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Abstract

A crucial challenge in reinforcement learning is to reduce the number of interactions
with the environment that an agent requires to master a given task. Transfer learn-
ing proposes to address this issue by re-using knowledge from previously learned tasks.
However, determining which source task qualifies as optimal for knowledge extraction,
as well as the choice regarding which algorithm components to transfer, represent severe
obstacles to its application in reinforcement learning. The goal of this paper is to allevi-
ate these issues with modular multi-source transfer learning techniques. Our proposed
methodologies automatically learn how to extract useful information from source tasks,
regardless of the difference in state-action space and reward function. We support our
claims with extensive and challenging cross-domain experiments for visual control.

1 Introduction

Reinforcement learning (RL) agents typically interact with a single unknown environment in order to
master a given task. Generally, the number of interactions required to do so is enormous, limiting the
applicability of RL to the real world. Recent works on model-based RL (MBRL) address this issue of sam-
ple inefficiency by learning a world model, which allows an agent to simulate interactions with complex
environments (Ha & Schmidhuber, 2018; Hafner et al., 2019; 2020). However, learning an accurate model
of the environment from scratch still requires a substantial amount of interactions. A common approach
for enhancing sample efficiency in the supervised learning domain is transfer learning (Yosinski et al.,
2014; Sharif Razavian et al., 2014; Zhuang et al., 2020). By re-using the parameters of a neural network
that were fit to some previous task (referred to as source task) for learning some other task (referred to as
target task), one can reduce the number of samples required substantially compared to fitting randomly
initialized parameters. However, the performance of transfer learning highly depends on the choice of the
source task, which is often based on the intuition of the designer (Taylor & Stone, 2009b). As RL envi-
ronments can differ in several fundamental aspects, the application of transfer learning in this domain is
especially challenging and has received little attention. In this paper, we address this issue and propose to
alleviate it with multi-source transfer learning techniques. Rather than re-using information from a sin-
gle source task, multi-source transfer learning proposes to extract knowledge from multiple source tasks.
Our proposed methodologies autonomously learn to extract useful information from a collection of source
tasks, regardless of the differences between environments, alleviating the necessity of selecting an optimal
source task. We apply our proposed techniques to the state-of-the-art world model-based algorithm for
visual continuous control tasks, Dreamer (Hafner et al., 2019). We focus on world model-based algorithms,
as learning reward, dynamics, policy, and value models in a compact latent space of a world model has
shown promising results for the application of transfer learning, yet little research has been conducted in
this direction (Zhu et al., 2020). A major obstacle of applying transfer learning to these types of algorithms
is that they are composed of several different components. Each component may or may not benefit from
different types of transfer learning, dependent on their objective function and the differences between
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source and target tasks. We provide valuable insights and empirical evidence on the transferability of such
components, by applying multi-source transfer learning to Dreamer in a modular fashion, in addition to
introducing a novel type of transfer learning that allows the fractions of parameters to be transferred. We
extensively evaluate the proposed methods in challenging cross-domain transfer learning experiments.
We consider two multi-source transfer learning settings: a single agent that masters multiple tasks, and
multiple individual agents that each master a single task. We provide techniques that allow cross-domain
transfer learning for both of these settings, which are also applicable in single-source transfer learning
settings. However, we encourage the usage of multi-source transfer learning, in order to avoid manual
selection of an optimal source task. The contributions are summarized as follows:

• Fractional transfer learning: We introduce a novel type of transfer learning that allows fractions
of parameters to be transferred, as an alternative to discarding information by random initializa-
tion, resulting in substantial performance improvements.

• Modular multi-task transfer learning: We show that training a single world model-based agent
on multiple tasks simultaneously and transferring its components in a modular fashion with dif-
ferent types of transfer learning, results in enhanced sample efficiency and performance compared
to learning from scratch.

• Meta-model transfer learning: We propose a multi-source transfer learning approach that al-
lows models from several individual agents trained in different environments to be combined and
transferred in a shared feature space. These components produce additional input signals for the
corresponding model of the target agent, allowing us to construct a meta-model that learns to
weigh the usefulness of these signals for learning the target task, resulting in significant perfor-
mance gains when applied to merely one model.

2 Preliminaries

We formalize an RL problem as a Markov Decision Process (MDP) (Bellman, 1957), which is a tuple
( ,, 𝑃 , 𝑅), where  denotes the state space,  the action space, 𝑃 the transition function, and 𝑅 the
reward function. For taking a given action 𝑎 ∈  in state 𝑠 ∈  , 𝑃 (𝑠′|𝑠, 𝑎) denotes the probability of tran-
sitioning into state 𝑠′ ∈  , and 𝑅(𝑟 |𝑠, 𝑎) yields an immediate reward 𝑟 . The state and action spaces define
the domain of the MDP. The objective of RL is to find an optimal policy 𝜋 ∗ ∶  →  that maximizes
the expected cumulative reward. The expected cumulative reward is defined as 𝐺𝑡 = 𝔼 [∑∞

𝑡=0 𝛾 𝑡𝑅𝑡], where
𝛾 ∈ [0, 1) represents the discount factor, and 𝑡 the time-step.
The general concept of transfer learning aims to enhance the learning of some target task by re-using
information obtained from learning some source task. Multi-source transfer learning aims to enhance the
learning of a target task by re-using information from a set of source tasks. In RL, a task is formalized as an
MDP1 𝑀 with some optimal policy 𝜋 ∗. As such, in multi-source transfer learning for RL we have a collection
of 𝑁 source MDPs  = {(𝑖 ,𝑖 , 𝑃𝑖 , 𝑅𝑖)}𝑁𝑖=1, each with some optimal policy 𝜋 ∗

𝑖 . Let 𝑀 = ( ,, 𝑃 , 𝑅) denote
some target MDP with optimal policy 𝜋 ∗, where 𝑀 is different from all 𝑀𝑖 ∈  with regards to  ,, 𝑃 ,or
𝑅 Multi-source transfer learning for reinforcement learning aims to enhance the learning of 𝜋 ∗ by reusing
information obtained from learning 𝜋 ∗

1, .., 𝜋 ∗
𝑁 . When 𝑁 = 1 we have single-source transfer learning.

In this paper, we use Dreamer as a reference for deep MBRL algorithms (Hafner et al., 2019). MBRL al-
gorithms learn to model 𝑃 and 𝑅 internally. Dreamer learns to model these functions in a compact latent
space learned from visual observations, referred to as a world model Ha & Schmidhuber (2018). As such,
interactions with environments with high-dimensional observations can be imagined in a computationally
efficient manner, which is used to facilitate sample-efficient policy learning. The policy is used to collect

1We use the terms MDP, task, and environment interchangeably in this paper.
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data from the environment, which is used for learning the world model. The world model consists of four
components: a representation model 𝑝𝜃 (𝑠𝑡 |𝑠𝑡−1, 𝑎𝑡−1, 𝑜𝑡 ), observation model 𝑞𝜃 (𝑜𝑡 |𝑠𝑡 ), reward model 𝑞𝜃 (𝑟𝑡 |𝑠𝑡 ),
and transition model 𝑞𝜃 (𝑠𝑡 |𝑠𝑡−1, 𝑎𝑡−1), where 𝑝 denotes distributions that generate real environment samples,
𝑞 denotes distributions approximating those distributions in latent space, and 𝜃 denotes the jointly opti-
mized parameters of the models. At a given timestep 𝑡 , the representation model maps a visual observation
𝑜𝑡 together with the previous latent state 𝑠𝑡−1 and previous action 𝑎𝑡−1 to latent state 𝑠𝑡 . The transition model
learns to predict 𝑠𝑡 from 𝑠𝑡−1 and 𝑎𝑡−1. The reward model learns to predict the reward 𝑟𝑡 corresponding to 𝑠𝑡 .
The observation model reconstructs 𝑠𝑡 to match 𝑜𝑡 , providing the learning signal for learning the feature
space. This world model is called the recurrent state space model (RSSM), and we refer the reader to Hafner
et al. (2018) for further details. In order to imagine a trajectory {(𝑠𝜏 , 𝑎𝜏 )}𝑡+𝐻𝜏=𝑡 of length 𝐻 , where 𝜏 denotes
the imagined time index, the representation model maps an initial observation 𝑜𝑡 to latent state 𝑠𝜏 , which
is combined with action 𝑎𝜏 yielded by the policy, to predict 𝑠𝜏+1 using the transition model. The reward
model then predicts the corresponding reward 𝑟𝜏+1, which is used for policy learning.
In order to learn a policy, Dreamer makes use of an actor-critic approach, where the action model 𝑞𝜙(𝑎𝜏 |𝑠𝜏 )
implements the policy, and the value model 𝑣𝜓 (𝑠𝑡 ) ≈ 𝔼𝑞(⋅|𝑠𝜏 )(∑

𝑡+𝐻
𝜏=𝑡 𝛾 𝜏−𝑡𝑟𝜏 ) estimates the expected reward

that the action model achieves from a given state 𝑠𝜏 . Here 𝜙 and 𝜓 are neural network parameters for
the action and value model respectively, and 𝛾 is the discount factor. The reward, value, and actor models
are implemented as Gaussian distributions parameterized by feed-forward neural networks. The transition
model is a Gaussian distribution parameterized by a Gated Recurrent United (GRU; Bahdanau et al. (2014))
followed by feed-forward layers. The representation model is a variational encoder (Kingma & Welling,
2013; Rezende et al., 2014) combined with the GRU, followed by feed-forward layers. The observation model
is a transposed convolutional neural network (CNN; LeCun et al. (2015)).

3 Related Work

In supervised learning, parameters of a neural network are transferred by either freezing or retraining the
parameters of the feature extraction layers, and by randomly initializing the parameters of the output layer
to allow adaptation to the new task (Yosinski et al., 2014; Sabatelli et al., 2018; Cao et al., 2021). Similarly, we
can transfer policy, value, and reward models, depending on the differences of the state-action spaces, and
reward functions between environments (Carroll & Peterson, 2002; Schaal et al., 2004; Fernández & Veloso,
2006; Rusu et al., 2016; Zhang et al., 2018). We can also transfer autoencoders, trained to map observations
to latent states (Chen et al., 2021). Experience samples collected during the source task training process
can also be transferred to enhance the learning of the target task (Lazaric et al., 2008; Tirinzoni et al.,
2018). The transferability of deep model-free RL algorithms doesn’t appear to be promising, as was recently
shown by Sabatelli & Geurts (2021). However, they are suitable for distillation techniques, where a new
neural network learns to predict the mappings of inputs to outputs of a pre-trained network (Hinton et al.,
2015; Parisotto et al., 2015; Rusu et al., 2015). By sharing a distilled policy across multiple agents learning
individual tasks, Teh et al. (2017) obtain robust sample efficiency gains. In order to address the major
obstacle of optimal task selection, Ammar et al. (2014) introduced an autonomous similarity measure for
MDPs based on restricted Boltzmann machines, though it assumes the MDPs are within the same domain.
Garcı́a-Ramı́rez et al. (2021) propose to select the best source models among multiple model-free models
using a regressor.
This paper focuses on transfer learning for deep MBRL, where we also need to consider the dynamics
model. Recent works showed that the dynamics model can be fully transferred between different domains
if the environments are sufficiently similar (Eysenbach et al., 2020; Rafailov et al., 2021). Landolfi et al.
(2019) perform a multi-task experiment, where the dynamics model of an MBRL agent is transferred to
several novel tasks sequentially, and show that this results in significant gains of sample efficiency. PlaNet
(Hafner et al., 2018) was used in a multi-task experiment, where the same agent was trained on tasks of
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six different domains simultaneously using a single world model (Ha & Schmidhuber, 2018). Similarly, In
Plan2Explore (Sekar et al., 2020) the authors show that a single global world model can be trained task-
agnostically, after which a Dreamer (Hafner et al., 2019) agent can use the model to zero-shot or few-shot
learn a new task within the same domain. Dreamer is not to be confused with DreamerV2 (Hafner et al.,
2020), which is essentially the same algorithm adapted for discrete domains. Unlike previous works, we
investigate multi-source transfer learning with a focus on world model-based algorithms, by introducing
multiple techniques that enhance sample efficiency without the need of selecting an optimal source task.

4 Methods

Figure 1: We apply transfer learning to
Dreamer in a modular fashion. Arrows
represent the parameters of a model. The
representation, observation and transition
model are fully transferred ( ). The re-
ward and value models are fractionally
transferred ( ). The action model and
the action-input parameters of the transi-
tion model are randomly initialized ( ).

Here we present the main contributions of this work. First, we
propose multi-task learning as a multi-source transfer learn-
ing origin, combined with modular and fractional transfer
learning. We follow this with an alternative setting, where we
propose to transfer components of multiple individual agents
utilizing a shared feature space and meta-model instead.

4.1 Multi-Task Transfer Learning

In this section, we describe how we train a single agent on
multiple MDPs simultaneously, and introduce a novel type
of transfer learning that allows fractions of parameters to be
transferred. We then discuss what type of transfer learning is
most suitable for each component of the agent.

4.1.1 Simultaneous Multi-Task Learning

We propose to train single agents facing multiple unknown
environments simultaneously, each with different state-
action spaces and reward functions, in order to use them as
multi-source transfer learning origins. We train the multi-
task RL agents in a similar fashion to the experiments done
by Hafner et al. (2018), where the action dimension of each
task is padded with unused elements to the size of the task
with the largest action dimension. We are required to have uniform action dimensions across all source
environments, as we use a single policy model. The agent collects one episode of each task in collection
phases in order to acquire a balanced amount of experiences in the replay buffer.

4.1.2 Fractional Transfer Learning

Typically, one can either fully transfer the parameters of a neural network layer, or randomly initialize the
parameters. Feature extraction layers of neural networks are generally fully transferred (Sermanet et al.,
2013). The output layer of a neural network is often randomly initialized, in order to prevent overfitting.
However, this means that we discard all information contained in the parameters of the output layer.
We propose a simple alternative: fractional transfer learning (FTL), which allows us to transfer fractions
of parameters. Rather than discarding all information, this technique allows us to transfer a portion of
previously obtained information, without risking overfitting. Let 𝜃𝑇 denote target parameters, 𝜃𝜖 randomly
initialized weights, 𝛼 the fraction parameter, and 𝜃𝑆 source parameters, then we can do FTL by 𝜃𝑇 = 𝜃𝜖+𝛼𝜃𝑆 .
That is, we add a fraction of the source parameters to the randomly initialized weights.
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4.1.3 Modular Transfer learning

Modern deep MBRL algorithms often consist of several components, each relating to different elements of
an MDP. Therefore, in order to transfer the parameters of such architectures, we need to consider transfer
learning on a modular level. Using Dreamer as a reference, we discuss what type of transfer learning
each component benefits most from. We consider three types of transfer learning: random initialization,
FTL, and full transfer learning. We found in initial experiments that fully transferring all feature extraction
layers of each component results in the best learning enhancements, and found that the output layer mainly
impacts the transfer learning performance. Therefore, we only discuss transferring parameters of output
layers of the multi-task agents.
First, we consider the action model, which implements the policy. As action elements don’t match across
different environments, our initial experiments showed, as anticipated, that both full transfer and FTL
across environments with different action spaces results in detrimental performance drops compared to
random initialization.
Next, we found that fractionally transferring parameters of the reward and value models can result in sub-
stantial performance gains (Appendix E). In this paper, we apply our methods to MDPs that have similar
reward functions, meaning the parameters of these models consist of transferable information that en-
hances the learning of a target task. This demonstrates the major benefits of FTL, as the experiments also
showed that fully transferring these parameters has a detrimental effect on learning (Appendix D).
Finally, initial experiments showed that fully transferring the parameters of the representation, observa-
tion, and transition model results in the best performance improvements for most environments. As we are
dealing with visually similar environments, the generality of convolutional features allows full transfer of
the representation and observation parameters (Chen et al., 2021). Additionally, when environments share
similar physical laws (e.g. a physics engine) transition models can often be fully transferred, provided that
we reset the weights connected to actions (Taylor & Stone, 2009a; Landolfi et al., 2019).

4.2 Multiple-Agent Transfer Learning

In this section, we consider an alternative multi-source transfer learning setting, where we have access
to the parameters of multiple individual agents that have learned the optimal policy for different tasks.
Transferring components from agents trained in different environments represents a major obstacle for
multi-source transfer learning. To the best of our knowledge, we are the first to propose a solution that
allows the combination of models from agents trained in different environments, from which the most
relevant information can autonomously be extracted for a given target task.

4.2.1 Universal Feature Space

As the focus of this paper is on world model-based agents, we are required to facilitate a shared feature
space across the agents when combining and transferring their components. Hence, we introduce a uni-
versal feature space (UFS) inspired by SEER (Chen et al., 2021), where the authors show that encoders of
converged autoencoders can be frozen and reused in visually similar environments due to the generality of
convolutional features. In this paper we make use of two different types of environments: locomotion and
pendula tasks (Figure 3). Therefore, we decide to train a single agent simultaneously in one locomotion
and one pendulum environment (as described in Section 4.1.1), such that we learn convolutional features
for both types of environments. After training, we freeze and reuse this agent’s encoder across both source
and target agents in order to train them within a UFS. Note that we do not transfer and freeze the other
RSSM components, as this would prevent the Dreamer agent from learning new reward and transition
functions. As Dreamer learns via reconstruction, the encoder is the main component of the representation
model responsible for constructing the feature space.
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4.2.2 Meta-Model Transfer Learning

Figure 2: Illustration of meta-model trans-
fer learning applied to Dreamer’s reward
model.

When an agent makes use of the UFS for training in a given
target task, we can transfer components from agents that
each mastered tasks using the UFS in different environments.
We propose to accomplish this by introducing meta-model
transfer learning (MMTL). For a given component of the tar-
get agent, we assemble the same component from all source
agents into an ensemble of frozen components, which we con-
nect to the component of the target agent. In addition to the
usual input element(s), this also provides information signals
from each of the frozen source components as a means of
transfer learning.
Let𝑚Θ(𝑦 |𝑥) denote a neural network component with param-
eters Θ, some input 𝑥 , and some output 𝑦, belonging to the
agent that will be trained on target MDP 𝑀 . Let 𝑚𝜃𝑖 (𝑦 |𝑥) de-
note the same component belonging to some other agent 𝑖 with frozen parameters 𝜃𝑖 that were fit to some
source MDP 𝑀𝑖 , where 𝑖 ∈ 𝑁 , and 𝑁 denotes the number source MDPs on which a separate agent was
trained on from the set of source MDPs . In MMTL, we modify 𝑚Θ(𝑦 |𝑥), such that we get:

𝑚Θ( 𝑦 | 𝑥, 𝑚𝜃0 (𝑦 |𝑥), ..., 𝑚𝜃𝑁 (𝑦 |𝑥) )

where all models were trained within the same UFS. Intuitively, information signals provided by the source
models can be used to enhance the learning process of𝑚Θ. For instance, assume the objective of𝑀𝑖 is simi-
lar to the objective in𝑀 . In that case, if we use MMTL for the reward model,𝑚Θ can autonomously learn to
utilize the predictions of 𝑚𝜃𝑖 via gradient descent. Similarly, it can learn to ignore the predictions of source
models that provide irrelevant predictions. As we are dealing with locomotion and pendula environments
in this paper, we choose to apply MMTL to the reward model of Dreamer (Figure 2), as the locomotion
MDPs share a similar objective among each other whilst the pendula environments will provide irrelevant
signals for the locomotion environments and vice versa. As such, we can evaluate whether our approach
can autonomously learn to utilize and ignore relevant and irrelevant information signals respectively. Note
that in the case of Dreamer’s reward model, 𝑦 corresponds to a scalar Gaussian parameterized by a mean
𝜇 and unit variance, from which the mode is sampled. Hence, in our case, 𝑦 corresponds to 𝜇, and 𝑥 corre-
sponds to some latent state 𝑠. As such, the target agent will make use of the same frozen encoder used by
the source agents, in addition to using a reward meta-model. We don’t transfer any other components of
the architecture in order to be able to observe the isolated effect of the reward meta-model.

5 Experiments

We evaluate the proposed methods using Dreamer2 on 6 continuous control tasks: Hopper, Ant, Walker2D,
HalfCheetah, InvertedPendulumSwingup, and InvertedDoublePendulumSwingup (Figure 3). A detailed
description of the differences between the MDPs can be found in Appendix A. We perform experiments
for both multi-task (referred to as FTL) and multiple-agent (referred to as MMTL) transfer learning settings.
For each method, we run multi-source transfer learning experiments using a different set of 𝑁 source
tasks for each of the target environments (see Appendix B for the combinations used). The selection of
source tasks for a given set was done such that each source set for a given target environment includes
at least one task from a different environment type, i.e. a pendulum task for a locomotion task and vice
versa. Similarly, each source set contains at least one task of the same environment type. We also ran

2This work builds upon the code base of Dreamer: https://github.com/danijar/dreamer.

6

https://github.com/danijar/dreamer


Under review as a conference paper at ICLR 2023

Figure 3: Visualization of the tasks learned in the experiments: Hopper, Walker2D, Ant, HalfCheetah, In-
vertedPendulumSwingup, and InvertedDoublePendulumSwingup. Each of the MDPs differ in all elements
( ,, 𝑅, 𝑃 ), and are used in multi-source transfer learning experiments as both source and target tasks.

preliminary experiments (3 random seeds) for sets consisting of 𝑁 = [2, 3] in order to observe potential
performance differences that result from different𝑁 , but we found no significant differences (see Appendix
C). To demonstrate that our methods can autonomously extract useful knowledge from a set of source tasks
that includes at least one irrelevant source task, we apply our methods to the most challenging setting
(𝑁 = 4) for 9 random seeds. We used a single Nvidia V100 GPU for each training run, taking about 6 hours
per 1 million environment steps.
For each run, we train the FTL and MMTL target agents for 1 million environment steps and compare them
to a baseline Dreamer agent that learns from scratch for 1 million environment steps. FTL is evaluated by
training multi-task agents for 2 million environment steps for a single run, after which we transfer the
parameters to the target agent as described in Section 4.1.3. We use a fraction of 𝛼 = 0.2 for FTL, as we
observed in preliminary experiments the largest performance gains occur in a range of 𝛼 ∈ [0.1, 0.3] (see
Appendix E). For creating the UFS for MMTL, we train a multi-task agent on the Hopper and InvertedPen-
dulum task for 2 million environment steps. We evaluate MMTL by training a single agent on each task of
the set of source environments for 1 million environment steps (all using the same UFS), after which we
transfer their reward models to the target agent as described in Section 4.2.2.
The overall aggregated return of both FTL and MMTL is reported in Table 1, which allows us to take
jumpstarts into account in the results. The aggregated return of the final 10% (1e5) environment steps
can be found in Table 2, allowing us to observe final performance improvements. Figure 4 shows the
corresponding learning curves.

6 Discussion

We now discuss the results of each of the proposed methods individually and reflect on the overall multi-
source transfer learning contributions of this paper. We would like to emphasize that we don’t compare
FTL and MMTL to each other, but to the baseline, as they are used for two entirely different settings.
Additionally, although the proposed techniques are applicable to single-source transfer learning settings
as well, empirical performance comparisons between multi-source and single-source transfer learning are
outside of the scope of this paper, and we leave this for future work.

Multi-source transfer learning The transfer learning results show that the proposed multi-source trans-
fer learning methods for both multi-task (FTL) and multiple-agent (MMTL) settings result in positive trans-
fers for 5 out of 6 environments. We observe jumpstarts, overall performance improvements, and/or final
performance gains. This shows that our proposed methods allow agents to autonomously extract useful
information stemming from source agents trained in MDPs with different state-action spaces, reward func-
tions, and transition functions. We would like to emphasize that for each of the environments, there were
at most two environments that could provide useful transfer knowledge. Nevertheless, our methods are
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Table 1: Overall average episode return of 1 million environment steps for FTL and MMTL, where param-
eters of 4 source tasks were transferred. We compare to a baseline Dreamer agent that learns from scratch.
Bold results indicate the best performance across the methods and baseline for a given task.

Task FTL MMTL Baseline
HalfCheetah 1490 ± 441 𝟏𝟖𝟖𝟐 ± 𝟑𝟗𝟎 1199 ± 558
Hopper 3430 ± 2654 𝟒𝟎𝟐𝟓 ± 𝟑𝟒𝟎𝟒 2076 ± 2417
Walker2D 𝟏𝟔𝟑𝟕 ± 𝟐𝟎𝟒𝟕 847 ± 1533 676 ± 1101
InvPend 𝟕𝟔𝟏 ± 𝟔𝟖 705 ± 79 667 ± 121
InvDbPend 𝟏𝟐𝟑𝟓 ± 𝟏𝟑𝟎 1198 ± 100 1184 ± 89
Ant 681 ± 591 1147 ± 922 𝟏𝟏𝟒𝟖 ± 𝟒𝟎𝟖

Table 2: Average episode return of the final 1e-5 environment steps for FTL and MMTL, where parameters
of 4 source tasks were transferred. We compare to a baseline Dreamer agent that learns from scratch. Bold
results indicate the best performance across the methods and baseline for a given task.

Task FTL MMTL Baseline
HalfCheetah 2234 ± 302 𝟐𝟒𝟓𝟖 ± 𝟑𝟐𝟎 1733 ± 606
Hopper 5517 ± 4392 𝟕𝟒𝟑𝟖 ± 𝟒𝟏𝟓𝟕 3275 ± 3499
Walker2D 𝟐𝟕𝟓𝟎 ± 𝟐𝟕𝟎𝟐 1686 ± 2329 1669 ± 1862
InvPend 𝟖𝟕𝟗 ± 𝟏𝟕 872 ± 20 875 ± 23
InvDbPend 𝟏𝟒𝟖𝟐 ± 𝟏𝟔𝟐 1370 ± 106 1392 ± 115
Ant 1453 ± 591 1811 ± 854 𝟏𝟗𝟎𝟏 ± 𝟒𝟖𝟎

still able to identify the useful information and result in a positive transfer with 4 source tasks. For the Ant
testing environment, we observe negative transfers when directly transferring parameters in the multi-
task setting, which logically follows from the environment being too different from all other environments
in terms of dynamics, as we fully transfer the transition model. We observe that MMTL does not suffer
significantly from this difference in environments, as we don’t transfer the transition model in that case.

Fractional transfer learning Transferring parameters in a modular fashion of world model-based agents
that were simultaneously trained on multiple tasks overall results in performance improvements. For the
single pendulum environment, we observe significant jumpstarts (see Figure 4), despite the set of four
source tasks merely containing one environment with useful transfer information. Transferring fractions
of parameters plays a major role in these performance improvements as observed in preliminary experi-
ments (Appendix E). However, one drawback of FTL is that it introduces a tunable fraction parameter 𝛼 ,
where the optimal fraction can differ per environment and composition of source tasks. We observed the
most performance gains in a range of 𝛼 ∈ [0.1, 0.3], and for larger fractions the overall transfer learning
performance of the agent would degrade. In terms of deep RL hyperparameters, this can be considered a
reasonably short tuning range.

Meta-model transfer learning We observe substantial performance gains for MMTL by merely provid-
ing additional information signals to the reward model, next to transferring weights of the encoder model.
To the best of our knowledge, we are the first to successfully combine individual components of multiple
individual agents trained in different environments as a multi-source transfer learning technique that re-
sults in positive transfers, which is autonomously accomplished through gradient descent. In addition, the
usage of a UFS (which includes a frozen encoder) saves computation.

8
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Figure 4: Learning curves for average episode return of 1 million environment steps for FTL and MMTL
using 4 source tasks. Shaded areas represent standard deviation across the 9 runs.

7 Conclusion

In this paper, we introduced several techniques that enable the application of multi-source transfer learn-
ing to deep MBRL algorithms. Two major obstacles in applying transfer learning to the RL domain are
selecting an optimal source task and the choice regarding which type of transfer learning to apply to indi-
vidual components. We addressed these issues by proposing two modular multi-source transfer learning
techniques, each applicable to a different cross-domain multi-source situation: a single agent that mastered
several tasks, and multiple agents that mastered a single task.
First, we introduced a novel type of transfer learning, which allows fractions of parameters to be trans-
ferred, as opposed to discarding information as commonly done by randomly initializing a layer of a neural
network. We used this type of transfer learning as an option in an insightful discussion concerning what
type of transfer learning deep MBRL algorithm components benefit from. The conclusions of this discus-
sion were empirically validated in the multi-task transfer learning setting, which both showed that the
modular transfer learning decisions result in significant performance improvements, as well as that we
can autonomously extract useful information from multiple different source tasks.
Next, we showed that by learning a universal feature space, we enable the combination and transfer of
individual components from agents trained in environments with different state-action spaces, and re-
ward functions. We extend this concept by introducing meta-model transfer learning, which leverages the
predictions of models trained by different agents in addition to the usual input signals, as a multi-source
transfer learning technique for multiple-agent settings. This results in significant sample efficiency gains
in challenging cross-domain experiments.
Our aim is to bring RL closer to real-world application and we believe that the techniques introduced
in this paper represent an important step toward this direction, by circumventing crucial limitations of
transfer learning in RL. Given the flexibility and modularity of the proposed techniques, we believe they
are sufficiently general to potentially be applicable to components of other types of deep RL algorithms.

9
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8 Reproducibility

We ensure reproducibility by explaining the proposed methodologies as clearly and in as much detail as
possible. First, we described the components of Dreamer that we are applying transfer learning techniques
to and how they are implemented in Section 2. For the multi-task setting, we describe how to train an
agent on multiple domains in Section 4.1.1, how to make use of fractional transfer learning in Section
4.1.2, and how we apply transfer learning to each of Dreamer’s components in Section 4.1.3. Similarly, we
describe in detail how we create a universal feature space in Section 4.2.1 and provide a detailed descrip-
tion of our proposed meta-model transfer learning approach and how it is implemented in the Dreamer
framework in Section 4.2.2. Moreover, for reproducibility of results, we describe all settings used in the
experiments and what hardware was used in Section 5. Finally, we provide anonymized code examples
of how to apply the proposed techniques to Dreamer at https://anonymous.4open.science/
r/transfer-dreamer-7308/README.md.
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A Environment Descriptions

In this paper locomotion and pendulum balancing environments from PyBullet (Coumans & Bai, 2016–
2021) are used for experiments. The locomotion environments have as goal to walk to a target point that is
distanced 1 kilometer away from the starting position as quickly as possible. Each environment has a dif-
ferent entity with different numbers of limbs and therefore has different state-action spaces, and transition
functions. The reward function is similar, slightly adapted for each entity as the agent is penalized for cer-
tain limbs colliding with the ground. The pendula environments have as objective to balance the initially
inverted pendulum upwards. The difference between the two environments used is that one environment
has two pendula attached to each other. This environment is not included in the PyBullet framework for
swing-up balancing, which we, therefore, implemented ourselves. The reward signal for the InvertedPen-
dulumSwingup for a given observation 𝑜 is:

𝑟𝑜 = cosΘ (1)

where Θ is the current position of the joint. For the InvertedDoublePendulumSwingup a swing-up task,
we simply add the cosine of the position of the second joint Γ to Equation 1:

𝑟𝑓 = cosΘ + cos Γ (2)

As such, these two environments also differ in state-action spaces, transition functions, and reward func-
tions.

B Transfer Learning Task Combinations

In Table 3 the combinations of source tasks and target tasks can be viewed that were used for the experi-
ments in this paper. That is, they correspond to the results of Appendix C and Section 5.

Table 3: Source-target combinations used for FTL and MMTL experiments, using environments HalfChee-
tah (Cheetah), Hopper, Walker2D, InvertedPendulumSwingup (InvPend), InvertedDoublePendulum-
Swingup (InvDbPend), and Ant.

Target 2 Tasks 3 Tasks 4 Tasks
Cheetah Hopper, Ant +Walker2D +InvPend
Hopper Cheetah, Walker2D +Ant +InvPend
Walker2D Cheetah, Hopper +Ant +InvPend
InvPend Cheetah, InvDbPend +Hopper +Ant
InvDbPend Hopper, InvPend +Walker2D +Ant
Ant Cheetah, Walker2D + Hopper +InvPend
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C Preliminary Experiments for 2 and 3 Source Tasks

In Table 4 and Table 5 the results for training on, and transferring, 2 and 3 source tasks as described in
Section 5 can be found for both FTL and MMTL, showing the overall average episode return and the episode
return for the final 1e-5 environment steps respectively. In Figure 5 the corresponding learning curves can
be found. These experiments are the averages and standard deviation across 3 seeds for FTL, MMTL, and
a baseline Dreamer trained from scratch. As just 3 seeds were used for these experiments, they are not
conclusive. However, they do show that regardless of the number of source tasks, our methods can extract
useful information and enhance the performance compared to the baseline.

Figure 5: Preliminary experiments: average episode return for 3 random seeds obtained across 1 million
environment steps by MMTL (red), FTL (blue), and a vanilla Dreamer (green), where for FTL 𝛼 = 0.2 is
used. FTL and MMTL both receive transfer from a combination of 2 (double) and 3 (triple) source tasks.
Shaded areas represent standard deviation across the 3 runs.
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Table 4: Preliminary experiments: overall average episode return with of FTL using 𝛼 = 0.2 and MMTL
for the reward model. Parameters of 2 and 3 source tasks are transferred to the HalfCheetah, Hopper,
Walker2D, InvertedPendulumSwingup (InvPend), InvertedDoublePendulumSwingup (InvDbPend), and
Ant tasks, and compared to a baseline Dreamer agent that learns from scratch. Bold results indicate the
best performance across the methods and baseline for a given task.

Fractional Transfer Learning Meta-Model Transfer Learning
Task 2 task 3 task 2 task 3 task Baseline
HalfCheetah 1982 ± 838 1967 ± 862 2057 ± 851 𝟐𝟎𝟕𝟖 ± 𝟕𝟐𝟏 1681 ± 726
Hopper 1911 ± 712 𝟓𝟓𝟑𝟖 ± 𝟒𝟕𝟐𝟎 5085 ± 4277 5019 ± 4813 1340 ± 1112
Walker2D 𝟏𝟎𝟎𝟗 ± 𝟏𝟐𝟓𝟒 393 ± 813 196 ± 860 233 ± 823 116 ± 885
InvPend 874 ± 121 𝟖𝟖𝟒 ± 𝟐𝟎 731 ± 332 740 ± 333 723 ± 364
InvDbPend 1209 ± 280 𝟏𝟐𝟗𝟗 ± 𝟐𝟓𝟒 1214 ± 230 1120 ± 327 1194 ± 306
Ant 1124 ± 722 1052 ± 687 1423 ± 788 1366 ± 687 𝟏𝟓𝟖𝟗 ± 𝟕𝟕𝟏

Table 5: Preliminary experiments: average episode return of the final 1e5 environment steps of FTL us-
ing 𝛼 = 0.2 and MMTL for the reward model. Parameters of 2 and 3 source tasks are transferred to
the HalfCheetah, Hopper, Walker2D, InvertedPendulumSwingup (InvPend), InvertedDoublePendulum-
Swingup (InvDbPend), and Ant tasks, and compared to a baseline Dreamer agent that learns from scratch.
Bold results indicate the best performance across the methods and baseline for a given task.

Fractional Transfer Learning Meta-Model Transfer Learning
Task 2 task 3 task 2 task 3 task Baseline
HalfCheetah 𝟐𝟖𝟐𝟎 ± 𝟐𝟗𝟕 2615 ± 132 2618 ± 362 2514 ± 183 2264 ± 160
Hopper 2535 ± 712 8274 ± 46 490 8080 ± 4704 𝟏𝟎 𝟏𝟕𝟖 ± 𝟐𝟐𝟒𝟏 2241 ± 502
Walker2D 𝟐𝟐𝟏𝟒 ± 𝟏𝟐𝟓𝟒 963 ± 314 846 ± 286 730 ± 343 547 ± 710
InvPend 874 ± 121 884 ± 20 𝟖𝟖𝟓 ± 𝟏𝟒 884 ± 13 883 ± 17
InvDbPend 1438 ± 116 𝟏𝟓𝟑𝟏 ± 𝟗𝟑 1348 ± 171 1302 ± 152 1366 ± 179
Ant 2021 ± 722 1899 ± 292 2212 ± 607 2064 ± 386 𝟐𝟒𝟔𝟑 ± 𝟐𝟎𝟖

D Full Transfer

In Figure 6 learning curves can be seen for the HalfCheetah task where we fully transfer the parameters
instead of using FTL. As can be seen, this results in a detrimental overfitting effect where the agent does
not seem to be learning.

Figure 6: 4 seeds for full transfer learning on the HalfCheetah task across 2, 3, and 4 source tasks.
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E Additional Fraction Results

In this appendix, results can be found that illustrate the effect of different fractions 𝛼 . We present the
numerical results of transferring fractions of 𝛼 ∈ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] using 2, 3, and 4 source tasks.
That is, the overall performance over 3 random seeds for the HalfCheetah and Hopper, Walker2D and Ant,
and InvertedPendulumSwingup and InvertedDoublePendulumSwingup testing environments can be found
in Table 6, Table 7, and Table 8 respectively. Again, as just 3 seeds were used for these experiments, they
are not conclusive. However, they do indicate that the choice of 𝛼 can largely impact performance, and
generally, the best performance gains are yielded with 𝛼 ∈ [0.1, 0.3].

Table 6: Average return for fraction transfer of 2, 3, and 4 source tasks for the HalfCheetah and Hopper
tasks, with fractions 𝛼 ∈ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]. Bold results indicate the best performing fraction per
number of source tasks for each target task.

HalfCheetah Hopper
𝛼 2 tasks 3 tasks 4 tasks 2 tasks 3 tasks 4 tasks
0.0 1841 ± 806 1752 ± 783 1742 ± 777 1917 ± 960 1585 ± 941 1263 ± 1113
0.1 𝟐𝟎𝟐𝟖 ± 𝟗𝟗𝟑 2074 ± 762 1500 ± 781 2041 ± 887 𝟔𝟓𝟒𝟐 ± 𝟒𝟒𝟔𝟗 3300 ± 3342
0.2 1982 ± 838 1967 ± 862 1773 ± 748 1911 ± 712 5538 ± 4720 1702 ± 1078
0.3 1899 ± 911 𝟐𝟎𝟗𝟒 ± 𝟖𝟓𝟗 1544 ± 771 𝟐𝟔𝟕𝟎 ± 𝟏𝟕𝟖𝟗 4925 ± 4695 𝟑𝟑𝟒𝟏 ± 𝟒𝟔𝟎𝟗
0.4 2008 ± 943 2015 ± 873 𝟐𝟏𝟔𝟐 ± 𝟕𝟖𝟗 2076 ± 803 2437 ± 2731 1451 ± 991
0.5 1961 ± 944 1647 ± 896 1635 ± 809 1975 ± 772 2014 ± 2328 3246 ± 3828

Baseline 1681 ± 726 1340 ± 1112

Table 7: Average return for fraction transfer of 2, 3, and 4 source tasks for the Walker2D and Ant tasks
with fractions 𝛼 ∈ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]. Bold results indicate the best performing fraction per number
of source tasks for each target task.

Walker2D Ant
𝛼 2 tasks 3 tasks 4 tasks 2 tasks 3 tasks 4 tasks
0.0 546 ± 776 𝟓𝟒𝟓 ± 𝟏𝟎𝟏𝟐 157 ± 891 1070 ± 659 923 ± 559 897 ± 586
0.1 360 ± 803 441 ± 852 𝟒𝟕𝟖 ± 𝟏𝟏𝟏𝟑 806 ± 469 1022 ± 645 834 ± 652
0.2 𝟏𝟎𝟎𝟗 ± 𝟏𝟐𝟓𝟒 393 ± 813 200 ± 807 1124 ± 722 1052 ± 687 898 ± 616
0.3 535 ± 914 325 ± 812 323 ± 818 1162 ± 824 1080 ± 701 905 ± 554
0.4 742 ± 992 516 ± 1074 354 ± 862 1308 ± 735 885 ± 571 1022 ± 709
0.5 352 ± 853 355 ± 903 396 ± 829 951 ± 651 932 ± 609 683 ± 498

Baseline 116 ± 885 𝟏𝟓𝟖𝟗 ± 𝟕𝟕𝟏

Table 8: Average return for fraction transfer of 2, 3, and 4 source tasks for the InvertedPendulumSwingup
and InvertedDoublePendulumSwingup tasks with fractions 𝛼 ∈ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]. Bold results indi-
cate the best performing fraction per number of source tasks for each target task.

InvertedPendulumSwingup InvertedDoublePendulumSwingup
𝛼 2 tasks 3 tasks 4 tasks 2 tasks 3 tasks 4 tasks
0.0 847 ± 135 779 ± 259 𝟖𝟑𝟖 ± 𝟏𝟔𝟗 1255 ± 270 1303 ± 248 1208 ± 322
0.1 857 ± 145 834 ± 198 803 ± 239 1185 ± 316 1283 ± 272 1251 ± 272
0.2 856 ± 121 𝟖𝟓𝟎 ± 𝟏𝟑𝟗 782 ± 269 1209 ± 280 1299 ± 254 1235 ± 284
0.3 𝟖𝟕𝟏 ± 𝟗𝟑 832 ± 182 806 ± 213 1279 ± 216 1325 ± 225 1239 ± 259
0.4 858 ± 150 789 ± 285 790 ± 237 𝟏𝟑𝟎𝟕 ± 𝟐𝟐𝟕 1323 ± 243 𝟏𝟐𝟕𝟖 ± 𝟐𝟖𝟕
0.5 852 ± 126 830 ± 181 791 ± 304 1301 ± 216 𝟏𝟑𝟒𝟎 ± 𝟐𝟑𝟎 1206 ± 278

Baseline 723 ± 364 1194 ± 306
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