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ABSTRACT

We present COPHYBENCH, a COnditional reasoning PHYsics-based
BENCHmark. COPHYBENCH evaluates the ability of Video-LLMs to rea-
son about physical events based on conditional observations from real-world
videos. It probes physics understanding from three perspectives: 1) Prediction:
predicting future events from observable cues, assessing a grasp of causality
in real-world scenarios. 2) Physical Calculation: estimating times and posi-
tions by translating visual conditions into variables of dynamics equations. 3)
Counterfactual Reasoning: inferring futures based on hypothetical changes, to
distinguish between generalizable physical understanding instead of superficial
correlations. We construct a high-quality dataset consisting of 1,300 carefully
verified question-answer pairs grounded in 232 diverse, real-world physics
videos to support these tasks, spanning various phenomena in kinematics and
dynamics. Extensive benchmarking on leading Video-LLMs reveals that while
models perform reasonably on causal prediction, they struggle with precise
physical calculations and counterfactual reasoning. These findings highlight the
limitations of current models in transitioning from semantic alignment to deeper,
physics-grounded reasoning, calling for new training paradigms to incorporate
physics reasoning. Our dataset and resources will be released.

1 INTRODUCTION

Recent advances in large video–language models (Video-LLMs) have dramatically expanded real-
world applications by leveraging data-driven methods that align visual content with language. How-
ever, they still struggle to ground visual observations with the underlying physical principles of our
real world. Recently, physics-related benchmarks (Zhang et al., 2025b; Motamed et al., 2025; Zhang
et al., 2025a) have emerged in response to the community’s growing need to evaluate models’ capa-
bility of reasoning based on physics knowledge. For example, (Motamed et al., 2025; Zhang et al.,
2025a) explore how well video-generation models as world simulators comply with physical laws.
Yet, without the clear basics of grasping real-world physical laws, video generation is disentangled
from understanding. PhysBench (Chow et al., 2025) is the first comprehensive dataset to evaluate
Video-LLMs’ understanding of the physical world. However, as our benchmarking shows, it suffers
from language biases inherent in common-sense knowledge of the LLMs. Thus, it is still unclear
how well Video-LLMs use visual understanding to reason with physical knowledge.

To bridge this gap, we introduce COPHYBENCH, a COnditional reasoning Physics-based
BENCHmark. COPHYBENCH probes Video-LLMs’ understanding of physics from three perspec-
tives: 1) Causal Prediction: Models are asked to predict future events based on conditional obser-
vations. Here, the model must infer from visual cues factors such as motion direction to anticipate
physically plausible outcomes. 2) Physical Calculations: with stated assumptions, parse observed
visual conditions into variables of physical equations, to make numerical predictions of timings and
positions. 3) Counterfactual Reasoning: interpret changes based on hypothetical counterfactuals,
to distinguish based on generalizable physical principles rather than superficial correlations. In the
evaluation protocol, each video is segmented into two parts: a conditioning clip that presents the
initial setup, and an event clip that contains the outcome, separated by a switch frame. The model
is only given access to the condition segment. It is then prompted to predict what will happen next,
estimate quantitative values such as the timing or location of an event, and reason about how changes
in initial conditions would lead to different outcomes. This design allows us to assess whether mod-
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Video-LLM

(b). Evaluations of Video-LLMs (a). Benchmarking Video-LLMs from Condition Observations 

Event: Ball hits the duck at 2.6s and position.

Conditional Observation

2.) Calculate When & Where?

1). Predict What will happen?

3). Counterfactual: If there is

   sand on the table, what will  happen?

…
1.5s
Answer: 1). Hit duck;  2). 2.6s & [x, y];  3). Not hit duck

Figure 1: (a) The three-tiered challenges of COPHYBENCH. The Video-LLM must first predict
what will happen from conditional observations, calculate when and where events will occur, and a
hypothetical counterfactual setting. In this example, the ball will hit the duck at 2.6 seconds, under
a constant velocity assumption, but may slow down and not reach the duck if there are sands on the
table. (b) Performance of 15 state-of-the-art Video LLMs on COPHYBENCH. While some models
show moderate success in event prediction, their performance on spatiotemporal and counterfactual
reasoning remains substantially lower, indicating persistent challenges in physics-based inference.

els can move beyond mere pattern recognition and instead apply physical equations and causal logic
to unseen scenarios.

We curate a high-quality dataset comprising 1, 300 diverse real-world physics videos-question-
answer pairs across three tasks: Prediction, Calculation(Time and Position), and Counterfactuals.
The questions span various physical problems, including mechanics and optics. The Video-QA
pairs are organized into three tasks that vary in visual complexity and reasoning difficulty. Each
QA instance is grounded in observable physical events, follows a consistent task protocol, and is
cross-validated by annotators with sufficient physics knowledge to ensure correctness and clarity.

In summary, our work introduces a novel benchmark that assesses whether Video-LLMs can ob-
serve, calculate, and reason about physical phenomena from partial video input. We combine condi-
tional prediction, quantitative estimation, and counterfactual inference in a unified framework. Our
CoPhyBench comprehensively evaluates physical reasoning capabilities and highlights key chal-
lenges that current models must overcome. Our key contributions are:

• We propose a novel physics video benchmark based on a conditional event structure that evaluates
a model’s ability to reason about physical events from visual observations.

• We introduce a hierarchical framework that evaluates a model across three levels: prediction
(what), physical calculation (when, where), and counterfactual reasoning (what if ).

• We provide comprehensive benchmark results on state-of-the-art Video-LLMs, highlighting cur-
rent limitations in physical understanding and motivating future research directions.

2 RELATED WORKS

2.1 PHYSICS-RELATED GENERATION BENCHMARKS

The video generation models, which aim towards real-world simulators, are gaining interest from
the community. Recent works have proposed video generation benchmarks to evaluate how well
the video generation model follows physics laws. Recent works such as VideoPHY (Bansal et al.,
2024) and PhyGenBench (Meng et al., 2024) aim to assess physical common sense through video
generation tasks. These benchmarks evaluate whether models can synthesize physically plausible
scenes involving dynamics such as collisions, occlusion, object permanence, fluid interactions, and
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force-induced trajectories. However, most of these datasets are either synthetic or prompt-driven.
Physics-IQ (Motamed et al., 2025), PISA (Li et al., 2025), and Morpheus (Zhang et al., 2025a)
incorporate real physical experiments to assess generative models. However, without encoding
real-world physical knowledge, generation models may struggle to synthesize physically plausible
videos. COPHYBENCH introduces a diagnostic benchmark grounded in real-world video data, ex-
plicitly designed to disentangle causal, computational, and counterfactual reasoning, offering deeper
insight into a model’s physical reasoning ability.

2.2 PHYSICS-RELATED UNDERSTANDING BENCHMARKS

Image or language-based QA benchmarks (Johnson et al., 2017; Lu et al., 2022) only focus on ob-
ject relations, not dynamics or calculation. Despite the many video benchmarks (Hu et al., 2025;
Li et al., 2024b; Patraucean et al., 2023; Mangalam et al., 2023; Zhou et al., 2024; Wu et al., 2024;
Fang et al., 2024; Zhao et al., 2025; Ning et al., 2023) proposed to evaluate the semantic alignment
with Video-LLMs, the qualitative capability of the Video-LLMs to reason from the physical world
remains unclear. Recently, PhysBench (Chow et al., 2025) is the first comprehensive benchmark
to evaluate vision-language models of physical world understanding. However, it remains biased
by common-sense priors from the superficial associations that LLMs acquire, leaving Video-LLMs’
true visual understanding and physics-based reasoning untested. ComPhy (Chen et al., 2022) and
DynSuperCLEVR (Wang et al., 2024) are based on synthetic data, thus limiting their scope to eval-
uating Video-LLMs for real-world reasoning. Our real-data benchmark departs from PhysBench-
VQA by introducing conditional observations, calculation-based question-answers, and organizing
tasks into a fine-grained reasoning hierarchy.

2.3 VIDEO-LLMS

By learning a cross-modal connectioner to bridge the video and powerful LLMs (Grattafiori et al.,
2024; Touvron et al., 2023; Yang et al., 2024), Video-LLMs (Maaz et al., 2023; Zhang et al., 2023;
Lin et al., 2024; Li et al., 2024c; Xu et al., 2024; Li et al., 2024a; Bai et al., 2025) have signifi-
cantly improved the performance of video understanding. Yet, these models emphasize high-level
semantic understanding (e.g., human actions and social events), rather than the underlying physical
dynamics of the scene (e.g., reasoning about forces, collisions, momentum, or causal consequences
of physical interactions.). Thus, this paper benchmarks several the state-of-the-art Video-LLMs on
COPHYBENCH to assess their capabilities towards video physical reasoning.

3 COPHYBENCH

To assess whether video-based large language models (Video–LLMs) can reason about physical phe-
nomena from partial observations, we introduce CoPhyBench—the Conditional reasoning Physical
Video Benchmark. We first present a high-level overview of the benchmark in Section 3.1, outlining
its core goals and design principles. Section 3.2 provides the detailed statistics of COPHYBENCH.
Section 3.3 then formalizes the underlying task of conditional physics reasoning, which challenges
models to predict both qualitative and quantitative properties of future events from incomplete visual
evidence. Section 3.4 defines the evaluation metrics used to assess model performance. Section 3.5
outlines the data curation process.

3.1 OVERVIEW OF COPHYBENCH

Recent progress in physical question answering (PhysQA) has produced benchmarks that test
whether models can describe or explain physical events in videos. However, these datasets typi-
cally expose the model to the entire video and emphasize high-level common-sense reasoning. Yet
they do not evaluate whether a model can predict what will happen before it occurs, compute precise
numerical outcomes, or reason correctly under counterfactual modifications.

COPHYBENCH is designed to fill this gap. It introduces a new challenge setting - Conditional-Video
Physics Reasoning - in which models are shown only the frames up to a designated switch frame.
Then, they must reason about the unseen future based solely on this partial evidence. Unlike prior
PhysQA datasets, CoPhyBench directly targets three complementary aspects of physical inference,
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Question: If tissue was 

placed on the surface, 

what would happen to 

the  block?

A.The block comes to rest at around half 

of the flat track due to friction. [Answer]

B. The block stopped before fully entering the 

flat surface due to friction.

C. The block continued moving even at the 

end of flat track and slide out of frame.

D.The block come to rest at nearly the end of 

track.

C
o

n
d
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e
o

A. The stick rotate, knocking over 

dominoes and duck.

B. A rotating stick hits dominos, duck being 

hit by dominoes and move a bit, causing 

dominos fall in a row.

C. The rotating stick missed first dominoes, 

no dominoes being knocked down.

D. A rotating stick knocks over 

dominoes, but duck blocked their path. 

[Answer]

Event video

Prediction

Question: At what time (in seconds, 

rounded to two decimal places) does 

the pendulum reach the leftmost point 

of its swing in the video? Respond 

with only that number.

Answer: 1.97s

Question: What are the coordinates [x1, y1, x2, 

y2] of the bounding box at the leftmost point of 

the pendulum's swing in the video? 

Respond with only those four integers.

Answer: 

[94, 329,119,352]

Question: What will happen?

Calculate (Position)

Counterfactor

Calculate (Time)

time

time

Figure 2: Examples from COPHYBENCH, illustrating the three core task types: (Top-left) Causal
Prediction: Given only the condition frames, the model must infer what will happen next. In this
case, it must determine the duck’s motion direction, which depends on subtle visual cues such as
initial orientation and scene setup. (Top-right and Bottom-left) Physical Calculation: Models are
asked to estimate physical quantities like the time (in seconds) when a pendulum reaches its left-
most point, or the bounding box coordinates of the pendulum at that moment. These questions
require extracting visual measurements and applying physical equations (e.g., conservation of en-
ergy, angular motion). (Bottom-right) Counterfactual Reasoning: Models must predict what would
happen under a hypothetical change: here, the addition of a tissue layer alters surface friction, and
the model must reason how it would affect the block’s final position. This tests whether the model
encodes generalizable physical principles rather than surface-level patterns. Each task reflects a dis-
tinct dimension of physical reasoning, ranging from intuitive causality to quantitative computation
and causal generalization.

as illustrated in Fig 2: (i) temporal prediction, by hiding future frames and requiring models to
predict what will happen next (how); (ii) quantitative calculation, by requiring precise predictions
of when and where the event occurs (when and where); (iii) counterfactual reasoning, by testing
whether predictions adjust appropriately under hypothetical changes (what if ). The statistics of
COPHYBENCH are presented in Figure 3.1, more detailed information is provided in the apppendix.

Phenomenon coverage. Our COPHYBENCH spans a broad range of physical phenomena grounded
in classical mechanics and beyond—including simple sliding motion in kinematics, object collisions
in linear dynamics, and pendulum motion in rotational systems. This diversity ensures that the
benchmark reflects various real-world physical behaviors. These scenarios are carefully curated
to support the three tasks in COPHYBENCH: prediction, physical calculation, and counterfactual
reasoning, each requiring different levels of perceptual grounding and physics-based inference.

Blind-QA. As illustrated in Figure 2, without the conditional videos, the model can not derive the
answer since it has no cues of the objects, such as motion direction, velocity or the physical inter-
action with other objects, and cannot do calculation precisely or reasoning with altering conditions.

3.2 DETAILED STATISTICS OF COPHYBENCH

The COPHYBENCH dataset comprises videos from three primary sources. As illustrated in Fig-
ure 3, approximately 40.1% (93 videos) are self-collected real-world physics experiments, ensur-
ing controlled conditions and high-quality annotations. Additionally, 14.2% (33 videos) originate
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#Video: 33

(14.2%)

#Video: 34

(14.7%)

#Video: 72

(31.0%)

#Video: 93

(40.1%)

Robotics

Morpheus

Self-collected

Physics-IQ

Figure 3: Data sources in COPHYBENCH.

Predict

Counterfact

Calculate Time

Calculate Position

#QA: 472 

(36.4%) 

#QA: 472 

(36.4%) 

#QA: 205

(15.8%)

#QA: 149

(11.5%)

Figure 4: Reasoning types in COPHYBENCH.

from the Physics-IQ dataset (Motamed et al., 2025), 31.0% (72 videos) are re-annotated clips
from the Morpheus benchmark (Zhang et al., 2025a), and 14.7% (34 videos) are from Open X-
Embodiment (O’Neill et al., 2024). Figure 4 presents the task distribution within the dataset. It
encompasses four types of reasoning tasks: counterfactual reasoning (15.8%, 205 instances), cal-
culating event time (36.4%, 472 instances), calculating event position (36.4%, 472 instances), and
causal prediction (11.5%, 149 instances). This balanced distribution ensures comprehensive evalua-
tion across multiple physical reasoning dimensions.

3.3 CONDITIONAL VIDEO PHYSICS REASONING

Events and the Switch Frame. An event refers to any visually salient state transition driven solely
by the system’s internal dynamics after a designated switch time tswitch, such as a collision, the apex
of a projectile, or the moment an object comes to rest.

To represent this structure formally, we divide each video into two segments: the condition clip C,
containing all frames up to and including the switch frame,

C = { It | t ≤ tswitch} , (1)

and the event clip E, containing all subsequent frames,

E = { It | t > tswitch} . (2)

During inference, only the condition clip C is available to the model; the event clip E is withheld
and serves as the prediction target.

Formalization of Dynamics. To provide a structured account of physical behavior from partial
video observations, we model each scene as a Hamiltonian system (Feynman, 1999), a classical
mechanics framework that expresses motion in terms of energy. In this formulation, the total energy
of a system is represented by the Hamiltonian H(q, p, t), which combines kinetic energy T (p) and
potential energy V (q). Here, q(t) ∈ Rd denotes the generalized coordinates (e.g., positions), and
p(t) ∈ Rd is the corresponding momenta (e.g. for position coordinate x, the corresponding momenta
is p = mẋ), forming the system state

S(t) =
(
q(t), p(t)

)
∈ Rd × Rd. (3)

The dynamics evolve according to the Hamiltonian equations:

q̇ = ∂H
∂p , ṗ = −∂H

∂q , with the Hamiltonian defined as: H(q, p) = T (p) + V (q), where mi is the
mass of the i-th object or coordinate dimension.

This formulation enables structured physical reasoning by decomposing the task into two interre-
lated steps. First, the model must perform symbolic identification: from visual evidence in the
condition clip C, it infers the functional forms of the system’s energy terms, T (p) and V (q). For in-
stance, it may recognize a quadratic potential V (q) = 1

2kq
2, or identify uniform motion by detecting

the absence of external forces.

Second, the model conducts parameter estimation: once the symbolic structure is determined,
it must estimate a set of physical parameters θ = mi, k, γ, . . ., which may include, for example,
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masses (mi), stiffness constants (k), damping coefficients (γ), or other quantities depending on the
system. These parameters define the specific dynamics encoded by the Hamiltonian and must be
inferred from visual observations.

For example, in simple cases, only a few frames are sufficient for parameter estimation due to the
low degrees of freedom in typical physical systems. Each frame provides a snapshot of the system’s
state, and finite differences across successive frames approximate time derivatives. Two frames yield
an estimate of velocity (q̇), while three or more enable the estimation of acceleration (q̈), which is
essential for recovering parameters related to force, mass, or stiffness. The model may require longer
condition clips to infer physical parameters in more complex scenarios reliably.

If the symbolic structure and physical parameters are both correctly identified, the model can recon-
struct the Hamiltonian H and simulate the system forward in time from the switch frame. It can then
predict the system state S(t) for any t > tswitch, and thereby infer key characteristics of the target
event, including its type, timing, and spatial location.

Factual Prediction Queries (Casualty and Calculation). Each video is paired with human-written
queries that target specific physical phenomena to test this capability. For example, in a projectile
scene, the model may be asked: “What is the time and horizontal position of the projectile’s highest
point?” A correct answer must (i) confirm that the apex occurs (Casualty), (ii) estimate the time
of the apex tapex (Calculation), and (iii) provide its spatial location xapex in the image plane (Cal-
culation). Similar queries are constructed for collisions, rebounds, pendulum extrema, and other
dynamic events.

By evaluating these responses, the benchmark assesses whether a model can infer symbolic dynam-
ics, estimate physical parameters, and simulate forward—all from partial visual input alone. Viewed
through this Hamiltonian lens, CoPhyBench challenges models to go beyond recognizing physical
behavior and express and solve the governing equations.

Counterfactual Formalization. Beyond predicting what will happen given the observed initial
conditions, a physically grounded agent must also reason about what would happen if conditions
were altered. To that end, we introduce a counterfactual reasoning component that builds directly on
the model’s inferred Hamiltonian dynamics from the factual setting. This extension tests whether a
model can internally modify its representation of the physical system and simulate how outcomes
would change under hypothetical interventions.

Given the original condition clip C and the symbolic and parametric Hamiltonian H inferred before,
we define a counterfactual condition

C̃ = ALTER(C; ∆θ,∆q,∆p), (4)
where ∆θ denotes perturbations to system parameters (e.g., doubled mass, halved spring constant),
and (∆q,∆p) refers to changes in the initial state (e.g., higher release height, reversed velocity).
Importantly, C̃ is not shown as a video; the modification is conveyed through natural language
descriptions such as: “If the incline angle were reduced by half. . . ” or “Suppose the ball’s mass is
doubled at launch. . . ”

Counterfactual Prediction Queries. The model is then asked to predict what would happen in
the modified system H̃ , obtained by updating H with θ ← θ + ∆θ and applying the shifted initial
state (∆q,∆p). The query is a multiple-choice question, generated initially by GPT and then revised
by expert annotators for physical plausibility and linguistic clarity.

3.4 EVALUATION METRICS

Scoring for causal and counterfactual reasoning. We evaluate performance on causal prediction
and counterfactual reasoning using top-1 accuracy over the evaluation split:

Acc =
1

|D|
∑
i∈D

1
[
âi = a∗i

]
, (5)

where a∗i denotes the ground-truth choice for clip i, and âi is the model’s predicted answer.

Scoring for calculations. We measure the error in event time and 2D position for quantitative
predictions. Let t̂, x̂, ŷ denote the model’s outputs, and let t∗, x∗, y∗ denote ground-truth values.
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The normalized errors are defined as:

errt =
| t̂− t∗|
Tclip

, errxy =

√
(x̂− x∗)2 + (ŷ − y∗)2

Rmax
, (6)

where Tclip is the total clip length, and Rmax is the larger of the frame width or height (in pixels).
If either error exceeds the validity threshold (i.e., a normalized error greater than 1) or if the answer
string is malformed, the sample receives zero credit. Otherwise, we assign the per-sample score:

si = (1− errt); sj = (1− errxy), (7)

where si denotes the Relative Time Score while sj is Relative Position Score.

3.5 DATASET CONSTRUCTION & ANNOTATION

Data sources. The dataset is constructed from four main sources. We re-annotate publicly avail-
able videos from Physics-IQ (Motamed et al., 2025) and Morpheus (Zhang et al., 2025a), which are
two physics-based video generation benchmarks. We also reformulate the well-controlled robotics
videos from Open X-Embodiment (O’Neill et al., 2024). We select sequences that match our tax-
onomy and enrich them with switch-frame annotations and event-level numeric labels. Note for
Physics-IQ (Motamed et al., 2025), they already provide the switch frame. We also capture 93 high-
frame-rate clips (60fps, 1080p) using a modular in-house rig. These recordings cover controlled
setups including ramps, pendulums, and elastic and inelastic impacts in a physics laboratory. More
information and illustrations are provided in the appendix.

Annotation protocol. For each clip, an initial caption is generated using GPT-4o (Achiam et al.,
2023) and then reviewed by two trained annotators with sufficient physics knowledge to correct any
factual or conceptual inaccuracies. These verified captions are then used to instantiate prompt tem-
plates that generate the four answer candidates of Prediction and Counterfactor queries. Annotators
iteratively refine the resulting question-answer pairs until a blind GPT-based QA model fails to an-
swer them correctly. This iterative process ensures that the prompts cannot be solved by relying
solely on pretraining knowledge. L2 annotations are collected using a custom in-house interface
that allows annotators to scrub through the video, mark the event frame, and record the object’s 2D
position (x∗, y∗) via bounding box placement.

4 EXPERIMENTS

This section evaluates the performance of current Video–LLMs on COPHYBENCH and highlights
the uniquenesses of our benchmark compared to prior efforts such as PhysBench (Chow et al., 2025).

4.1 EXPERIMENTAL SETUP

Our evaluation was conducted under four task configurations: (a) Prediction, (b) Time Calculation,
(c) Position Calculation, and (d) Counterfactor. We evaluate open-source Video-LLMs like Chat-
Univi (Jin et al., 2024), PLLaVA (Patraucean et al., 2023), InternVL2.5 (Chen et al., 2024) and
Qwen2.5-VL (Bai et al., 2025). We also test the performance of closed-source Video-LLMs, such
as Gemini (Team et al., 2023) and GPT4 (Achiam et al., 2023). All models are fed 8 frames, which
take the image resolution as their default setting. For the other settings, we follow PhysBench (Chow
et al., 2025). We provide more detailed information in the supplementary materials.

4.2 BLINDQA COMPARISONS OF PHYSBENCH vs COPHYBENCH

We evaluate PhysBench (Chow et al., 2025) with a BlindQA protocol on the validation set—that
is, the models receive only the textual portion of each example to answer the question directly. As
Table 1 shows, both Gemini-1.5-Pro (Team et al., 2023) and GPT-4V (Achiam et al., 2023) achieve
high accuracy with only textual inputs. We present some examples of QA pairs in which the answer
can be derived easily from only the text parts.

• "Question": "<video>What happens to the liquid column in
the flask when hot water is poured? A. The liquid column

7
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Table 1: BlindQA and Non-BlindQA results on PhysBench-val and COPHYBENCH.
PhysBench

Benchmark Model Property Relationships Scene Dynamics Avg.

PhysBench

Random 25.00 25.00 25.00 25.00
GPT-4V (Blind) 37.04 62.50 54.84 47.17 49.63
GPT-4V 66.67 70.83 38.71 66.04 60.74
Gemini-1.5-Pro (Blind) 33.33 70.83 25.81 64.15 50.37
Gemini-1.5-Pro 70.37 83.33 41.94 66.04 64.44

CoPhyBench
Benchmark Model Predict Counterfact Avg.

CoPhyBench

Random 25.00 25.00 25.00
GPT-4V (Blind) 28.38 25.37 26.87
GPT-4V 45.64 31.71 38.67
Gemini-1.5-Pro (Blind) 21.62 28.29 24.95
Gemini-1.5-Pro 47.65 31.22 39.43

falls. B. The liquid column rises. C. The liquid column
remains unchanged. D. The flask breaks." "Answer": "B. The
liquid column rises."

• "Question": "<video>What change occurs to the size of the
ice cube in the video? A. Decreasing. B. Increasing.
C. No change. D. Increasing first and then decreasing.",
"Answer": "A. Decreasing."

As shown in the listed examples, even without watching the video, we find LLMs are easy to know
that the liquid column rises when pouring hot water into the flask. Also, it is easy to know that the
size of ice cube will decrease in normal condition. These findings indicate that the results of Phys-
Bench (Chow et al., 2025) are highly susceptible to language bias. In contrast, our COPHYBENCH
shows negligible language bias, and the BlindQA results further demonstrate its reliability.

4.3 VISUAL PREDICTION vs COUNTERFACTUALS

Prediction measures models’ capability to reason temporal evolutions while Counterfact requires
the capability to reason based on both visual conditions and world physics knowledge. As illus-
trated in Table 2, all evaluated Video-LLMs perform better on visual prediction than counterfactual
reasoning. Once the task flips a scene condition, all the same models collapse. For example, GPT-
4V (Achiam et al., 2023) loses 30.5%, showing that its strong visual prior does not convert into
counterfactual understanding. While even the strongest reasoning model GPT4-o1 (Achiam et al.,
2023) still only achieves 37.56%, under-performing its performance on the conditional prediction
tasks. Such comparisons indicate that current Video-LLMs are still far from using physical reason-
ing principles under visual conditions.

4.4 TIME CALCULATIONS vs POSITION CALCULATIONS

We further compare model performance on two quantitative sub-tasks: predicting the time at which a
physical event occurs (Relative Time Score) versus estimating its spatial position (Relative Position
Score). Although both require numerical reasoning, the error patterns reveal a clear discrepancy.
Most models perform slightly better on temporal estimation, suggesting that timing can often be
inferred from visual cues such as frame counts or motion rhythms. In contrast, spatial prediction
demands finer-grained geometric reasoning, e.g., understanding object trajectories, depth, and inter-
actions, which remains more challenging.

As illustrated in Table 2, GPT-4V (Achiam et al., 2023) and Gemini-1.5-Flash (Team et al., 2023)
demonstrate the strongest performance on the Relative Time Calculation task, with GPT-4V leading
at 73.20%. Their abilities to leverage video frame dynamics allow them to infer event timing more
accurately than other architectures. GPT-4o and GPT-o1 also perform well, scoring 67.92% and
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Table 2: Evaluation results for Video-LLMs. The performance of the evaluated Video-LLMs is
illustrated in the table. More results are included in the supplementary materials. Average is the
mean across the four metrics: Prediction, Time, Distance, and Counterfactual.

Model Prediction Relative Time Score Relative Position Score Counterfact Average

Random Choice 25.00 - - 25.00 -

InternVL2.5-4B (Chen et al., 2024) 51.68 23.87 25.88 37.07 34.63
Qwen2.5-VL-3B (Bai et al., 2025) 43.62 53.75 67.07 28.78 48.31
Qwen2.5-VL-7B (Bai et al., 2025) 46.98 56.11 71.61 29.76 51.12
Qwen2.5-VL-32B (Bai et al., 2025) 48.32 56.73 75.32 30.24 52.65
Chat-UniVi-7B (Jin et al., 2024) 24.83 47.43 0.00 17.56 22.45
Chat-UniVi-13B (Jin et al., 2024) 18.12 67.34 0.00 14.63 25.02
PLLaVA-7B (Xu et al., 2024) 34.23 65.35 0.95 26.83 31.84
PLLaVA-13B (Xu et al., 2024) 41.61 67.91 0.95 29.27 34.94

GPT-4V (Achiam et al., 2023) 45.64 73.20 49.93 31.71 50.12
GPT-4o (Achiam et al., 2023) 49.66 67.92 59.60 30.73 51.98
GPT-o1 (Achiam et al., 2023) 57.72 63.13 55.26 37.56 53.42
Gemini-1.5-Flash (Team et al., 2023) 44.97 71.53 62.41 33.66 53.14
Gemini-1.5-Pro (Team et al., 2023) 47.65 63.06 57.29 31.22 49.81
Gemini-2.5-Flash (Team et al., 2023) 44.97 71.74 63.86 33.82 53.60
Gemini-2.5-Pro (Team et al., 2023) 51.01 62.41 56.44 30.88 50.19

63.13% respectively. Among the open-source models, Qwen2.5-VL-7B achieve midrange results of
56.73%, lightweight architectures like InternVL2.5-4B lag noticeably behind at 23.87%.

In contrast, relative position calculation reveals a broader performance spread. Qwen2.5-VL-32B
excels with a 75.32 score, indicating strong geometric reasoning and depth inference capabilities.
The Gemini series also demonstrates strong spatial perception, with scores of 63.86% (Gemini-
2.5-Flash) and 62.41% (Gemini-1.5-Flash). However, despite being unified image–video models
that excel at position reasoning, specialized video models like Chat-UniVi-7B and Chat-UniVi-
13B obtain score 0, while PLaVA-7B (0.95%) and InternVL2.5-4B (25.88%) show only minimal
capability, underscoring the challenge of precise spatial reasoning.

Overall, while most multimodal models effectively capture temporal dynamics, only a subset, pri-
marily Qwen2.5-VLs and the Gemini Flashs, demonstrate comparable prowess in spatial tasks.
Bridging this gap will require future Video-LLMs to incorporate more sophisticated spatiotemporal
reasoning mechanisms.

4.5 MODEL SIZE ANALYSIS

As illustrated in Table 2, model scale follows a consistent “scaling law” trend: as parameter counts
increase, performance generally improves across all tasks. For example, Chat-UniVi’s performance
rises from 22.45% at 7B to 25.02% at 13B, while PLaVA’s score increases from 31.84% to 34.93%.
For small-scale models (Qwen2.5-VL-3B), scaling up brings even larger performance gains, for
example, Qwen2.5-VL’s relative time score increases by 5.80% from 3B to 7B, but it increases only
marginally by 2.90% from 7B to 32B, indicating diminishing returns in reasoning beyond a certain
model parameter scale. These trends suggest that scaling up model size encounters a bottleneck to
improve conditional physics reasoning. Effective physics reasoning in Video-LLMs likely requires
better grounding mechanisms and task-specific supervision rather than just more parameters.

5 CONCLUSION

We introduce COPHYBENCH, a Conditional ReasOning Physics Benchmark designed to evaluate
the ability of Video-LLMs to reason about real-world physical events. By incorporating prediction,
physical calculation, and counterfactual reasoning tasks grounded in real video observations, CO-
PHYBENCH moves beyond semantic alignment to test deeper physics-based understanding. Our
dataset contains 1, 300 carefully verified video-question-answer pairs covering diverse phenomena
and reasoning difficulties. Benchmarking results reveal that while existing models perform moder-
ately well on visual prediction, they struggle with precise computation and counterfactual reason-
ing—limitations that prior benchmarks fail to uncover due to language biases and lack of compu-
tational grounding. Thus, we hope COPHYBENCH will serve as a standard benchmark to motivate
future large multimodal models to advance towards physics reaonsing in real world.
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APPENDIX

In the appendix, we first declare LLM usage in paper writing, then present more detailed informa-
tion and visualization of representative examples the proposed COPHYBENCH in Section A, and
implementation details in Section B, the construction details of COPHYBENCH in Section C, and
discuss the potential limitations and broader impact in Section D.

THE USE OF LARGE LANGUAGE MODELS

In this paper, Large Language Models (LLMs) were used exclusively for polishing the manuscript,
including improving writing style, enhancing readability, and correcting grammatical errors. LLMs
were not employed for research purposes such as literature retrieval, idea generation, or discov-
ery. All methodological proposals, experimental designs, analyses, and conclusions were developed
without the involvement of LLMs.

A BENCHMARK EXAMPLES

A.1 OVERVIEW OF BENCHMARKS

Figure 5: Overview from our COPHYBENCH benchmark. In each column, the four rows (top to
bottom) show Physics-IQ (Motamed et al., 2025), Morpheus (Zhang et al., 2025a), Self-Collected
Videos, and Robotics (O’Neill et al., 2024).
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In addition to reformulating videos from Physics-IQ (Motamed et al., 2025), Morpheus (Zhang et al.,
2025a) and Open X-Embodiment (O’Neill et al., 2024), we collected a portion of our dataset in a
real-world setting under the supervision of a certified school physics teacher.

These videos were recorded in a middle school physics laboratory using standard experimental ap-
paratus. The setups capture a variety of classical mechanics phenomena such as falling motion,
inclined plane dynamics, frictional effects, and energy transfer through sound waves. Each video
consists of two segments: the condition clip showing the initial setup, and the event clip capturing
the outcome. By systematically varying initial conditions, such as surface materials, object mass,
and applied forces. We constructed diverse and challenging physical scenarios suitable for evaluat-
ing fine-grained reasoning abilities in Video-LLMs. Figure 6 presents visualizations of the collected
examples. The complete dataset will be publicly released.

A.2 VIDEO INFORMATION FOR COPHYBENCH

Table 3: Frame rate and resolution by source
Source FPS Resolution

Physics-IQ 30 912× 512
Morpheus 30 640× 512
Self-Collected 30 912× 512
Robotics 30 640× 512

Table 3 summarizes the video sources in COPHYBENCH, reporting the frame rate (FPS) and spatial
resolution for each dataset. For Self-Collected videos, we resampled the videos to 30 FPS. When
evaluating Video-LLMs, we use the input videos in their default format.

A.3 DESCRIPTION OF SELF-COLLECTED PHYSICAL LABORATORY DATA

The self-collected data contains eight sceneros: Ball bouncing, Ball fall to tube,
Mass on Spring, Ramp Ball, Ramp Block, Ramp Block with friction,
Rolling Wheel, Single Pendulum and Sound wave energy transfer.

The detailed description of the scnenroy in Figure 6 are as followed:

• Ball bouncing. An elastic small ball is thrown upward. For different conditions, the initial veloc-
ity of the throw is varied, making the highest point the ball reaches the key event. Additionally,
despite sharing the same acceleration (i.e., gravity), different initial velocities result in varying
times for the ball to contact the desktop. This setup demonstrates projectile motion principles,
where the maximum height depends on initial velocity, and the total time of flight varies accord-
ingly, commonly used in physics experiments to study energy conservation and kinematics.

• Ball fall to tube. A metal spring is activated, causing it to flip away a wooden board and trigger
the red ball to fall. By varying the condition—specifically, the ball’s position on the wooden
board—different outcomes are produced, such as the ball landing inside or outside the vertical
tube.

• Mass on Spring. A mass stretches the spring under the force of gravity. When the mass is re-
leased from different initial heights, it possesses different amounts of kinetic and potential energy.
That is, under varying initial conditions (mass positions), the mass reaches different maximum
heights at different times. This setup demonstrates how changing the starting position influences
both the energy and the timing of the system’s motion.

• Ramp Ball. A ball is released from different positions on the inclined ramp and undergoes pro-
jectile motion. As the initial release height of conditions changes, the point where the ball lands
after its projectile motion also changes.

• Ramp Block. A sliding block is placed at different heights on an inclined ramp to vary the
speed conditions. By changing the starting position, the sliding block achieves different speeds
and kinetic energies, allowing it to undergo uniform deceleration on the flat plane. The different
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releasing conditions result in different stopping points. Namely, the block may stop in the middle
of the board, at the end, or even slide off completely.

• Ramp Block with friction. Similar to Ramp Block, a sliding block is placed at different
heights on an inclined ramp to vary the speed conditions. The flat plane is set up with differ-
ent friction coefficients, e.g., towels, fabrics, or papers of varying roughness levels. When the
block is released from the same height, it will have the same speed upon entering the flat plane
motion. With different friction resistance conditions, the block will stop at different positions.

• Rolling Wheel. Initially, the wheel is at rest at the lowest point, with a rope wound around its
rim. Under different initial conditions, the rope is wound to different lengths. After the wheel is
released, the differing rope lengths cause the wheel to take different times to return to the lowest
point.

• Single Pendulum. The pendulum is displaced to various initial angles and released to swing
strictly within a vertical plane. The release is from rest, so gravitational potential energy is con-
verted into kinetic energy during the motion. Because the launch angle sets the initial height,
different initial angles produce different times for the bob to return to the lowest point.

• Sound wave energy transfer. A small ball (ping-pong ball) is suspended by a string and initially
at rest. A tuning fork is struck with varying force, then translated at constant speed to make gentle
contact with the ball. The fork’s vibrations transfer energy to the ball and push it away. Stronger
strikes impart larger vibration amplitudes, producing greater contact impulse and causing the ball
to reach a higher maximum height.

B DETAILED MODEL STAMPS OF GPTS AND GEMINIS

This section lists the model names and API stamps used in the experiments, adhering to official
naming conventions and providing documentation links for reproducibility.

Model Name API Model Stamp API Reference Link

GPT-4V gpt-4-turbo GPT-4-Turbo
GPT-4o gpt-4o GPT-4o
GPT-o1 o1 GPT-o1

Gemini 1.5 Flash gemini-1.5-flash Gemini 1.5 Flash Docs
Gemini 1.5 Pro gemini-1.5-pro Gemini 1.5 Pro Docs
Gemini 2.5 flash gemini-2.5-flash Gemini 2.5 Flash Docs
Gemini 2.5 Pro gemini-2.5-pro Gemini 2.5 Pro Docs

Table 4: API model stamps and official reference links for the GPT family and the Gemini family
(1.5 Flash/Pro, 2.5 Flash/Pro).

C CONSTRUCTION DETAILS OF COPHYBENCH

We present the construction details and processing pipeline for COPHYBENCH.

For the question construction in the Prediction task, we select questions from 16 general prediction
templates listed in Table 5. For answer and distractor generation, we use GPT-4o with the instruc-
tions in Figure 7.

For Calculation task, we use GPT-4o with the instruction prompt below to generate a question
prompt for evaluated Video-LLMs.
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Table 5: Template for Predict questions in COPHYBENCH

Prediction Question Templates

• Based on the current visual evidence, what is the most likely next event?
• Given the observable physical setup, what will happen next?
• What is the most plausible outcome that follows this scene?
• What will most likely occur in the next moment, based on what is shown?
• Predict the next physical event using visible cues.
• According to the observed interactions, what happens next?
• From the visual setup, infer the immediate consequence.
• Based on the objects’ motion and position, what is about to happen?
• Given the current frame sequence, what is the expected outcome?
• What physical change is most likely to occur next?
• What is the most probable next step in this sequence of events?
• Use visual evidence to anticipate what will happen next.
• Considering the current physical forces in action, what will happen?
• What event is likely to follow based on this setup?
• From the observed behavior, what is the next expected motion or reaction?
• What is the logical continuation of this physical interaction?

Time Calculation: Given the label {label}, write a single-sentence question that asks a viewer
to watch the video, calculate when the {label} event occurs in seconds (rounded to two decimal
places), and require to respond with only that number.

Position Calculation: Given the label {label}, write a single-sentence question that asks a viewer
to watch the video, determine the bounding box [x1, y1, x2, y2] where the {label} event occurs, and
require to respond with only those four integers.

For Counterfact task, the instruction prompts to generate question-answers are shown in Figure ??.

D LIMITATIONS AND BROADER IMPACT

Limitations. While COPHYBENCH provides a rigorous benchmark for evaluating conditional
physics-based reasoning in Video-LLMs, it focuses on short and controlled video segments to en-
able calulation of “when” and “where”. This may not fully reflect the diversity and complexity of
real-world environments.
Boarder Impact. From a broader perspective, CoPhyBench promotes a shift from superficial as-
sociation to deeper physical reasoning, with potential applications in robotics, simulation, scientific
discovery, and education. However, the ability to predict and intervene in physical scenarios also
raises safety concerns—especially if such models are deployed in decision-critical domains without
reliable uncertainty estimation. We encourage future research to combine physical reasoning with
grounded real-world validation and interpretability mechanisms.
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Event

Condition VideoBall fall to tube

Condition Video

Event

Ramp friction

Ramp friction Condition Video

Event

Soundwave 
energy transfer

Condition Video

Event

Figure 6: Examples from our COPHYBENCH benchmark. Each block shows a real-world physical
event segmented into a condition video (top row) and its corresponding outcome (bottom row). The
leftmost labels describe the physical scenario, including “Ball fall to tube”, “Ramp friction” (with
two different surface conditions), and “Soundwave energy transfer”. These diverse cases reflect the
benchmark’s coverage of physical scenarios.
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Take "[EVENT_LABEL] as reference. Watch the objects in the video frames carefully and analyze the physical "

"phenomena depicted in the scene. 

"You are required to generate one high-quality and challenging multiple-choice questions. "

"The question must include four answer options (A–D), with only one being correct. All choices must be "

"textually plausible, physically consistent, and mutually confusing. "

"The correct answer must be clearly supported by either visual observation or physically grounded reasoning, "

"depending on the task level. "

"Do not include any instruction-related phrasing in the question text itself. "

"\n\nPrediction under Partial Observation:\n"

"You have access to the full video, but the model will only be shown the first part of the video (i.e., the "

"initial frames leading up to the event). "

"Based on the final state and results, design a question that requires the model to predict what will happen "

"next using observable physical cues. "

"The question must demand causal reasoning about the outcome, based on the visible setup. "

"All answer choices should be physically plausible continuations based on observable objects' motion, interaction, or 

state changes, "

"but only one should match the actual outcome in the entire video. "

"Avoid reflecting on information not present in the first segment. "

"\n\nAnswer Choice Construction Requirements:\n"

"- **Choice A must be exactly the caption/description of the first video frame.**\n"

"- All four choices must be textually plausible, grammatically consistent, and mutually confusing.\n"

"- The distractors (Choices B, D) must be plausible physical behaviors or state changes of objects closely related to the 

effector(s) present in the video frames, ”

" acting as confusers.\n"

"- Do not allow answers to be guessed via commonsense, statistical priors, or language patterns.\n"

"- Use outcome-based descriptions involving motion, direction, force response, timing, or position change—"

"not static traits like size or color.\n"

"- Avoid using object labels or simple names as cues for correctness.\n"

"\nFinal Review Instructions:\n”

"After generating the questions and answers, carefully revise them to ensure:\n"

"1) the correct answer cannot be identified without seeing the video or applying physics-based reasoning,\n"

"2) all distractors are textually convincing and physically valid but incorrect,\n"

"3) no option can be ruled out through language shortcuts alone.\n"

"\nOutput Format (strict):\n”

"Question: <insert prediction question based only on early frames>\n"

"A) <choice A – caption of the first frame>\n"

"B) <choice B –distractor>\n"

"C) <choice C – correct answer based on the actual final outcome>\n"

"D) <choice D –distractor>"

Figure 7: Prompt for GPT-4o to generate prediction questions, correct answers, and distractors.
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-------- Video Input --------

You are provided with the FULL video clip, limited to eight representative frames. Carefully observe visual details, 

setups, and physical relationships in the scene.

-------- Question-Writing Task --------

Your job: WRITE ONE challenging counterfactual multiple-choice question (MCQ) that tests a model’s ability to 

predict how the outcome would change if exactly ONE clearly visible visual condition or physical attribute in the 

video were modified.

In the question stem, briefly state the altered visual condition or attribute based on observable features (e.g., “Suppose 

the surface is slightly more sloped,” “Suppose the block is marginally closer to the edge,” or “Suppose the left 

object’s position is a bit higher”).

Provide 4 answer options (A–D) with only one correct answer (C). All options must be physically plausible, mutually 

confusing, and derive from the altered setup.

The correct answer must rely purely on counterfactual physical reasoning grounded in visual evidence—avoid hints 

that allow the answer to be deduced simply by language patterns.

-------- Writing Rules --------

The stem must precisely name ONE change (visual condition or physical attribute), avoiding specific numerical 

values; use qualitative expressions only (e.g., “slightly,” “marginally,” “a bit higher,” or “closer”).

Describe outcomes using motion, direction, force response, timing, or position change—do not rely on color, size, or 

labels as cues.

Keep language concise; do not include meta-instructions or extraneous commentary.

-------- Final Review Checklist --------

✓ The correct answer requires both video observation and physical reasoning.

✓ All distractors are reasonable under some physical explanation but incorrect for the altered scenario.

✓ No option can be eliminated through language shortcuts alone.

-------- Strict Output Format --------

Question: <counterfactual question stem describing the single altered visual condition>

A) <plausible but incorrect>

B) <plausible but incorrect>

C) <correct answer>

D) <plausible but incorrect>

Figure 8: Prompt for GPT-4o to generate counterfactual questions, correct answers, and distractors.

19


	Introduction
	Related Works
	Physics-related Generation Benchmarks
	Physics-related Understanding Benchmarks
	Video-LLMs

	CoPhyBench
	Overview of CoPhyBench
	Detailed Statistics of CoPhyBench
	Conditional Video Physics Reasoning
	Evaluation Metrics
	Dataset Construction & Annotation

	Experiments
	Experimental Setup
	BlindQA Comparisons of PhysBench vs CoPhyBench
	Visual Prediction vs Counterfactuals
	Time Calculations vs Position Calculations
	Model Size Analysis

	Conclusion
	Benchmark Examples
	Overview of Benchmarks
	Video Information for CoPhyBench
	Description of Self-Collected Physical Laboratory Data

	Detailed Model Stamps of GPTs and Geminis
	Construction details of CoPhyBench
	Limitations and Broader Impact

