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Abstract

LLM-agent systems often decompose high-level objectives into subtask depen-
dency graphs, assuming that each subtask’s output is reliable and conditionally
independent of others given its parent responses. However, this assumption fre-
quently breaks during execution, as ground-truth responses are inaccessible, leading
to inter-agent misalignment—failures caused by inconsistencies and coordination
breakdowns among agents [1]. To address this, we propose SEQCV, a dynamic
framework for reliable execution under violated conditional independence. SEQCV
executes subtasks sequentially, each conditioned on all prior verified responses,
and performs consistency checks immediately after agents generate short token
sequences. At each checkpoint, a token sequence is accepted only if it represents
shared knowledge consistently supported across diverse LLM models; otherwise,
it is discarded, triggering recursive subtask decomposition for finer-grained rea-
soning. Despite its sequential nature, SEQCV avoids repeated corrections on
the same misalignment and achieves higher effective throughput than parallel
pipelines. Across multiple reasoning and coordination tasks, SEQCV improves
accuracy by up to 30% over existing LLM-agent systems. Code is available at
github.com/tmllab/2025_NeurIPS_SeqCV.

1 Introduction

LLM-agent systems are designed to conceptualize the powerful large language models (LLMs) to
perform a broad range of tasks [2, 3, 4]. On one hand, existing research focuses on improving the
performance of LLM-agent systems across various applications. For example, some systems are
tailored for specific domains such as software development [5, 6, 7], scientific discovery [8, 9, 10],
and human behaviour simulation [11, 12, 13]. Others focus on augmenting LLM agents with external
tools [14, 15, 16], or on establishing benchmarks to evaluate LLM-agent performance [17, 18, 19, 20].

On the other hand, recent studies have raised two critical questions: 1) what constitutes an LLM-agent
system [21, 22], and 2) which attributes most influence its performance [1, 23]. Although there is no
clear agreement on these two questions [24, 25], one certainty has emerged: multi-LLM-agent systems
demonstrated superior performance than single LLM-agent systems, highlighting the importance of
orchestrating collaboration among LLM-agents to optimize task execution [26, 21, 1].

To enhance the reasoning capabilities of LLMs for complex tasks, a high-level task objective is often
decomposed into a series of intermediate reasoning steps, such as chain of thought (CoT) [27], ReAct
[28], tree of thought (ToT) [29], Reflexion [30]. In LLM-agent systems, these steps correspond to
subtasks, as exemplified by AutoGPT [31], BabyAGI [32], LangChain [33], and Llama-index [34].
Recent studies suggest that decomposing tasks as graphs can further enhance performance, in both
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(a) Task 1 defines the conceptual skeleton
and corresponding LATEX style, which should
be inherited by later tasks.

(b) An intermediate subtask generates addi-
tional content following the initial structure.

(c) Another parallel subtask produces a new
style instead of inheriting the existing one, lead-
ing to inter-agent misalignment.

Figure 1: Inter-agent misalignment [MASFT 2.5 [1]] when generating reinforcement learning teaching slides
in LATEX. Task 1 defines the structure, while downstream parallel tasks independently create slides, leading to
inconsistent styles.

single-agent systems, such as graph of thought (GoT) [35] and LangGraph [36], and multi-agent
systems, including GPTSwarm [37], Flow [38], AFlow [39], AgentPrune [40], and AoT [41].

These graph-as-workflow orchestration systems often assume that each subtask produces a reliable
response that depends only on its parent nodes. In practice, this assumption of conditional indepen-
dence often fails, leading to the problem of inter-agent misalignment. When subtasks are executed in
parallel without conditioning on one another’s intermediate outputs, agents may produce inconsistent
or incompatible results. Figure 1 illustrates such a case in a multi-agent setup for RL slide generation.
The workflow first delegates the slide-structure definition to one agent, then launches parallel agents
to generate algorithm-specific slides (e.g., Q-Learning and DQN). Because these subtasks run inde-
pendently and the structure lacks a unified notation policy, their outputs use inconsistent symbols and
formatting. A common mitigation strategy is to introduce an additional LLM agent to review and
reconcile all outputs, but this approach substantially reduces efficiency.

(a) workflow: T1 → T2, T1 → T3

Ideal: given R1, R2 and R3 are independent.
Real: given R̂1, R̂2 and R̂3 are dependent.

(b) workflow: T2 → T1 → T3.
Ideal: given R1, R2 and R3 are independent.
Real: given R̂1, R̂2 and R̂3 are dependent.

(c) workflow: T2 ← T1 ← T3.
Ideal: given R1, R2 and R3 are independent.
Real: given R̂1, R̂2 and R̂3 are dependent.

Figure 2: Examples of a high-level task decomposed to three subtasks {T1, T2, T3} as a graph. Ri is the latent
ground-truth answer while R̂i is response actually observed. Arrows indicate causal dependencies, where →
indicate an explicit causal dependency in real execution; → indicate an ideal (theoretical) causal dependency;
→ indicates that the dependency can be either statistical or causal; → highlights the reason why conditional
independence breaks. Intuitively, there exists at least one path where R̂1 and R̂3 remain dependent given R̂2.

Why does this misalignment happen? Decomposing a task into a directed acyclic graph (DAG)
usually encode dependencies among subtasks. Consider the example of decomposition into three
subtasks, where Figure 2 enumerates all possible DAGs. In theory, each subtask (node) is assumed to
be conditionally independent of others given its parents. That is, with only ground-truth response
Ri, removing its parent disconnects Ri from the rest. For example, in (a), deleting R1 isolates R2

from R3, implying R2 and R3 are conditionally independent given R1. However, in practice, only
approximate responses R̂i are available, each causally dependent on its ground-truth counterpart Ri.
Therefore, R̂2 and R̂3 share hidden dependencies through R1, violating conditional independence.

Motivated by this finding, we propose SEQCV, a dynamic framework that enables reliable execution
under violated conditional independence assumptions. In SEQCV, subtasks are executed sequentially,
each conditioned on all prior responses and verified via consistency checks immediately after agents
generate a short token sequence. At each checkpoint, the generated token sequence is deemed reliable
if it remains semantically consistent across multiple LLM models. When inconsistency is detected,
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the unreliable sequence is discarded, and a recursive splitting mechanism is activated to decompose
the subtask into smaller components. Despite its sequential execution, SEQCV avoids repeated
inner-agent misalignment corrections on the same issue and achieves higher effective throughput than
parallel pipelines. Across 8 creative agentic tasks, SEQCV improves accuracy by up to 30%.

Our contributions: 1 We inspire subsequent research in LLM-agent systems by investigating the root
cause of inter-agent misalignment in graph-based orchestration. Our practical analysis identifies the
violation of the conditional independence assumption as the core issue. We further highlight that this
assumption cannot be satisfied in practice due to the nature of LLM-agent behavior. 2 We propose
SEQCV as a practical solution to mitigate failures arising from this infeasible assumption. 3 Our
SEQCV enables ensembling multiple LLM models by optimizing the selection of reliable outputs.
We design a sequential execution and swift verification pipeline, coupled with a recursive splitting
mechanism, to ensure tasks are decomposed into manageable subtasks aligned with LLM capabilities.
Experiments on standard benchmarks and real-world tasks demonstrate consistent improvements,
offering a promising direction for future research on accuracy and efficiency enhancement.

2 Methodology

We present SEQCV, a dynamic framework that employs a recursive splitting mechanism to ensure
that tasks are always decomposed into manageable units aligned with the capabilities of LLMs. This
allows multiple LLM-agents to execute subtasks and verify their outputs effectively within the system.
Furthermore, SEQCV facilitates the ensembling of multiple LLM models by optimizing the selection
of reliable responses. In the following, we articulate the problem formulation, conceptual overview.
We then describe the execution (i.e., how responses are generated, Section 2.1), the verification
(cross-model validation, Section 2.2) and the recursive splitting mechanism (Section 2.2).

Problem Formulation Let O denote a high-level task objective and let G = (T , E) be a directed
acyclic graph (DAG) of subtasks T = {T1, . . . , Tm} as its nodes with edges E encoding parent–child
dependencies among nodes. In prior graph-as-workflow systems, each Ti emits an approximate
response R̂i conditioned only on its parents {R̂j : j ∈ Pa(i)}, assuming conditional independence
from all other nodes. In practice, hidden correlations among LLM outputs violate this assumption,
causing inter-agent misalignment. Our goal is to execute G reliably by verifying the reliability of
each subtask’s response before this response serves as input context for downstream subtasks.

Overview As shown in Figure 3, SEQCV decomposes a given high-level task into a sequence
of subtasks and orchestrates a team of diverse LLM agents to execute these subtasks reliably by
always conditioning on the complete history of verified outputs. Beginning with the first subtask,
an agent from one LLM model generates a candidate response in the context of all previously
accepted segments of responses, ensuring full awareness of prior decisions. This candidate response
is then peer-reviewed by agents of other LLM models. Only when a majority consensus confirms its
coherence and consistency, the candidate response is appended to the global history as an accepted
response. If consensus is not achieved, the current subtask is automatically decomposed into simpler
subtasks, each re-entering the same generate-verify-split loop. This process continues sequentially,
recursing only when necessary, until all tasks yield reliable responses or a maximum recursion depth
is reached. By combining full-trace conditioning with early, targeted splitting, SEQCV prevents
hidden dependencies from triggering error cascades while maintaining end-to-end efficiency.

Advances of SEQCV As illustrated in Figure 2, latent dependencies can propagate along paths
in the workflow graph that do not correspond to direct parent–child edges, since an LLM-generated
response is only an approximation of ground truth. This implies that hidden dependencies generally
exist even when the observed workflow graph suggests conditional independence. By constructing a
task’s context to encompass all previously generated responses, we capture these hidden dependencies
and enforce high-level consistency in terminology, style, and factual content across subtasks. This
approach replaces the summary and rerun-after-completion modules used in existing work [38, 39] to
resolve conflicts and ensures that computational resources and token consumption are focused on
generating extra information. In other words, our SEQCV allocates tokens efficiently and wisely.

To further improve reliability, we assess the reliability of each subtask. Note that this is challenging
because we lack the ground truth of intermediate results. We propose that it can be approximated by
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Figure 3: Overview of SEQCV. A high-level task is executed sequentially and split if necessary. During task
execution, each agent generates a segment of candidate response conditioned on the verified context of all
prior outputs. The generated segment is then peer-reviewed by other LLM-agents. If consensus approves, it
is accepted as a reliable response; otherwise, the subtask splits into simpler ones (e.g., a task is split to four
simpler subtasks), re-entering the generate-verify-split loop. This recursion continues until all tasks are resolved
or a maximum depth is reached, ensuring reliability while maintaining efficiency. Algorithm 1 implements
segment-level generation and validation is provided and Algorithm 2 implements dynamic splitting.

the extent to which its response reflects common sense across different models. We only split a task
when this cross-model consensus indicates that splitting is necessary to resolve disagreement.

To further enhance runtime efficiency, SEQCV employs segment-level execution. In this way,
validation occurs early via peer review, and if most results are incorrect, the process can be halted
immediately, avoiding further wasted computation.

2.1 Response Generation

Segment-Based Response Generation For a subtask Ti, each agent a ∈ A receives the subtask
context and global context prompt so far (see Subtask-Context Generation and Global-Context
Construction below), and generate a full response segment as

Sj|i,a(l0) ∼ Generate(LLM, πj−1|i,a,Πi), (1)

subject to a maximum length l0. During code implementation, l0 is a tunable hyperparameter that
controls the granularity of subtask refinement. For ease of reading, we denote Si,a(l0) simply as
Si,a in the following sections. Each Si,a is verified via Cross-Model Validation (see Section 2.2). A
passed Sj−1|i,a will be accepted as a full, verified response R̂j−1|i,a for subtask context generation.

Subtask-Context Generation The subtask-context generation means for each subtask Ti, we
assemble a single prompt πi,a that includes the entire execution trace to date:

πj−1|i,a =
[
Ti; R̂1|i,a, R̂2|i,a, . . . , R̂j−1|i,a

]
,

where each R̂·|i, a is a full, verified response (from S·|i,a) to address subtask Ti.

This subtask-context conditioning reduces inter-agent misalignment from any contradiction or mis-
match between R̂·|i, a and its earlier outputs. As illustrated in Figure 2, latent correlations can
propagate workflow graph paths beyond direct parent–child edges during practical execution, because
the LLM-generated response is an approximation of ground-truth. By generating subtask context
π·|i,a that encompasses all previously verified segments of responses, we can: (a) capture such hidden
dependencies; (b) enforce high-level consistency in terminology, style, and factual content across
subtasks; and (c) mitigate the risk of a model “forgetting” context outside its own conditioning set.

Global-Context Construction With a collection of generated subtask-context {π∀|i,a} (∀|i means
this subtask is completed) over all possible a, a majority voting will invoke to select the best π by

π∗∀|i,a = Select(LLM,Πi), (2)
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where Πi+1 = [π∗∀|i,a; Π1,Π2, · · · ,Πi−1]. That is, the global context up to i+1 (as Ti is completed)
is constructed by concatenating the optimal subtask-context generations. While Select(·) invokes an
LLM, it only needs to output a decision of which candidate to select, rather than generate a lengthy
response. This design significantly improves efficiency and reduces computational cost.

2.2 Verification and Splitting

Because conditional independence among subtask responses rarely holds in practice, SEQCV executes
subtasks sequentially, verifying each response segment before incorporating it into the global context
for downstream tasks. While this guarantees reliability, naive sequential execution can lead to high
end-to-end latency. To improve efficiency without compromising correctness, we introduce two
complementary mechanisms: segment-level cross-model validation and dynamic recursive splitting
of misaligned subtasks. These mechanisms jointly prune incorrect response segments at an early
stage, enabling the system to focus computational resources on reliable content as much as possible.

Cross-Model Validation With regard to generating the j-th segment of subtask Ti, every agent al
evaluates each peer candidate response {Sj|i,1, . . . , Sj|i,L} by returning a binary vote

vj|i,l
(
Sj|i,ℓ

)
=

{
1, if Sj|i,l is coherent and consistent with πi,

0, otherwise,
l = 1, . . . , L. (3)

We then consider each candidate response Sj|i,ℓ reliable for its generator aℓ if it receives at least τn
votes, where τ = ⌈n

2 ⌉/n. In that case, agent aℓ commits R̂j|i,ℓ = Sj|i,ℓ. After verification via the
above Cross-Model Validation, the Subtask-Context Generation is invoked, and each agent continues
segment-based response generation based on its own verified subtask context of its own, rather than
relying on a single “best” response.

If Sj|i,ℓ fails to achieve τn votes, then agent aℓ treats Sj|i,ℓ as unreliable generation and discard
it. This segment-based per-agent validation preserves the diversity of all plausible solutions while
ensuring that no agent propagates an unreliable response.

Dynamic Recursive Splitting If none of the candidate responses for subtask Ti pass the cross-
model validation, we discard all candidate segments and invoke a learned decomposition model
Msplit on the global context Πi. This yields a new directed subgraph

G′ =
(
{T1, · · · , Ti−1, T

′
i ,T

′
i,1, . . . ,T

′
i,ri

, Ti+1, · · · , Tm}, E ′i , Ei
)
, (4)

where each T ′ is a simpler subtask and E ′i encodes newly added internal dependencies. Namely, G is
updated to a new DAG G′ by inserting a small subgraph. To preserve the original ordering of nodes
other than Ti, every parent of Ti (i.e., p ∈ Pa(Ti)) is directed to each new subtask T′(i,·), and each
T′(i,·) is then directed to every child of Ti (i.e., c ∈ Ch(Ti)).

We recompute a topological ordering of G′ and resume sequential execution at the first newly inserted
subtask, processing each T′(i,·) at depth d+ 1 under the same segment-based response generation,
cross-model validation, and splitting. By allocating efforts to correct the misaligned region and
preserving the remainder of the workflow intact, this mechanism bounds the cost of recovery and
prevents global pipeline re-execution. Recursion terminates when all subtasks verify successfully or
when the maximum depth dmax is reached; in the latter case, we fill the original Ti by selecting the
candidate response that achieved the highest total vote count.

3 Experiments

We conduct thorough experiments to evaluate SEQCV by performing extensive benchmark assess-
ments on six standard datasets, comparisons with state-of-the-art (SOTA) reasoning models, efficiency
comparison analyses, and investigations using cross-validation modules and workflow decom-
position modules. Our key findings reveal consistent performance enhancements across various
tasks, with particularly notable improvements in multi-hop reasoning. By comparing with leading
reasoning models, we demonstrate SEQCV’s efficacy as a versatile framework. Additionally, our
efficiency comparison experiments further substantiate SEQCV’s flexibility and efficiency. Finally,
evaluations of critical components such as the DAG structure and decomposition mechanism through
cross-validation modules and workflow decomposition modules verify the necessity of our design.

5



Algorithm 1 Segment-level Generation and Valida-
tion
Require: Task Ti, global context Πi, agent poolA, vote threshold

τ , max round Jmax, max token per round l0
function SEGGEN(Ti, Πi, A, τ, l0, Jmax)

for j = 1 to Jmax do ▷ 1. Each agent generates a full
response segment

for all a ∈ A do
Sj|i,a ∼ Generate

(
LLM, πj−1|i,a, l0

)
end for
#success← 0 ▷ 2. Cross-model validation and

per-agent context update
for all a ∈ A do

votes←
∑

b∈A Verify
(
b, Sj|i,a, πj−1|i,b

)
▷

majority voting
if votes > |A|/2 then

πj|i,a ← [πj−1|i,a;Sj|i,a]
#success← #success + 1

end if
end for
if #success<τ |A| then

return (failure, ∅)
end if
π∗
i ← MAXVOTE({π∀|i,a})

return (success, π∗
i )

end for
end function

Algorithm 2 Running and Dynamic Splitting DAG

Require: DAG G = (T , E), global context Π, depth d, agent pool
A, primary A, vote threshold τ , max depth dmax, split model
Msplit

function RUNGRAPH(G,Π, d)
if d > dmax then

π∗
i ← MAXVOTE({π∀|i,a}) ▷ depth limit: force to pick

best via Equation 2
Πi+1 ← [π∗; Πi]
G[Ti]← Πi+1

return G
end if
ord← TOPOORDER(G)
for Ti in ord do

(status, π∗
i )← SEGGEN(Ti,Πi,A, τ, l0)

if status = success then
Πi+1 ← [π∗; Πi] ▷ append verified segment

else
{T ′

i,1, . . . , T
′
i,r} ←

SPLITGRAPH(Msplit, Ti,Π) ▷ split Ti into simpler subtasks
G ← INSERTSUBTASKS(G, Ti, {T ′

i,j})
return RUNGRAPH(G,Π, d + 1) ▷ recurse on

updated graph
end if

end for
return G

end function

3.1 Experimental Setup

Agentic Tasks We evaluate 8 tasks designed to test creativity, multi-step reasoning, and adherence
to diverse constraints. The detailed task prompts can be found in Appendix E

• NeurIPS Website: The task requires creating a website with four core elements: a navigation
menu, a paper submission section, a schedule display, and speaker profiles. The primary constraint
is that the solution must use only HTML and CSS.

• Lecture Slides Generation: Create a 30-page LaTeX presentation on maximum likelihood estima-
tion with motivation, problem statement, intuitive solution, detailed math equations. It must be
implemented in LaTeX format.

• Pac-Tank Arcade Game: This game combines action and logic, requiring implementation of
player movement, enemy AI, collision detection, a scoring system, and a game-over mechanism. It
must be implemented in Python with Pygame, without sound or external images.

• Electrical-Circuit Puzzle Game: This puzzle involves a drag-and-drop interface, circuit validation,
level progression, visual feedback, and a win condition. The task must be implemented using
vanilla JavaScript with no libraries.

• Snake-Chess Fusion: This hybrid game merges snake mechanics with chess logic, requiring snake
movement, chess piece mechanics, a growth mechanism, strategic gameplay, and a lose condition.
The allowed setup is Python with Pygame and no sound.

• RPG Task Manager: This productivity tool introduces gamified task management through task
CRUD operations, quest progression, character statistics, and save/load functionality. It must be
implemented using HTML, CSS, and JavaScript, with no backend.

• Tetris+Bejeweled Mash-up: The task combines falling-block mechanics with match-3 detection,
line clearing, score tracking, and level difficulty progression. It uses Python with Pygame, again
without sound.

• Family Travel Planning: The goal is to produce a LaTeX-based travel plan including flight details,
accommodation bookings, daily agenda, and cost estimates.

Baselines We compare the generated results against three recent baselines: Flow [38], AFlow [39]
and Atom [41], as well as o4-mini-high [42] via OpenAI interface. We implement SEQCV by using
a mixture of o4-mini and o3-mini to complete each task. For each method, we run three times
and select the best result. For code tasks, we manually check if they implement the necessary
functionality required. For all tasks, we use GPT to evaluate which one is better and identify the core
weaknesses based on the prompt.
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Table 1: Average performance across seven agentic tasks. HR: Hard Requirements, ES: Execution Success, CA:
Constraint Adherence. Our method (SEQCV) substantially outperforms all baselines across all three metrics,
demonstrating superior capability in handling complex creative and interactive tasks.

Method HR ES CA AVG
AFlow 36% 30% 40% 36%
Atom 26% 40% 30% 29%
Flow 56% 70% 40% 58%
o4-mini-high 81% 100% 70% 82%
SeqCV 83% 100% 100% 88%

Performance metrics Each method is evaluated on seven challenging agentic tasks using three
key metrics. Hard Requirements (HR) measures the percentage of task-specific requirements fully
satisfied. Execution Success (ES) represents the percentage of runs completing without major bugs.
Constraint Adherence (CA) quantifies the percentage of runs respecting all specified constraints. We
also compare the running time for different AI agent systems.

3.2 Quantified Results

Each method is executed three times, and the best run is selected for reporting. For code-generation
tasks, we manually verify whether the produced code correctly implements the required functionalities.
For all tasks, GPT-4.1 based evaluation assists in assessing correctness and identifying weaknesses
based on the prompt. All method names are masked during evaluation to ensure a fair comparison.

Table 1 summarizes the average performance across all seven tasks. The results highlight consistent
improvements by our proposed method.

SeqCV achieves the highest total score of 88%, outperforming o4-mini-high (82%) and Flow (58%).
It attains perfect scores on both Execution Success and Constraint Adherence, indicating superior
reliability and precision. Compared to baseline models, SeqCV shows gains of +6% over o4-mini-
high, +30% over Flow, +52% over AFlow, and +59% over Atom. The results further reveal that
SeqCV’s model ensemble combining o4-mini and o3-mini outperforms the stronger individual model.

3.3 Per-Task Analysis

We provide detailed analysis for each agentic task, examining the major weaknesses of different
methods. For each task, we present visual results and analyze the specific failure modes of baseline
methods. We present detailed discussions of three tasks in the main text: NeurIPS Website Devel-
opment, Lecture Slides Generation, and Family Travel Planning. Analyses for the remaining five
tasks (Pac-Tank Arcade, Electrical-Circuit Puzzle, Snake-Chess Fusion, RPG Task Manager, and
Tetris+Bejeweled Mash-up) are provided in Appendix B.

3.3.1 NeurIPS Website Development

The task requires creating a conference website with navigation menu, paper submission section,
schedule display, and speaker profiles, constrained to HTML+CSS format only. Figure 8 shows
representative outputs from different methods.

Weaknesses Analysis AFlow generates an incomplete website missing the navigation menu and
schedule sections. The submission form exists but lacks validation, and the HTML structure is
poorly nested. Atom produces static placeholder content without interactivity, and the minimal
CSS results in an unprofessional appearance. Flow outputs a well-structured HTML document but
with limited styling and an unformatted schedule section. o4-mini-high achieves good layout and
styling, yet omits detailed speaker biographies and required form fields. In contrast, SEQCV fulfills
all requirements with comprehensive HTML structure, polished styling, and functional validation,
though mobile responsiveness can be improved.
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Figure 4: NeurIPS Website Development results. From left to right: outputs from different methods showing
varying levels of completeness and styling quality.

Figure 5: Lecture Slides Generation results. Sample pages showing varying levels of completeness, mathematical
rigor, and pedagogical structure across different methods.

3.3.2 Lecture Slides Generation

The task requires creating a comprehensive 30-page LaTeX presentation on maximum likelihood
estimation suitable for a 2-hour research-level lecture. The slides must include motivation, problem
statement, intuitive solutions, detailed mathematical derivations, and be self-contained. Figure 7
shows sample slides from different methods.

Weaknesses Analysis AFlow produces only 13 slides focusing on two distributions, lacking
variety, intuition, and real-world examples. Atom creates 14 slides with shallow coverage, incomplete
derivations, and placeholder text, omitting key theoretical properties and motivation. Flow delivers
a full 30-slide deck with strong theory but no visual aids or case studies, limiting engagement.
o4-mini-high provides 31 slides with solid fundamentals but lacks depth, numbering, and advanced
topics such as EM or logistic regression. SEQCV generates a well-structured 30+ slide presentation
with complete derivations, examples, and practical insights, though it would benefit from more visuals
and intermediate mathematical steps for clarity.

3.3.3 Family Travel Planning

This task generates a NeurIPS 2025 travel itinerary with flight details, accommodation bookings,
daily agenda, and cost estimates in LaTeX format. Figure 6 shows the generated itineraries.

Weaknesses Analysis AFlow omits flight times and airline details, provides vague accommodations,
and contains calculation errors. Atom outputs placeholder bookings and unrealistic pricing with
minimal agenda content. Flow includes detailed activities and realistic bookings but has LaTeX
compilation issues from missing packages and faulty table syntax. o4-mini-high presents coherent
content but lacks detailed schedules and a complete cost breakdown including taxes and contingencies.
SEQCV produces a complete, well-formatted LaTeX document with accurate travel details, realistic
budgeting, and professional presentation.
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Figure 6: Family Travel Planning showing LaTeX-formatted itineraries with flight details, accommodations,
daily schedules, and budget breakdowns.

Table 3: Average running time (seconds) of SEQCV compared to baselines over seven tasks.

Method slides nips-web pac-tank snake-chess task-RPG tetris-bejew travel avg
o4-mini-high 61s 47s 51s 65s 40s 59s 58s 54.43s
AFlow 202s 242s 170s 140s 115s 139s 118s 160.86s
Flow 1083s 354s 330s 1539s 571s 560s 218s 665.00s
Atom 464s 476s 533s 556s 668s 533s 428s 522.57s
SEQCV (Ours) 255s 173s 160s 285s 225s 217s 205s 217.14s

3.4 Misalignment Analysis

Table 2: Controlled comparison iso-
lating the effect of inter-agent mis-
alignment. Sequential conditioning im-
proves accuracy by reducing depen-
dency conflicts across agents.

Configuration Score (%)
Parallel (baseline) 52.3
Sequential only 58.4

To directly measure the effect of misalignment reduction, we
conducted a controlled experiment isolating the impact of our
sequential conditioning mechanism. We used the same work-
flow produced by a parallel baseline method and modified only
the execution mode: the parallel execution was replaced with
sequential conditioning, while all other components (such as
cross-verification and recursive splitting) were disabled. Thus,
the only difference between the two settings was whether sub-
tasks were executed concurrently or sequentially conditioned
on prior outputs. Any performance difference can therefore be
attributed to reduced inter-agent misalignment.

This controlled setup demonstrates that sequential conditioning
mitigates inter-agent misalignment arising from dependency inconsistencies, resulting in measurable
accuracy gains.

3.5 Running Time Efficiency

As shown in Table 3, SEQCVachieves an average runtime of 217 s across eight representative tasks,
corresponding to a 2.5× speed-up over Flow (665 s) and a 2.1× speed-up over Atom (523 s). On
the six most computationally intensive tasks (slides, nips-web, pac-tank, snake-chess, task-RPG and
tetris-bejew), SEQCVreduces execution time by 51%–82% compared to Flow, shaving more than
half off runtime. Although parallel pipelines can process multiple sub-tasks concurrently, they incur
frequent misalignment corrections that erode effective throughput. By adopting a carefully optimized
sequential strategy, SEQCVavoids these costly corrections and delivers higher end-to-end throughput
on complex tasks.

4 Related Work

LLM-agent Systems The emergence of large language models (LLMs) has revolutionised agent
capabilities, reshaping their role in artificial intelligence and expanding the scope of their applications
[21]. With the rising adoption of LLM as an agent in the system, LLM-agent systems show great
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potential in automation task execution [2, 3, 4] across a variety of domains, such as such as software
development [5, 6, 7], scientific discovery [8, 9, 10], and human behaviour simulation [11, 12, 13].
The capability of LLM-agent can be further augmented with external tools and APIs [14, 15, 16],
enabling a wide use in a diversity of scenarios and benchmarks [17, 18, 19, 20, 43, 44].

To enhance the reasoning capabilities of LLMs, complex objectives are typically decomposed into
intermediate reasoning steps, including chain of thought (CoT) [27], ReAct [28], tree of thought
(ToT) [29], and Reflexion [30]. Single-agent implementations of this approach include AutoGPT
[31], BabyAGI [32], LangChain [33], and Llama-index [34]. Decompositing a high-level task into
subtasks as a structured graph can further improve coordination and robustness of the task execution,
both in single-agent settings (e.g., Graph of Thought (GoT) [35], LangGraph [36]) and in multi-agent
settings (e.g., GPTSwarm [37], Flow [38], AFlow [39], AgentPrune [40], AoT [41]).

LLM-agent Systems Orchestration With regards to the orchestration of agents, a branch of
approach applies a conversational collaboration and human-in-the-loop interaction. Examples include
AutoGen [2], Reflexion [30], DSPy [45], CAMEL [4], and Voyager [46], which enable multi-
round dialogues, reflective reasoning, and declarative composition for improved coordination [47].
However, this approach can be less effective in multi-agent systems such as AG2 [2] and ChatDev,
where dialogue breakdowns often limit performance. Alternatively, role-based orchestration assigns
predefined agent roles and structured workflows, as demonstrated by MetaGPT [3], which uses
standard operating procedures (SOPs) to coordinate LLM agents on software development tasks.
Instead of a predesigned pipeline, modular and dynamically executable workflows offer improved
performance and flexibility. Systems such as GPT-Swarm [37], Flow [38], AutoFlow [48], and
Cut-the-Crap [40] adopt DAG-based or communication-optimized designs to enable fault-tolerant
and reconfigurable execution. Further enhancements in adaptability are achieved through graph-based
agent communication protocols [49] and reinforcement learning-based role assignment strategies [50].

Task Verification Alongside Orchestration Alongside the orchestration, task verification is es-
sential for ensuring the result quality and system robustness in LLM-agent workflows [1]. Existing
techniques include self-consistency voting [51], reflective refinement [30], LLM-as-a-judge eval-
uation [52], verifier agents [53], and token-level consistency checks [1]. Hierarchical validation
frameworks further incorporate syntactic, semantic, and goal-specific checks [38], while arbitration
schemes resolve conflicts via voting or consensus [47]. Additional innovations include progressive
refinement loops [54], structured debate or voting-based decision making [40], dual-layer validation
pipelines [55], dynamic fallback completions [56], and role reassignment for failing agents [57].
Systems typically terminate when retry limits are exceeded [54], semantic drift is detected [1], or
insufficient agent participation occurs [38]. Recovery mechanisms range from returning partial
results to invoking fallback models or recursive decomposition [3, 37]. However, limited work has
systematically compared the efficiency and token cost of these task verification methods.

5 Conclusion

Inter-agent misalignment is a critical factor contributing to the failure of multi-LLM-agent systems.
In this study, we investigated its underlying cause. Through practical examination of state-of-the-
art LLM-agent systems that employ graph-based orchestration, we identified the violation of the
conditional independence assumption as the root issue. This assumption, which requires agents to
generate ground-truth responses at each step, can NOT be satisfied in practice due to the inherent
limitations of current LLMs. To address this, we proposed SEQCV, a framework that enhances output
reliability via sequential execution and swift verification. SEQCV further introduces a recursive
splitting mechanism to decompose tasks into smaller, manageable subtasks aligned with the LLMs’
capabilities. Unlike existing methods, SEQCV directly concatenates verified responses without requir-
ing full-context re-evaluation, significantly reducing token costs and improving system efficiency. We
evaluated SEQCV on both standard benchmarks and real-world user tasks, demonstrating consistent
improvements over existing state-of-the-art approaches in both accuracy and efficiency.
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A Limitation

By design, SEQCV linearizes the task graph G = (T , E) into a directed acyclic sequence of subtasks.
While this design suits many content generation and document authoring scenarios, it cannot naturally
express cyclic or recurrent dependencies among agents. In domains such as continuous control, multi
step planning with feedback loops, or systems where subtasks iteratively refine one another, a purely
acyclic representation becomes restrictive. Although one could in principle introduce an explicit time
index t to convert loops into a directed acyclic graph, this workaround often results in cumbersome
encodings. More flexible architectures, such as OpenAI’s SwarmAgent or general message passing
frameworks, may be better suited to tasks that require intrinsic cyclic structures.

SEQCV conditions each subtask Ti on the full history of verified responses. In practice, large scale
tasks can quickly exhaust an LLM’s context window. While a hierarchical summarization step
can compress earlier segments into a shorter representation, summarization inevitably introduces
information loss and cannot guarantee preservation of all context necessary for downstream subtasks.
As model context size limits increase, this constraint will lessen. Until then, careful trade offs between
context fidelity and sequence length are required, and some applications may remain infeasible.

Our method fails to provide benefits for reducing inter agent misalignment only in a specific type
of wide graph. This occurs when each independent branch (1) has no incoming edges from outside
the branch (that is, no parent nodes pointing into it), and (2) has no connections to nodes in other
branches. In such a strictly isolated structure, there is little opportunity for our method to reduce inter
agent misalignment, as no misalignment exists.

B More Results on Agentic Tasks

Real users expect autonomous assistants to handle diverse, multi-step requests ranging from struc-
tured document synthesis to interactive code generation and personalized logistics planning with
demonstrating strong domain expertise and consistently high-quality output. To evaluate whether
SEQCV meets these expectations, we design eight end-to-end agentic tasks spanning:

• Long-text generation & structure (e.g., self-contained lectures, multi-page itineraries),

• Multi-modal code synthesis (e.g., LaTeX, HTML/CSS/JS, Python/Pygame),

• Dynamic reasoning & planning (e.g., game AI, resource management, travel logistics), and

• Cross-domain adaptability (e.g., from mathematical instruction to family travel planning).

These tasks are carefully crafted to probe the core competencies of a general-purpose agent system.
The eight tasks cover a wide range of domains with different output modalities:

• Lecture-slide generation: 30-page LaTeX slide for a two-hour lecture about maximum-
likelihood estimation for research students.

• Conference website design: HTML/CSS site for NeurIPS 2025.

• Pac-Tank arcade game: Python/Pygame implementation merging gaming rules from both
Pac-Man and Tank City.

• Electrical-circuit puzzle game: Browser-based drag-and-drop interface using vanilla
JavaScript.

• Snake-Chess fusion: Real-time Python/Pygame game fusing the gaming rules of Snake
with simplified chess tactics.

• RPG task manager: A desktop-style “RPG” mapping to-do items to quests (HTML/C-
SS/JS).

• Tetris+Bejeweled mash-up: Python/Pygame game fusing the gaming rule of Match-3 and
line-clearing game.

• Family travel planning: LaTeX-formatted itinerary for NeurIPS 2025, including flights,
lodging, daily agenda, and cost estimates.
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Baselines We implement SEQCV by using a mixture of o4-mini and o3-mini to complete each task.
We compare the generated results against three recent baselines: Flow [38], AFlow [39] and Atom
[41], as well as comparing to a plain Q&A results from o4-mini-high [42] via OpenAI interface. In
each of the following subsections, we first present the prompt for the task description, followed by
the performance results of SEQCV and the baselines.

Evaluation For each method, we run three times and select the best result. For code tasks, we
manually check if they implement the necessary functionality required. For all tasks, we use GPT
to evaluate which one is better and identify the core weaknesses based on the prompt. All method
names are masked to ensure a fair comparison. After that, we will further manually check whether
the weaknesses listed are correct.

Overall, our method significantly outperforms existing baselines. Notably, the framework enhances
the model’s reasoning ability with a mixture of o4-mini and o3-mini, it achieves even better perfor-
mance than o4-mini-high.

B.1 Lecture Slides - Maximum Likelihood Estimation

Task 1: Lecture Slides

Lecture slide:
I am a lecturer. I am teaching the machine learning course for research students. Please
generate lecture slides for maximum likelihood estimation.

Note that:
1. The lecture duration is 2 hours, so we need to generate 30 pages.
2. The slides should include motivation, problem, intuitive solution, and detailed math

equations.
3. Please make sure the lecture is well self-contained.

Output Format: LATEX code

Figure 7: Illustration of lecture slides.

AFlow This slide deck covers the essentials of maximum likelihood estimation: it begins with
a title and outline that includes motivation, problem statement, intuitive solution, mathematical
formulation, examples for Bernoulli and Normal distributions, properties, applications, challenges,
and a conclusion. It includes log-likelihood definitions and derivations for Bernoulli and Gaussian
distributions, with a brief discussion of asymptotic properties. However, the deck includes only
13 topical slides, which are far fewer than the 30 required resulting in insufficient coverage for a
two-hour lecture. The content is limited to just two examples and omits other important distributions
such as Poisson, Exponential, and Gamma. Furthermore, while mathematical formulas are included,
intuitive explanations and real-world applications are sparse, making the slides less accessible to
students who benefit from contextual learning.
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Table 4: Summary of Major Weaknesses in Lecture Slide Implementations (MLE)
Method Major Weakness
AFlow Covers only 13 slides, far short of the required 30. Focuses on just two

distributions (Bernoulli and Normal), omitting others like Poisson or
Exponential. Lacks sufficient intuitive explanation and applied context.

Atom Provides only 14 slides with limited derivations. Contains placeholders
and lacks worked examples. Does not clearly explain when or why to
use MLE.

Flow While it meets the 30-slide requirement and covers a wide range of MLE
topics, it includes minimal discussion of applied use cases and gives only
a brief treatment of model limitations.

o4-mini-high Produces a complete slide count but with shallow treatment of advanced
topics. Omits logistic regression and EM algorithm, and some slides are
underdeveloped with limited explanation.

SEQCV Offers the broadest distribution coverage and includes case studies and
computational methods. Minor gaps include occasional skipped steps in
derivations.

Atom This version opens with a “Comprehensive Guide” framing and includes a standard table
of contents: Introduction, statistical foundations, intuition, mathematical foundations, generalized
MLE, properties, computation, applications, and conclusion. It defines MLE formally and includes a
placeholder for an example graph. Nonetheless, it contains only 14 slides and remains too brief to fill
a two-hour session. The presentation does not include detailed explanations and lacks any worked
examples beyond a placeholder. Only the basic likelihood function is shown while omitting important
and profound concepts. It also does not provide a discussion of why or when MLE should be used,
leaving a gap in forming good motivation for learning or practical guidance.

Flow The Flow output delivers a complete 30-slide deck that methodically addresses all major
topics. It begins with motivation and background, followed by a formal problem statement and
worked examples for Bernoulli, Gaussian, and exponential family distributions. It further discusses
asymptotic properties such as consistency, normality, and efficiency, and explores Fisher informa-
tion, the Cramér–Rao bound, and the invariance property. Numerical optimization techniques like
Newton–Raphson and EM algorithms are also introduced, as are extensions to models like logistic
regression. However, the deck relies almost entirely on text and equations. There are no figures or
diagrams to enhance intuition. Additionally, while logistic regression is mentioned, other real-world
case studies are largely absent, and topics like model misspecification and robust alternatives to MLE
are only briefly touched upon.

o4-mini-high This submission produces a concise 31-slide deck that introduces MLE fundamentals
including motivation, mathematical formulation, and properties. It defines the likelihood and log-
likelihood functions and walks through closed-form solutions for Bernoulli, Gaussian, and Poisson
distributions. The slides also touch on asymptotic properties and basic computational techniques like
Newton–Raphson and MAP. That said, the deck has several shortcomings. It does not include slide
numbers, which makes referencing and navigation difficult. The coverage of example distributions,
while accurate, is shallow and does not extend to more advanced topics such as the EM algorithm
or regression models. Additionally, many slides are sparsely populated, with only a formula and
minimal surrounding explanation.

SEQCV Our method generates a richly detailed lecture deck that includes a well-organized struc-
ture beginning with an introduction and motivation, followed by a clear problem statement, intuitive
explanation, and thorough step-by-step derivations. These derivations span a wide range of distribu-
tions including Normal, Bernoulli, Exponential, Poisson, and Gamma. The presentation also includes
applied case studies, computational strategies like Newton–Raphson and EM, and discussions of
robustness, limitations, and practical considerations such as logistic regression and comparisons with
Bayesian methods. It concludes with a Q&A slide and reading suggestions. While comprehensive,
the slides would benefit from the inclusion of intuitive visual aids such as likelihood surface plots or
EM iteration diagrams to help learners better grasp abstract concepts. Moreover, although the slide
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content is extensive, some derivations skip intermediate steps, which could be confusing for students
less familiar with calculus-based proofs.

Overall Among the five methods evaluated, Flow and SEQCVare the most successful in meeting
the task requirements. Flow achieves the target length with a precise 30-slide structure and provides a
comprehensive theoretical treatment, yet it lacks visual illustrations and concrete, practical applica-
tions. SEQCVcovers the broadest scope, including advanced material and practical implementation
tips, and is well-suited for a research-level audience. However, it would benefit from a clearer visual
structure and improved use of diagrams. AFlow and Atom show promise with strong outlines and
partial derivations but fall significantly short in slide count and content depth. o4-mini-high, although
organized and conceptually accurate, is too minimal in detail.

B.2 Website Development – NeurIPS 2025

Task 2: NeurIPS2025 Website

I want to create a website for the following conference:

• Conference Name: The Thirty-Ninth Annual Conference on Neural Information
Processing Systems (NeurIPS 2025)

• Date: Tuesday, Dec 2nd through Sunday, Dec 7th, 2025
• Location: San Diego Convention Center, California, United States
• Organizer: Neural Information Processing Systems Foundation

Please generate a detailed website structure and content for this conference. Ensure the
content is professional, clear, and suitable for an international academic conference.

Output Format: HTML and CSS

Figure 8: Illustration of website Development.

AFlow The content is too short, and it does not meet the standards of the international academic
conference.

Atom The Atom implementation only displays schedules for December 2nd and 3rd, omitting any
other relevant dates. Furthermore, the provided content lacks sufficient depth and detail to meet the
standards expected of an international academic conference.

Flow Flow meets the basic task requirements but fails to generate specific dates for each day as
specified in the prompt. Additionally, the use of the designated key above is non-functional and
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Table 5: Summary of major weaknesses in schedule generation implementations
Method Major Weakness
AFlow Content lacks the depth and quality expected for an international aca-

demic conference.
Atom Displays only schedules for December 2nd and 3rd, and the content lacks

the depth and quality expected for an international academic conference.
Flow Although it meets basic task requirements, it fails to generate specific

dates for each day, includes a broken key that triggers a page request,
and presents insufficient content for academic standards.

o4-mini-high No major weakness; all task requirements are fulfilled with appropriately
formatted and complete academic scheduling content.

SEQCV No major weakness; generates a correct and complete schedule aligned
with international academic standards.

instead triggers an unintended page request. The overall content is not sufficiently detailed and does
not align with the quality expected for international academic events.

o4-mini-high This version successfully fulfills all the outlined task requirements. The schedule is
presented as expected and meets the standard for academic presentation formatting.

SEQCV Similar to o4-mini-high, SEQCVmeets all the specified task requirements, generating the
schedule and content in a manner appropriate for the intended academic context.

Overall While Atom and Flow demonstrate partial task completion, both suffer from either incom-
plete date coverage or inadequate content quality. In contrast, o4-mini-high and SEQCVfully satisfy
the prompt’s demands and produce output suitable for academic presentation.

B.3 Game Development – Pac-Man fuses Tank City

The generation results are presented in Figure 9.

22



Task 3: Pac-Man fuses Tank City

Develop a single-player game that fuses mechanics from Pac-Man and Tank City.

The player controls a Pac-Man-like character navigating a maze, collecting pellets for points.
Enemy tanks act as ghost-like chasers, actively pursuing the player using basic AI pathfinding.

Enemy tanks can shoot bullets in four directions. Unlike traditional bullets, these bullets do
not disappear—instead, they remain in the maze as collectible pellets. The player must guide
Pac-Man to eat as many of these bullets as possible to gain points and avoid tank power-ups.

If bullets are left uncollected, enemy tanks can absorb them to accelerate their shooting rate,
making them more dangerous. Tanks can also switch between patrol and chase modes to
track the player.

The player can collect special items that temporarily allow Pac-Man to eat enemy tanks for
bonus points.

The game must support:
• Maze-based movement and pellet collection
• AI-controlled enemy tanks with patrol and chase behaviors
• Enemy tank shooting mechanics with persistent bullets
• Tank interaction with bullets (absorb and power-up)
• A GUI (using Pygame) showing the maze, player, enemies, pellets, and bullets
• Smooth animations and clear visual feedback

Sound effects are not required.

Output Format: Python

Figure 9: Illustration of Pac-Man fuses Tank City.

AFlow failed to meet the core requirements of the task. The game only implemented a few basic
functions and lacked critical gameplay elements. The maze was not successfully generated, enemy
tanks did not fire bullets, and the tanks remained stationary instead of exhibiting tracking or patrol
behaviors.

Atom also did not fulfill the task objectives. The output consisted of an empty maze without any
interactive elements. There was no player character, no pellets or bullets to collect, and no tanks
present in the scene. As a result, the game was entirely non-functional.

Flow partially addressed the requirements. In this version, tanks were able to track the player using
basic AI, but they could not shoot bullets. This left a significant portion of the gameplay mechanics
such as persistent bullets and their interactions unimplemented.
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Table 6: Summary of major weaknesses in pac-man + tank city fusion game implementations.
Method Major Weakness
AFlow Incomplete implementation; maze generation failed, tanks remain static,

and no bullet mechanics or tracking behavior is present.
Atom Game is non-functional; only an empty maze is rendered with no player,

tanks, pellets, or bullets. Core gameplay elements are entirely missing.
Flow Enemy tanks can track the player but cannot shoot bullets, leaving out

key mechanics such as persistent projectiles and bullet interactions.
o4-mini-high Players and tanks do not follow maze paths and can move freely across

the screen; bullets vanish on hit instead of persisting, and patrol logic
breaks at screen edges.

SEQCV Mostly fulfills task requirements but suffers from flawed movement
controls—arrow key inputs only move the player between corridor ends,
preventing precise navigation.

o4-mini-high included several game components but deviated substantially from the task expec-
tations. When bullets hit the player, the player would die immediately, but the bullets would not
remain in the maze as collectibles. The maze existed visually but did not function as a constraint
for movement. Both the player and tanks could move freely across the screen without following the
maze paths. Additionally, enemy patrols disappeared off the edge of the screen, and bullets lacked
the special interactions specified in the task.

SEQCV came closest to satisfying the task requirements. It included the necessary components,
but player movement within the maze was flawed. Using the arrow keys moved the player from one
end of a corridor to the other without allowing accurate navigation to specific positions, making it
difficult to control the character effectively.

Overall, among the five methods evaluated, only SEQCVimplemented the required features to a
meaningful extent. However, it still exhibited critical navigation issues within the maze, preventing
precise control and detracting from the gameplay experience.

B.4 Web Game Development - Puzzle Game

Task 4: Puzzle Game

Create a casual browser puzzle game where players build electrical circuits from components.

Mechanics: Drag-and-drop resistors, capacitors, and switches onto a grid to complete a
target circuit.
Levels: 20 puzzles of increasing difficulty.
Scoring: Based on correctness and build time.
Tech: HTML5 + CSS3 + vanilla JavaScript.

Output Format: HTML5 + CSS3 + vanilla JavaScript

Figure 10: Illustration of Puzzle Game.

24



Table 7: Summary of major weaknesses in puzzle game implementations.
Method Major Weakness
AFlow Incomplete implementation with no grid, drag-and-drop functionality, or

playable levels; the game cannot be initiated.
Atom Entirely non-functional: lacks grid, interactivity, and level structure;

button presses yield no response.
Flow No major weakness; the game is playable, visually clear, and meets the

task requirements.
o4-mini-high No major weakness; provides a clean, functional interface with color-

coded components and full gameplay.
SEQCV No major weakness. A minor issue is that that text slightly overlaps.

AFlow AFlow did not meet the task requirements. No playable game was produced, and the
implementation appeared incomplete and overly simplistic. The interface only listed the names of the
components resistors, capacitors, and switches, without any drag-and-drop functionality. Furthermore,
there was no grid layout, and the game could not be initiated. Level progression was also entirely
missing.

Atom Atom also failed to deliver a working puzzle game. The page lacked a grid and the basic
mechanisms required to begin gameplay. No levels were implemented, and features such as a timer or
an answer validation button were absent. Additionally, pressing buttons on the screen did not trigger
any response, rendering the game unplayable.

Flow Flow fulfilled the task requirements and successfully produced a playable puzzle game. The
game interface was visually appealing, and different colors were used to represent resistors, capacitors,
and switches.

o4-mini-high The o4-mini-high version also met the task requirements and presented a fully
functional game. The interface was clean and attractive, and the components were color-coded to
enhance visual clarity.

SEQCV SEQCVproduced a playable game that satisfied the task criteria. A noteworthy enhance-
ment in this version was the inclusion of a hint system, which added depth and improved gameplay.
Nevertheless, the drag-and-drop interaction lacked polish, when components were placed on the grid,
they retained their original labels and overlapped.

Overall In summary, AFlow and Atom failed to deliver playable games and did not fulfill the
project requirements. Flow, o4-mini-high, and SEQCVmanaged to create playable games, though
each had distinct shortcomings. Among these, Flow, o4-mini-high, and SEQCVstood out as the most
successful implementations in terms of functionality and gameplay experience.
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B.5 Game Development – Snake Fuses Chess

Task 5: Snake Chess

Develop a real-time arcade game that merges Snake with simplified chess tactics.

Player: Controls a “snake” that grows by eating apples.
Chess Pieces: Randomly spawning pawns, knights, and bishops move following their rules.

Mechanics:
1. If the snake’s head collides with an apple → length+1, score+10.
2. If the snake’s head lands on a chess piece’s square → capture it: score + piece value

(pawn=5, knight=10, bishop=15); snake doesn’t grow.
3. Knights can shoot bullets. When the player is shot → length–1. If length = 0 →

game over.
4. Bullets disappear when they hit the edges.
5. Chess pieces move one step every second; if they collide with the snake’s body →

game over.
6. Board wraps around edges.
7. No extra image files.

UI: Pygame window showing the grid, snake, apples, chess pieces, current score, and “next
piece spawns in Xs.”

Output Format: Python

Figure 11: Illustration of Snake Fuses Chess.

AFlow The AFLow implementation suffers from critical omissions. Although three chess pieces
appear at the start of the game, no further pieces spawn, rendering the “next piece spawns in Xs”
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Table 8: Summary of major weaknesses in snake-chess implementations.
Method Major Weakness
AFlow Fails to spawn additional chess pieces and does not execute piece move-

ment or self-collision detection, leaving key mechanics inactive after
initial setup.

Atom Omits critical mechanics i.e., boundary and knight projectiles.
Flow Suffers from unmanageable speed, broken bullet mechanics, and lacks

dynamic chess piece behavior, severely compromising playability.
o4-mini-high No major weakness; implements all core features including wraparound,

per-second movement, scoring, collisions, and UI elements correctly.
SEQCV Core gameplay mechanics are solid and complete, but the missing back-

ground grid detracts from spatial clarity during play.

indicator non-functional. Additionally, pawns, knights, and bishops remain static, failing to move at
one-second intervals as specified. While the apple collection mechanics work correctly, growing the
snake and adding to the scor, self-collision does not lead to a game over, which deviates from the
core rules of snake gameplay.

Atom Atom handles apple and piece scoring accurately, awarding points appropriately for apples
and captured pieces. However, it lacks two fundamental features: edge wrapping and knight projec-
tiles. When the snake crosses the game board’s boundary, it disappears instead of wrapping around to
the opposite side. Although knights spawn and move correctly, they never shoot bullets, omitting an
important gameplay hazard.

Flow The Flow variant struggles significantly with game pacing and bullet behavior. The snake’s
movement speed is excessively high, making the game difficult to control. Furthermore, bullets
emerge from off-screen positions and instantly end the game upon impact, rather than subtracting a
single segment of the snake’s length. Like AFLow, Flow fails to implement the per-second movement
of chess pieces and does not spawn any additional pieces beyond the initial set.

o4-mini-high This implementation meets the full range of required mechanics. It correctly handles
snake growth and scoring upon apple consumption and awards appropriate points for capturing chess
pieces without increasing the snake’s length. Chess pieces move at one-second intervals and spawn
at regular timed intervals. The snake wraps around board edges, self-collision results in game over,
and knights shoot bullets that reduce the snake’s length by one segment. Bullets also disappear upon
reaching the edge of the board. The UI includes both a score display and an accurate “next piece in
Xs” timer.

SEQCV This version adheres to all specified mechanics except for a missing visual grid on the game
board. Despite the absent background layout, the game successfully incorporates timed chess piece
spawning, per-second piece movement, accurate wraparound behavior, and self-collision detection.
Apples cause snake growth and score increase, and chess pieces are captured correctly without length
gain. Knight bullets correctly subtract one segment from the snake and vanish when they reach the
screen edge.

Overall AFLow and Flow both fail to implement timed chess piece behavior and do not handle
self-collision correctly. Flow is further hindered by erratic game speed and flawed bullet mechanics.
Atom handles scoring and piece motion but omits crucial features like edge wrapping and knight
attacks. In contrast, o4-mini-high and SEQCVsuccessfully deliver the intended Snake-Chess hybrid
gameplay. The only deviation in SEQCVis the lack of a grid background, while o4-mini-high satisfies
every requirement, making these two implementations the most faithful to the design prompt.
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B.6 Tool Development - Task Manager RPG

Task 6: Task Manager RPG

Build a desktop “RPG” where user’s real-world todo items become in-game quests.
Features:
1. User adds a task → appears as a “quest” on the map.
2. Completing the task (marking done) triggers battle simulation against a monster.
3. Success grants XP and loot; failure reduces HP.
4. Shop uses gold to buy potions that restore HP.
5. Audios are not needed
6. No extra image files

Output Format: HTML+CSS+JS

Figure 12: Illustration of Task Manager RPG.

Table 9: Summary of major weaknesses in task manager RPG implementations.
Method Major Weakness
AFlow Task input is non-functional, no tasks appear after submission, and no

RPG features are triggered, likely due to missing event bindings or state
logic.

Atom Shares the same failure as AFlow: the interface accepts input but fails to
reflect changes or create quests, indicating broken UI-state integration.

Flow Allows task submission and rendering, but the “Complete” button has no
effect which battle logic and stat progression are entirely unimplemented.

o4-mini-high No major functional weakness; all core features are present. However,
styling is minimal, and the UI lacks polish compared to alternatives.

SEQCV No major functional weakness; all gameplay mechanics operate correctly.
Minor improvements could be made in dynamic cost modeling and
transport detail.

AFlow The AFlow implementation fails at the most basic level: when a task is entered and the
"Add Task" button is clicked, no quest appears on the map. There is no visual or console feedback,
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and the underlying application state remains unchanged. This indicates that essential wiring, such
as input bindings, a task-tracking array, or event listeners is likely missing. As a result, the key
functionality of mapping tasks to quests and triggering RPG mechanics upon completion is completely
unimplemented.

Atom Atom’s behavior closely mirrors that of AFlow. Although the UI displays an input field and
a button, clicking “Add Task” does not result in any visual change or state update. No quests are
rendered, and none of the game mechanics can proceed. Like AFlow, this suggests a disconnect
between user input and the internal quest-tracking logic which possibly due to incomplete event
handling or missing state integration.

Flow The Flow version succeeds in registering new tasks: clicking “Add Task” correctly appends
the quest to the UI list. However, the quest’s “Complete” button is non-functional. No battle modal is
triggered, and RPG mechanics such as XP gain, HP loss, or gold rewards do not respond to quest
completion. The core gameplay loop is thus partially implemented, but the combat simulation and
stat updates are missing, likely due to a lack of handlers or modal logic associated with quest state
changes.

o4-mini-high This version delivers a complete and fully functional implementation of all six
specified features. Tasks are correctly transformed into quests on the map; completing a task launches
a battle interface; outcomes appropriately modify XP, HP, and gold balances; and a shop enables gold
to be exchanged for potions. While the user interface is visually basic, it is coherent and operational.
Every critical user interaction performs as intended.

SEQCV SEQCVmatches the functionality of o4-mini-high but adds refinements. It correctly maps
user tasks to quests, triggers polished battle dialogs upon completion, and manages game state updates
across XP, HP, and gold. The shop is responsive and well-integrated. Visually, the interface is more
polished and consistent than o4-mini-high, with smoother transitions and more intuitive dialogs.

Overall Among the five methods evaluated, only o4-mini-high and SEQCVsuccessfully implement
the full RPG task manager experience. Flow partially satisfies the requirements by registering tasks
as quests but fails to connect this to the rest of the gameplay loop. Both AFlow and Atom break
down at the input stage, unable to transform tasks into game objects due to likely omissions in event
binding or state logic.

In terms of prompt adherence and effectiveness:

Feature completeness: SEQCV≈ o4-mini-high > Flow > Atom ≈ AFlow.

UI/UX quality: SEQCV> o4-mini-high > Flow > Atom / AFlow (not assessable).

The two fully functional solutions indicate proper use of event-driven design and state management,
whereas the others likely suffer from poor component integration or uninitialized logic.

B.7 Game Development – Tetris Fuses Bejeweled

Task 7: Tetris-fuses Bejeweled

Develop a game that fuses Tetris and Bejeweled mechanics. This game needs to add keyboard
control function. Falling tetrominoes should lock into a grid and transform into colored
gems. The game must support both Tetris line-clearing and Bejeweled match-3 clearing,
triggering chain reactions and bonus points. Include a GUI (using a framework like Pygame)
that displays the game grid, current score, and next tetromino preview, along with smooth
animations. No sound effects are needed.

Output Format: Python

AFlow The AFlow implementation correctly spawns and locks tetrominoes into the grid, but it
omits any “game over” logic: new pieces continue appearing and stacking beyond the top boundary,
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Table 10: Summary of major weaknesses in game implementation.
Method Major Weakness
AFlow Omits “game over” logic and never triggers Bejeweled-style match-

3 eliminations which pieces stack beyond the top and identical gems
remain static.

Atom Fails to launch entirely (crashes or hangs on startup), preventing any
assessment of gameplay mechanics or GUI.

FLow Overly permissive elimination logic clears non-contiguous or unintended
clusters, producing unpredictable chain reactions.

o4-mini-high Gameplay and animations are smooth, but the score display is truncated
or inconsistently updated during combos, undermining point tracking.

SEQCV Core mechanics work correctly.

violating the core Tetris constraint. Moreover, the Bejeweled match-3 mechanic never activates,
adjacent gems of the same color remain static, so no eliminations or chain reactions occur.

Atom Atom’s build fails to launch: on startup the application either crashes or hangs indefinitely,
preventing any gameplay. As a result, none of the required features that tetromino locking, line
clearing, gem transformation, GUI display, or keyboard controls, can be evaluated.

Flow FLow implements both line-clearing and match-3 behaviors, but its elimination logic is
overly permissive: it sometimes clears non-contiguous or unintended clusters, wiping out gems that
aren’t directly matched. This overreach causes unpredictable chain reactions and undermines player
strategy.

o4-mini-high Among the five variants, o4-mini-high delivers the smoothest play experience: falling,
locking, line clears, and match-3 mechanics all function correctly, and keyboard inputs are responsive,
with fluid animations. However, its score display is truncated or inconsistently updated during
combos, preventing players from accurately tracking points and bonuses.

SEQCV SEQCVsuccessfully integrates both Tetris and Bejeweled rules, with correct grid locking
and match-3 elimination. Visually it matches the other implementations.

Overall None of the five implementations fully satisfies the original specification. Atom doesn’t
run, offering zero utility. AFlow lacks both game-over enforcement and gem clearance. FLow’s
match detection is overactive, compromising game integrity. o4-mini-high and SEQCVdelivers solid
mechanics and visuals yet misses a robust scoring system.
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B.8 Family Travel Plan

Task 8: Travel Plan

I need to attend the NeurIPS 2025 conference.

Dates: Tuesday, December 2nd through Sunday, December 7th, 2025.
Location: San Diego Convention Center, California, United States.

I want to bring my husband and two children with me. We will be departing from Beijing.
Please help me plan:

1. Flights: Round-trip options from Beijing to San Diego, considering family-friendly
airlines and layovers.

2. Hotel: Family-friendly accommodations near the convention center, preferably with
kitchenette or adjoining rooms.

3. Daily trip plan: Sightseeing and activities suitable for children, balanced with my
conference schedule.

4. Cost estimate: Total budget breakdown for flights, hotel, meals, local transportation,
and activities.

Output Format: LaTeX itinerary plan

Figure 13: Illustration of Travel Plan.

Table 11: Summary of major weaknesses in itinerary methods
Method Major Weakness
AFlow Lacks specific flight schedules, concrete daily activity times, and detailed

budget breakdowns.
Atom Omits key travel details and lacks transparency in airfare and meal cost

estimates.
Flow Inflates the total budget without justification.
o4-mini-high Includes inconsistent pricing and misalign with the conference schedule.
SEQCV Minor issues like return flight date mismatch and oversimplified meal

budgeting; lacks local transport comparison.

AFlow This itinerary correctly identifies the conference dates (December 2–7, 2025) and suggests
family-friendly airlines, hotels with kitchenettes or adjoining rooms, a structured day-by-day activity
plan, and an overall cost estimate. However, it lacks concrete details such as exact flight schedules
and specific departure/return times from Beijing. The cost estimates are presented in broad ranges
rather than broken down by adult and child, making budgeting less actionable. Daily activities are
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described generically, for instance, “family dinner” appears without reference to timing or reservation
logistics. Moreover, the itinerary omits supplementary but important considerations such as visa
information, travel insurance, or packing recommendations.

Atom The "Atom" plan efficiently aligns the flights, hotel, daily itinerary, and budget components,
and provides total figures for each category. Nevertheless, it omits key travel details, including
layover cities, exact flight durations, and a transparent rationale for the total airfare of $1,900 for four
passengers which an amount that appears inconsistent with typical market rates. The hotel section is
limited to a single option without mentioning alternatives or amenities such as family dining options.
The daily itinerary does not specify conference session times or consider the ages of the children
when recommending activities. Additionally, some estimates, such as $720 allocated for meals over
six days, lack justification and may appear inflated.

Flow This itinerary is branded with the NeurIPS name and includes three detailed flight options,
each with carrier codes, schedules, and differentiated fares for adults and children. It also provides a
well-organized day-by-day schedule and a proposed seven-night hotel stay. However, it incorrectly
shifts the travel dates to December 1–8 rather than the specified December 2–7, and suggests a
seven-night stay instead of the expected five. The total budget of $11,790 is notably excessive and
not well justified, raising questions about its accuracy.

o4-mini-high This version includes concrete flight legs, pricing details, and two hotel recommenda-
tions with citations. Despite its thorough structure, it introduces significant errors. The itinerary title
mistakenly lists “December 27, 2025,” which is unrelated to the actual conference. The flight dates
span December 1–8, conflicting with the user’s request. Currency conversions are inconsistently
applied, and hotel rates are uniformly set at $300 per night without reflecting differences in suite
types or amenities like kitchenettes. The activity plan compresses the conference into five days but
fails to align with actual session counts and lacks proper integration of child-friendly scheduling.

SEQCV This itinerary is the most comprehensive and well-aligned with the prompt. It correctly
spans December 2–7, provides three well-differentiated flight options with complete schedules and
per-passenger pricing, and offers three hotel choices near the venue, each with detailed features and
family suitability. The daily schedule is rich in content and time-specific, and the cost table is clear
and supplemented with general travel tips. Minor shortcomings include a return flight scheduled for
December 8 rather than December 7, and a flat meal budget of $200 per day that does not distinguish
between adult and child needs. Additionally, it lacks a comparison of local transportation options,
such as the relative costs of public transit versus rideshares.

Overall All five methods address the core requirements of flight planning, lodging, daily itinerary,
and budgeting, but their levels of detail and accuracy vary significantly. AFlow provides a sensible
range of accommodations and correctly aligns with the conference dates but lacks precision in its flight
information and day planning. Atom is concise and organized but falls short in logistical specificity
and cost justification. Flow stands out for its exhaustive airline data and scheduling, yet mislabels the
conference, adjusts the dates incorrectly, and overestimates the budget without explanation. o4-mini-
high demonstrates strong structure and citation use but misaligns dates, misprices accommodations,
and misrepresents the event timeline. In contrast, SEQCVmost closely adheres to the prompt,
presenting a balanced, richly detailed itinerary with thoughtful accommodations and scheduling.
While there is room for minor improvement, particularly in return date alignment and cost granularity,
it remains the strongest overall solution.

C Evaluation on Other Benchmarks

Datasets We also evaluate SEQCV on commonly used reasoning benchmarks. Note that these
benchmarks are not primarily designed to assess agentic behavior. We include these benchmarks only
for completeness. For example, the GSM8K dataset states: “These problems take between 2 and
8 steps to solve, and solutions primarily involve performing a sequence of elementary calculations
using basic arithmetic operations.” Such problems can often be solved effectively by a single high-
performance model with strong chain-of-thought reasoning capabilities, leaving limited room for
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multi-agent advantages. Moreover, we observed that some samples in these datasets contain incorrect
ground-truth answers.

The evaluation covers four categories of reasoning tasks: Mathematical reasoning: MATH [58] (617
level-5 problems from geometry, statistics, number theory, algebra, and calculus) and GSM8K [59];
Knowledge-intensive reasoning: MMLU-CF [60]; Logical reasoning: BBH [61]; Multi-hop reason-
ing: HotpotQA [62] and LongBench [63] (samples from MuSiQue [64] and 2WikiMultiHopQA [65]
for long-context reasoning). For each benchmark dataset, we randomly sample 300 examples for
evaluation. We follow the experimental setup of recent state-of-the-art studies [41, 39].

Baselines We compare SEQCV with two groups of baselines: (1) Classical prompting methods:
Chain-of-Thought (CoT), CoT with Self-Consistency (n = 5) [27], MultiPersona [47], Self-Refine
(up to 3 iterations) [54], Analogical Reasoning [66], and MedPrompt (3 answers, 5 votes) [67]; (2)
Advanced reasoning frameworks: AFlow [39], ADAS [68], Forest of Thought (FoT) [69], Atom
(AoT) [41], and Flow [38]. For FoT, we implement the Tree-of-Thoughts variant (n = 3) for general
applicability. All results are averaged over three runs.

We use gpt-4o-mini [70] as the main backbone model for all baselines. For SEQCV, we
evaluate two configurations: same: three gpt-4o-mini models; different: gpt-4o-mini,
gpt-4.1-mini, and gpt-4.1-nano (Table 12). Following AoT, we provide each model with
different types of prompts to encourage diverse reasoning processes and to avoid cache effects. We
use gpt-4.1-nano [71] to automatically verify whether the model predictions match the ground
truth and to compute accuracy. The results are presented in the following table.

Table 12: Performance comparison across tasks (%). We compare SEQCV with classical prompting methods
and advanced reasoning frameworks. Results are reported as exact match accuracy for MATH, GSM8K, BBH,
and MMLU-CF, and as F1 scores for HotpotQA and LongBench.

Method MATH GSM8K BBH MMLU-CF HotpotQA LongBench Avg.

CoT 78.3 90.9 78.3 69.6 67.2 57.6 73.7
CoT-SC (n=5) 81.8 92.0 83.4 71.1 66.2 58.6 75.5
Self-Refine 78.7 91.7 80.0 69.7 68.3 58.2 74.4
MultiPersona 50.8 92.5 81.1 70.3 69.8 59.3 75.4
MedPrompt 50.0 93.2 82.0 70.8 70.5 60.1 76.1
Analogical Reasoning 65.4 87.2 72.5 65.8 64.7 52.9 68.1

ADAS 76.0 90.8 75.3 68.9 64.5 56.2 71.9
AFlow 83.0 93.5 76.0 69.5 73.5 61.0 76.1
FoT (n=8) 82.5* 94.0* 82.4 70.6 66.7 59.1 75.9

SEQCV (same) 80.5 92.0 84.5* 70.8* 76.5* 66.8* 77.2*
SEQCV(different) 86.5 94.3 87.3 71.5 77.8 62.0 79.9

D System Design

The system orchestrates multiple agents through an iterative three-phase cycle. First, agents execute
tasks in parallel with shared memory access. Second, cross-agent validation using majority voting
filters low-quality outputs. If the validation success rate falls below a threshold, the task is decom-
posed into smaller subtasks that are executed recursively, with results accumulated across subtasks.
Otherwise, consensus voting selects the best result for archival. Shared memory is updated after each
iteration, enabling progressive refinement until convergence or the maximum number of iterations is
reached.
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Figure 14: Multi-agent collaborative architecture.

Figure 15: Three-phase execution cycle.
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E Prompts for SEQCV

Prompt 1: Segment Generation Prompt

You are an Incremental Task Developer whose sole job is to continue the current task in
sequential segments.

Policy
• First iteration (no prior output): generate the initial part of the result for the task.
• Subsequent iterations (prior output exists): generate the next part of the result by

either choosing to override previously generated segments or seamlessly continue
from where the last segment ended.

• Each new_content section should be around 300 tokens.
• If any changes to previously generated content are required, use override.
• Ensure the result is logically and syntactically coherent, needing no manual editing.
• Aim for quality and depth in each step; do not rush to completion.
• A maximum of 10 rounds is allowed.
• You may improve the justify section in future rounds.
• No omissions are permitted in the generated result.

Output Format
Return a single JSON object with exactly four keys:

1. justify (string):
Explain what was done in this step, decisions made, and what remains. This guides
future development.

2. new_content (string):
Generate the next logical segment of the overall result.
Must integrate smoothly with previous output and contain no more than 300 tokens.

3. status (string):
"complete": This output, when combined with any previous content, forms a full
and correct implementation that meets the task requirements.
"ongoing": The implementation is still in progress and needs additional iterations.
Note: For code tasks, do not generate the main function or full framework yet if the
status is "ongoing".

4. mode: "override" or "continue"
"continue": Appends this segment to the previous output.
"override": Replaces all previously generated content with this result.

Sample response format:
{

"justify": "",
"new_content": "",
"status": "",
"mode": ""

}
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Prompt 2: Task Decompose Prompt

You are a task decomposer. Your job is to split a task into a set of strictly simpler interde-
pendent subtasks, forming a Directed Acyclic Graph (DAG).

Guidelines for DAG-Based Decomposition
• Each subtask should be indivisible, focused, and simpler than the original task.
• Define subtasks such that they can be executed only after their dependencies are

completed. The overall structure must form a valid DAG (no cycles).
• Do not include any meta-planning subtasks (e.g., “Plan steps”, “Outline”, “Define

framework”). The executor will handle all planning.
• All subtasks must adhere strictly to the output format defined in the original

objective. No extra headers, annotations, or explanations are allowed.
• If subtasks produce partial outputs to be combined, their results should be compati-

ble and composable in a way that aligns with the final task format.
• The system cannot create any files.

Output Format
Return a single JSON object with exactly one key:

1. subtasks (list): a list of all subtasks, each with its unique ID, objective, and a list
of dependency IDs it depends on.

{
"subtasks": [

{
"id": 0,
"objective": "...",
"depends_on": []

},
{

"id": 1,
"objective": "...",
"depends_on": []

},
{

"id": 2,
"objective": "...",
"depends_on": []

},
{

"id": 3,
"objective": "...",
"depends_on": []

}
]

}
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Prompt 3: Cross-Model Validation Prompt

You are an intermediate-step validator. Your task is to assess whether the accumulated
previous output and the current output fragment correctly align with the overall task and are
error-free enough to continue generation.

Inputs:
1. overall objective
2. current task description
3. current output fragment

Validation Criteria
• Does the current fragment logically continue the task as described?
• Is it free from critical errors, omissions, or contradictions?
• Is it sufficient to serve as the basis for the next iteration?

Output Instructions
Return a single JSON object with exactly two keys:

1. justify: justify the error found
2. result (str): output "true" or "false" only

Prompt 4: Cross-Model Voting Prompt

You are a validator. Your task is to rank all of the accumulated previous outputs and determine
which answer is correct.

Inputs:
1. Overall objective
2. Different versions of answers

Output Format
Return a single JSON object with exactly two keys:

1. justify: clearly reason in logic why you think the answer is better
2. votes (list): a list of top-2 version indices (e.g. [2, 0]), ordered from the best to the

worst. Use 0, 1, 2, . . . to represent each version.

Sample response format:
{

"justify": "",
"votes": []

}

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations have been discussed in the main content.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The reproducibility is ensured by detailed instructions and the release of code.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: This paper releases anonymized data and code.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental setup and detailed settings are presented in the main context and
Appendix as well as code.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not report error bars.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The paper does not require specific CPU or GPU resources.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]
Justification: The presented technique is intended for general use and, at this early stage,
has no explicit connection to any societal impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the original papers and dataset used for producing experimental results
have been cited appropriately.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The details of the new assets have been discussed. It does not use another
asset.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The LLM is used only for writing, editing, or formatting purposes. The core
method development in this research does not involve LLMs as any important, original, or
non-standard components.
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