
(2)
j

)
∂n

− g
(
y
(2)
j

) , ∀1 ≤ j ≤ n2.

Then we have
Jemp(θ) =

1

2
(∥s(θ)∥22 + ∥h(θ)∥22),

where vectors s(θ) = (s1(θ), . . . , sn1(θ))
T and h(θ) = (h1(θ), . . . , hn2(θ))

T. Therefore, for 1 ≤
k ≤ m,

dwk
dt

= −
∂Jemp(θ)

∂wk

= −
n1∑
p=1

sp(θ) ·
∂sp(θ)

∂wk
−

n2∑
k=1

hk(θ) ·
∂hk(θ)

∂wk
,

and
dak
dt

= −
∂Jemp(θ)

∂ak

= −
n1∑
p=1

sp(θ) ·
∂sp(θ)

∂ak
−

n2∑
k=1

hk(θ) ·
∂hk(θ)

∂ak
.

Using the chain rule, after simple computation, we can derive the following dynamics:

d

dt

[
s(θ)
h(θ)

]
= −

(
G(θ) + G̃(θ)

)[
s(θ)
h(θ)

]
, (32)

where G(θ) and G̃(θ) are the Gram matrices for the dynamics, defined as

G(θ) = D⊤D, D =
[
∂s1
∂W · · · ∂sn1

∂W
∂h1

∂W · · · ∂hn2

∂W

]
, (33)

where W = (wT
1 , . . . , w

T
m)T, and

G̃(θ) = D̃⊤D̃, D̃ =
[
∂s1
∂a · · · ∂sn1

∂a
∂h1

∂a · · · ∂hn2

∂a

]
, (34)

where a = (a1, . . . , am)T. Moreover, we rewrite θ = (W,a) and define

G∞ = EW∼N (0,I),a∼Unif({−1,1}m)G(W,a)

and
G̃∞ = EW∼N (0,I),a∼Unif({−1,1}m)G̃(W,a).

Now that we have established all the basic definitions, we will first outline our proof strategy.

Proof sketch:

(i) To prove that the expectation of the Gram matrices G∞, G̃∞ are positive definite
(Lemma 3).

(ii) To show that, with high probability, the Gram matrix at initialization G(W(0),a(0)),
G̃(W(0),a(0)) are close to G∞, G̃∞ respectively, thereby implying that the Gram matrix
G(W(0),a(0)), G̃(W(0),a(0)) are positive definite with high probability (Lemma 4).

(iii) To prove that the Gram matrix G(W,a), G̃(W,a) are stable with respect to W and a,
that is, if the parameters are perturbed slightly, the corresponding Gram matrix remains
close to the original (Lemma 5).

(iv) To prove that, during the evolution by gradient flow Eq.(31), the parameters do not change
much. Combining this with the previous three results, we know that the Gram matrix
G(W(t),a(t)), G̃(W(t),a(t)) remain positive definite with high probability throughout
the evolution, and we can estimate its minimal eigenvalue. This allows us to prove that the
loss decreases at a certain rate.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Next, we will carry out the above proof strategy step by step through a series of lemmas.

Lemma 3 (Positive definiteness of G∞, G̃∞). The expectation of the Gram matrices G∞, G̃∞ are
positive definite.

Proof. Part 1: we first prove the positive definiteness of G∞.

We denote φ(y;w) =
∑+∞
k=0

∑
|ξ|=k cξ(y) tanh

(|ξ|)(wTy)wξ, where w ∈ Rd+1. Then,

∂sp
∂wk

=
1

√
n1

ak√
m

∂φ(y
(1)
p ;wk)

∂w
.

Similarly, let ψ(y;w) = α tanh(wT y) + β tanh′(wTy)wTn(y), where n(y) is the outer normal
direction on the point y ∈ ∂Ω× { 1

2}. Then

∂hj
∂wk

=
1

√
n2

ak√
m

∂ψ(y
(2)
j ;wk)

∂w
.

With these notations, we deduce that

G∞
p,j =



1
n1

Ew∼N (0,I)

〈
∂φ(y(1)p ;w)

∂w ,
∂φ(y

(1)
j ;w)

∂w

〉
, 1 ≤ p ≤ n1, 1 ≤ j ≤ n1,

1√
n1n2

Ew∼N (0,I)

〈
∂φ(y(1)p ;w)

∂w ,
∂ψ(y

(2)
j ;w)

∂w

〉
, 1 ≤ p ≤ n1, n1 + 1 ≤ j ≤ n1 + n2,

1
n2

Ew∼N (0,I)

〈
∂ψ(y(2)p ;w)

∂w ,
∂ψ(y(2)p ;w)

∂w

〉
, n1 + 1 ≤ p, j ≤ n1 + n2,

where G∞
p,j denotes the (p, j)-th entry of G∞.

To prove this lemma, we need tools from functional analysis. Let H be a Hilbert space of integrable
(d + 1)-dimensional vector fields on Rd+1, i.e., f ∈ H if Ew∼N (0,I)[∥f(w)∥22] < ∞. The inner
product for any two elements f, g ∈ H is Ew∼N (0,I)[⟨f(w), g(w)⟩]. Thus, to show that G∞ is
strictly positive definite, it suffices to demonstrate that

∂φ(y
(1)
1 ;w)

∂w
, . . . ,

∂φ(y
(1)
n1 ;w)

∂w
,
∂ψ(y

(2)
1 ;w)

∂w
, . . . ,

∂ψ(y
(2)
n2 ;w)

∂w
∈ H

are linearly independent. Suppose there exist coefficients c(1)1 , . . . , c
(1)
n1 , c

(2)
1 , . . . , c

(2)
n2 ∈ R such that

c
(1)
1

∂φ(y
(1)
1 ;w)

∂w
+ · · ·+ c(1)n1

∂φ(y
(1)
n1 ;w)

∂w
+ c

(2)
1

∂ψ(y
(2)
1 ;w)

∂w
+ · · ·+ c(2)n2

∂ψ(y
(2)
n2 ;w)

∂w
= 0 in H.

This implies that

c
(1)
1

∂φ(y
(1)
1 ;w)

∂w
+ · · ·+ c(1)n1

∂φ(y
(1)
n1 ;w)

∂w
+ c

(2)
1

∂ψ(y
(2)
1 ;w)

∂w
+ · · ·+ c(2)n2

∂ψ(y
(2)
n2 ;w)

∂w
= 0 (35)

for all w ∈ Rd+1.

We first compute the derivatives of φ and ψ. Differentiating ψ(y;w) l times with respect to w, we
have

∂lψ(y;w)

∂wl
= α tanh(l)(wT y)y⊗(l) + β

l∑
s=0

tanh(l−s+1)(wTy)y⊗(l−s) ⊗ ∂swTn(y)

∂ws
,

where ⊗ denotes the tensor product.

Differentiating φ(y;w) l times with respect to w, similar to the Leibniz rule for the l-th derivative
of the product of two scalar functions, we obtain

∂lφ(y;w)

∂wl
=
∑
k

∑
|ξ|=k

cξ(y)

l∑
s=0

tanh(l−s+|ξ|)(wTy)y⊗(l−s) ⊗ ∂swα

∂ws
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Note that, the set

y
(1),⊗(n1+n2−1)
1 , . . . , y(1),⊗(n1+n2−1)

n1
, y

(2),⊗(n1+n2−1)
1 , . . . , y(2),⊗(n1+n2−1)

n2

is independent (see Lemma G.6 in Du et al. (2019a)).

This observation motivates us to differentiate both sides of Eq.(35) exactly l−1 = n1+n2−1+d|ξ̃|
times for w, where ξ̃ is defined in Definition 1. Thus, we have

c
(1)
1

∂lφ(y
(1)
1 ;w)

∂wl
+ · · ·+ c(1)n1

∂lφ(y
(1)
n1 ;w)

∂wl
+ c

(2)
1

∂lψ(y
(2)
1 ;w)

∂wl
+ · · ·+ c(2)n2

∂lψ(y
(2)
n2 ;w)

∂wl
= 0.

By substituting the previous results into this equation, we have

n1∑
p=1

c(1)p
∑
k

∑
|ξ|=k

cξ(y
(1)
p)

d|ξ̃|∑
s=0

tanh(l−s+|ξ|)(wTy(1)p)y(1),⊗(l−s)
p ⊗ ∂swα

∂ws
+

n2∑
j=1

c
(2)
j[

α tanh(l)(wT y
(2)
j)y

(2),⊗(l)
j + β

d∑
s=0

tanh(l−s+1)(wTy
(2)
j)y

(2),⊗(l−s)
j ⊗

∂swTn(y
(2)
j)

∂ws

]
= 0,

where some higher-order derivative terms naturally vanish, so we have omitted them from the ex-
pression. Reorganizing the above equality as a linear combination in terms of

y
(1),⊗(n1+n2−1)
1 , . . . , y(1),⊗(n1+n2−1)

n1
, y

(2),⊗(n1+n2−1)
1 , . . . , y(2),⊗(n1+n2−1)

n2
,

we explicitly list the coefficient in front of each term as follows:d|ξ̃|∑
s=0

∑
k

∑
|ξ|=k

cξ(y
(1)
p) tanh(l−s+|ξ|)(wTy(1)p)y(1),⊗(l−s)

p ⊗ ∂swα

∂ws

 c(1)p = 0, ∀1 ≤ p ≤ n1, (36)

and for 1 ≤ j ≤ n2,[
α tanh(l)(wT y

(2)
j)y

(2),⊗(l)
j + β

d∑
s=0

tanh(l−s+1)(wTy
(2)
j)y

(2),⊗(l−s)
j ⊗

∂swTn(y
(2)
j)

∂ws

]
c
(2)
j = 0.

(37)
Note that under Definition 1, the term inside the braces [] has a leading order. Therefore, as w
approaches infinity, the term in the brackets will not vanish. As a result, we can obtain

c(1)p = 0, c
(2)
j = 0, ∀1 ≤ p ≤ n1, 1 ≤ j ≤ n2.

So we can obtain that

∂φ(y
(1)
1 ;w)

∂w
, . . . ,

∂φ(y
(1)
n1 ;w)

∂w
,
∂ψ(y

(2)
1 ;w)

∂w
, . . . ,

∂ψ(y
(2)
n2 ;w)

∂w
∈ H

are linearly independent. And G∞ is positive definite.

Part 2: we prove that G̃∞ is positive definite. Note that

∂sp
∂ak

=
1

√
n1

ak√
m
φ(y(1)p ;wk), and

∂hj
∂ak

=
1

√
n2

ak√
m
ψ(y

(2)
j ;wk).

Therefore, the subsequent proof proceeds in the same way as before.

Lemma 4. Define λ0, λ̃0 to be the minimal eigenvalue of G∞, G̃∞ respectively. If m =

Ω
(

d2|ξ̃|

min{λ2
0,λ̃

2
0}

log
(
n1+n2

δ

))
, then with probability at least 1− δ, we have

∥G(0)−G∞∥2 ≤ λ0
4

and ∥G̃(0)− G̃∞∥2 ≤ λ̃0
4
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

To prove this lemma, we need to make some preliminary preparations.

Let g be a non-decreasing function with g(0) = 0. The g-Orlicz norm of a real-valued random
variable X is defined as

∥X∥g := inf

{
t > 0 : E

[
g

(
|X|
t

)]
≤ 1

}
.

A random variable X is said to be sub-Weibull of order α > 0, denoted as sub-Weibull(α), if
∥X∥ψα

<∞, where
ψα(x) := ex

α

− 1, for x ≥ 0.

The following result is a commonly used inequality in mathematical fields.

If X1, · · · , Xn are independent mean zero random variables with ∥Xi∥ψα
< ∞ for all 1 ≤ i ≤ n

and some α > 0, then for any vector a = (a1, · · · , an) ∈ Rn, the following holds true:

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ 2eC(α)∥b∥2
√
t+ 2eL∗

n(α)t
1/α∥b∥β(α)

)
≤ 2e−t, for all t ≥ 0, (38)

where b = (a1∥X1∥ψα , · · · , an∥Xn∥ψα) ∈ Rn,

C(α) := max
{√

2, 21/α
}{√8(2π)1/4e1/24(e2/e/α)1/α, if α < 1,

4e + 2(log 2)1/α, if α ≥ 1,

and for β(α) = ∞ when α ≤ 1 and β(α) = α/(α− 1) when α > 1,

Ln(α) :=
41/α√
2∥b∥2

×
{
∥b∥β(α), if α < 1,

4e∥b∥β(α)/C(α), if α ≥ 1.

and L∗
n(α) = Ln(α)C(α)∥b∥2/∥b∥β(α).

Proof. We focus on the proof about G(0).

Since ∥G(0)−G∞∥2 ≤ ∥G(0)−G∞∥F , it suffices to bound each entry of G(0)−G∞, which is
of the form

m∑
r=1

〈
∂sp
∂wr

,
∂sj
∂wr

〉
− Ew∼N (0,I),a∼Unif{−1,1}

m∑
r=1

〈
∂sp
∂wr

,
∂sj
∂wr

〉
, (39)

or
m∑
r=1

〈
∂sp
∂wr

,
∂hj
∂wr

〉
− Ew∼N (0,I),a∼Unif{−1,1}

m∑
r=1

〈
∂sp
∂wr

,
∂hj
∂wr

〉
, (40)

or
m∑
r=1

〈
∂hp
∂wr

,
∂hj
∂wr

〉
− Ew∼N (0,I),a∼Unif{−1,1}

m∑
r=1

〈
∂hp
∂wr

,
∂hj
∂wr

〉
. (41)

Note that

∂sp
∂wr

=
ar√
mn1

∑
k

∑
|ξ|=k

cξ(y
(1)
p)

[
tanh(1+|ξ|)(wT

r y
(1)
p)wξry

(1)
p + tanh(|ξ|)(wT

r y
(1)
p)

∂wξr
∂wr

]
and

∂hj
∂wr

=
ar
√
λ

√
mn2

[
α tanh′(wT

r y
(2)
j)y

(2)
j + β tanh

′′
(wT

r y
(2)
j)wT

r n(y
(2)
j) + β tanh′(wT

r y
(2)
j)n(y

(2)
j)
]
.

For the first form Eq.(39), let

Yr(p) =
∑
k

∑
|ξ|=k

cξ(y
(1)
p)

[
tanh(1+|ξ|)(wT

r y
(1)
p)wξry

(1)
p + tanh(|ξ|)(wT

r y
(1)
p)

∂wξr
∂wr

]
, ∀1 ≤ p ≤ n1

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

and
Xr(ij) = ⟨Yr(i), Yr(j)⟩, 1 ≤ i, j ≤ n1.

Then we have
m∑
r=1

〈
∂sp
∂wr

,
∂sj
∂wr

〉
−Ew∼N (0,I),a∼Unif{−1,1}

m∑
r=1

〈
∂sp
∂wr

,
∂sj
∂wr

〉
=

1

n1m

m∑
r=1

(Xr(ij)− EXr(ij)) .

Note that |Xr(ij)| ≲ 1 + ∥wr(0)∥2|ξ̃|2 , thus

∥Xr(ij)∥ψ 1
|ξ̃|

≲ 1 +
∥∥∥∥wr(0)∥2|ξ̃|2

∥∥∥
ψ 1

|ξ̃|

≲ 1 +
∥∥∥wr(0)∥22∥∥|ξ̃|ψ1

≲ d|ξ̃|.

For the centered random variable, the property of ψ 1
|ξ̃|

quasi-norm implies that

∥Xr(ij)− E[Xr(ij)]∥ψ 1
|ξ̃|

≲ ∥Xr(ij)∥ψ 1
|ξ̃|

+ ∥E[Xr(ij)]∥ψ 1
|ξ̃|

≲ d|ξ̃|.

Therefore, applying Eq.(38) (taking α = 1
|ξ̃|) yields that with probability at least 1− δ,∣∣∣∣∣ 1m

m∑
r=1

(Xr(ij)− E[Xr(ij)])

∣∣∣∣∣ ≲ d|ξ̃|√
m

√
log

2

δ
+
d|ξ̃|

m

(
log

2

δ

)|ξ̃|

,

which directly leads to∣∣∣∣∣
m∑
r=1

〈
∂si
∂wr

,
∂sj
∂wr

〉
− E(w, a)

m∑
r=1

〈
∂si
∂wr

,
∂sj
∂wr

〉∣∣∣∣∣ ≲ d|ξ̃|

n1
√
m

√
log

2

δ
+

d|ξ̃|

n1m

(
log

2

δ

)|ξ̃|

.

For the second form Eq.(40) and third form Eq.(41), in a similar manner, we can obtain the same
result.

Combining the results for the three forms, we can deduce that with probability at least 1− δ,

∥G(0)−G∞∥22 ≤ ∥G(0)−G∞∥2F

≲
d2|ξ̃|

m
log

2(n1 + n2)

δ
+
d2|ξ̃|

m2

(
log

2(n1 + n2)

δ

)2|ξ̃|

≲
d2|ξ̃|

m
log

2(n1 + n2)

δ
.

Thus when
√

d2|ξ̃|

m log 2(n1+n2)
δ ≲ λ0

4 , i.e.,

m = Ω

(
d2|ξ̃|

λ20
log

(
n1 + n2

δ

))
,

we have λmin(G(0)) ≥ 3
4λ0.

Lemma 5. Let R ∈ (0, 1], if w1(0), · · · , wm(0) are i.i.d. generated from N (0, Id+1), then with
probability at least 1 − δ, the following holds. For any set of weight vectors W = (wT

1 , . . . , w
T
m)T

and a = (a1, · · · , am)T satisfying that for any 1 ≤ r ≤ m, ∥wr−wr(0)∥2 ≤ R and ∥a−a(0)∥2 ≤
R, then the induced Gram matrices G(W,a), G̃(W,a) satisfy

∥G(W,a)−G(0)∥2 ≤ CR

(
1 +

d|ξ̃|√
m

√
log

2

δ
+
d|ξ̃|

m

(
log

2

δ

)|ξ̃|
)
,

and

∥G̃(W,a)− G̃(0)∥2 ≤ CR

(
1 +

d|ξ̃|√
m

√
log

2

δ
+
d|ξ̃|

m

(
log

2

δ

)|ξ̃|
)

where C is a universal constant.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Proof. As ∥G(W,a)−G(0)∥2 ≤ ∥G(W,a)−G(0)∥F , it suffices to bound each entry.

Note that
∂sp
∂wr

=
ar√
mn1

∑
k

∑
|ξ|=k

cξ(y
(1)
p)

[
tanh(1+|ξ|)(wT

r y
(1)
p)wξry

(1)
p + tanh(|ξ|)(wT

r y
(1)
p)

∂wξr
∂wr

]
and

∂hj
∂wr

=
ar
√
λ

√
mn2

[
α tanh′(wT

r y
(2)
j)y

(2)
j + β tanh

′′
(wT

r y
(2)
j)wT

r n(y
(2)
j) + β tanh′(wT

r y
(2)
j)n(y

(2)
j)
]
.

For 1 ≤ i, j ≤ n1, noticing that all higher-order derivatives of tanh are bounded and R ∈ (0, 1], we
have

|Gij(W,a)−Gij(0)|

=

∣∣∣∣∣
m∑
r=1

〈
∂si(W,a)

∂wr
,
∂sj(W,a)

∂wr

〉
−
〈
∂si(W(0),a(0))

∂wr
,
∂sj(W(0),a(0))

∂wr

〉∣∣∣∣∣
≲ R

1

n1m

m∑
r=1

(∥wr(0)∥2|ξ̃|2 + 1).

For 1 ≤ i ≤ n1, n1 + 1 ≤ j ≤ n1 + n2, we also have

|Gij(W,a)−Gij(0)|

=

∣∣∣∣∣
m∑
r=1

〈
∂si(W,a)

∂wr
,
∂hj(W,a)

∂wr

〉
−
〈
∂si(W(0),a(0))

∂wr
,
∂hj(W(0),a(0))

∂wr

〉∣∣∣∣∣
≲ R

1
√
n1n2m

m∑
r=1

(∥wr(0)∥2|ξ̃|2 + 1).

For n1 + 1 ≤ i, j ≤ n1 + n2, we still have

|Gij(W,a)−Gij(0)|

=

∣∣∣∣∣
m∑
r=1

〈
∂hi(W,a)

∂wr
,
∂hj(W,a)

∂wr

〉
−
〈
∂hi(W(0),a(0))

∂wr
,
∂hj(W(0),a(0))

∂wr

〉∣∣∣∣∣
≲ R

1

n2m

m∑
r=1

(∥wr(0)∥22 + 1)

≲ R
1

n2m

m∑
r=1

(∥wr(0)∥2|ξ̃|2 + 1).

Combining above results yields that

∥G(W,a)−G(0)∥22 ≤ ∥G(W,a)−G(0)∥2F ≲ R2 +R2

(
1

m

m∑
r=1

∥wr(0)∥|ξ̃|2

)2

.

For the second term, applying Eq.(38) implies that with probability at least 1− δ,

1

m

m∑
r=1

∥wr(0)∥2|ξ̃|2 ≲
d|ξ̃|√
m

√
log

2

δ
+
d|ξ̃|

m

(
log

2

δ

)|ξ̃|

. (42)

Finally, we can deduce that with probability at least 1− δ,

∥G(W,a)−G(0)∥2 ≤ CR

(
1 +

d|ξ̃|√
m

√
log

2

δ
+
d|ξ̃|

m

(
log

2

δ

)|ξ̃|
)
,

where C is a universal constant.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Lemma 6 (Bounded initial loss). With probability at least 1− δ, we have

Jemp(0) ≤ C

(
d2|ξ̃| log

(
n1 + n2

δ

)
+
d2|ξ̃|

m

(
log

(
n1 + n2

δ

))2|ξ̃|
)
, (43)

where C is a universal constant.

Proof. For the initial value of PINN, we have

Jemp(0) =
1

2

n1∑
p=1

s2p(W(0),a(0)) +
1

2

n2∑
j=1

h2j (W(0),a(0))

=
1

2n1

n1∑
p=1

 1√
m

m∑
r=1

ar(0)

+∞∑
k=0

∑
|ξ|=k

cξ(y
(1)
p) tanh(|ξ|)(wr(0)

Ty(1)p)wξ − f(y(1)p)

2

+
1

2n2

n2∑
j=1

(
1√
m

m∑
r=1

ar(0)(α tanh(wT y
(2)
j) + β tanh′(wTy

(2)
j)wTn(y

(2)
j))− g(y

(2)
j)

)2

≤ 1

n1

n1∑
p=1

 1√
m

m∑
r=1

ar(0)

+∞∑
k=0

∑
|ξ|=k

cξ(y
(1)
p) tanh(|ξ|)(wr(0)

Ty(1)p)wξ

2

+ (f(y(1)p))2

+
1

n2

n2∑
j=1

(
1√
m

m∑
r=1

ar(0)α tanh(wT y
(2)
j)

)2

+
1

n2

n2∑
j=1

(
1√
m

m∑
r=1

ar(0)β tanh
′(wTy

(2)
j)wTn(y

(2)
j)

)2

+ (g(y
(2)
j))2.

(44)

For the first term in Eq.(44), note that E
[
ar(0)

∑+∞
k=0

∑
|ξ|=k cξ(y

(1)
p) tanh(|ξ|)(wr(0)

Ty
(1)
p)wξ

]
=

0 and ∣∣∣∣∣∣ar(0)
+∞∑
k=0

∑
|ξ|=k

cξ(y
(1)
p) tanh(|ξ|)(wr(0)

Ty(1)p)wξ

∣∣∣∣∣∣ ≲ 1 + ∥wr(0)∥|ξ̃|2 .

Therefore, we have∥∥∥∥∥∥ar(0)
+∞∑
k=0

∑
|ξ|=k

cξ(y
(1)
p) tanh(|ξ|)(wr(0)

Ty(1)p)wξ

∥∥∥∥∥∥
ψ 1

|ξ̃|

≲ 1 +
∥∥∥∥wr(0)∥|ξ̃|2

∥∥∥
ψ 1

|ξ̃|

≲ d|ξ̃|.

Let Xr = ar(0)
∑+∞
k=0

∑
|ξ|=k cξ(y

(1)
p) tanh(|ξ|)(wr(0)

Ty
(1)
p)wξ, then with probability at least 1−

δ, ∣∣∣∣∣
m∑
r=1

Xr√
m

∣∣∣∣∣ ≲ d|ξ̃|
√
log

2

δ
+
d|ξ̃|√
m

(
log

2

δ

)|ξ̃|

.

As for the second term, we have E[ar(0)α tanh(wr(0)
T y

(2)
j)] = 0 and by Lipschitz continuty,

|ar(0)α tanh(wr(0)
T y

(2)
j)| ≲ |wr(0)T y(2)j |.

Thus
∥ar(0)α tanh(wr(0)

T y
(2)
j)∥ψ2 ≤ C,

as wr(0)T y
(2)
j ∼ N (0, ∥y(2)j ∥22).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Let Yr = ar(0)α tanh(wr(0)
T y

(2)
j), applying Eq.(38) yields that with probability at least 1− δ,∣∣∣∣∣

m∑
r=1

Yr√
m

∣∣∣∣∣ ≲
√

log

(
1

δ

)
+

1√
m

log

(
1

δ

)
.

Finally, similar to the approach used for the first term, we can also control the third term. Let
Zr = ar(0)β tanh

′(wTy
(2)
j)wTn(y

(2)
j), then with probability at least 1− δ,∣∣∣∣∣

m∑
r=1

Zr√
m

∣∣∣∣∣ ≲ d

√
log

2

δ
+

d√
m

log
2

δ
.

Combining all results above yields that

Jemp(0) ≲ d2|ξ̃| log

(
n1 + n2

δ

)
+
d2|ξ̃|

m

(
log

(
n1 + n2

δ

))2|ξ̃|

holds with probability at least 1− δ.

Lemma 7. With probability at least 1− δ,

∥wr(0)∥22 ≤ C

(
d+

√
d log

(m
δ

)
+ log

(m
δ

))
:= R′2 (45)

holds for all 1 ≤ r ≤ m and C is a universal constant.

Proof. From Eq.(38), we can deduce that for fixed r,

∥wr(0)∥22 ≤ C

(
d+

√
d log

(
1

δ

)
+ log

(
1

δ

))
holds with probability at least 1− δ.

Therefore, the following holds with probability at least 1− δ.

∥wr(0)∥22 ≤ C

(
d+

√
d log

(m
δ

)
+ log

(m
δ

))
, ∀r ∈ [m].

Lemma 8. Let R = O
(

min{λ0,λ̃0}
d|ξ̃|(log 2

δ)
|ξ̃|

)
. If

m = Ω

 1(
λ0 + λ̃0

)2 · d2|ξ̃|
(
log

(
n1 + n2

δ

))2|ξ̃|

· R
′6

R2

 ,

and assuming |ar(τ)| ≤ 2, ∥wr(τ)∥2 ≤ 2R′, λmin(G(W(τ),a(τ))) ≥ λ0

2 , and
λmin(G̃(W(τ),a(τ))) ≥ λ̄0

2 for all 0 ≤ τ ≤ t, then ∥wr(τ)−wr(0)∥2 ≤ R and |ar(τ)−ar(0)| ≤
R for all r ∈ [m] and 0 ≤ τ ≤ t.

Proof. The proof follows the same approach as Lemma B.2 in the paper Gao et al. (2023) and is
omitted here for brevity.

After the preparation of the previous lemmas, we now present the complete proof of Theorem 1.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Proof. Finally, for all r ∈ [m], wr(t) and a(t) will remain within the balls B(wr(0), R) and
B(a(0), R), respectively. Without loss of generality, let us assumeR′ ≥ R, so that ∥wr(τ)∥2 ≤ 2R′

if wr(τ) stays inside B(wr(0), R). Lemma 8 shows that if

m = Ω

 1(
λ0 + λ̃0

)2 · d2|ξ̃|
(
log

(
n1 + n2

δ

))2|ξ̃|

· R
′6

R2


= Ω̃

 1(
λ0 + λ̃0

)2 · d4|ξ̃|
(
log

(
n1 + n2

δ

))4|ξ̃|

· d3

min{λ20, λ̃20}

 ,

then for all t > 0 and 1 ≤ r ≤ m, we have ∥wr(t) − wr(0)∥2 ≤ R, ∥a(t) − a(0)∥2 ≤ R,
λmin(G(W(t),a(t))) ≥ λ0

2 , and λmin(G̃(W(t),a(t))) ≥ λ̄0

2 . Then we have

dJemp(W(t),a(t))

dt
=

1

2

d

dt

∥∥∥∥(s(W(t),a(t))
h(W(t),a(t))

)∥∥∥∥2
2

= −
[
s(W(t),a(t))⊤, h(W(t),a(t))⊤

]
·
(
G(W(t),a(t)) + G̃(W(t),a(t))

)
·
(
s(W(t),a(t))
h(W(t),a(t))

)
≤ −1

2
(λ0 + λ̃0) ·

∥∥∥∥(s(W(t),a(t))
h(W(t),a(t))

)∥∥∥∥2
2

= −(λ0 + λ̃0) · Jemp(W(t),a(t)).

Furthermore,
Jemp(W(t),a(t)) ≤ exp

(
−(λ0 + λ̄0) · t

)
· Jemp(w(0), a(0)),

for all t > 0.

H EXTENSION TO DEEPER NETWORKS

In this section, we discuss how our main results (Theorem 1 and Theorem 3) can be extended to
deeper neural network architectures. For linear PDEs, the convergence analysis grounded in neural
tangent kernel (NTK) theory naturally generalizes to multi-layer networks, leveraging established
results from the NTK literature. In the context of nonlinear PDEs, we address the critical issue of the
linear independence of neuron functions (Lemma 1) and summarize recent theoretical advances that
provide sufficient conditions for preserving this property in deeper networks, especially three-layer
architectures. The relevant literature and further details are reviewed below.

H.1 CONVERGENCE RESULTS FOR SOLVING LINEAR PDES WITH DEEPER NEURAL
NETWORKS

Previous works (Gao et al., 2023; Li et al., 2023b) on the convergence of PINN frameworks for
second-order elliptic equations, both for gradient descent and implicit gradient descent, have been
primarily limited to two-layer neural networks. In contrast, Du et al. (2019b) establishes conver-
gence of the loss function for over-parameterized, multi-layer fully connected networks in the su-
pervised learning setting, fundamentally relying on the neural tangent kernel (NTK) theory for deep
networks. By combining the proof strategy of our result Theorem 1 with the layer-wise NTK analy-
sis from Du et al. (2019b), the convergence guarantees within the PINN framework can be extended
to over-parameterized, multi-layer fully connected networks, provided either implicit gradient de-
scent or gradient descent with a sufficiently small step size is used.

Below, we state an informal theorem (omitting explicit over-parameterization bounds), as in practice
it suffices to select the network width large enough to observe the convergence behavior, rather than
strictly adhering to theoretical minima.

Theorem 6 (Informal: Convergence of Multi-layer PINNs for Certain Linear PDEs). Consider a
physics-informed neural network (PINN) with a deep (multi-layer) architecture used to approximate

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

the solution of an admissible linear PDE, where the empirical loss is defined analogously to Eq.(6),
and assume standard random initialization for all weights and biases. Under gradient flow training
and with a sufficiently wide network, the empirical loss Jemp(θ(t)) decreases to zero as t → ∞,
with a convergence rate governed by the spectrum of the neural tangent kernel associated with the
multi-layer architecture.

Furthermore, Du et al. (2019b) also extends convergence analyses to convolutional and ResNet
architectures in the supervised learning setting. This indicates that similar convergence results for
PINNs could potentially be obtained for these more advanced architectures, which is a promising
direction for future research.

H.2 CONVERGENCE RESULTS FOR SOLVING NONLINEAR PDES WITH THREE-LAYER
NEURAL NETWORKS

To the best of our knowledge, our work is the first to investigate the convergence of PINNs for solv-
ing nonlinear PDEs, even though it is restricted to the two-layer random feature model. Following
the structure of Section 4.2 in the main text, we note that the central step in the proof of Theorem 3
is to establish the coercivity of the loss function with respect to the trainable parameter a. This step
fundamentally depends on demonstrating the linear independence of the neuron basis functions (see
Proposition 2), which, in turn, relies on Lemma 1.

Extending Theorem 3 to multi-layer random feature models—where all hidden layer parameters are
fixed randomly—thus essentially reduces to ensuring that Lemma 1 holds for multi-layer architec-
tures. In this context, the recent work Zhang (2024) provides a relevant discussion and establishes
the following result.

Proposition 5 (Proposition 5.3 in Zhang (2024)). Given d,m, n ∈ N. Let {(w(1)
k , b

(1)
k)}mk=1 ⊂

Rmd+m be such that (w(1)
k1
, b

(1)
k1

)±(w
(1)
k2
, b

(1)
k2

) ̸= 0 for all distinct k1, k2 ∈ {1, . . . ,m} andw(1)
k ̸= 0

for all k ∈ {1, . . . ,m}. Let {(w(2)
j , b

(2)
j)}nj=1 ⊂ Rmn+n be such that (w(2)

j1
, b

(2)
j1

)± (w
(2)
j2
, b

(2)
j2

) ̸= 0

for all distinct j1, j2 ∈ {1, . . . , n} and w(2)
j ̸= 0 for all j ∈ {1, . . . , n}. Then for σ being a sigmoid

or tanh activation function, the three-layer neurons{
σ

(
m∑
k=1

w
(2)
jk σ

(
w

(1)
k z + b

(1)
k

)
+ b

(2)
j

)}n
j=1

are linearly independent.

Although the three-layer result is more general than our Lemma 1, the proof of Lemma 1 is much
more straightforward, while the three-layer result relies on elaborate arguments in the cited work.
Therefore, by applying the above result and following the proof strategy of Theorem 3, we can
obtain the following convergence theorem.

Random Initialization (Three-layer Network) Inner-layer parameters {(w(1)
k , b

(1)
k)}mk=1 and

{(w(2)
j , b

(2)
j)}nj=1 are randomly initialized as follows:

w
(1)
k ∼ N (0, Id) i.i.d., w

(2)
j ∼ N (0, Id) i.i.d.,

b
(1)
k ∼ N (0, 1) i.i.d., b

(2)
j ∼ N (0, 1) i.i.d.

for 1 ≤ k ≤ m, 1 ≤ j ≤ n.
Theorem 7 (Almost sure convergence via admissible initialization for three-layer networks). Under
Assumption 1, regardless of the specific form of the differential operator L in the PDE with Dirichlet
boundary condition, we can initialize the inner parameters {(w(1)

k , b
(1)
k)}mk=1 and {(w(2)

j , b
(2)
j)}nj=1

with probability 1 such that:

(i) J is coercive about a;

(ii) All convergence results of Proposition 1 hold for the three-layer setting.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

As for more complex network architectures, we are currently unable to provide a rigorous theoretical
result, and this will be the subject of future research. It is also worth noting that when the inner-layer
parameters are trainable, even in the two-layer case, current theory only guarantees either divergence
to infinity or convergence to a critical point. Without imposing additional assumptions, it is not yet
possible to rule out parameter divergence, and thus convergence cannot be ensured.

I ADDITIONAL EXPERIMENTS

In this section, we provide experimental details and results to supplement the main text. We begin
by presenting the pseudocode for implementing PINNs with implicit gradient descent, followed by a
detailed description of the experimental setup for the Burgers’ equation. Finally, we provide further
experimental setups and results for high-dimensional test problems. In addition, all experiments in
this paper were conducted on a desktop computer equipped with a single 4060Ti GPU.

I.1 PSEUDOCODE FOR IGD

Compared to standard optimization algorithms such as gradient descent or stochastic gradient de-
scent, implicit gradient descent is less commonly used and may be less familiar to readers. There-
fore, we provide a detailed explanation here. Let θ denote all trainable parameters in the network
and J (θ) represent the empirical loss function. The iteration rule for implicit gradient descent is
given by:

θk+1 = θk − η∇J (θk+1), k = 0, 1, 2,

This update step can be interpreted as solving the following optimization problem:

min
ξ

ηJ (ξ) +
1

2
∥ξ − θk∥22. (46)

The first-order optimality condition for this problem is equivalent to the IGD update rule. Conse-
quently, regardless of the step size, the parameter sequence generated by IGD guarantees a monoton-
ically decreasing loss value. This inherent stability allows IGD to impose much weaker restrictions
on the choice of step size compared to standard gradient descent.

It is important to note that the operator I + η∇J may not be invertible for arbitrary loss functions.
However, when J is convex, proximal point theory ensures that the subproblem above always admits
a solution for any step size η. In practice, PINNs often employ second-order solvers such as L-
BFGS to efficiently solve the subproblem Eq.(46), even when convexity is not strictly satisfied.
This practical approach makes IGD a robust and effective choice for real-world applications. The
pseudocode for implementing the IGD algorithm is provided below in Algorithm 1.

Algorithm 1 Mini-batch implicit gradient descent (IGD)

1: Input:
Training dataset D; Batch size B;
Number of outer iterations K1; Number of inner iterations K2;
Outer (IGD) step size η; Inner (solver) step size γ; Initial parameters θ0.

2: for k = 0 to K1 − 1 do
3: Sample a batch Bk of size B from D
4: Define empirical loss function Jk(θ) on Bk
5: Inner loop:

Use L-BFGS optimizer to approximately solve Eq.(46) with K2 iterations and (internal) step
size γ.
Let ξ0 = θk.

6: for t = 0 to K2 − 1 do
7: ξt+1 is obtained by applying one L-BFGS step to ξt on the objective in Eq.(46).
8: end for
9: Set θk+1 = ξK2 as the output of the inner loop

10: end for
11: Output: Final parameters θK1

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

I.2 EXPERIMENT SETUP FOR BURGERS’ EQUATION

In the main text, for the sake of brevity, we only presented the results of our partial experiments.
Here, to ensure the reliability and reproducibility of our findings, we provide comprehensive details
of the experimental setup, including the specific hyperparameter choices.

Experiment setup for Figure 1. The primary goal of Figure 1 is to illustrate that the neural tangent
kernel (NTK) matrix induced by the loss corresponding to the nonlinear differential operator evolves
significantly during training, while the NTK matrix corresponding to the linear boundary operator
remains nearly unchanged. To demonstrate this effect, we used a scaled two-layer neural network
as the model architecture:

u(t, x; θ) =
1√
1000

1000∑
k=1

ak tanh
(
w⊤
k (t, x)

)
.

The weight parameters wk were initialized using the standard normal distribution, while the outer
parameters ak were initialized uniformly over the interval [−1, 1]. The training dataset consisted of
100 interior points and 20 boundary points. The relatively small number of data points, compared
to the network width, was chosen to satisfy the overparameterization conditions assumed in NTK
theory. Throughout training, no mini-batching was used; instead, full-batch updates were performed
at every iteration.

The implicit gradient descent (IGD) algorithm was used to optimize the network parameters a =
(ak)1≤k≤1000, while the weights w = (wk)1≤k≤1000 were kept fixed throughout training. The outer
IGD iterations were performed for 100 steps with a step size of η = 0.5. At each outer iteration,
the inner subproblem Eq.(46) was solved using the L-BFGS optimizer, with a step size of 0.1 and
10 iterations per outer step. The result shown in Figure 1 was generated under these settings. A
summary of the chosen hyperparameters is provided in Table 2 for reference.

Table 2: Hyperparameter settings for the experiment in Figure 1.

Component Value Description

Interior points 100 Training data points (domain)
Boundary points 20 Training data points (boundary)
Batching Full No mini-batch
Outer IGD steps 100 Total optimization iterations
IGD step size 0.5 Step size for outer loop
Inner solver L-BFGS Optimizer for each IGD step
L-BFGS steps 10 Inner iterations per IGD step
L-BFGS step size 0.1 Step size for L-BFGS

Experiment setup for convergence validation on Burgers’ equation. This experiment aims to
empirically validate Theorem 3, which concerns the convergence of the random feature model when
solving nonlinear equations. The neural network used is a two-layer model with width 100:

u(t, x; θ) =

100∑
k=1

ak tanh
(
w⊤
k (t, x)

)
.

The weights wk were initialized from a standard normal distribution, while the coefficients ak were
initialized uniformly in the interval [−1, 1]. The training dataset contains 10,000 interior points and
100 boundary points, clearly not in an overparameterized regime. Full-batch training is employed
for this experiment.

IGD algorithm is used to optimize the outer-layer parameters. The step size of the outer iteration
is η = 0.5 for 10000 steps. Each IGD subproblem is approximately solved using the L-BFGS
optimizer (20 inner steps per outer loop) with a step size of 0.01. A summary of the key settings is
provided in Table 3.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 3: Hyperparameter settings of the experiment for convergence validation on Burgers’ equation.

Component Value

Parameter initialization wk ∼ N (0, I2), ak ∼ U [−1, 1]
Interior points 10,000
Boundary points 100
Batching Full batch
Optimizer (IGD) Outer steps: 10000, step size η = 0.5
Inner solver (IGD) L-BFGS, 20 steps/outer step, step size = 0.01

I.3 HIGH-DIMENSIONAL EXPERIMENTS

To further validate the theoretical results presented in the main text, we conduct experiments on
high-dimensional nonlinear partial differential equations. In particular, we consider both the Allen–
Cahn and Fisher–KPP equations as representative examples. These experiments are designed to test
whether our theoretical insights hold in more challenging, high-dimensional scenarios. The detailed
settings and results for each equation are presented in the following subsections.

I.3.1 ALLEN–CAHN EQUATION

We consider the two-dimensional Allen–Cahn equation,

ut = ϵ2∆u− (u3 − u) + S(x, y, t), (47)

on (x, y) ∈ [−1, 1]× [−1, 1], t ∈ [0, 1], with ϵ = 0.1. The exact solution we set is

u(x, y, t) = [sin(πx) cos(πy) + 0.1 sin(10πx) cos(10πy)]e−t,

from which S(x, y, t), initial, and boundary conditions are determined.

Experiment 1: NTK failure in the random feature model for nonlinear PDEs.

To solve Eq.(47) within the PINN framework, we use a shallow neural network of the form

uθ =
1√
1000

1000∑
k=1

ak tanh
(
w⊤
k x+ bk

)
,

where x = (x, y, t)⊤. The inner parameters (wk, bk) are initialized as standard Gaussian and kept
fixed, while the outer coefficients ak are initialized uniformly in (−1, 1) and optimized by the IGD
algorithm. The dataset consists of 50 boundary and 200 interior points, with full-batch training.
Optimization is performed for 100 outer steps of step size 0.5 (each with 10 L-BFGS inner iterations
of step size 0.1). We track the relative Frobenius norm of the NTK matrices during training, as
shown in Figure 2. The results indicates that while the NTK remains stable for the linear (boundary)
operator, it changes significantly for the nonlinear (interior) operator, reflecting a breakdown of the
NTK regime even in the random feature model for nonlinear problems.

Experiment 2: Convergence in the random feature model.

In this experiment, we continue to use the random feature model uθ =
∑1000
k=1 ak tanh(w⊤

k x+ bk),
with (wk, bk) fixed after Gaussian initialization and ak initialized uniformly in (−1, 1) and opti-
mized by IGD. The dataset contains 500 boundary and 10,000 interior points. Training is performed
in full batch for 2,000,000 total steps (50,000 IGD outer steps with step size 0.5, each with 40
L-BFGS inner steps of step size 0.1).

At the end of training, the ℓ2-norm of the loss gradient with respect to parameters is about 1.86 ×
10−3, indicating convergence to a critical point, which is consistent with our theoretical analysis in
Theorem 3. We note that the norm is not zero, likely due to the problem’s multiscale nature and the
finite training budget: even 2,000,000 steps are sometimes insufficient for full convergence in such
stiff problems (prior works have reported using up to 5,000,000 steps).

Experiment 3: IGD outperforms Adam on multi-scale problems with large step sizes.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 2: Relative Frobenius norm of two NTK matrices for Allen–Cahn equation.

We further assess the performance of IGD and Adam on a more expressive model: a fully connected
neural network comprising four layers with 100 neurons each. Biases are initialized to zero, and
all other weights are initialized using Xavier normal initialization. Both IGD and Adam employ
the same initialization scheme. The training data contains 500 boundary points and 20,000 interior
points, with mini-batch sizes of 32 and 256 for boundary and interior points, respectively.

Both optimizers are trained for a total of 1,000,000 steps. For IGD, this corresponds to 25,000 outer
steps (learning rate 0.1), with each outer step followed by 40 L-BFGS inner iterations (learning rate
0.1). Adam uses a constant learning rate of 0.1 throughout all iterations.

Figure 3 shows the loss curves over the entire training process for both IGD and Adam algorithms.
With a step size of 0.1, IGD exhibits steady and stable loss reduction, whereas Adam experiences
severe oscillations and fails to make substantive progress on this multiscale problem. These results
further underscore the robustness and effectiveness of IGD in challenging multiscale settings. Fur-
thermore, Figure 4 shows the solutions obtained by IGD at three representative time points. As
shown, the learned solution captures some key features of the ground truth.

Figure 3: Loss curves for IGD and Adam on Allen–Cahn equation.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

(a) t = 0.25

(b) t = 0.5

(c) t = 0.75

Figure 4: Numerical solutions obtained by IGD at 3 different time points for Allen–Cahn equation.

I.3.2 FISHER–KPP EQUATION

To further supplement our main results, we present experiments on the classical two-dimensional
Fisher–KPP equation, a widely studied reaction-diffusion model. The equation is given by

ut = ∆u+ u(1− u) + S(x, y, t),

where (x, y) ∈ [−1, 1]2 and t ∈ [0, 1]. The exact solution is selected as u(x, y, t) = e−(x2+y2+t),
from which the source term S(x, y, t) as well as the initial and boundary conditions can be directly
determined.

Experiment 1: NTK Failure in the random feature model for Nonlinear PDEs.

In this experiment, we use a two-layer neural network,

uθ =
1√
1000

1000∑
k=1

ak tanh
(
w⊤
k x+ bk

)
,

where x = (x, y, t)⊤. The inner parameters (wk, bk) are initialized as standard Gaussian random
variables and then fixed, and the outer coefficients ak are initialized uniformly in (−1, 1) and op-
timized by the IGD algorithm. The dataset consists of 50 boundary and 200 interior points (full
batch). Training is performed over 100 outer steps of learning rate 0.5 (each with 10 L-BFGS inner
steps of learning rate 0.1). We report the relative Frobenius norm of the NTK matrices during train-
ing in Figure 5, illustrating that the NTK theory breaks down for the nonlinear (interior) component,
as evidenced by significant changes in the NTK matrix throughout training.

Experiment 2: Convergence in the random feature model.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 5: Relative Frobenius norm of two NTK matrices for Fisher–KPP equation.

Here we retain the random feature structure but remove the 1√
1000

normalization, using uθ =∑1000
k=1 ak tanh(w

⊤
k x + bk). As before, (wk, bk) are fixed after Gaussian initialization and ak are

initialized uniformly in (−1, 1) and trained by IGD. The data comprises 500 boundary points and
10,000 interior points (full batch).

Training is performed for a total of 100,000 steps (2500 IGD outer steps, each with 40 L-BFGS inner
steps; outer and inner step sizes are 0.5 and 0.1, respectively). At the end of training, the ℓ2-norm of
the loss gradient with respect to the parameters is 6.74× 10−4, indicating that a has converged to a
critical point (gradient nearly zero), in accord with the theoretical results presented in Theorem 3.

Experiment 3: IGD demonstrates superior stability to Adam under large step sizes

We compare the performance of IGD and Adam in solving the Fisher–KPP equation using a four-
layer fully connected neural network with 100 neurons per hidden layer. The biases are initialized
to zero, and all other trainable parameters are initialized using Xavier normal initialization. The
training dataset consists of 500 boundary points and 20,000 interior points, with batch sizes of 32
and 256 for the boundary and interior, respectively.

Training is performed for 200,000 steps. Specifically, IGD is run for 5,000 outer iterations with a
learning rate of 0.1, each comprising 40 inner L-BFGS steps (also with learning rate 0.1). Adam is
trained for the full 200,000 steps with a fixed learning rate of 0.1. As shown in Figure 6, Adam’s loss
curve exhibits substantial oscillations during training, whereas the loss for IGD decreases smoothly
and steadily, highlighting the superior stability of IGD. In addition, Figure 7 presents the solu-
tions obtained by IGD alongside the exact solutions at three representative time points. The results
demonstrate that IGD yields solutions in close agreement with the exact solution.

I.4 EXPERIMENT TO VALIDATE THEOREM 4

To verify the convergence result stated in Theorem 4, we solve the following PDE within the PINN
framework:

−div
(
(1 + u2)∇u

)
+ q(x)u+ h(u) = f(x), q ≥ 0, h(u)u ≥ 0, (x, y) ∈ B(0, 1),

with homogeneous Dirichlet boundary conditions.

For this experiment, we set q = 1 and h(u) = u3, and the chosen exact solution is

u(x, y) = 1− x2 − y2.

We can canculate the corresponding source term f(x, y) accordingly. The neural network employed
is a random feature model, specifically a two-layer network given by

uθ =

100∑
k=1

ak tanh
(
w⊤
k x
)
,

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 6: Loss curves for IGD and Adam on Fisher–KPP equation.

(a) t = 0.25

(b) t = 0.5

(c) t = 0.75

Figure 7: Numerical solutions obtained by IGD at 3 different time points for Fisher–KPP equation.

where x = (x, y)T, ak denotes the trainable outer parameters. Only the residual loss is considered,
with training points sampled uniformly from 10, 000 locations inside B(0, 1). The homogeneous
Dirichlet boundary condition can be enforced by multiplying the network output by a cutoff function
φ that vanishes on the boundary.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

We optimize the outer parameters a using the IGD algorithm sufficiently to ensure convergence.
Specifically, IGD updates are performed with a step size of 0.5 for outer steps, and at each step the
subproblem is solved by L-BFGS with a step size of 0.1 for 40 inner iterations. Under this proto-
col, we test the convergence behavior starting from different random initializations of parameters.
We report the Euclidean 2-norm of the residual loss gradient with respect to a at the end of train-
ing for each initialization, as shown in Table 4. The results confirm the convergence predicted by
Theorem 4.

Table 4: Loss gradient norms and IGD steps for different initializations.

Initialization ∥∇J (a)∥2 Outer IGD Steps

Xavier normal for wk, Xavier uniform for ak 2.44× 10−4 10000
Standard normal for wk, uniform [−1, 1] for ak 1.45× 10−4 200000
LeCun normal initialization for both wk and ak 1.37× 10−4 200000

We note that the latter two initializations require more IGD steps to reach convergence. This is
because their initial losses are relatively large, resulting in longer optimization trajectories.

J CONVERGENCE ANALYSIS FOR SGD

In this section, we investigate whether the convergence results established for full-batch optimization
in the main text (Theorem 1 and Theorem 3) can be extended to stochastic gradient descent (SGD).
We specifically compare convergence behaviors under SGD for linear and nonlinear PDEs, and
highlight the key challenges and open questions arising in the stochastic setting.

J.1 SGD CONVERGENCE FOR SOLVING LINEAR PDES

As discussed throughout this work, convergence analysis for linear PDEs is fundamentally based on
NTK theory. Notably, Xu & Zhu (2024) demonstrated that, in supervised learning, one-pass SGD
with streaming data—where each iteration samples a fresh, non-repeating point from a continuously
distributed dataset—admits a deterministic limit kernel. This insight strongly motivates the use
of NTK-based arguments for analyzing the convergence of overparameterized neural networks for
linear PDEs within the PINN framework.

However, extending rigorous theoretical results to PINNs in the SGD setting is significantly more
complex. Formal proofs demand careful treatment of the interplay between the data distribution,
sampling procedure, and network overparameterization, which is beyond the scope of this work. We
leave such comprehensive theoretical analysis for future studies.

J.2 SGD CONVERGENCE FOR NONLINEAR PDES

For nonlinear PDEs, NTK theory is generally inapplicable, and our main text relies instead on
the Łojasiewicz inequality for convergence analysis. Recently, works such as Dereich & Kassing
(2021); An & Lu (2023) have established convergence guarantees for SGD under certain condi-
tions, notably the boundedness of trajectories, by leveraging the Łojasiewicz inequality as the key
tool. While these results provide a natural foundation, applying them directly in the PINN context
presents new challenges. In standard supervised learning, the required trajectory conditions can hold
with probability one under suitable assumptions; however, for PINNs, it is only straightforward to
establish that the probability of bounded SGD trajectories is positive, without control over its mag-
nitude. Quantifying this probability and fully characterizing convergence probabilities remains an
open question in the PINN setting.

In summary, while the foundational tools for extending convergence results to SGD exist, a com-
plete understanding—especially for nonlinear PDEs—requires further investigation. In particular,
characterizing the likelihood of favorable SGD behavior in the PINN setting represents an important
direction for future research.

37

	Introduction
	Related works
	Mathematical Setup and General Supporting Results
	Problem setting
	General convergence results
	NTK-based convergence for most linear PDEs
	From linear to nonlinear PDEs
	Convergence under coercivity

	Convergence for solving nonlinear PDEs
	Random feature model
	Boundary-induced coercivity
	Interior-induced coercivity for specific PDEs

	Numerical experiments
	Conclusion
	The Use of Large Language Models (LLMs)
	Proof of Lemma 1
	Proof of Proposition 1
	Extension to Section 4.2
	Proof of Proposition 2
	Discussion on empirical loss function
	Proof of and Proposition 4, Theorem 5

	Proof of Proposition 3
	Deep Ritz-type interior control
	Proof of Theorem 1
	Extension to deeper networks
	Convergence results for solving linear PDEs with deeper neural networks
	Convergence results for solving nonlinear PDEs with three-layer neural networks

	Additional experiments
	Pseudocode for IGD
	Experiment setup for Burgers' equation
	High-dimensional experiments
	Allen–Cahn equation
	Fisher–KPP equation

	Experiment to validate Theorem 4

	Convergence Analysis for SGD
	SGD Convergence for solving Linear PDEs
	SGD Convergence for Nonlinear PDEs

