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Abstract
Long-form videos that span across wide tem-001
poral intervals are highly information redun-002
dant and contain multiple distinct events or en-003
tities that are often loosely related. Therefore,004
when performing long-form video question an-005
swering (LVQA), all information necessary to006
generate a correct response can often be con-007
tained within a small subset of frames. Re-008
cent literature leverage large language models009
(LLMs) in LVQA benchmarks, achieving ex-010
ceptional performance, while relying on vision011
language models (VLMs) to convert all visual012
content within videos into natural language.013
Such VLMs often independently caption a large014
number of frames uniformly sampled from long015
videos, which is not efficient and can mostly016
be redundant. Motivated by this inefficiency,017
we propose LVNet, a modular and training-018
free framework featuring a novel Hierarchical019
Keyframe Selector (HKS) that efficiently se-020
lects a minimal set of informative frames tai-021
lored to each question. LVNet’s modularity al-022
lows easy integration with existing approaches023
for more efficient LVQA. We achieve state-024
of-the-art performance among similarly con-025
figured models across four benchmark LVQA026
datasets: EgoSchema, NExT-QA, IntentQA,027
VideoMME. Code will be released publicly.028

1 Introduction029

Video understanding is a long-standing vision prob-030

lem (Aggarwal and Ryoo, 2011) with numerous031

real-world applications. It has been traditionally032

studied even before the era of differentiable rep-033

resentation learning, with hierarchical approaches034

focusing on longer videos (Allen and Ferguson,035

1994; Ivanov and Bobick, 2000; Shi et al., 2004;036

Hongeng et al., 2004; Ryoo and Aggarwal, 2006).037

Today, video understanding research involving the038

language modality is particularly popular, with039

tasks such as video question answering (QnA) that040

involve generating human-style conversations us-041

ing large language models (LLMs) (Tapaswi et al.,042

2016; Zeng et al., 2017; Xu et al., 2017).043

Higher & Leftward
is better

Figure 1: High Accuracy with Low Compute: LVNet
achieves state-of-the-art performance on EgoSchema
(subset) while processing only a fraction of frame cap-
tions (below 12 per video) with the expensive LLM.
More detailed analysis presented in Section 4.3.

Motivated by successful image-language models 044

(Liu et al., 2023; Dai et al., 2023), several works 045

build video LLMs (Yu et al., 2023; Papalampidi 046

et al., 2023; Maaz et al., 2023; Wang et al., 2024b) 047

that directly process video frames in one stage to 048

perform QnA. However, for long videos (contain- 049

ing 1000s of frames) these models require process- 050

ing large visual token sequences with the LLM, 051

making inference computationally expensive or 052

even infeasible (see Table 5). An alternate line of 053

works (Zhang et al., 2023; Wang et al., 2023; Ranas- 054

inghe et al., 2024) follow multi-stage pipelines 055

that first extract frame-level information followed 056

by temporal modeling with an LLM. While these 057

multi-stage works similarly encounter compute bot- 058

tlenecks with increased frame processing for longer 059

videos, it is possible to feed the LLM with descrip- 060

tors of non-uniformly sampled frames (Kahatapi- 061

tiya et al., 2024; Wang et al., 2024d,f), motivating 062

our exploration into keyframe selection, i.e. iden- 063

tifying a minimal set of frames most useful for 064

correctly answering a given video-question pair. 065

Therein, we propose LVNet, a framework con- 066

taining a novel Hierarchical Keyframe Selector 067

(HKS) that performs efficient key-frame selection 068

followed by VLM for caption generation and LLM 069
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Figure 2: (top) Overview: LVNet uses a Hierarchical
Keyframe Selector (HKS) module to select keyframes,
followed by VLM & LLM for caption and answer gen-
eration. (below) HKS Module processes dense frames
with lighter modules and progressively exploits heavier,
more performance-oriented modules on smaller subsets
of frames to ensure efficient computation.

for answer generation as illustrated in Figure 2.070

Aligned with prior work (Zhang et al., 2023; Wang071

et al., 2024f,d), per-frame captions are processed072

with a powerful LLM to generate correct answers073

for a given video-question pair. As shown in Fig. 1,074

LVNet achieves strong performance efficiently, pro-075

cessing only a fraction of frame descriptors (cap-076

tions) with the LLM. Compared to feeding all cap-077

tions or all frames directly to a powerful model078

(e.g. GPT-4o), our LVNet performs inference at a079

fraction of the cost (see Table 6).080

We summarize our key contributions as follows:081

(a) Efficient Frame Selection: Hierarchical082

Keyframe Selector (HKS) efficiently extracts083

keyframes from sequences up to 1800 frames084

(hour long videos) with a filter rate over 98%.085

(b) Video Training Free: Our framework requires086

no video level training and simply uses existing087

off-the-shelf modules.088

(c) Versatile Framework: Existing methods can089

easily be integrated with LVNet to further boost090

their performance (details in Appendix A.6).091

Proposed LVNet achieves state-of-the-art results (at092

common inference compute) on multiple long-form093

video question answering benchmarks demonstrat-094

ing strong performance and generality.095

2 Related Work096

Video Question Answering: Visual question an-097

swering (VQA) involves generating open-ended098

textual content conditioned on an image and natu-099

ral language query (Agrawal et al., 2015). Its video100

variant, Video-VQA (Yu et al., 2019a) replaces im-101

Feature Ours VA Tr. VT VC FV

(effective selection)
Uses non-uniform sampling ✓ ✓ ✓ ✓ ✓ ✓
Scene continuity-based selection ✓ ✗ ✗ ✓ ✓ ✓
Robust to initial frames ✓ ✗ ✓ ✓ ✓ ✓
Fine-grained visual refinement ✓ ✗ ✗ ✗ ✗ ✗

(compute efficient)
Lightweight feature extraction ✓ ✗ ✗ ✗ ✓ ✓
Single pass inference ✓ ✗ ✗ ✗ ✓ ✓
Video Training Free ✓ ✓ ✓ ✗ ✗ ✗

Table 1: LVNet exhibits unique features compared to prior
work VideoAgent (VA) (Fan et al., 2024), Traveler (Tr.)
(Shang et al., 2024), VideoTree (VT) (Wang et al., 2024g),
VideoChat-T (VC) (Zeng et al., 2024), and Frame-Voyager
(FV) (Yu et al., 2024b) . See Appendix A.7 for details.

ages with videos. Multiple early datasets focus 102

on querying objects or events based on referential 103

and spatial relations (Xu et al., 2017; Zeng et al., 104

2017; Yu et al., 2019a). Later tasks require explicit 105

temporal understanding of sequential events (Lei 106

et al., 2018, 2020; Yu et al., 2019b). More recent 107

datasets focus on longer videos containing multiple 108

actions and scenes spread over wide time inter- 109

vals (termed long-form videos) (Xiao et al., 2021; 110

Li et al., 2022). Referred to as long-form video 111

question answering (LVQA), these benchmarks are 112

constructed to specifically test strong causal and 113

temporal reasoning (Xiao et al., 2021) over long 114

temporal windows (Mangalam et al., 2023). Some 115

works tackling such video VQA tasks leverage 116

graph networks to model cross object / event re- 117

lations (Hosseini et al., 2022; Xiao et al., 2022a,b). 118

A more recent line of works integrate LLMs to 119

tackle this task (Zhang et al., 2023; Wang et al., 120

2023; Kahatapitiya et al., 2024; Wang et al., 2024d; 121

Ranasinghe et al., 2024; Wang et al., 2024f; Fan 122

et al., 2024) utilizing the strong reasoning skills of 123

LLMs. A common aspect is the use of a vision lan- 124

guage model (VLM) to convert frame level visual 125

information into natural language. This in turn is 126

input to the LLM which makes a final prediction. 127

Unlike these methods, LVNet incorporates a 128

unique Hierarchical Keyframe Selector that pro- 129

gressively reduces the number of keyframe candi- 130

dates. Lighter modules are applied to dense frames, 131

while heavier, more performance-focused modules 132

are applied to a small subset of filtered frames. 133

Additionally, LVNet does not require video-level 134

training, unlike earlier supervised approaches. 135

Frame Selection in Videos: The task of frame se- 136

lection in videos has been long explored in video 137

(Davis and Bobick, 1997; Zhao et al., 2017) with 138

more recent works focused directly on long-form 139

video question answering (Buch et al., 2022; Wang 140

et al., 2024g; Fan et al., 2024; Zeng et al., 2024; Yu 141
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et al., 2024b). Most similar to our work is Wang142

et al. (2024d) which employs an LLM based strat-143

egy for video frame selection. However, our LVNet144

differs with several unique features as summarized145

in Table 1.146

3 Method147

In this section, we present our training-free148

(i.e. zero-shot) framework for long-form video QA,149

LVNet. Videos are a dense form of data with even150

a few seconds long clip being composed of 100s151

of frames (individual images). In the case of long-152

form videos, this frame count is even greater. How-153

ever, the information necessary to answer a given154

question is often contained in a handful of those155

frames. Our framework tackles this challenge of156

selecting an optimal and minimal set of informa-157

tive frames. We refer to this as keyframe selection.158

Given such a set of useful frames, we also establish159

optimal strategies for extracting their information160

using modern large language models (LLMs), tak-161

ing into account their sequential nature.162

Our proposed LVNet comprises of three compo-163

nents: a Hierarchical Keyframe Selector (HKS), a164

Vision Language Model (VLM), and a Large Lan-165

guage Model (LLM) as illustrated in Figure 2. The166

HKS, an efficient, hierarchical keyframe selector,167

is the core contribution of our work. First, the168

model processes 900 uniformly sampled frames169

and clusters them into distinct scenes Next, it ex-170

tracts keywords from a given natural language171

query via LLM and selects the frames most relevant172

to those keywords. Finally, the selected frames are173

described in natural language by a more powerful174

and computationally intensive VLM. Finally, an175

LLM processes the language descriptions of the176

selected frames to answer a given query.177

3.1 Background178

Recent approaches utilizing LLMs for long video179

question answering (LVQA) (Zhang et al., 2023;180

Wang et al., 2023; Kahatapitiya et al., 2024; Ranas-181

inghe et al., 2024; Wang et al., 2024d) can be182

viewed as a composition of three sequential stages:183

a) frame selection, b) VLM based frame captioning,184

and c) LLM based answer generation. Note that185

the complexity of each stage varies across methods186

given their focus on different aspects of the LVQA187

task (e.g. frame selection in some is simply uniform188

sampling). In our work, we also follow this struc-189

ture, but we focus on improving the frame selection190

stage. Under such a framework, our proposed HKS191

can serve as plug-in modules to replace the frame192

selection stage and the later two stages are similar 193

to these prior works. 194

3.2 Architecture 195

Consider a video, x ∈ RT×C×H×W with T, C, 196

H, W for frames, channels, height, width respec- 197

tively and its paired natural language query q. 198

Also consider a frame in x at timestamp t as 199

x[t] ∈ RC×H×W . Our goal is to output a response, 200

referred as r, suitable for the given query q based 201

on information contained in the video x. 202

Our LVNet processes a given video-query (x,q) 203

pair to output a response, r̂. The HKS module 204

initially processes this video-query pair, selects 205

T ′ keyframes, and outputs a deterministically sub- 206

sampled video x′ ∈ RT ′×C×H×W . Each of these 207

T ′ frames is then passed through the captioning 208

stage of our VLM to generate a set of natural lan- 209

guage descriptions, D = {d1, d2, ...dT ′} where 210

di describes the frame x′[i]. Finally, the LLM 211

processes all descriptions D and the query q to 212

generate response r̂. We illustrate this overall ar- 213

chitecture in Figure 2. 214

3.3 Hierarchical Keyframe Selector 215

We now describe our proposed Hierarchical 216

Keyframe Selector (HKS) module. As illustrated 217

in Figure 2, our proposed HKS comprises of three 218

sequential submodules, each reducing the frame 219

count to Ta, Tb, and Tc = T ′ respectively. 220

Temporal Scene Clustering (TSC): The role of 221

TSC is to perform visual content aware preliminary 222

frame sampling. The established approach for pre- 223

liminary frame selection is uniform sampling (lim- 224

ited to at most 200 frames). In contrast, TSC pro- 225

cesses 900 to 1800 uniformly sampled frames to ex- 226

tract per-frame visual features using a lightweight 227

deep neural network (ResNet-18) followed by a 228

clustering procedure to identify n non-overlapping 229

frame sets. Within each of the n sets, we uniformly 230

sample≤ τ frames obtaining a total of Ta ≤ τ ×n. 231

Our iterative clustering procedure is outlined in 232

Algorithm 1. It calculates pairwise distances be- 233

tween all frames accounting for intra-frame local 234

information using the extracted per-frame features, 235

followed by n iterative frame similarity based clus- 236

tering operations. A single cluster could contain 237

just one frame or significantly more based on frame 238

feature similarities, leading to a non-uniform sam- 239

pling of frames across the entire video. This allows 240

more frames to be sampled from the information 241

heavy temporal regions of videos. 242
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Figure 3: Qualitative example: We illustrate a challenging long-video QA scenario from EgoSchema (Mangalam
et al., 2023). We consider an input of 900 frames, which first get clustered into scenes and subsampled to retain
around 390 frames. Next, the Coarse Keyframe Detector selects only 32 frames out of them, based on the alignment
with keywords (Here, keywords are extracted based on answer options, via an LLM). Such coarse keyframes are
then ranked based on the combination of confidence value and temporal span, and grouped into four sets, each
containing eight frames. These sets are then processed through visual templating (i.e. simple concatenation across
space) and fed into a VLM for Fine Keyframe Detection, resulting in just 12 frames.

Coarse Keyframe Detector (CKD): Unlike TSC243

in the prior stage, CKD reasons across both visual244

and language modalities (using the paired textual245

query, q) to further sub-sample Ta into Tb frames.246

CKD contains three elements: keyword generation247

strategy, dual-encoder image-text model, and simi-248

larity based confidence assignment algorithm. Key-249

word generation utilizes the given query, q, along-250

side hand-crafted templating operations or an LLM251

to select or generate suitable keywords. The dual-252

encoder image-text model uses a spatially aware253

contrastive language image pre-training (CLIP) net-254

work from (Ranasinghe et al., 2023). For confi-255

dence assignment, we construct an algorithm as256

outlined in Algorithm 2 which processes two lists,257

one of frames and one of keywords, and then cal-258

culates their pairwise likelihood of occurrence to259

assign each frame a confidence value (that reflects260

its usefulness to answer the query, q). See Ap-261

pendix A.4 for more details.262

For a single query, there can be multiple regions263

in a video that are highly informative but not useful264

or relevant in answering that query. A single query265

can also contain multiple different concepts and266

attributes that must be given attention to construct267

a correct answer: the keyword generation attempts268

to capture each of these distinct attributes. On269

the visual modality, a single frame will also encode270

multiple concepts and attributes. Our design choice271

for the spatially aware CLIPpy dual-encoder VLM 272

from (Ranasinghe et al., 2023) is motivated by this 273

nature of individual frames. Finally, confidence 274

assignment takes into account these multiple modes 275

of information within each frame and the query to 276

suitably assign confidence scores to each frame 277

that reflects its query relevance. We also highlight 278

how the confidence scores are directly linked to 279

the related keyword (i.e. reason that makes the 280

frame relevant), leading to better interpretability 281

and the ability to perform further keyword-based 282

refinement in later stages. 283

Fine Keyframe Detector (FKD): In the prior CKD 284

stage, cross-modal selection utilizes a dual-encoder 285

VLM that is constrained by the set of keywords pro- 286

vided and performs limited reasoning at frame level. 287

In contrast, FKD uses a visual templating module 288

to combine multiple frames and uses VLM to gen- 289

erate open-ended natural language output through 290

higher-level reasoning. The input in this stage is 291

the set of Fb frames, with each frame having an 292

assigned confidence score and keyword. 293

Our visual templating module partitions the Tb 294

frames into sets of 8 ordered by their confidence 295

scores, arranges frame sets as grids to form a 296

collage-style image, and annotates that image with 297

visually identifiable tags corresponding to each 298

frame. We further illustrate this process in Fig- 299

ure 3 (see Visual Templating column). Each of 300
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these visual templated images also contain a sub-301

set of keywords that correspond to their 8 images.302

These resulting visual templated images along with303

a prompt containing their associated keywords and304

instructions to select a frame subset based on valid305

association between keywords and images (see Ap-306

pendix A.5 for details) are input to the VLM. The307

output of the VLM is used to select a subset of308

each 8 image group. These frames are collected309

as output of the FKD stage, overall resulting in Tc310

frames.311

The purpose of the initial visual templating mod-312

ule is to allow reasoning across a set of frames313

using the image-text VLM (which is trained to pro-314

cess a single image at time). This partitioning of315

the input Tb frames is performed based on confi-316

dence scores from the prior stage and timestamps.317

The eight frames with top confidence scores are318

grouped into the first visual template, followed319

by the next eight and so forth. This ensures the320

VLM selects both high confidence concepts and321

low confidence concepts, accounting for biases and322

weaknesses in our CKD stage. After that, we tem-323

porally reorder some image sets with low confi-324

dence scores to cover keyframes distributed across325

long-range segments, while the sets with high con-326

fidence scores concentrate on keyframes in short-327

range segments. A total of 16 low-score frames are328

temporally reordered in this process. The algorithm329

is described in Algorithm 3 and the prompting tech-330

nique is explained in Appendix A.5. Our intuition331

is that such a mechanism allows one to best uti-332

lize the complementary strengths of two different333

VLMs from CKD and FKD stages for better frame334

selection overall.335

4 Experiments336

In this section, we first discuss our experimental337

setup followed by quantitative evaluations com-338

paring to existing baselines and ablations of our339

proposed components. We then present qualitative340

results for our method and outline some limitations341

of our approach.342

4.1 Experimental Setup343

Datasets: Given the training free nature of our344

framework, we do not utilize any video datasets for345

training. Datasets are used purely for evaluation.346

We select three benchmark video visual question347

answering datasets focused on long-form videos348

for this purpose: EgoSchema (Mangalam et al.,349

2023), NExT-QA (Xiao et al., 2021), and IntentQA350

(Li et al., 2023). In addition, to further highlight351

the strength of our approach on longer videos, we 352

include results on VideoMME’s long split (Fu et al., 353

2024). These datasets are public available and can 354

be used freely for academic research. The first 355

dataset, EgoSchema, consists of 5031 questions 356

and each video lasts three-minute and have multiple 357

choice question. The second dataset, NExT-QA, is 358

another rigorously designed video question answer- 359

ing benchmark containing questions that require 360

causal & temporal action reasoning, and common 361

scene comprehension to correctly answer. These 362

questions are further classified as Causal (Cau.), 363

Temporal (Tem.), and Descriptive (Des.) and we 364

evaluate on its validation set containing 4996 ques- 365

tions over 570 videos. The third dataset, IntentQA, 366

is based on NExT-QA videos corresponding to tem- 367

poral and causal reasoning quetions. It consists 368

of 16k multiple-choice questions which are classi- 369

fied as Why?, How? or Before/After (B./A.). The 370

fourth dataset, VideoMME, consists of very long 371

videos—some up to one hour long, with an average 372

duration of 44 minutes, and provides 900 Q&A. 373

Model Choices & Hyperparameters: For the 374

HKS module, we use the ResNet-18 (He et al., 375

2016a) for the TSC, CLIP-B/16 (Ranasinghe et al., 376

2023) for the CKD and GPT-4o for the FKD. We se- 377

lect ResNet-18 and CLIP-B/16 due to their smaller 378

models sizes—0.01B and 0.12B, respectively– 379

which are significantly lighter compared to LLMs 380

that are on a billion parameter scale. In line with 381

previous state-of-the-art work (Wang et al., 2024f; 382

Zhang et al., 2023; Wang et al., 2023), we use 383

up to 4 NVIDIA RTX A5000 GPUs and GPT or 384

DeepSeek APIs for running baselines and our setup 385

in all evaluations. Also following prior work, we 386

report results over single evaluation runs. 387

4.2 Evaluation 388

Quantitative Results: We evaluate LVNet on the 389

EgoSchema, NExT-QA, and IntentQA dataset and 390

present our results in Table 2. Models with video- 391

caption pretraining are de-emphasized in grey to 392

ensure fairness with image-level pertaining. Mod- 393

els utilizing significantly more captions than the 12 394

frames are downplayed in light green to consider 395

caption efficiency. We reiterate how number of 396

captions input to LLM affects inference compute 397

cost of methods the most. 398

For EgoSchema(fullset), LVNet achieves 61.1%, 399

the highest among the models utilizing approx- 400

imately 12 captions. This result outperforms 401

VideoAgent, the next best model using 8.4 captions, 402

by +7%, is on par with VideoTree while using only 403
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Model
EgoSchema NExT-QA IntentQA

VT Free
Cap.↓ Acc.↑ (%) Cap.↓ Acc.↑ (%) Cap.↓ Acc.↑ (%)

VideoLLaMA 2 (Cheng et al., 2024) - 53.3 - - - - no
InternVideo2 (Wang et al., 2024e) - 60.2 - - - - no
Tarsier (Wang et al., 2024a) - 61.7 - 79.2 - - no

Vamos (Wang et al., 2023) - 48.3 - - - - yes
IG-VLM (Kim et al., 2024) - 59.8 - 68.6 - 65.3 yes
VIOLET (Fu et al., 2023) 5 19.9 - - - - yes
mPLUG-Owl (Ye et al., 2023) 5 31.1 - - - - yes
VideoAgent (Wang et al., 2024d) 8.4 54.1 8.2 71.3 - - yes
MVU (Ranasinghe et al., 2024) 16 37.6 16 55.2 - - yes
MoReVQA (Min et al., 2024) 30 51.7 16 69.2 - - yes
VFC (Momeni et al., 2023) - - 32 51.5 - - yes
ProViQ (Choudhury et al., 2023) 50 57.1 50 64.6 - - yes

VideoTree (Wang et al., 2024g) 62.4 61.1 (56) 73.5 (56) 66.9 yes
FrozenBiLM (Yang et al., 2022) 90 26.9 - - - - yes
LifelongMemory (Wang et al., 2024f) 90 62.1 - - - - yes
TraveLER (Shang et al., 2024) (101) 53.3 (65) 68.2 - - yes
LangRepo (Kahatapitiya et al., 2024) 180 41.2 90 60.9 90 59.1 yes
LLoVi (Zhang et al., 2023) 180 50.3 90 67.7 90 64.0 yes

LVNet (ours) 12 61.1 12 72.9 12 71.7 yes

Table 2: Long Video Evalation: LVNet achieves state-of-the-art accuracies of 61.1%, 72.9%, and 71.7% on
EgoSchema, NExT-QA, and IntentQA datasets respectively using just 12 frames compared to models using a similar
number of captions. Models are ordered based on number of captions processed per video. Models with video-level
training (VT) or utilizing significantly more captions than 12 frames used by LVNet are de-emphasized in grey or
downplayed in light green to ensure fair comparison. Numbers in parentheses () indicate the maximum number of
frames used. See Sec. A.2 in appendix for detailed results.

Method LLM Param/Type VT Free TS Cap.↓ Acc.↑

VideoChat-T 7B/OS no N/A 43.8
Frame-Voyager 34B/OS no N/A 51.2
LVNet (DS-V3) 37B/OS yes 24 53.1

VideoTree+GPT-4o <1.8T/PP yes 98.0 53.1
VideoAgent+GPT-4o <1.8T/PP yes 24.6 46.4
LVNet (GPT-4o) <1.8T/PP yes 24 53.9

Table 3: Comparison to Keyframe Selection Meth-
ods on VideoMME: We compare LVNet with both
single-stage methods that rely on video-level training
(VideoChat-T, Frame-Voyager) and two-stage methods
(VideoTree, VideoAgent). Each model uses the maxi-
mum feasible frames or default settings. Legend: DS-
V3=DeepSeek-V3, OS=open-source, PP=proprietary,
VT Free=no video-level training, TS Cap.=two-stage
caption numbers.. Notably, LVNet outperforms both
single-stage and two-stage methods without requiring
video-level training.

1/5 of the captions, and outperforms TraveLER by404

+7.8% while utilizing only 12% of the captions.405

We next evaluate on NExT-QA dataset, which406

has a particular focus on both temporal and ca-407

sual reasoning based question-answer pairs. LVNet408

achieves state-of-the-art performance on this bench-409

mark outperforming prior work among the models410

utilizing approximately 12 captions. In fact, our411

LVNet outperforms VideoAgent by +1.6%.412

In IntentQA dataset, LVNet outperforms all prior413

work, including de-emphasized models with video-414

caption pretraining and downplayed models utiliz-415

ing significantly compute (captions input to LLM)416

than ours. In fact, LVNet shows a substantial im- 417

provement of +4.8% over the next best VideoTree, 418

while using only 13% of captions (12 vs 90). 419

Lastly, Table 3 shows the LVNet’s perfor- 420

mance of on VideoMME’s long split (Fu et al., 421

2024), which features videos up to an hour 422

long—significantly exceeding the 12-minute av- 423

erage in MLVU (Zhou et al., 2024) or the 17- 424

minute average in the overall VideoMME.In combi- 425

nation with an open-source LLM (DeepSeek-V3), 426

LVNet outperforms the single-stage keyframe se- 427

lection methods VideoChat-T (Zeng et al., 2024) 428

and Frame-Voyager (Yu et al., 2024b) by 9.3% and 429

1.9%, respectively, without any video-level training. 430

Moreover, LVNet with GPT-4o surpasses VideoA- 431

gent and VideoTree by +7.5% when using a similar 432

number of captions, and by +0.8% with only one- 433

quarter of the frames, underscoring its efficiency 434

in extracting keyframes for very long videos. See 435

Appendix A.3 for the detail result. 436

Given the generative nature of VQA tasks as 437

well as the limited availability and noisy nature of 438

fully-annotated video VQA corpora, building gen- 439

eralizable fully-supervised models are challenging 440

for these tasks. Nevertheless, we highlight how our 441

zero-shot and video level training-free framework 442

is competitive with the best supervised approaches 443

on this dataset. This indicates the promise of utiliz- 444

ing pretrained models, especially those equipped 445

with extensive world knowledge and reasoning 446
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Model Avg. Frame Captions ↓
8 11 12 16 70

VideoAgent+GPT-4o 63.2 60.8 – – –
VideoTree+GPT-4o – – – – 67.0
LVNet (GPT-4o) 64.4 – 68.2 67.8 –

(a) Frame Caption Count: LVNet ourperforms VideoAgent and
VideoTree using fewer captions, with all models leveraging GPT-
4o and using the default settings to ensure a fair comparison.

Templating Order Acc. ↑

Temporal 65.2
Confidence 67.6
Hybrid (both) 68.2

(b) Visual Templating:
Combination of confidence-
based & temporal ordering
gives the best performance.

TSC CKD FKD Acc. ↑

✗ ✗ ✗ 62.6
✓ ✗ ✗ 64.5
✓ ✓ ✗ 65.8
✓ ✓ ✓ 68.2

(c) HKS Ablation: LVNet
accuracy consistently im-
proves with each HKS sub-
module.

Table 4: Ablation study on EgoSchema (Mangalam et al., 2023): We evaluate different design decisions of our
framework on EgoSchema 500-video subset for zero-shot VQA.

Method LLM AP Frames ↑ LLM frames ↓ Acc. ↑

Qwen-VL 7B 128 128 37.8
Qwen-VL 7B 256 256 OOM
Qwen-VL 7B 1800 1800 OOM
LVNet (DS-V3) 37B 1800 24 53.1

Table 5: Single-Stage Method Comparison: We re-
port Accuracy on VideoMME long split (average video
length 41 mins) along with LLM active parameters
(LLM AP), total frames processed, and frames input
to LLM as tokens / captions (LLM frames). LVNet
DeepSeek-V3 (DS-V3) variant is used. Processing
lengthy frame sequences with single-stage models at
fixed compute becomes infeasible. Inference tested on
4 x 24GB A5000 GPUs. Similar findings in Zeng et al.
(2024).

skills from alternate modality specific learning (i.e.447

in our cases image domain VLMs and language448

domain LLMs).449

Qualitative Analysis of Hierarhical Keyframe450

Selector: We compare open-ended responses of451

LVNet and the uniform sampling method in Fig-452

ure 4 to understand the effectiveness of the hier-453

archical keyframe selector in LVNet. The frames454

chosen by LVNet and the naive uniform sampling455

method are indicated by blue and red checkmarks456

in the images, respectively. LVNet selects frames at457

5, 69, and 135 seconds by executing the hierarchi-458

cal keyframe selector and generates captions based459

on those frames. When we feed the concatenated460

captions to the LLM to answer the given question:461

"Based on the video, what are the three main types462

of tools that C uses..." in an open-ended manner,463

the output identifies two main activities: welding464

torches and measuring tapes, among the three main465

activities described in Option 3 (welding handle,466

hammer, measuring tape), which is the correct an-467

swer, leading LVNet to choose the correct option.468

In contrast, the uniform sampling method se-469

lects frames at 0, 16, and 32 seconds and generates470

Model FV ↑ FL ↓ VC ↓ TC ↓ Acc. ↑

GPT-4o 384 384 $2.88 ∼$2592 65.3
LVNet (GPT-4o) 1800 24 $0.19 $171 53.9

Table 6: API Comparison: We perform cost com-
parison with using GPT-4o directly on frames vs with
LVNet. We report accuracy on VideoMME long split
(Acc), frames processed per video (FV), frames / cap-
tions input to LLM (FL), per video cost (VC), and total
evaluation cost (TC). Our LVNet achieves competitive
performance at over 10x less inference cost. GPT-4o ac-
curacy result from official benchmark leaderboard.

captions based on those frames. Similarly, when 471

we feed the concatenated captions to the LLM to 472

answer the same question, the output identifies 473

only one activity—welding tools—resulting in the 474

selection of the incorrect option. This example 475

highlights the importance of keyframe selection 476

and demonstrates the effectiveness of hierarchical 477

keyframe selection in LVNet. 478

4.3 Ablations 479

In this section, we present ablations on key de- 480

sign decisions such as the sorting order in FKD, 481

the number of frames for captions, and the effect 482

of different components in HKS. In all ablations, 483

we use a subset of EgoSchema (Mangalam et al., 484

2023), composed of 500 videos. Additional abla- 485

tions about Choice of LLM and Effect of Patch Size 486

on Keyword Matching in CKD are in Appendix A.1 487

Number of Frame Captions: We conduct an ab- 488

lation on the number of frame captions, comparing 489

our approach with VideoAgent (Wang et al., 2024d) 490

and VideoTree (Wang et al., 2024g), all using GPT- 491

4o for a fair comparison. As shown in Table 4a, 492

LVNet achieves the highest accuracy of 68.2% with 493

12 captions, outperforming VideoAgent (63.2% at 494

8 captions) by +5% in a similar low caption settings 495

and surpassing VideoTree (67.0% at 70 captions) 496

by +1.2% while using only one-sixth as many cap- 497
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… holding a 

welding torch …

… …

A person is using 

a hacksaw…
A person is working 

on unwrapping…

0 5 16 32 69 135

A person is welding

or soldering …
C is using a 

power tool …
…They are manipulating 

a measuring tape …

LLM Output:

LVNet (Ours): Based on the video, the three main types of tools used are welding torches, pliers, and measuring tapes…

Uniform Sampling: The three main types of tools used are hacksaws, welding tools, and power tools…

Time(s):

Caption:

GT (option 3): The three main types of tools that c uses are a welding handle, a hammer, and a measuring tape…

Prompt: {Concatenated Captions from       or        }. I request you to answer the following question based on the preceding descriptions in 

less than 50 words. Question: Based on the video, what are the three main types of tools that c uses, and how do their roles in shaping the iron 

differ from one another?

Figure 4: Open-ended Responses from LVNet vs Uniform Sampling: The frames chosen by LVNet and the naive
uniform sampling method are indicated with blue and red checkmarks, respectively. LVNet identifies both welding
torches and measuring tapes, choosing the correct option, whereas uniform sampling only detects welding tools
and selects the incorrect answer. The blue, red, and purple highlights correspond to the three main activities in the
video—welding a handle, using a hammer, and using a measuring tape, respectively.

tions. Additionally, LVNet exceeds VideoAgent by498

+1.2% even at VideoAgent’s optimal 8 caption set-499

ting. More details can be found in Appendix A.1500

and Appendix A.2.501

Visual Templating Order: In visual templating,502

prioritizing frames by keyword confidence scores503

followed by reordering low-confidence frames504

based on timestamp proves more effective than505

using confidence scores or temporal order alone, as506

shown in Table 4b. In this hybrid approach, high-507

confidence frames capture short but important seg-508

ments of videos, while low-confidence keyframes,509

which are crucial but visually challenging for key-510

word matching, are temporally ordered to cover511

broader segments. This hybrid approach outper-512

forms solely temporal ordering or confidence-based513

ordering by +3% and +0.6%, respectively.514

Effect of Hierarchical Keyframe Modules: Ta-515

ble 4c demonstrates the impact of incrementally516

adding the temporal scene clustering (TSC), coarse517

keyframe detector (CKD), and fine keyframe de-518

tector (FKD) modules. Without any of these mod-519

ules, the model relies on uniform sampling and520

achieves 62.6%. When TSC is added and 12 frames521

are selected uniformly, the accuracy increases to522

64.5%. Adding both TSC and CKD raises the ac-523

curacy to 65.8%. Finally, incorporating all three524

modules—TSC, CKD, and FKD—into the model,525

which is LVNet, results in an accuracy of 68.2%. 526

This demonstrates the importance of including all 527

modules in LVNet for optimal performance. 528

Singe-Stage Comparison: Table 5 highlights the 529

scalability limitations of single-stage models on 530

long videos. Models like Qwen-VL (Bai et al., 531

2023) run out of memory beyond 128 frames, while 532

LVNet achieves significantly higher accuracy using 533

just 24 keyframes as LLM inputs. 534

API Comparison: Table 6 compares inference 535

cost and performance against purely GPT-4o. 536

LVNet achieves competitive accuracy while reduc- 537

ing per-video LLM cost by over 10×, demonstrat- 538

ing exceptional compute efficiency. 539

5 Conclusion 540

We proposed a novel approach for Long-form 541

Video Question Answering (LVQA) that achieves 542

state-of-the-art performance compared to the model 543

using the similar-scale captions across 3 bench- 544

marks datasets. Our Hierarchical Keyframe Se- 545

lector demonstrates the effectiveness of keyframe 546

selection in understanding a very long-form video 547

QA. Additionally, we highlight the zero-shot capa- 548

bility for long-form video comprehension of our 549

LVNet framework, which requires no video-level 550

training. Our experiments showcase its significant 551

advantage over previous methods. 552
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Limitations553

Despite the effectiveness of LVNet, as demon-554

strated by benchmark experiments and comprehen-555

sive ablations, our study has certain limitations,556

which we discuss below.557

• First, we acknowledge that we are unable to eval-558

uate LVNet and other models with all available559

VLMs or LLMs due to computational constraints560

and high costs. However, we carefully select561

GPT-4o and DeepSeek-v3, the LLMs commonly562

used in video understanding research, for our563

main experiments and provide ablation studies564

comparing various LLMs (e.g. GPT-3.5, GPT-4,565

and GPT-4o) to ensure a fair performance com-566

parison, as presented in Table 4a and Table A.7a.567

• Our hierarchical keyframe selector consists of568

three components: TSC, CKD, and FKD. While569

we demonstrated the effectiveness of each com-570

ponent in Table 4c, we did not have the time or571

resources to develop a unified module that could572

replace all three. Although this is beyond the573

scope of this paper, exploring a more efficient574

implementation that integrates these three mod-575

ules into a single model would be an interesting576

direction for future research.577

• Like any LLM-based approach, LVNet is sensi-578

tive to prompting. To ensure the transparency,579

we provide examples of these prompts in Fig-580

ure 4 and Figure A.6. We also plan to release581

the code to enable further exploration by other582

researchers.583

• Finally, we acknowledge that, as our approach584

is zero-shot, any inherent limitations or biases in585

the pretrained models may persist in the outputs586

of LVNet.587
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Appendix913

A.1 Additional Ablations914

In this section, we present additional experiments915

conducted to inform the LVNet’s design. We have916

tested different LLMs and experimented with vari-917

ous scales of the visual feature map.918

LLM Acc. (%)

GPT-3.5 61.0
GPT-4 65.4
GPT-4o 68.2

(a) Choice of LLM: We con-
sider different options for our
LLM for video QA. GPT-4o
performs the best

Patch Size Acc. (%)

1x1 63.6
7x7 66.2
14x14 68.2

(b) Effect of Patch Size in
CKD: A larger patch size
in Keyword Matching per-
forms better.

Table A.7: Additional ablations experiments on
EgoSchema (Mangalam et al., 2023): We evaluate differ-
ent design decisions of our framework on EgoSchema
500-video subset for zero-shot VQA. Default setting is
highlighted.

Choice of LLM: Table A.7a shows that GPT-4o919

outperforms both GPT-4 and GPT-3.5 by +2.8%920

and +7.2%, respectively. Given that GPT-4o is921

more cost-effective and lightweight compared to922

GPT-4, we have selected it as our default LLM.923

Effect of Patch Size on Keyword Matching in924

CKD: Table A.7b shows the effect of the scales925

of the patch sizes in the CKD. Since keywords can926

represent activities spanning the entire image or927

confined to a small region, we adjust the resolution928

of the visual feature map output from the spatially929

aware contrastive image pre-training (CLIP) net-930

work (Ranasinghe et al., 2023) to match keywords.931

Our findings show that higher resolutions lead to932

better accuracy. In LVNet, we use a 14×14 feature933

map and determine the confidence level of the key-934

word by selecting the maximum value between the935

14×14 patches and the keyword’s text embedding.936

Exact Frame Caption Counts: For complete-937

ness, Table A.8 lists the original (unrounded) frame938

caption counts and corresponding accuracies for939

VideoAgent(Wang et al., 2024d), VideoTree(Wang940

et al., 2024g), and LVNet (ours). These values sup-941

plement the rounded numbers presented in Table 4a942

of the main text.943

A.2 Extended results on NExT-QA and944

IntentQA945

We present extended zero-shot evaluation results946

on NExT-QA in Table A.9, comparing LVNet with947

prior zero-shot models across different task cate- 948

gories: causal, temporal, and descriptive reasoning. 949

Models are ordered based on the number of cap- 950

tions processed per video, highlighting the trade- 951

offs between caption efficiency and performance. 952

LVNet achieves state-of-the-art performance 953

with an overall accuracy of 72.9%, outperform- 954

ing most models while using only 12 captions per 955

video. Notably, it attains 75.0% on causal reason- 956

ing, which is the highest among all models eval- 957

uated. For temporal reasoning, LVNet achieves 958

65.5%, remaining competitive despite using signif- 959

icantly fewer captions than models like VideoTree 960

(56 captions) and LangRepo (90 captions). In de- 961

scriptive reasoning, LVNet reaches 81.5%, match- 962

ing VideoTree while processing significantly fewer 963

captions. 964

Compared to VideoAgent, the closest competing 965

model in terms of caption efficiency (8.4 captions), 966

LVNet demonstrates a substantial performance gain 967

across all categories, with a +2.8% improvement 968

in overall accuracy. While models like VideoTree 969

and TraveLER show strong performance, they pro- 970

cess significantly more captions (56 and 65, respec- 971

tively), indicating that LVNet achieves a superior 972

balance between efficiency and accuracy. 973

We present extended zero-shot evaluation results 974

on IntentQA in Table A.10, comparing LVNet with 975

prior zero-shot models across different reasoning 976

categories: Why?, How?, and B.A. (Before/After). 977

Models are ordered based on the number of cap- 978

tions processed per video, highlighting the balance 979

between caption efficiency and performance. 980

LVNet achieves an overall accuracy of 71.7%, 981

outperforming all models while using only 12 cap- 982

tions per video. It achieves 75.0% on the Why? cat- 983

egory, 74.4% on the How? category, and 62.1% on 984

the B.A. category. Compared to VideoTree, which 985

processes 56 captions and achieves an overall ac- 986

curacy of 66.9%, LVNet outperforms it by +4.8% 987

while using significantly fewer captions. Similarly, 988

LangRepo and LLoVi, which process 90 captions, 989

achieve overall scores of 59.1% and 64.0%, re- 990

spectively, further demonstrating LVNet’s caption 991

efficiency. 992

To ensure fairness, models that utilize video- 993

caption pretraining or process substantially more 994

captions than LVNet are de-emphasized in grey 995

or downplayed in light green in Table A.9 and 996

Table A.10. We adopt the reported GPT-4o re- 997

sults for VideoAgent and VideoTree in Table 3 and 998

Table 4a from the VCA (Yang et al., 2024), but 999

do not compare directly against VCA for two rea- 1000
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Figure A.5: Comparison of Keyframe Selection: Comparison of LVNet and VideoAgent in keyframe selection
for video question answering. LVNet refines frames through a multi-stage process (TSC, CKD, FKD) to form a
non-uniform keyframe distribution, capturing relevant moments tied to the query. In contrast, VideoAgent relies on
uniform sampling and LLM-based frame selection, which fails to focus on crucial keyframes, leading to incorrect
predictions. The final keyframe distributions illustrate LVNet’s ability to retrieve meaningful frames directly related
to the answer, while VideoAgent selects irrelevant frames.
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Table A.8: Exact (Unrounded) Frame Caption Counts. These values supplement the rounded numbers in Table 4a
All models are based on either GPT-4o or GPT-4.

Model Avg. Frame Captions ↓
6.4 7.1 8 8.1 8.4 9.7 10.7 11 11.3 12 16 32 62.4 69.5

VideoAgent 58.4 - - 63.2 60.2 - 60.8 57.4 - - - - - -
VideoTree - 61.0 - - - 61.6 - - 62.2 62.5 66.2 64.4 66.2 67.0
LVNet (Ours) - - 64.4 - - - - - - 68.2 67.8 - - -

sons: (1) the VCA paper does not provide code1001

or implementation details (e.g., inference speed),1002

making replication infeasible; and (2) its reported1003

results cover only a subset of Egoschema, prevent-1004

ing a fair comparison to our approach on the full-1005

scale EgoSchema, NExT-QA, and IntentQA. Ove-1006

reall, these clarifications, alongside the results in1007

Table A.9 and Table A.10, underscore LVNet’s ef-1008

fectiveness in achieving high accuracy while main-1009

taining computational efficiency.1010

A.3 Extended results on VideoMME1011

Table A.11 provides an extended comparison1012

of both single-stage and two-stage approaches1013

on the VideoMME long-video benchmark. In1014

contrast to single-stage methods, which typi-1015

cally require costly video-level training on large1016

datasets which has the risk of containing eval-1017

uation datasets. LVNet is video-level training1018

free and thus retains broader generality. Crit-1019

ically, single-stage pipelines often become in-1020

feasible for long videos because they must pro-1021

cess entire sequences—potentially exceeding 1,0001022

frames—through a heavy vision-language model1023

(VLM) or LLM.1024

Keyframe-selection approaches mitigate this1025

challenge by filtering a minimal set of relevant1026

frames before any large-model processing. As1027

shown in Table A.11, LVNet can handle up to1028

1,800 frames by reducing them to just a few dozen1029

keyframes, thereby remaining both memory- and1030

compute-efficient while still achieving strong accu-1031

racy. For Qwen-VL and GPT4o, we demonstrate1032

an ablation with 1,800 frames to highlight how eas-1033

ily single-stage methods can run out of memory1034

(OOM) under 4 NVIDIA RTX A5000 GPUs or1035

encounter GPT API errors.1036

Moreover, our approach achieves strong per-1037

formance with both open-source and proprietary1038

LLM backbones, all without requiring any video-1039

level training. LVNet+DeepSeek-V3 outper-1040

forms these single-stage keyframe selection models1041

(VideoChat-T, Frame-Voyager) with equal or less1042

frame selection complexity and outperforms single-1043

stage VideoLLMs with a similarly sized open- 1044

source LLM. LVNet surpasses two-stage keyframe 1045

selection models (VideoTree, VideoAgent) under 1046

the same GPT4o, underscoring its effectiveness 1047

over both single-stage and two-stage video meth- 1048

ods. The accuracy comes from each model’s rec- 1049

ommended configuration. 1050

A.4 Algorithms in Detail 1051

Our algorithms are presented in full detail in Al- 1052

gorithm 1, Algorithm 2, and Algorithm 3. TSC in 1053

Algorithm 1 extracts per-frame visual features us- 1054

ing ResNet-18, followed by an iterative clustering 1055

procedure to identify n non-overlapping frame sets. 1056

Within each of the n sets, we uniformly sample≤ τ 1057

frames, obtaining a total of Ta ≤ τ×n frames. For 1058

example, LVNet sets ψ = 5, λ = 12, τ = 18, re- 1059

sulting in approximately n ∼ 25 and Ta ∼ 390 1060

on the EgoSchema dataset. CKD in Algorithm 2 1061

selects top L frames based on similarity/confidence 1062

scores, which are calculated using cosine similar- 1063

ity between frames and keywords with CLIP-B/16. 1064

LVNet employs L = 32, len(K) ≤ 25 on the 1065

EgoSchema dataset. FKD in Algorithm 3 sorts 1066

frames and their corresponding keywords by con- 1067

fidence scores, and reorder the K frames with the 1068

lowest scores temporally. It groups frames sequen- 1069

tially into visual templates, each consisting of N 1070

frames. From each template, the M frames and 1071

keywords most relevant among the N pairs are 1072

selected using GPT-4o. We set L = 32,K = 1073

16, N = 8,M = 3. 1074

A.5 Prompting: Fine Keyframe Detector 1075

We prompt the VLM to select frames that are most 1076

compatible with the list of given keywords. Each 1077

template image contains 8 images, and their order 1078

is described in language (e.g. top left to right, bot- 1079

tom left to right) and the VLM outputs the selected 1080

images according to our prompting as described in 1081

Figure A.6. 1082
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Model Cap. Cau. (%) Tem. (%) Des. (%) All (%)

IG-VLM (Kim et al., 2024) - 69.8 63.6 74.7 68.6
Tarsier (Wang et al., 2024a) - - - - 79.2
VideoAgent (Wang et al., 2024d) 8.2 72.7 64.5 81.1 71.3
MVU (Ranasinghe et al., 2024) 16 55.4 48.1 64.1 55.2
MoReVQA (Min et al., 2024) 16 70.2 64.6 - 69.2
VFC (Momeni et al., 2023) 32 45.4 51.6 64.1 51.5
SeViLA† (Yu et al., 2024a) 32 61.3 61.5 75.6 63.6
VideoTree (Wang et al., 2024g) (56) 75.2 67.0 81.3 73.5
ProViQ (Choudhury et al., 2023) 60 - - - 64.6
TraveLER (Shang et al., 2024) (65) 70.0 60.5 78.2 68.2
LangRepo (Kahatapitiya et al., 2024) 90 64.4 51.4 69.1 60.9
LLoVi (Zhang et al., 2023) 90 69.5 61.0 75.6 67.7

LVNet (ours) 12 75.0 65.5 81.5 72.9

Table A.9: Extended results on NExT-QA (Xiao et al., 2021). We compare LVNet against prior zero-shot models
across different reasoning categories: causal, temporal, and descriptive. LVNet achieves an overall accuracy of
72.9% while using only 12 captions per video, demonstrating strong performance across all reasoning types. Notably,
it outperforms all models in causal reasoning (75.0%) and matches the best performance in descriptive reasoning
(81.5%), despite processing significantly fewer captions than models like VideoTree (56 captions) and TraveLER
(65 captions). Models that utilize video-caption pretraining or process substantially more captions than LVNet are
de-emphasized in gray or downplayed in light green to ensure fairness in comparison. Numbers in parentheses ()
indicate the maximum number of frames used.

Model Cap. Why? (%) How? (%) B./A. (%) All (%)

IG-VLM (Kim et al., 2024) - - - - 65.3
SeViLA† (Yu et al., 2024a) 32 - - - 60.9
VideoTree (Wang et al., 2024g) (56) - - - 66.9
LangRepo (Kahatapitiya et al., 2024) 90 62.8 62.4 47.8 59.1
LLoVi (Zhang et al., 2023) 90 68.4 67.4 51.1 64.0

LVNet (ours) 12 75.0 74.4 62.1 71.7

Table A.10: Extended results on IntentQA (Li et al., 2023). We compare LVNet against prior zero-shot models
across different reasoning categories: Why?, How?, and B.A. (Belief/Action). LVNet achieves an overall accuracy of
71.7%, surpassing all models while using only 12 captions per video. It reaches 75.0% in the Why? category, 74.4%
in the How? category, and 62.1% in the B.A. category. Compared to VideoTree, which processes 56 captions and
achieves 66.9% accuracy, LVNet outperforms it by +4.8% while using significantly fewer captions. Additionally,
LVNet demonstrates superior reasoning-based performance compared to LangRepo (90 captions, 59.1%) and
LLoVi (90 captions, 64.0%). Models with video-caption pretraining or utilizing significantly more captions than 12
frames used by LVNet are de-emphasized in grey or downplayed in light green to ensure fairness with image-level
pretraining or highlight caption efficiency. Numbers in parentheses () indicate the maximum number of frames used.

A.6 Integration to Existing Methods1083

Our LVNet has been successfully integrated with1084

other works for evaluation on long video bench-1085

marks. For example, in Ranasinghe et al. (2024)1086

LVNet is integrated with their proposed MVU to1087

gain further performance boosts on the EgoSchema1088

and NextQA benchmarks.1089

A.7 Comparison with Other Keyframe1090

Selection Methods1091

We aim to highlight the main advantage of the Hi-1092

erarchical Keyframe Selector over other existing1093

keyframe selection methods. Models like VideoA-1094

gent, VideoTree, and TraveLER provide useful1095

comparisons, as they utilize keyframe selection1096

mechanism with similar or different scale of frames. 1097

VideoAgent and TraveLER rely on uniform frame 1098

selection in the first iteration without analyzing 1099

the entire video even though they perform non- 1100

uniform sampling in the next iterations. They iden- 1101

tify important segments based solely on these ini- 1102

tial frames and the LLM’s response, which can be 1103

problematic if the initial uniformly selected frames 1104

are not representative of the entire video or if the 1105

LLM misinterprets the captions and prompts. In 1106

such cases, the LLM might incorrectly identify 1107

segments for further analysis. If the LLM fails 1108

to pinpoint the correct segment initially, the entire 1109

process can break down because subsequent frames 1110

will be similar to the first set, leading the LLM to 1111

continuously select frames within or near the ini- 1112
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Method LLM Active Params/Type TS VT Free # Frames (n)↑ TS Cap. ↓ FR ↑ Complexity Accuracy ↑

Qwen-VL (Bai et al., 2023) 7B/OS no no 4 N/A – 37.8
Qwen-VL 7B/OS no no 1800 N/A – – OOM
LongVILA (Chen et al., 2024a) 8B/OS no no 128 N/A – 38.8
LongVILA 8B/OS no no 256 N/A – – 39.7
LLaVA-OneVision (Li et al., 2024) 7B/OS no no 8 N/A – – 43.8
VideoChat-T (Zeng et al., 2024) 7B/OS no no 128 N/A 87.5 O(n) 41.9
Frame-Voyager (Yu et al., 2024b) 7B/OS no no 128 N/A 93.7 O(nr) 48.9
LLaVA-NexT-Video (Zhang et al., 2024a) 34B/OS no no 32 N/A – – 44.3
Frame-Voyager 34B/OS no no 128 N/A 93.7 O(nr) 51.2
InternVL2 (Chen et al., 2024c) 34B/OS no no 16 N/A – – 52.6
LVNet (DeepSeek-v3) 37B/OS yes yes 1800 24 – O(n) 53.1

VideoAgent+GPT4o <1.8T/PP yes yes – 24.6 – O(m) 46.4
VideoTree+GPT4o <1.8T/PP yes yes 300 98 67.3 O(nr) 53.1
GPT4o direct <1.8T/PP yes yes 1800 1800 – – API Error
LVNet (GPT-4o) <1.8T/PP no yes 1800 24 98.7 O(n) 53.9

LLaVA-Video (Zhang et al., 2024b) 72B/OS no no 64 N/A – – 61.5
Qwen2-VL (Wang et al., 2024c) 72B/OS no no 768 N/A – – 62.2
InternVL2.5 (Chen et al., 2024b) 72B/OS no no 64 N/A – – 62.6

Table A.11: Detailed Comparison on VideoMME (Fu et al., 2024) . This table expands on Table 3 by including
two-stage (TS), video-level training free (VT Free), number of input frames used, two-stage captions fed to LLM (TS
Cap.), ratio of frames/captions provided to the LLM relative to input frames (FR)., and frame selection complexity.
“OS” denotes open-source, "OOM” stands for out-of-memory. O(m) denotes the complexity proportional to the
number LLM calls to predict keyframe timelines. The bottom 3 results are from benchmark leaderboard; we are
unable to replicate these on our compute resources. Our LVNet variants require no video-level training yet achieve
competitive results on very long videos.

tial segment. Additionally, for videos that are as1113

challenging or more difficult than EgoSchema in1114

terms of temporal complexity and activities, exist-1115

ing keyframe selection models such as VideoAgent,1116

VideoTree, and TraveLER may require numerous1117

iterations by running heavy visual/language mod-1118

els to finalize keyframes selection. This results in1119

higher computational and latency costs, as it neces-1120

sitates numerous runs of resource-intensive VLM1121

and LLM models.1122

In contrast, our method analyzes the entire video1123

with high frame rates using a lightweight ResNet-1124

18 (He et al., 2016a) and segments the video non-1125

uniformly based on scene continuity. We then se-1126

lect several frames in each segment by measuring1127

feature similarity between frame features and key-1128

words using the CLIP-B/16 (0.12B) (Ranasinghe1129

et al., 2023) which is lighted than VideoAgent’s1130

EVA-CLIP-8Bplus (8B). By reviewing the entire1131

video and non-uniformly selecting keyframes based1132

on scene continuity and similarity scores, these1133

keyframes accurately represent the question-based1134

important frames distribution in the entire video.1135

Furthermore, we use VLM for a fine-grained selec-1136

tion of keyframes, improving keyframe selection1137

when CLIP-B/16 struggles to understand detailed1138

atomic activities in the frames. By hierarchically1139

segmenting the video with different modules, the1140

resulting segments and keyframes are more reli-1141

able than those from VideoAgent. Even with more1142

challenging videos, our process only needs to go1143

through the video once to collect keyframes, main-1144

taining computational efficiency. 1145

Figure A.5 visualizes the differences of 1146

the keyframe selection mechanism bewtween 1147

LVNet and VideoAgent. On the left, LVNet begins 1148

with uniformly sampled frames and filters them 1149

through multiple stages, resulting in a non-uniform 1150

distribution of frames over time. First, the tem- 1151

poral scene clustering (TSC) selects some frames 1152

that represent temporally distinct activities. Next, 1153

the coarse keyframe detector (CKD) targets frames 1154

most relevant to the question. Finally, the fine 1155

keyframe detector (FKD) further refines this selec- 1156

tion to ensure the keyframes accurately capture the 1157

activity in question. As a result, LVNet produces 1158

12 frames, with 8 of them (67%) directly depict- 1159

ing "usage of phones," which is the correct answer 1160

and leads the model to select the right option. On 1161

the right, VideoAgent also starts with the uniform 1162

frames but relies on a LLM to request additional 1163

frames. Since the initial frames do not capture 1164

enough relevant content, the LLM again selects 1165

frames uniformly, adding more irrelevant samples 1166

that lack the crucial information about "usage of 1167

phones." As a result, VideoAgent ultimately selects 1168

the wrong option. 1169
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Algorithm 1: Temporal Scene Clustering
1: Require: ResNet-18 (He et al., 2016b)

pretrained on imagenet dataset f , frame
list Listframe, image index
list Listindex ∈ {1, . . . , N}, minimum number
of list length ψ, temperature λ, number of
sample τ , function to find index of x in list
w index(x, w), and function to sort
list sort(List)

2: for all imgi in Listframe do
3: Fi ← f(imgi)
4: Listfeat.insert(Fi)
5: end for
6: for all Fi in Listfeat do

7: Listdist ←
∑

y

∑
x

√
(Fi−Listfeat)2

x×y
8: Mdist.insert(Listdist)
9: end for

10: while length of Listindex > ψ do
11: Listsample ← ∅
12: Listδ ← ∅
13: i← Listindex.pop(0)
14: pi ← softmax(Mi

dist)
15: µpi , σpi ← mean(pi), std(pi)

16: β ← µpi − σpi

∑
i=0 e

1−i/λ

17: for all prob in pi do
18: if prob < β then
19: Listselected.insert(index(prob,pi))
20: end if
21: end for
22: for all γ in Listselected do
23: δ← γ th value in Listindex
24: Listδ.insert(δ)
25: Listindex.pop(γ)
26: end for
27: Listδ.insert(i)
28: Listsample← sample τ items from Listδ
29: sort(Listsample)
30: for all framej in Listframe do
31: if j in Listsample then
32: Outputs.insert(framej)
33: end if
34: end for
35: end while

Algorithm 2: Keyword-Image Matching Pro-
cess in CKD

1: Require: keyword set K, image set I, total
length of selected image set L, function to
calculate similarity matrix sim(K, I), function
to sort similarity matrix and return indices
sort(S)

2: S← sim(K, I)
3: Ssorted, idxsorted ← sort(S)
4: Initialize Pbest as an empty list
5: Initialize Iselected as an empty set
6: while length of Iselected < L do
7: for k ∈ K do
8: for i ∈ I do
9: iindex ← idxsorted[k][i]

10: if iindex not in Iselected then
11: Pbest.insert(k, iindex)
12: Iselected.insert(iindex)
13: break
14: end if
15: end for
16: if length of Iselected ≥ L then
17: break
18: end if
19: end for
20: end while
21: return Pbest

Algorithm 3: Fine Keyframe Detection Pro-
cess (FKD)

1: Require: keyword set K, image set I, similarity
score list S, total length L, number of low
similarity indices K, number of frames per
visual template N , number of keyframes
selected per visual template M , function to sort
by similarity sort(S), function to order indices
temporally temporal_order()

2: idxsorted ← sort(S)
3: idxlow_sim ← idxsorted[−K :]
4: idxtemporal ← temporal_order(idxlow_sim)
5: idxfinal ← concatenate(idxsorted[:
−K], idxtemporal)

6: Iordered,Kordered ← I[idxfinal],K[idxfinal]
7: sets←

create_sets(Iordered,Kordered, L//N)
8: for each set ∈ sets do
9: Iselected ← select_top_M(set,M)

10: end for
11: return Iselected
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Eight images, having egocentric perspectives, are juxtaposed, separated by a red vertical line and red
horizontal line. In the first row, the images from left to right are named as image_0, image_1, image_2,
image_3. In the second row, the images from left to right are named as image_4, image_5, image_6, image_7.
Here are images and their associated guess words: {image_0: drive screws,..., image_32: remove screws}.
Think step-by-step and list only the names of the 3 images most closely related to the guessed words. Do not
select blurry images in your answer. If none of the images correspond to the provided guess words, choose
any three images at random. Your answer should follow the JSON format shown below and should only
include the JSON result. Do not output any warnings or notes under any circumstances. Instead, adhere
strictly to the provided JSON format example.

{"image name": write reason for your selection in 10 words}

This is one example output format. {"image_0": "Person washing a plate; linked to dish cleaning.",
"image_2": "Person washing a bowl; linked to dish cleaning.", "image_6": "Person running water on a
sponge; related to dish cleaning}.

Image Input

Prompt

{"image_1": "Person working on a project", "image_4": "Person holding a
knife", "image_5": "Person sharpening a knife"}

VLM

Figure A.6: Prompt for Fine Keyframe Detection: The figure illustrates the input image, the prompt provided to
the VLM, and the output. The input image represents a visual template composed of eight frames, and the prompt
requests the three best frames along with their corresponding keywords. The output displays the top three selected
frames and their associated keywords.
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