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ABSTRACT

Large language models (LLMs) are typically evaluated based on semantic under-
standing and are believed to be capable of handling general language processing.
While LLMs can mimic human-like responses, they still are a contraption in their
pragmatic or contextual understanding of language. To test this hypothesis, we
subject LLMs to the complex task of pragmatics. We conducted evaluation across
fourteen tasks spanning four domains of pragmatics namely, Implicature, Presup-
position, Reference, and Deixis. For each task, we curated high-quality test sets,
consisting of Multiple Choice Question Answers (MCQA). We evaluate a wide
range of LLMs with different types and sizes. Our findings reveal that LLMs with
no instruction fine-tuning have near-random accuracy on many tasks. The perfor-
mance gradually increases with the increase in model capacity. Additionally, we
create a unified benchmark enabling the research community to better assess the
underlying pragmatic understanding of the language models.

1 INTRODUCTION

With an increase in understanding of how to better train LLMs, we have now started to see models
which are trained over trillions of tokens and over billions of parameters, (Chronological order: GPT-
3 (Brown et al., 2020), BLOOM (Scao et al., 2022), PaLM (Chowdhery et al., 2022), LLAMA-2
Touvron et al. (2023), others) which have shown remarkable abilities on many downstream tasks like
NLU (GLUE (Wang et al., 2019b), MultiNLI (Williams et al., 2018)), Text generation (LAMBADA,
Wikitext), Code synthesis (APSS, HumanEval (Chen et al., 2021)), QA (Natural Questions, ARC,
OpenbookQA (Mihaylov et al., 2018), SQuAD (Rajpurkar et al., 2018)), Reasoning (SuperGLUE
Wang et al. (2019a), GSM8k (Cobbe et al., 2021), Strategy QA (Geva et al., 2021)), etc. Moreover,
these language models often show a correlation between their size and their performance, which is
referred to as the scaling law Kaplan et al. (2020).

But as we move towards more and more complex language models, we need to ask the question:
How much do LLMs understand what humans actually mean during conversations? Do they under-
stand the same implied meaning and make the same assumptions as us? To answer these questions
we lean towards the domain of pragmatics which deals with understanding meaning in context or in
change of context (Grice, 1975). While semantics involves the study of words and their meanings in
a language, pragmatics extends this inquiry by considering words’ meanings within the context in
which they are used. For example, consider a situation where Alice asks Bob whether he would like
to meet today, and Bob responds by saying, “I have a few things to take care of.” In this context, Bob
doesn’t explicitly state whether he would like to meet or not, but it is implicit from his answer that
he cannot meet today. Here, the implicature arises because Bob’s response is less informative than
Alice might have expected if he were entirely available. By adhering to the Maxim of Quantity Grice
(1975), Bob indirectly conveys that he might not have all his time free without explicitly saying so.
This illustrates how the same statement can have a different interpretation semantically and prag-
matically depending on the context. It is easier for humans to capture this type of phenomenon but
not so much for language models. Pragmatic competence can be defined as the ability to understand
a speaker’s intended meaning and the additional information conveyed implicitly.
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In linguistic theory, a significant milestone in the development of a systematic framework for prag-
matics was Grice (1975) work, which showcased how a structured approach to language use facil-
itates a more simplified and elegant description of language structure. From then, pragmatics has
emerged as a crucial subfield of linguistics that deals with phenomena such as implicature, presup-
position, speech acts, reference, and deixis. The handbook of pragmatics (Horn & Ward, 2004)
or Grice (1975) gives a comprehensive overview of both the traditional and the extended goals of
theoretical and empirical pragmatics.

Most benchmarks until now deal only with abilities like problem-solving Cobbe et al. (2021) or se-
mantic understanding (GLUE (Wang et al., 2019b), BigBench Srivastava et al. (2022), etc.) where
LLMs have started to come close or be at par with human benchmarks. Despite the recent progress,
we notice that there is still a lot of pragmatic understanding gap between what the language model
understands and what was actually meant by a statement. To facilitate this research, we propose
an LLM understanding evaluation benchmark over four major Pragmatic phenomena, namely, Im-
plicature (Understanding what is suggested or implied in a statement even though it is not literally
expressed), Presupposition (An implicit assumption that is taken for granted before the use of a
statement), Deixis (a phenomenon in which certain words or phrases within a sentence or discourse
rely on contextual cues, such as the speaker, the listener, or the surrounding context, to convey their
meaning effectively) and Reference (how language points to things, people, place, time, etc).

In this unified benchmark to evaluate the Pragmatic abilities of LLMs, we devise tasks upon existing
datasets for Implicature, Reference, Deixis, and Presupposition and provide four new datasets com-
prising 6100 newly annotated examples, along with human evaluation on a sample of these datasets
to compare performance with existing LLMs. The benchmark comprises fourteen tasks that evaluate
pragmatics as an MCQA task since MCQA evaluation is more closely related to question-answering
abilities in conversations Robinson & Wingate (2023). We carefully curate the existing datasets to
balance them and formulate prompts for these tasks, which are more natural and better suited to
evaluate LLMs. More information can be found in 1 and Appendix B.

Following (GPT-3 (Brown et al., 2020), Joshua Robinson & David Wingate (Robinson & Wingate,
2023)), we evaluate the pragmatic abilities of LLMs using Multiple Choice Prompting (MCP) and
Cloze prompting (CP). To validate the model’s confidence in its choices we also evaluate the Pro-
portion of Plurality Agreement (PPA) agreement on 3 tasks similar to (Joshua Robinson & David
Wingate), this way we can evaluate the model’s certainty in its predictions to achieve higher perfor-
mance. We do this evaluation for an array of different models ranging from the smallest Flan-t5-
small 60M Chung et al. (2022) to GPT-3 Brown et al. (2020) and Falcon 180B, which vary in size,
tuning mechanism, and amount of pretraining corpora. We argue that understanding pragmatics is
not an emergent ability in LLMs, yet the majority of these models exhibit a notable disparity in
pragmatic understanding when compared to humans. They even encounter challenges with certain
fundamental pragmatic tasks that humans can solve effortlessly.

Our primary contributions include (1) A comprehensive and unified benchmark that consists of
14 distinct tasks, collectively containing an average of 6k data points. The primary objective of this
benchmark is to assess the pragmatic performance of LLMs across a range of scenarios and linguistic
contexts. (2) A systematic evaluation of various LLMs, each employing different prompting styles,
across the tasks included in our proposed benchmark. (3) Human performance on a sample of the
benchmark to highlight the gap between LLMs and humans. The benchmark we have introduced
serves as a valuable evaluation framework for assessing LLMs’ performance in pragmatic tasks. We
hope that this benchmark will help researchers in improving LLMs’ conversational abilities with
humans.

2 PRAGMATICS BENCHMARK

In this section, we will introduce the tasks that are used in the evaluation benchmark. A few existing
datasets cover various pragmatic phenomena. With the help of linguistic experts, we selected the
existing datasets that cover at least one important pragmatic phenomenon. More specifically, we
select Circa (Louis et al., 2020), GRICE (Zheng et al., 2021), FigQA (Liu et al., 2022), FLUTE
(Chakrabarty et al., 2022), IMPPRES (Jeretic et al., 2020), and NOPE (Parrish et al., 2021). How-
ever, these datasets do not explicitly evaluate implicature, presupposition, and reference understand-
ing in conversations. Therefore we created 4 new datasets on top of existing conversational datasets
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like CIRCA, DailyDialog (Li et al., 2017), and Convokit (Chang et al., 2020) comprising a total of
6100 newly annotated data points. We reframe all tasks according to expert prompts and instructions
as an MCQA task Robinson & Wingate (2023). More details and examples can be found in Figure
1. The annotation details are presented in Appendix B.

We list down details of the unified benchmark below:

Circa is a dataset containing 34,628 crowdsourced pairs of polar questions and indirect answers in
English. It extends beyond binary yes/no responses to include conditionals, uncertain, and middle-
ground answers. We use existing declarative direct answers and indirect answers from Circa to
formulate Task 1, aiming to identify whether LLMs can understand the difference between a direct
and indirect response. For interpreting indirect answers to polar questions, we provide the original
task to LLMs along with instructions and class labels in Task 2.

Grice is a grammar-based dialogue dataset designed for implicature recovery, coreference resolu-
tion, and conversational reasoning. The dataset is methodically created using a hierarchical grammar
model. We present the original problem formulation as provided by Zheng et al. (2021) in Task 4
for implicature recovery and Task 12 for deictic conversational reasoning. In these tasks, we filter
the dataset into four types of deixis, namely person, spatial, temporal, and discourse deixis, using
common types of deictic terms. Our filtering steps are listed in Appendix A.

FigQA is a Winograd-style nonliteral language understanding dataset. It consists of 10,256 paired
figurative phrases with divergent meanings. We use the existing FigQA dataset to formulate a new
figurative agreement detection task between sentences in Task 5 and a new sarcasm detection task
in Task 6.

FLUTE, is an NLI-style semi-synthetic dataset that contains 9k literal, figurative sentence pairs with
entail/contradict labels and the associated explanations, spanning four categories: Sarcasm, Simile,
Metaphor, and Idioms. We reframe the FLUTE’s Recognizing Textual Entailment (RTE) task as an
MCQA task to check whether language models can accurately capture figurative meanings.

IMPPRES, is an NLI-style semi-automatically generated dataset containing 25.5K pairs of sen-
tences containing well-studied pragmatic inference types with entail/contradict/neutral labels. This
dataset is generated according to linguist-crafted templates. We prompt IMPPRES as an MCQA
task similar to FLUTE.

NOPE, is an NLI-style dataset containing 2386 human annotated presuppositions from the sentences
extracted from the COCA dataset (Davies, 2010) using 10 different types of presupposition triggers.
We do not utilize the 346 adversarial examples provided by the authors. We combine IMPPRES and
NOPE together for evaluation.

CircaPlus is our newly annotated dataset used in Task 3 to determine if LLMs can interpret direct
answers with the assistance of implied meanings written by humans. For this, we sampled a test
set from Circa and annotated 2,651 implied meanings based on the indirect responses. Considering
the subjectivity inherent in implicature, we employ two expert English linguists for the annotation
process and implement double-blind checking for the annotations.

DialogAssumptions is our newly annotated dataset for Task 12, containing 2.5k pairs of expert-
annotated presuppositions based on a subset of dialogues from the Dailydialog dataset (Li et al.,
2017). It is designed to evaluate whether the presuppositions that humans have before a sentence is
uttered in a conversation are being properly understood by language models.

MetoQA is our newly annotated dataset used in Task 15 that consists of 744 multiple choice ques-
tions based on the linguistic phenomenon called metonymy. Metonymy is a figure of speech in
which one word or phrase is substituted with another word or phrase with which it is closely associ-
ated or related. Unlike a metaphor, where one thing is said to be another (e.g., “Life is a journey”),
in metonymy, the substitution is based on a real, often contiguously related, connection between the
two terms (e.g., “These are my hired guns”).
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Figure 1: Examples of each task from our Pragmatic benchmark, The tasks are divided across four
domains of pragmatics (Implicature, Presupposition, Reference, and Deixis). Our proposed bench-
mark builds upon existing pragmatic datasets and combines our newly annotated datasets comprising
of 6k annotations to complete the pragmatic evaluation test suite. We have reformatted the existing
datasets into MCQA prompts that explicitly test these abilities. The data annotation process and
the formulation of the tasks are provided in Appendix B. The prompts for each task are given in
Appendix D. We also perform human evaluation on our benchmark to compare the performance of
LLMs.
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3 EXPERIMENTAL SETUP

In this section, we describe different evaluation methods and models used. We have selected two
evaluation methods namely Cloze prompting and Multiple Choice Prompting taking the capabilities
of all the models into consideration.

3.1 CLOZE PROMPTING (CP)

In the cloze prompting approach, a question is given to an LLM, and the model independently scores
each potential answer. The answer with the highest probability is selected by the model. Brown et al.
(2020) acknowledged that the probabilities of answers could be affected by particularly frequent or
rare tokens or sequences of different lengths, so they employed two normalization methods. One
method involves normalizing the probability of a sequence for its length by taking the nth root;
P (x1, x2, . . . , xn) =

n
√∏n

i=1 P (xi). The length normalization strategy requires N forward passes
through LLMs as compared to 2N forward passes in the other normalization strategy. Since our
primary goal is to evaluate the pragmatic abilities and not the normalization strategy, in this paper,
we follow length normalization for all the evaluations involving the cloze prompting approach.

3.2 MULTIPLE CHOICE PROMPTING (MCP)

In Multiple Choice Prompting, a question and its candidate answers, each associated with a symbol,
are combined into a single prompt for an LLM. The model is structured to predict only one token
(e.g., ”A”, ”B”, etc.). The model’s answer is the answer choice corresponding to the token with
the highest probability. Consequently, the probabilities of these symbols act as a substitute for the
probabilities of each answer. A notable limitation of this evaluation method is that models exhibiting
suboptimal performance in the context of multiple choice symbol binding (MCSB) tend to yield
inferior results Robinson & Wingate (2023). Therefore we also perform the Proportion of Plurality
Agreement (PPA) experiments for all the models to estimate the MCSB abilities of these models.

3.3 PROPORTION OF PLURALITY AGREEMENT (PPA)

When presenting a multiple-choice question, the potential answers must be arranged in a specific
sequence. In general, human responses to such questions exhibit order-invariance, meaning that the
order of the options does not affect the answer selection. Robinson & Wingate (2023) have proposed
a method to verify if LLMs exhibit the same characteristics. Given a question with n answer options,
there are n! different ways these options can be associated with an ordered, fixed set of symbols.
To compute PPA, the model is presented with the question using each unique permutation of the
answer options. For every permutation, the model assigns a probability to each answer, and the
answer with the highest probability is recorded. Subsequently, the PPA for the question is calculated
as the ratio of permutations that selected the plurality answer to the total number of permutations.
PPA measures order invariance irrespective of the model’s ability to perform a task. A model with
consistent answers across possible orders of answer options will have a high PPA, even if it performs
poorly on the task. For a dataset with n answer choices per question, the baseline PPA is 1/n.

3.4 HUMAN EVALUATION

To compare the performance of these LLMs with humans, We selected 100 examples from the com-
plete evaluation set for each task. We employed three human evaluators for each task. Each of the
three human evaluators evaluated these 100 samples. The samples were chosen to ensure a balanced
representation of all option types. The evaluators are fluent English speakers and have graduated
from a technical university where English is the medium of instruction. It is important to note that
the human evaluation does not reflect expert human reference, but rather random human perfor-
mance on complex pragmatic tasks. These evaluators are presented with the exact same prompt as
the MCP presented to the LLMs. These MCP prompts can be found in Appendix D.
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3.5 MODELS

We consider a range of large language models with varying sizes, from 60 million to 175 billion
parameters, to evaluate their pragmatic competence. The models under investigation include Falcon,
Flan-T5 (Chung et al., 2022), Llama-2 (Touvron et al., 2023), Phi Gunasekar et al. (2023); Li et al.
(2023), T5 Raffel et al. (2020), and GPT-3.5 Brown et al. (2020). We have chosen these models for
their unique contributions to the field of natural language processing and their diverse capabilities.
T5 is an encoder-decoder model known for its strong performance in various NLP tasks. We have
included 3-billion and 11-billion versions of T5. Flan-T5 is an enhanced version of T5 that has been
instruction fine-tuned on a mixture of tasks, offering improved performance across different tasks.
We have included all five variants of Flan-T5 (small, base, large, xl, and xxl) to observe the accuracy
across sizes. Llama-2 and LLama-2-chat are relatively large models that outperform open-source
chat models on most benchmarks. Llama-2-chat is a variant of Llama-2 that has been supervised
fine-tuned and iteratively refined using Reinforcement Learning from Human Feedback (RLHF).
We have considered all variants of Llama-2 and Llama-2-chat to assess their pragmatic competence.
We’ve opted for the gpt-3.5-turbo-instruct model among the available OpenAI models because it is
one of the most recent releases, and it provides access to log probabilities. We have also included
phi-1 and phi-1.5 which are of significantly smaller size but are trained on textbook data.

4 RESULTS

We evaluate all the open-source models using both the evaluation methods, i.e. length normalized
cloze prompt method and multiple choice prompts. In each of these methodologies, we do a zero-
shot evaluation and a 3-shot evaluation. The OpenAI model is evaluated only using zero-shot MCP
and 3-shot MCP for a cost-efficient evaluation. The results of our experiments can be found in Table
1 and Table 2. In the tables, we display the best figures (among zero-shot length normalized CP, 3-
shot length normalized CP, zero-shot MCP and 3-shot MCP ) for each model and task. The detailed
results are available in Appendix D.

The tasks for implicature evaluation are meticulously designed to cover a spectrum of challenges.
Even though there is remarkable proximity in performance between LLMs and humans in most of
the tasks, the models still are much behind in unseen tasks like agreement detection in conversations
with figurative language. Intriguingly, LLMs exhibit more robust performance in the task of sarcasm
detection within the same dataset. This phenomenon can be attributed to the well-established nature
of sarcasm detection as a task in the existing literature, whereas agreement detection in this context
is less commonly encountered. The performance of LLMs on tasks on figurative language under-
standing with no hints, positive hints, and contrastive hints gives us an insight into how easily LLMs
can be distracted. Whereas human performance is almost consistent on these tasks. The Deictic
QA task tests how well LLMs can understand words in context and figure out what they refer to,
checking their ability to grasp the context and identify references. In the Metonymy task, LLMs are
evaluated on their capacity to recognize and interpret metonymic substitutions. Most of the models
in these tasks fall below the baseline and human performance.

In the QA over presupposition task, many open-source models exhibit performance levels similar
to the majority baseline. Still, their reliability is questionable due to a recurrent issue where these
models consistently select only one label (“valid”). However, this behavior doesn’t apply to GPT-
3.5, which is an exception. Interestingly, GPT-3.5 falls considerably short of human performance in
this task, underscoring the significant difficulties models encounter when tasked with presupposition
comprehension.

PPA results for open-source models are presented in Figure 2. In many cases, the models show
higher PPA scores when they are fine-tuned with specific instructions or filtered using RLHF com-
pared to their “vanilla” versions. Additionally, within the LLAMA series of models, there’s a no-
ticeable pattern: larger model sizes tend to correspond with higher PPA values. These PPA values
serve as indicators of the model’s ability to maintain consistent performance regardless of the order
in which answers are presented. These scores play a pivotal role in determining whether a particular
model is suitable for Multiple Choice Prompts (MCP) evaluations.

Overall, both variants of the LLAMA-2 model with 70 billion parameters consistently exhibit strong
performance across a wide range of tasks.
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#Params Model name Task Number

1 2 3 4 5 6 7 8 9 10 Avg

- Human 90.85 74.00 79.67 93.67 95.00 97.00 92.33 96.33 91.33 57.91 86.81
- Baseline 50.68 48.54 48.00 25.85 50.00 50.00 50.45 50.45 50.45 78.09 50.25

60M Flan-T5-small 50.69 37.77 37.99 83.74 50.81 50.46 51.53 57.18 76.23 35.35 53.18

220M Flan-T5-base 51.20 69.88 56.98 76.97 56.87 62.69 77.80 88.25 60.46 57.19 65.83

770M Flan-T5-large 72.24 54.22 50.28 79.30 65.50 73.43 87.57 95.71 71.13 62.97 71.24

1.3B Phi-1 49.36 49.60 48.23 44.80 50.05 50.00 53.33 69.37 52.51 36.74 50.40

Phi-1.5 50.69 49.60 48.23 54.65 50.00 53.09 70.17 82.57 52.43 28.90 54.03

3.5B T5 61.72 47.95 47.75 28.45 50.61 50.76 51.69 54.29 47.77 49.42 49.04

Flan-T5-XL 69.72 84.00 54.83 82.63 73.23 91.43 91.47 97.03 78.25 65.51 78.81

7B

Llama-2 60.77 49.36 48.23 56.26 51.46 61.66 78.63 88.91 59.54 49.29 60.41

Falcon 54.91 49.36 48.23 55.00 50.51 51.16 64.74 77.94 53.72 35.49 54.11

Llama-2-Ins 77.26 62.73 66.56 56.85 54.05 79.09 83.79 94.69 56.55 41.14 67.27

Falcon-Ins 60.08 49.36 48.23 64.60 50.91 52.74 64.29 75.89 53.14 37.27 55.65

11B T5 50.52 49.60 48.23 25.60 50.40 50.00 51.58 52.00 49.60 28.57 45.61

Flan-T5-XXL 62.36 87.01 71.59 82.90 75.81 93.14 93.14 98.06 79.55 64.12 80.77

13B Llama-2 72.14 50.64 64.08 63.89 55.90 81.37 83.22 94.18 63.33 45.34 67.41

Llama-2-Ins 83.12 53.82 67.70 75.91 60.30 85.89 87.12 96.61 72.91 41.73 72.51

40B Falcon 68.64 49.60 49.00 56.72 52.85 50.20 86.89 96.72 59.26 23.61 59.35

Falcon-Ins 50.77 49.60 17.39 58.48 56.60 86.23 87.62 96.23 59.03 8.19 57.01

70B Llama-2 84.56 63.19 78.56 71.52 71.31 94.00 94.00 98.34 76.84 55.91 78.82

Llama-2-Ins 78.43 73.89 82.02 67.15 65.70 91.71 92.43 97.97 63.84 51.54 76.47

175B GPT-3.5 80.20 58.18 62.77 78.13 71.01 55.50 93.03 97.94 73.05 48.86 71.87

- MAX 84.56 87.01 82.02 83.74 75.81 94.00 94.00 98.34 79.55 65.51 84.45

Table 1: Results (accuracy) for all tasks on Implicature. The task numbers are as mentioned in Figure
1. The results presented in this table are the maximum across all types of evaluations (0-shot and
3-shot Cloze and MCQA) performed on the models. We present individual numbers in Appendix
C and their respective prompts in Appendix D. Results considering Data leakage for vanilla LLMs
can be found in Appendix C. Max denotes maximum accuracy across all models and Avg denotes
average accuracy across the row. The bottom right value indicates average of maximum of all
models.

4.1 DATA LEAKAGE

LLMs have been trained on a vast amount of openly available data. However, this abundance of data
raises concerns about the evaluation sets, as they can yield biased results when exposed to similar
data during testing. We assess a wide range of models, which introduces the risk of data leakage.
While we cannot conduct exhaustive collision checks with the training corpora of all these models
due to their immense size, we have performed several studies to reduce the risk of data leakage in
their fine-tuning datasets. Firstly, we have identified that Circa, Imppres, and DailyDialog are com-
ponents of instruction-tuning datasets, such as Super Natural Instructions (Wang et al., 2022) and
Flan (Wei et al.), on which Flan-T5 is fine-tuned. GPT-3 and Falcon models may also include them,
to the best of our knowledge. Secondly, despite the potential for data leakage, Flan-T5 demonstrates
competitive performance on datasets it has never encountered before, such as Task 14, which is an
entirely new dataset.

Since these datasets are available on public websites1, it is likely that some part of the data might
be seen in the pertaining corpora of these models, but we suspect the following reasons why data
leakage does not affect our results for other models. First, we see that the models perform consis-

1https://github.com
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Figure 2: Comparison of PPA depicting
the multiple choice symbol binding abil-
ity of different models. We see that for
vanilla LLMs, few shot increases model con-
sistency, and for instruction-tuned models
adding more examples do not increase its
consistency. The results are average across
Task 4, 11, and 14 (one from each domain of
pragmatics). Detailed results can be found in
Appendix C.

#Params Model name Task Number

11 12 13 14 Avg

- Human 69.70 85.67 67.50 80.00 75.72
- Baseline 43.72 84.12 64.30 27.72 54.97

60M Flan-T5-small 54.00 56.40 84.35 40.61 58.84

220M Flan-T5-base 48.50 64.29 83.89 56.55 63.31

770M Flan-T5-large 52.28 77.60 83.61 63.10 69.15

1.3B Phi-1 42.77 64.59 84.38 17.47 52.30

Phi-1.5 33.72 65.10 84.38 47.95 57.79

3.5B T5 29.52 64.39 60.40 37.12 47.86

Flan-T5-XL 57.22 83.30 77.49 72.27 72.57

7B
Llama-2 44.72 64.59 84.39 63.93 64.41

Falcon 40.85 64.59 84.39 27.29 54.28

Llama-2-Ins 39.67 64.59 84.39 62.45 62.78

Falcon-Ins 36.03 64.59 84.39 27.73 53.19

11B T5 27.27 63.10 60.40 39.30 47.52

Flan-T5-XXL 61.83 83.06 76.71 67.03 72.16

13B Llama-2 42.99 64.59 84.39 73.97 66.49

Llama-2-Ins 47.61 64.59 84.39 73.29 67.47

40B Falcon 38.00 64.59 56.84 31.51 47.74

Falcon-Ins 43.66 64.59 60.47 31.96 50.17

70B Llama-2 53.20 73.88 84.38 85.39 74.21

Llama-2-Ins 53.39 65.31 84.39 74.20 69.32

175B GPT-3.5 50.67 65.71 45.10 73.97 58.86

- MAX 61.83 83.30 84.39 85.39 78.73

Table 2: Results (accuracy) for Tasks on Presup-
position, Reference, and Deixis. The task num-
bers are as mentioned in Figure 1. The results
presented in this table are the maximum across all
types of evaluations (0-shot and 3-shot Cloze and
MCQA) performed on the models. We present in-
dividual numbers in Appendix C and their respec-
tive prompts in Appendix D. Results considering
Data leakage for vanilla LLMs can be found in
Table Appendix C. Max denotes maximum accu-
racy across all models and Avg denotes average
accuracy across the row. The bottom right value
indicates average of maximum of all models.

tently on new data, and we do not notice a surge in numbers for a particular model on these tasks.
Secondly, similar to Robinson & Wingate (2023), we see that shuffling candidate answers does not
cause a dip in PPA performance (Appendix C), and if data leakage would have impacted our results
then we would see more probability assigned to the correct answer regardless of the order of options
as claimed by Robinson & Wingate (2023).

5 RELATED WORK

Pragmatics is very crucial in the domain of linguistics, where it plays a critical role in understanding
meaning (Allwood, 1981). In linguistic terms, pragmatics deals with the study of context-dependent
aspects of meaning that are systematically abstracted away from, in the construction of content or
logical form Horn & Ward (2004). Some of the basic subfields of pragmatics include implicature,
presupposition, speech acts, reference, deixis, and definiteness and indefiniteness. Over the years,
many researchers have devoted their research to studying such pragmatic phenomena for machine
learning. To study implicatures, Louis et al. (2020) use indirect answers in polar questions, Zheng
et al. (2021) utilize hierarchical grammar models to understand implicature and deictic reference in
simple conversations, Jeretic et al. (2020) utilize NLI to understand scalar implicatures, Deng et al.
(2014) make use of implicature rules to optimize sentiment detection, Lahiri (2015) create a sentence
level corpus with implicature ratings. Whereas for presupposition, Kim et al. (2022) use search
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engine queries that may contain questionable assumptions that are closely related to presupposition
Kabbara & Cheung (2022) also reveal that Transformer models exploit specific structural and lexical
cues as opposed to performing some kind of pragmatic reasoning.

A recent comparison of pragmatic understanding between humans and models, conducted by Hu
et al. (2023), shows that language models struggle to understand humor, irony, and conversational
maxims Grice (1975). These approaches have offered only a restricted understanding of the short-
comings exhibited by these models by either evaluating only a single phenomenon or with a smaller
number of samples to make it quantifiable. Other existing work includes Deng et al. (2014) the
PragmEval framework Sileo et al. (2022), which does not cover important aspects of pragmatics
that can be used to evaluate LLMs and PragmaticQA Qi et al. (2023), open-domain question an-
swering dataset, consisting of 6873 QA pairs, designed to delve into pragmatic reasoning within
conversations spanning various topics, but so far, it has not been released openly.

Nevertheless, previous empirical investigations have predominantly assessed language models on
their abilities on tasks like language modeling (Marcus et al., 1994), translation (Edunov et al.,
2018), common sense reasoning (Srivastava et al., 2022), comprehension, summarisation (Fabbri
et al., 2019), language understanding (Wang et al., 2019b), etc. Any practical implementation of
language models that necessitates interaction with humans will rely on the models’ capacity for
pragmatic communication skills. This crucial ability for effective communication in applications
involving humans isn’t fully considered by the benchmarks used to assess how well language models
align with this requirement. To the best of our knowledge, we are the first ones to combine major
aspects of pragmatics to create a quantifiable benchmark.

Robinson & Wingate (2023) show that MCSB is an important ability for language models to be
consistent in their answers. Following Rae et al. (2021), Chinchilla (Hoffmann et al., 2022), In-
structGPT (Chan, 2023), Robinson & Wingate (2023) also demonstrate that MCP can significantly
enhance LLM accuracy and reduce unpredictability in evaluations. Since CP has also been a reliable
evaluation scheme in prompting followed by Brown et al. (2020), Holtzman et al. (2021), Zhao et al.
(2021), and Izacard et al. (2022), we utilize both CP and MCP for evaluations since models with
lower MCSB abilities can utilize Cloze prompts.

6 CONCLUSION

Our research provides a unified benchmark for evaluating pragmatic understanding in LLMs, com-
bining existing and newly annotated datasets. We offer curated test sets with MCQA prompts to
assess LLMs’ capabilities in different pragmatic domains. LLMs excel in semantic understanding
but struggle with pragmatic comprehension. Our benchmark evaluation across fourteen tasks in
four pragmatics domains shows that vanilla LLMs struggle to capture context and perform slightly
better than random baseline. LLMs perform well on tasks with positive hints but face challenges
with contrastive hints and new tasks like reference resolution in metonymic language. The evalu-
ation indicates their difficulty in understanding figurative language and the importance of context.
LLMs also struggle with tasks related to agreement detection, where humans outperform them. On
the contrary, we observe instruction fine-tuning helps models achieve near-human performance on
many tasks.

In conclusion, while LLMs have made strides in semantic understanding, our research highlights
the need for further development in pragmatic comprehension. Addressing the identified limitations
will lead to more contextually aware and human-like language models, benefiting applications like
chatbots, information retrieval, and dialogue systems. By pushing model development and evalu-
ation boundaries, we can strive for more sophisticated and nuanced language models aligned with
human pragmatic capabilities.
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A SAMPLING

For Zero-shot prompts, all the instances of the data were used as is. For Few-shot prompts, a dev set
of 20 examples was created. These 20 examples were selected to ensure a balanced representation of
options. For tasks that have unique options for each question, 20 examples were randomly selected
from the entire dataset. Depending on the value of k for k-shot prompt, k samples were randomly
selected from this dev set. The remaining instances of the data, other than the dev set, were used to
evaluate the model.

B ANNOTATION DETAILS

For Task 14, we have created a new dataset for Reference via metonymy. This dataset is curated
by four recent graduates of Literature from a reputable university. The annotators are given basic
examples from Wikipedia and a list of metonymic words as references. We encourage the annotators
to discover new metonymic words in order to avoid repetition in the data. They create these examples
from scratch while referring to the provided instructions and examples.

For Task 13, we selected all the questions and corresponding conversations from the GRICE dataset
that have Yes/No answers. These questions were then filtered using a manually curated list of deictic
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terms. The filtered questions were randomly sampled and manually verified to ensure that they test
the phenomenon of deixis.

For Task 12, all the conversations from the DailyDialog dataset were given to 2 linguistic experts.
These experts were asked to add presuppositions to random dialog turns from the datasets. The
annotators were also instructed to create false presuppositions and mark them as invalid. Regular
feedback was provided to the annotators to maintain an almost equal number of samples for both
valid and invalid presuppositions.

Task 10 and 11 are directly taken from the Impress dataset without any modifications in the state-
ments and options. These tasks are presented as simple Natural Language inference tasks.

Task 7, 8, and 9 are formulated based on the FLUTE dataset. The FLUTE dataset consists of
sentences or premises in figurative language and their corresponding hypotheses in simple language.
For each premise, there are two types of hypotheses: one that entails and another that contradicts.
Additionally, the dataset includes separate explanations for the entailment and contradiction. In
Task 7, the objective is to test if the figurative language is correctly understood. The responder must
choose between an entailed sentence or a contradictory sentence as the meaning of the premise. In
Task 8, the responder is provided with an explanation of the entailment, which is referred to as a
positive hint as it explains why the entailment option is the correct meaning of the premise. In Task
9, an explanation of the contradictory statement is provided, along with an explanation of why it
is not a correct meaning of the figurative sentence. This is considered a contrastive hint. Through
these tasks, we aim to test if the models are able to answer correctly based on good semantic overlap
with the positive hint, or if they actually understand the tasks. The poor performance of the models
on the task with contrastive hints validates this, as most models tend to choose the option with high
semantic overlap with the given hint.

The Tasks 5 and 6 were constructed using the FigQA dataset. This dataset consists of sentences with
figurative language and their corresponding meanings. Each sentence also has a negative version,
which has the opposite meaning compared to the original sentence. In Task 5, the figurative sentence
is spoken by the first person in the conversation, while the corresponding meaning or the opposite
meaning is spoken by the second person. The responder is asked to determine whether the first
speaker agrees with the second speaker or not. In Task 6, the first speaker speaks a simple sentence,
while the second person speaks a figurative sentence that either has the same meaning or the opposite
meaning. To make the second sentence more conversational, certain words like ’Yeah’, ’Yes’, ’True’,
and ’Of course’ were added. If the figurative sentence has the same meaning as the first sentence,
then both speakers agree with each other. If the figurative sentence has the opposite meaning, then
the second speaker is being sarcastic with the first speaker.

Task 4 is directly taken from the GRICE dataset without any modification. The GRICE dataset
includes, for each turn of every conversation, a question about the implied meaning of the response
in that turn, along with four options. We present the entire conversation and select the last turn to
provide the corresponding options for the implied meaning of the last response in the conversation.

The CIRCA dataset is utilized for tasks 1, 2, and 3. It consists of pairs of YES/NO questions and
indirect answers, along with annotations for interpreting the indirect answers. Task 1 involves using
the YES/NO and indirect answers to determine if a response to a question is direct or indirect.
In task 2, the responder classifies the response as Yes, No, Yes upon some condition, etc. The
prompt example provides all the options for this task. The questions in task 2 were annotated by 2
expert annotators to capture the implied meaning of the response given to the question. The implied
meaning explains the response given to the asked question. In task 3, the responder is provided with
both the implied meaning and the question from task 2.

C PROMPTING EXPERIMENTS

In this section we show our results for all prompting and PPA experiments. We also note that if we
avoid models with potential data leakage and consider vanilla LLMs then we can see that Llama-2
performs consistently well, even better than GPT-3.5 at pragmatic tasks. We notice a gap between
the understanding of these LLMs and humans.
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#Params Model name Task Number

1 2 3 4 5 6 7 8 9 10

- Human 90.85 74.00 79.67 93.67 95.00 97.00 92.33 96.33 91.33 57.91
- Baseline 50.68 48.54 48.00 25.85 50.00 50.00 50.45 50.45 50.45 78.09

60M Flan-T5-small 51.2 69.88 56.98 69.7 56.75 51.95 77.8 88.25 58.25 57.19

220M Flan-T5-base 51.2 69.88 56.98 69.7 56.75 51.95 77.8 88.25 58.25 57.19

770M Flan-T5-large 72.24 52.08 50.28 79.3 62.05 61.45 87.57 95.71 71.13 61.76

1.3B Phi-1 0 0 0 0 0 0 0 0 0 0

Phi-1.5 49.4 25.6 47.64 34.45 41.75 49.95 60.79 81.07 52.43 14.28

3.5B T5 61.72 4.16 1.16 24.05 41.2 44.9 40.4 14.58 14.52 14.29

Flan-T5-XL 60 84 54.83 81.6 71.1 59.05 91.47 96.78 78.25 64.33

7B

Llama-2 60.77 49.36 48.23 56.26 51.46 61.66 78.63 88.91 59.54 49.29

Falcon 50.68 48 47.64 0.00 0 0 0.00 0 53.72 -

Llama-2-Ins 77.26 62.73 66.56 56.85 54.05 79.09 83.79 94.69 56.55 41.14

Falcon-Ins 54.16 33.91 22.42 25.45 50 50.05 52.37 56.55 50.4 13.57

11B T5 50.52 0.07 0.28 0 5.75 0.15 18.08 4.97 4.07 27.95

Flan-T5-XXL 62.36 85.27 71.59 82.9 75 61.7 92.66 97.23 79.55 63.05

13B Llama-2 51.76 50.64 51.08 46.9 55.9 52.15 83.22 94.18 63.33 14.24

Llama-2-Ins 83.12 27.85 54.15 58.45 60.3 57 87.12 96.61 58.53 12.67

40B Falcon 68.64 10.97 49 - 52.85 50 86.89 96.72 59.26 23.61

Falcon-Ins 49.48 10.01 17.39 - 56.6 50 87.62 95.64 59.03 8.19

70B Llama-2 62.84 57.9 71.71 66.9 70.95 51.05 92.77 96.84 76.84 53.38

Llama-2-Ins 77.28 66.16 80.29 67.15 65.7 50.35 92.43 97.97 63.84 50.86

175B GPT-3.5 80.20 58.18 62.77 76.55 70.25 55.50 92.88 96.84 73.05 48.86

Table 3: Results (accuracy) for all tasks on 0 shot MCQA for Implicature. The task numbers are as
mentioned in Figure 1.

17



Under review as a conference paper at ICLR 2024

#Params Model name Task Number

1 2 3 4 5 6 7 8 9 10

- Human 90.85 74.00 79.67 93.67 95.00 97.00 92.33 96.33 91.33 57.91
- Baseline 50.68 48.54 48.00 25.85 50.00 50.00 50.45 50.45 50.45 78.09

60M Flan-T5-small 48.60 37.40 37.99 47.55 49.85 50.00 50.85 57.01 48.87 14.29

220M Flan-T5-base 48.68 37.76 53.83 56.70 56.00 50.25 50.85 54.63 47.68 14.29

770M Flan-T5-large 49.28 2.20 3.27 63.15 65.50 60.75 53.84 61.13 46.84 14.29

1.3B Phi-1 49.36 49.36 48.00 39.55 50.00 50.00 53.33 69.27 40.56 9.23

Phi-1.5 49.32 49.36 48.00 50.85 50.00 50.00 69.49 82.43 45.31 28.90

3.5B T5 23.36 40.52 46.97 28.45 50.00 49.45 51.69 53.11 47.23 14.29

Flan-T5-XL 55.28 2.20 3.27 69.55 68.00 62.85 53.28 61.02 46.61 14.29

7B

Llama-2 49.32 49.36 48.00 53.05 50.00 50.00 77.46 86.78 47.06 49.29

Falcon 49.32 49.36 48.00 55.00 50.40 50.00 62.66 76.27 40.28 14.29

Llama-2-Ins 49.32 49.36 48.00 56.85 50.05 50.00 76.38 87.68 49.94 41.14

Falcon-Ins 49.32 49.36 48.00 56.05 49.95 50.00 64.29 74.63 45.93 14.29

11B T5 44.20 49.36 48.08 25.60 49.60 49.85 51.58 51.64 49.60 14.29

Flan-T5-XXL 50.68 2.20 3.51 73.30 59.85 62.45 58.19 67.97 50.56 14.29

13B Llama-2 49.32 49.36 48.00 54.10 46.75 50.00 80.06 88.36 48.25 17.43

Llama-2-Ins 49.32 49.36 48.00 55.35 44.45 50.00 80.40 88.98 52.54 21.81

40B Falcon 49.32 49.36 - 48.70 49.95 50.00 68.87 81.02 43.90 -

Falcon-Ins 49.32 49.36 - 53.65 50.00 50.00 69.77 81.41 48.08 -

70B Llama-2 49.32 49.36 48.00 55.90 47.55 50.00 80.51 90.28 47.80 17.95

Llama-2-Ins 49.32 49.36 48.00 50.30 47.90 50.00 82.71 90.45 49.94 16.60

175B GPT-3.5 80.20 58.18 62.77 76.55 70.25 55.50 92.88 96.84 73.05 48.86

Table 4: Results (accuracy) for all tasks on 0 shot Cloze for Implicature. The task numbers are as
mentioned in Figure 1.
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#Params Model name Task Number

1 2 3 4 5 6 7 8 9 10

- Human 90.85 74.00 79.67 93.67 95.00 97.00 92.33 96.33 91.33 57.91
- Baseline 50.68 48.54 48.00 25.85 50.00 50.00 50.45 50.45 50.45 78.09

60M Flan-T5-small 50.69 37.77 31.34 83.74 50.00 50.46 50.46 50.57 76.23 13.45

220M Flan-T5-base 50.93 64.36 56.64 76.97 54.14 62.69 62.69 70.97 60.46 54.32

770M Flan-T5-large 69.44 54.22 50.20 40.66 64.04 73.43 73.43 77.09 49.89 62.97

1.3B Phi-1 0.00 0.00 0.00 31.77 0.00 0.00 0.00 0.00 52.51 0.91

Phi-1.5 50.69 40.20 40.78 0.00 50.00 53.09 53.09 55.83 15.14 14.12

3.5B T5 47.38 0.76 0.60 15.51 13.99 27.20 27.20 18.06 14.91 39.77

Flan-T5-XL 57.86 83.19 52.05 82.63 72.98 91.43 91.43 97.03 74.97 65.51

7B

Llama-2 60.77 25.91 33.02 37.02 50.00 61.66 61.66 70.40 59.54 13.50

Falcon 54.91 14.15 15.40 27.83 49.19 49.54 18.51 32.86 52.63 18.29

Llama-2-Ins 77.26 45.17 55.31 0.00 51.21 79.09 79.09 90.17 0.00 10.57

Falcon-Ins 60.08 28.56 36.12 64.60 49.49 52.74 52.74 54.46 53.14 10.71

11B T5 44.48 0.00 0.08 15.51 1.67 14.57 14.57 14.97 14.91 2.31

Flan-T5-XXL 62.02 87.01 70.19 57.27 75.66 93.14 93.14 98.06 61.60 64.12

13B Llama-2 72.14 39.34 64.08 63.89 53.13 81.37 81.37 92.17 59.89 23.87

Llama-2-Ins 75.44 53.82 67.70 75.91 58.13 85.89 85.89 95.66 72.91 33.67

40B Falcon - - - - - - - - - -

Falcon-Ins 50.77 2.45 11.50 1.72 49.85 86.23 86.23 96.23 32.06 -

70B Llama-2 84.56 63.19 78.56 71.52 71.31 94.00 94.00 98.34 67.89 54.32

Llama-2-Ins 78.43 73.89 82.02 36.46 65.10 91.71 91.71 97.37 50.40 51.54

175B GPT-3.5 73.87 43.81 53.02 78.13 71.01 54.85 93.03 97.94 71.43 32.52

Table 5: Results (accuracy) for all tasks on 3 shot MCQA for Implicature. The task numbers are as
mentioned in Figure 1.
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#Params Model name Task Number

1 2 3 4 5 6 7 8 9 10

- Human 90.85 74.00 79.67 93.67 95.00 97.00 92.33 96.33 91.33 57.91
- Baseline 50.68 48.54 48.00 25.85 50.00 50.00 50.45 50.45 50.45 78.09

60M Flan-T5-small 50.69 37.77 31.34 83.74 50.00 50.46 50.46 50.57 76.23 13.45

220M Flan-T5-base 50.93 64.36 56.64 76.97 54.14 62.69 62.69 70.97 60.46 54.32

770M Flan-T5-large 69.44 54.22 50.20 40.66 64.04 73.43 73.43 77.09 49.89 62.97

1.3B Phi-1 0.00 0.00 0.00 31.77 0.00 0.00 0.00 0.00 52.51 0.91

Phi-1.5 50.69 40.20 40.78 0.00 50.00 53.09 53.09 55.83 15.14 14.12

3.5B T5 47.38 0.76 0.60 15.51 13.99 27.20 27.20 18.06 14.91 39.77

Flan-T5-XL 57.86 83.19 52.05 82.63 72.98 91.43 91.43 97.03 74.97 65.51

7B

Llama-2 60.77 25.91 33.02 37.02 50.00 61.66 61.66 70.40 59.54 13.50

Falcon 54.91 14.15 15.40 27.83 49.19 49.54 18.51 32.86 52.63 18.29

Llama-2-Ins 77.26 45.17 55.31 0.00 51.21 79.09 79.09 90.17 0.00 10.57

Falcon-Ins 60.08 28.56 36.12 64.60 49.49 52.74 52.74 54.46 53.14 10.71

11B T5 44.48 0.00 0.08 15.51 1.67 14.57 14.57 14.97 14.91 2.31

Flan-T5-XXL 62.02 87.01 70.19 57.27 75.66 93.14 93.14 98.06 61.60 64.12

13B Llama-2 72.14 39.34 64.08 63.89 53.13 81.37 81.37 92.17 59.89 23.87

Llama-2-Ins 75.44 53.82 67.70 75.91 58.13 85.89 85.89 95.66 72.91 33.67

40B Falcon - - - - - - - - - -

Falcon-Ins 50.77 2.45 11.50 1.72 49.85 86.23 86.23 96.23 32.06 -

70B Llama-2 84.56 63.19 78.56 71.52 71.31 94.00 94.00 98.34 67.89 54.32

Llama-2-Ins 78.43 73.89 82.02 36.46 65.10 91.71 91.71 97.37 50.40 51.54

175B GPT-3.5 73.87 43.81 53.02 78.13 71.01 54.85 93.03 97.94 71.43 32.52

Table 6: Results (accuracy) for all tasks on 3 shot Cloze for Implicature. The task numbers are as
mentioned in Figure 1.

Models 14 - 0-shot 14 - 3-shot 3 - 0-shot 3 - 3-shot 10 - 0-shot 10 - 3-shot
Flan-T5-small 0.79 0.79 0.62 0.71 0.45 0.35
Flan-T5-base 0.92 0.86 0.89 0.81 0.82 0.59
Flan-T5-large 0.94 0.79 0.9 0.92 0.85 0.87
Phi-1 0.29 0.31 0.29 0.28 0.33 0.36
Phi-1.5 0.68 0.79 0.64 0.5 0.8 0.5
T5-3B 0.26 0.31 0.29 0.27 0.34 0.36
Flan-T5-XL 0.96 0.96 0.93 0.93 0.92 0.92
Llama-2-7B 0.51 0.79 0.26 0.58 0.66 0.53
Llama-2-7B-Ins 0.74 0.81 0.58 0.55 0.44 0.45
Falcon-7B-Ins 0.25 0.29 0.25 0.36 0.33 0.36
Falcon-7B 0.3 0.3 0.38 0.32 0.45 0.34
Llama-2-70B 0.84 0.94 0.75 0.86 0.48 0.83
Llama-2-70B-Ins 0.88 0.87 0.73 0.78 0.89 0.74
Llama-2-13B 0.83 0.83 0.57 0.68 0.54 0.7
Llama-2-13B-Ins 0.84 0.82 0.69 0.68 0.74 0.62
Flan-T5-XXL 0.98 0.92 0.94 0.95 0.95 0.93
T5-11B 0.27 0.26 0.25 0.25 0.39 0.34

Table 7: PPA across 3 tasks 0-shot and 3-shot. The task numbers are as mentioned in Figure 1.
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D PROMPTS USED FOR EACH TASK

In this section we provide prompts used for each task. Any typos in the shown examples are present
in the datasets they are drawn from. The examples presented here are Multiple Choice Prompts
(MCPs). Cloze Prompts (CPs) can be obtained by removing the options from the MCPs.

Your task is to label the ’Response’ as an Indirect or Direct
answer based on the Context and Question:

Context: X wants to know what activities Y likes to do during
weekends.
Question: Are you a fan of bars?
Response: I love to drink beer at pubs.
Options:
A: Direct answer
B: Indirect answer
Correct option=

Figure 3: Prompt example for Task 1

Your task is to interpret Y’s answer to X’s question into one of
the options:
A: Yes
B: No
C: Yes, subject to some conditions
D: In the middle, neither yes nor no
E: Other

Context: X and Y are childhood neighbours who unexpectedly run
into each other at a cafe.
X: Would you like to exchange numbers?
Y: I’ll get my contacts open here.
Options:
A: Yes
B: No
C: Yes, subject to some conditions
D: In the middle, neither yes nor no
E: Other
Correct option=

Figure 4: Prompt example for Task 2
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Your task is to interpret Y’s answer to X’s question into one of
the options:
A: Yes
B: No
C: Yes, subject to some conditions
D: In the middle, neither yes nor no
E: Other

Context: X and Y are childhood neighbours who unexpectedly run
into each other at a cafe.
X: Would you like to exchange numbers?
Y: I’ll get my contacts open here.
Implied meaning: He likes to exchange numbers
Options:
A: Yes
B: No
C: Yes, subject to some conditions
D: In the middle, neither yes nor no
E: Other
Correct option=

Figure 5: Prompt example for Task 3

Your task is to understand the implied meaning in Speaker_2’s last
response and give the explicit meaning:

Speaker_1: did Liam leave the watermelons in the attic
Speaker_2: no, he didn’t
Speaker_1: did Jackson leave the watermelons there
Speaker_2: he said he was not there
Speaker_1: where can I get them
Speaker_2: the watermelons are in the bathroom or the laundry
Speaker_1: what about the cherries
Speaker_2: they are in the kitchen
Speaker_1: did you see the cabbages
Speaker_2: there is a blue bathtub in the bathroom
Speaker_1: did you place the cabbages there
Speaker_2: no, I didn’t
Speaker_1: are all of them there
Speaker_2: some are there
Speaker_1: how many cherries are in the kitchen
Speaker_2: there are at least one there
Speaker_1: did Liam put the cherries there
Speaker_2: he put them there and walked to the bathroom
Options:
A: Liam put the cherries in the kitchen and then walked to the
bathroom
B: Liam didn’t put the cherries in the kitchen
C: I put the cherries in the kitchen
D: Liam put the cherries in the kitchen
Correct option=

Figure 6: Prompt example for Task 4
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Your task is to decide if Speaker_2 Agrees or Disagrees with
Speaker_1 in the conversation:

Speaker_1: The chair was comfortable like a pillow.
Speaker_2: The chair was uncomfortable.
Options:
A: Agrees
B: Disagrees
Correct option=

Figure 7: Prompt example for Task 5

Your task is to decide if Speaker_2 Agrees or is being Sarcastic
with Speaker_1 in the conversation:

Speaker_1: The chair was uncomfortable.
Speaker_2: Yeah, The chair was comfortable like a pillow.
Options:
A: Agrees
B: Sarcastic
Correct option=

Figure 8: Prompt example for Task 6

Your task is to identify the correct meaning of the figurative
sentence:

Sentence : To add insult to injury, a boy was leading a handsome
sheep on a string behind him.
Options:
A: To make things worse, a boy was leading a handsome sheep on a
string behind him.
B: In order to make things a lot better, a boy was leading a
handsome sheep on a string behind him.
Correct option=

Figure 9: Prompt example for Task 7
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Your task is to identify the correct meaning of the figurative
sentence from the given hint:

Sentence : To add insult to injury, a boy was leading a handsome
sheep on a string behind him.
Hint : To add insult to injury means to make a bad situation
worse, and in this sentence the boy leading the sheep makes the
situation worse.
Options:
A: To make things worse, a boy was leading a handsome sheep on a
string behind him.
B: In order to make things a lot better, a boy was leading a
handsome sheep on a string behind him.
Correct option=

Figure 10: Prompt example for Task 8

Your task is to identify the correct meaning of the figurative
sentence from the given hint:

Sentence : To add insult to injury, a boy was leading a handsome
sheep on a string behind him.
Hint : To add insult to injury means to make a bad situation
worse, but in this sentence the boy leading the sheep makes the
situation better.
Options:
A: To make things worse, a boy was leading a handsome sheep on a
string behind him.
B: In order to make things a lot better, a boy was leading a
handsome sheep on a string behind him.
Correct option=

Figure 11: Prompt example for Task 9

Premise: Amy could prevent Stephen from hiding.
Hypothesis: Amy couldn’t prevent Stephen from hiding.
Options:
A: Hypothesis is definitely true given premise
B: Hypothesis might be true given premise
C: Hypothesis is definitely not true given premise
Correct option=

Figure 12: Prompt example for Task 10
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Premise: Natalie hasn’t discovered where Tracy worries.
Hypothesis: Tracy doesn’t worry.
Options:
A: Hypothesis is definitely true given premise
B: Hypothesis might be true given premise
C: Hypothesis is definitely not true given premise
Correct option=

Figure 13: Prompt example for Task 11

Your task is to deduce if the Assumption is valid or invalid based
on the conversation:

Conversation:
A: Say , Jim , how about going for a few beers after dinner ?
Assumption: Jim exists.
Options:
A: Valid
B: Invalid
Correct option=

Figure 14: Prompt example for Task 12

Your task is to answer the given question based on the
conversation:

Conversation:
Speaker_1: did you go to the basement
Speaker_2: I walked to the cellar
Speaker_1: did you see the beans
Speaker_2: I have no idea
Speaker_1: what about the pumpkin
Speaker_2: it is in the hallway
Speaker_1: did you see the celeries
Speaker_2: there is a green pantry in the cellar
Speaker_1: did Mason place the celeries there
Speaker_2: he placed them there and walked to the hallway
Speaker_1: did he put the peaches in the cellar
Speaker_2: no, he didn’t
Speaker_1: did Lily place them in the cellar
Speaker_2: no, she didn’t
Speaker_1: where can I get the melons
Speaker_2: there is a red bottle in the cellar
Speaker_1: are all of them there
Speaker_2: yes
Speaker_1: where are the peaches
Speaker_2: the peaches are in the basement
Question: are the melons in the cellar?
Options:
A: yes
B: no
Correct option=
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Figure 15: Prompt example for Task 13

Your task is to answer the Question based on the given Context:

Context: She is attracted to blue jacket
Question: What does "blue jacket" refer to?
Options:
A: Colour
B: Jacket
C: Sailor
D: Sea
Correct option=

Figure 16: Prompt example for Task 15
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