
Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

IMITATION LEARNING FOR GENERALIZABLE SELF-
DRIVING POLICY WITH SIM-TO-REAL TRANSFER
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ABSTRACT

Imitation Learning uses the demonstrations of an expert to uncover the optimal
policy and it is suitable for real-world robotics tasks as well. In this case, however,
the training of the agent is carried out in a simulation environment due to safety,
economic and time constraints. Later, the agent is applied in the real-life domain
using sim-to-real methods. In this paper, we apply Imitation Learning methods
that solve a robotics task in a simulated environment and use transfer learning
to apply these solutions in the real-world environment. Our task is set in the
Duckietown environment, where the robotic agent has to follow the right lane
based on the input images of a single forward-facing camera. We present three
Imitation Learning and two sim-to-real methods capable of achieving this task. A
detailed comparison is provided on these techniques to highlight their advantages
and disadvantages.

1 INTRODUCTION

Imitation Learning (IL) uses demonstrations of an expert to uncover the optimal policy. Due to this,
the agent can achieve expert-like behavior in the given environment.

IL is a feasible approach for problems where collecting labeled data is complicated, however ac-
quiring expert demonstrations is a straightforward process. One such area is robotic control, as it is
usually challenging to solve the particular task with a rule-based policy, but collecting demonstra-
tions is in most cases is uncomplicated. As a result, IL has been widely used in this area.

ALVINN (Pomerleau, 1988) was one of the first imitation learning based self-driving solutions. It
used Behavioural Cloning (BC) to carry out a real-world lane following task. Ross et al. (2010)
presented improvements to the Behavioural Cloning formula and solved a self-driving task in a 3D
racing game. Li et al. (2017) extended the Generative Adversarial Imitation Learning algorithm to
learn a policy that can distinguish certain behaviors in human driving in a racing simulator.

Despite all of these, solving a real-world robotics task using solely Imitation Learning is problem-
atic. The preferred approach is to train a model in a simulator and deploy it in the real-world domain.
However, this is challenging as the model’s performance usually declines in the real-world due to the
differences of the two environments. To address this issue, it is recommended to apply sim-to-real
techniques. The aim of these methods is to augment the learning process in a way that an algorithm
trained in one domain would achieve similar performance in a different domain.

One such technique is Domain Randomization. Instead of training the model in a single simulated
environment, different parameters of the simulator are randomized to expose the model to a wide
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range of environments at training time. With enough variability, the real world may appear to the
model as just another variation of the simulator. This way the model will learn general features
that are applicable to the real world as well. The randomized variables of the simulator are usually
either visual parameters (e.g. textures, lighting conditions, etc.) or physical parameters (e.g. friction
coefficients, the gravitational acceleration, masses, sizes or other attributes of objects, etc.).

Several works have demonstrated that Domain Randomization can successfully solve the simulator-
to-real problem. Tobin et al. (2017) uses this method for object localization on real-world images
by training a neural network in a simulator with highly manipulated images. Peng et al. (2017) uses
randomization of the simulator’s dynamics to train a neural network which moves objects to the
assigned locations using a robotic arm. OpenAI et al. (2019) uses Automatic Domain Randomization
to train a robotic arm to solve a Rubik’s cube. This technique incrementally increases the applied
Domain Randomization and thus the difficulty of the environment, as the model learns to perform
well in the previous environments. By performing the task in more and more difficult conditions,
the model learns to generalize. As a result, the model trained in the simulator can successfully work
on the physical, real-world robot.

In case of vision-based algorithms, a feasible way to perform the domain transfer is by applying
Visual Domain Adaptation. The aim of this technique is to transfer the observations from the training
and testing domains to a common domain, which is then used to train the agent to perform the given
task.

Due to recent advances in image-to-image translation, this approach is becoming more and more
popular. Bewley et al. (2018) uses Visual Domain Adaptation to train a self-driving agent that
achieves equally good performance in both the simulated and real-world domains. Their model
uses an Unsupervised Image-to-Image Translation Network (Liu et al., 2017) to translate images
between the real-world operating domain and the generated simulation environment, while also
learns to predict control decisions from the ground truth labels from the simulator.

In this work, several experiments were carried out in the Duckietown (Paull et al., 2017) simulator
environment to solve the presented lane following task using Imitation Learning. After the agent’s
performance was satisfactory in the simulator, we applied different sim-to-real techniques to bridge
the gap between the simulation and the real environment.

2 PROPOSED METHODS

In this work, we implemented and evaluated three different Imitation Learning techniques for
the self-driving task of right-lane following in the Duckietown simulator environment (Chevalier-
Boisvert et al., 2018). We chose the best performing method and applied two sim-to-real methods
to solve the sim-to-real transfer problem.

Figure 1: Training maps

2.1 IMITATION LEARNING IN THE SIMULATION

The general training procedure of the IL experiments was the following. First, the expert demonstra-
tor was rolled out in the environment to collect training data - demonstrations. Next, the agent was
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trained based on the IL algorithm. Finally, the agent was released in the environment and evaluated
using the official Duckietown metrics.

The demonstrations were collected on multiple maps. When the expert completed its current tra-
jectory, the environment was reset and a new map was randomly selected from the available set of
maps (see Figure 1). Most of the maps contain several objects on the side of the roads to increase
variability. This multi-map training approach further improves the model’s generalization ability
and provides robustness on unseen track layouts.

2.1.1 APPLIED IMITATION LEARNING ALGORITHMS

During our work we experimented with three IL algorithms: Behavioral Cloning (BC) (Bain & Sam-
mut, 1999), Dataset Aggregation (DAgger) (Ross et al., 2010) and Generative Adversarial Imitation
Learning (GAIL) (Ho & Ermon, 2016).

Behavioral Cloning: is the simplest form of IL. It focuses on learning the expert’s policy using Su-
pervised Learning. Expert demonstrations are divided into state-action pairs, these pairs are treated
as independent and identically distributed examples and finally, Supervised Learning is applied.

DAgger: this method assumes, that there is access to an interactive demonstrator at training time.
The algorithm starts with the initial predictor policy that had been uncovered from the initial expert
demonstrations using Supervised Learning. Then, the following loop is executed until the algorithm
converges. In each iteration, trajectories are collected by rolling out the current policy that had been
obtained in the previous iteration and the state distribution is estimated. For every state feedback
is collected from the expert and using this, a new policy is trained. For the algorithm to work
efficiently, it is important to use all the previous training data during the teaching, so that the agent
remembers all the errors it made in the past. Therefore, DAgger trains the actual policy on all the
previous training data.

GAIL: is an Inverse Reinforcement Learning (IRL) algorithm. It aims to uncover a reward function
by the means of the demonstrations, which is then used to learn the policy using Reinforcement
Learning. GAIL adopts the Generative Adversarial Networks (GAN) (Goodfellow et al., 2014)
architecture to carry out IRL. Similarly to GANs, the GAIL architecture consists of two neural
networks: the policy network (or the generator) and the discriminator. The policy network acts
as the agent’s policy: it receives the agent’s state in the environment as an input and outputs the
adequate actions. The discriminator is a binary classifier which tries to distinguish the received
state-action pairs from the trajectories generated by the agent and the expert. This network can be
interpreted as the cost function that provides the learning signal to the policy.

2.1.2 EXPERT DEMONSTRATOR

The Duckietown software stack contains an implementation a pure pursuit controller. The algorithm
uses the Duckiebot’s relative position and orientation to the center of the right driving lane to calcu-
late the adequate actions of Pulse Width Modulation (PWM) signals. It selects a point on the ideal
driving line at a certain distance from the agent and controls the robot to move towards this point.
This is demonstrated by Figure 2.

Figure 2: The operation of the pure pursuit controller.

Furthermore, we modified the pure pursuit controller to use different velocity and steering gain
values for straights and for corners. We also extended the original proportional controller with a
derivative gain, which managed to further improve the controller’s performance.
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We manually fine-tuned the pure pursuit PD controller and used it as the expert demonstrator in our
Imitation Learning experiments, as this algorithm greatly outperforms a possible human demonstra-
tor (controlling the robot with a joystick or a keyboard).

2.1.3 SIMPLIFYING OBSERVATIONS AND ACTIONS

The demonstrations are sequences of state-action pairs. In the case of the Duckietown simulator,
the states are observations of the environment: images from the Duckiebot’s front camera; and the
actions are PWM signals that specify the Duckiebot’s left and right motor velocities. To achieve
better performance at training and inference, we simplified both the observations and the actions
during experiments by applying a preprocessing step to the images and a postprocessing step to the
actions.

Observations taken from the Duckietown simulator or from the Duckiebot are RGB images with the
resolution of 480x640 (height × width). Images of this size introduce a few problems to the learning
algorithms. The high-resolution results in a high-dimensional state-space, which makes it harder for
the algorithm to learn a proper feature extractor. It also slows down the inference and training time
of the neural network. Therefore, before feeding the images to the models, two preprocessing steps
are performed in order to reduce image complexity and increase training and inference speed. These
are the following:

• Downscaling: The images are resized to a smaller resolution of 60×80 to reduce the di-
mensionality of the state-space and increase training speed.

• Normalization: The pixel values are converted to floating-point numbers and are normal-
ized to the [0.0, 1.0] range. This is a commonly used data preprocessing method that helps
the training process by alleviating numerical problems of the optimization.

In case of the GAIL algorithm, these preprocessing steps are followed by feeding the preprocessed
image through feature extractor: a ResNet (He et al., 2015) network that was pretrained on the
ImageNet (Deng et al., 2009) dataset.

In both simulation and the real Duckietown environments, the Duckiebots are controlled by actions
of PWM signals, which represent the left and right motor velocities. However, during experiments
the models are trained to predict two actions: throttle and steering angle. The throttle action is a
scalar value between 0.0 and 1.0, where 0.0 causes the agent to stop and in case of 1.0 the agent
moves at full speed. The steering angle action is a scalar value between −1.0 and 1.0, where −1.0
and 1.0 causes the agent to turn fully to the left and right respectively, and in case of 0.0 the agent
moves in a straight line. The actions predicted by the networks are then converted to PWM signals
to suit the Duckiebots.

2.2 SIM-TO-REAL METHODS

The agents trained in the simulation failed to perform the lane following task in the real Duckietown
environment, as they could not generalize to the different, previously unseen real-world environ-
ment. Therefore, it was necessary to apply sim-to-real techniques to bridge the gap between the
two environments. The aim of these techniques is to augment the learning process in a way that
an algorithm trained in one visual domain would achieve similar performance in a different visual
domain. We used two methods to solve the sim-to-real problem: Domain Randomization (DR) and
Visual Domain Adaptation using Unsupervised Image-to-Image Translation Networks (Liu et al.,
2017) (VDA-UNIT).

Figure 3: Observations from the standard (left) and the domain randomized (right) environment.
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The Duckietown simulator has a built-in Domain Randomization functionality, which changes the
parameters of the simulation (e.g. lighting conditions, textures, camera parameters, size of the robot,
physical parameters, etc.) each time the simulation is reset (see Figure 3). We applied this technique
during the process of collecting demonstrations, so that later the agent would be trained on domain
randomized observations.

Our second solution adapts a UNIT network to transfer the observations from the simulated Xsim

and the real Xreal domains into a common latent space Z. After the UNIT network is properly
trained and the quality of the image-to-image translation is satisfactory, the control policy is trained
from this common latent space Z using the demonstrations c from the expert in the simulation. The
method is demonstrated by Figure 4.

Figure 4: UNIT network-based Visual Domain Adaptation.

The main advantage of this method is that it does not require pairwise correspondences between
images in the simulated and real-world training sets to perform the image-to-image translation.
Furthermore, it does not require real-world labels either, the lane-following agent can be trained by
using only the demonstrations from the simulation.

3 TRAINING AND EVALUATION SETUP

3.1 TRAINING PROCEDURE

We have carried out the following IL experiments: BC with DR, BC without DR, DAgger with
DR, DAgger without DR and GAIL with BC-based pretraining. We also trained the Duckietown
software stacks’ DAgger algorithm as a baseline solution.

For the BC experiments and the GAIL pretraining phase 98304 demonstrations were collected (128
episodes × 768 timesteps). Throughout the DAgger experiments, the agent was rolled out for addi-
tional 128 episodes, for 512 timesteps per each episode. The acquired 65536 demonstrations were
annotated by the expert and combined with the initial demonstrations, which resulted in 163840
training examples. The collected demonstrations were randomly shuffled and split into training and
validation datasets using 80% and 20% of the data.

The training of the BC and the DAgger algorithms was performed using early stopping with patience
set to 25 epochs.

The training of the GAIL method started by pretraining the policy network using BC. After this, the
entire GAIL algorithm was trained for 30 epochs. In each epoch, the agent was rolled out in the
environment for 15 times, each trajectory consisted of 256 timesteps. The replay buffer could store
75 trajectories from the agents, which is 19200 observation-action pairs.

The models were trained with the Adam (Kingma & Ba, 2015) optimizer with the learning rate set
to 0.0001. The batch size was set to 32. The Duckietown DAgger baseline was trained for 50 epochs
with the default parameters.
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The training of the VDA-UNIT sim-to-real method was conducted in two steps.

As the first step, we trained the UNIT network, which was responsible for the image-to-image trans-
lation between the simulated and real images. For each environment, 1024 images were randomly
sampled from the datasets of over 30000 images each. In the case of the real domain, the images
were extracted from video feeds of real robots, while the simulated images were simply generated
by running an agent in the simulation. The test datasets were set up similarly, by randomly sampling
256 images from each dataset (excluding those images that were already sampled for the training
sets). Next, the model was trained for 200 epochs. We used the Adam optimizer with the learning
rate set to 0.0001. After 100 epochs, a linear learning rate decay was applied. The batch size was
set to 4.

As the second step, we selected the best performing IL algorithm (DAgger) as the controller’s policy
and we trained it using the training procedure described earlier.

All of the experiments were run on a single NVIDIA GeForce RTX 2060 GPU.

3.2 EVALUATION PROCEDURE

To evaluate our algorithms in the simulation, we used the official Duckietown metrics. For the
evaluation in the real-world environment, we defined custom metrics that could be easily measured.
The metrics are presented in sections 3.2.1 and 3.2.2 respectively.

The Duckietown software environment provides an evaluation interface, which deploys the given
submission in the simulation, measures its performance by calculating the official performance met-
rics and creates a final report that contains all the results. The evaluation procedure runs the submis-
sion for 5 episodes in the environment, which means that the robot starts from a random position
and operates for a fixed amount of time. The median values of the metrics are calculated from the
results of these 5 runs. We used the official evaluation tool to evaluate our models in the simulation.

To evaluate the real-world algorithms the following procedure was used. For each model, two
episodes were run, during which the robot was started from once in the inner and once in the outer
loop. Each episode lasted for maximum of 60 seconds. If the robot left the track, the episode was
terminated. In each episode the custom metrics were measured. Finally, the metrics during the 2
episodes were averaged.

3.2.1 PERFORMANCE METRICS IN THE SIMULATION

To evaluate our IL models in the simulation, we have used the four official Duckietown metrics.
These are the following:

• Traveled distance: This is the median distance traveled, along a lane. (That is, going in
circles will not make this metric increase.) This is discretized to tiles. This metric only
measures the distance that was travelled continuously (without cease) in the right driving
lane. This metric encourages both faster driving as well as algorithms with lower latency.

• Survival time: This is the median survival time. The simulation is terminated when the
robot goes outside of the road or it crashes with an obstacle.

• Lateral deviation: This is the median lateral deviation from the center line. This objective
encourages “comfortable” driving solutions by penalizing large angular deviations from the
forward lane direction to achieve smoother driving.

• Major infractions: This is the median of the time spent outside of the drivable zones. This
objective means to penalize “illegal” driving behavior, for example driving in the wrong
lane.

3.2.2 PERFORMANCE METRICS IN THE REAL-WORLD ENVIRONMENT

During the AI Driving Olympics (Zilly et al., 2019) competitions, it is possible for the organizers to
calculate the official Duckietown metrics, as the Duckietown tracks, where the submissions are eval-
uated, are equipped with complex positioning systems consisting of cameras, markers and precise
computer vision algorithms. However, without access to the AIDO real-world evaluation system,
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these metrics are impossible to calculate, as the Duckiebots are not equipped with any positioning
system or sensor. Therefore, we defined two custom real-world performance metrics that can be
feasibly measured without such system:

• Survival time: The time until the robot left the track or the time of the evaluation procedure
(if the robot did not make a mistake).

• Visited road tiles (in the correct driving lane): The number of visited road tiles during the
evaluation procedure. Only those tiles are counted, where the robot traveled inside in the
right driving lane. Measuring the traveled distance of the robot is problematic, but counting
the tiles instead is quite simple, therefore this is a feasible alternative.

3.2.3 BASELINE ALGORITHMS

The Duckietown software stack contains different baseline solutions for the challenges 1. One of the
Imitation Learning baselines is a DAgger algorithm, which has a training procedure that is similar
to our implementation. We trained this model with the default parameters, based on the instructions
that were provided in the authors’ description. We used the resulted model as a baseline to measure
and compare the performance of our algorithms in the simulation.

The baseline for the real-world experiments was a model trained using the best performing IL algo-
rithm (DAgger) without applying any of the sim-to-real techniques.

4 RESULTS

4.1 RESULTS IN THE SIMULATION ENVIRONMENT

The models were evaluated with the Duckietown evaluator tool using the AIDO performance met-
rics. Table 1 presents the best results for each training algorithm.

Table 1: Evaluation in the simulation
IL method Survival Time Traveled Distance Lateral deviation Major Infractions
BC
w/ DR 15 5.26 0.65 0.23
w/o DR 15 5.44 0.75 0.63
DAgger
w/ DR 15 5.32 0.71 0
w/o DR 15 5.67 0.63 0
GAIL
w/ DR 13.55 4.78 0.71 1.27
BASELINE 15 3.97 0.35 0

All three algorithms managed to train a reasonably well performing model. The agents were able to
follow the right driving lane, without committing any crucial mistakes such as leaving the road.

The algorithms managed to outperform the baseline model in terms of the traveled distance and
survival time (except GAIL). The baseline, however, has a significantly lower lateral deviation. This
is due to the fact that the baseline agent moves a lot slower than the trained agents.

As we can see, the GAIL algorithm has a slightly worse performance compared to DAgger and BC.
The reason for this phenomenon might be complexity of the training procedure: the parameters of
the training process are probably not well chosen. Therefore, further optimization is needed for the
GAIL algorithm.

4.2 RESULTS IN THE REAL ENVIRONMENT

The models were evaluated based on the procedure described in section 3.2 using the custom real-
world metrics. Table 2 presents the best results for each training algorithm. It is important to note,
that the robot’s driving speed was fine-tuned for each algorithm in order to maximize the survival
time metric.

1https://docs.duckietown.org/daffy/AIDO/out/embodied_strategies.html
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Table 2: Sim-to-real experiments
Sim-to-Real method Average survival time Average visited road tiles
DR 60 20
VDA-UNIT 60 18.5
DAgger w/o sim2real 1 4.5

Both methods managed to successfully solve the sim-to-real problem, as the real-world robots could
properly follow the right driving lane, without committing crucial mistakes. It is also straightfor-
ward, that in the real environment these techniques are not only useful, but necessary, as the model
without any form of Transfer Learning completely failed at the lane-following task.

4.2.1 THE QUALITY OF THE IMAGE-TO-IMAGE TRANSLATION

As it can be observed on Figure 5, the UNIT network achieves high image-to-image translation
quality. The network managed to learn how to remove the background that is above the horizon and
replace it with the blue sky when performing the real-to-sim translation. This is also true for the
other way around: during the sim-to-real translation, the network removes the sky and replaces it
with background objects.

Figure 5: a) simulation b) sim-to-real translation c) real d) real-to-sim translation

5 CONCLUSION AND FUTURE WORK

In this paper, we used Imitation Learning techniques to solve a complex self-driving robotics task in
the Duckietown environment. We trained the models in the simulator and applied sim-to-real meth-
ods to ensure that the algorithms achieve equally good performance in the real-world environment.
We evaluated the performance of the models in both environments using the Duckietown metrics.
We showed that using our approach, trained agents were able to follow the right driving lane in both
the simulated and real-world domains.

Our results demonstrate that it is favorable to use DAgger as it achieves the best performance with
slightly more training time compared to BC. It is challenging to reach good performance with GAIL,
as the training times are fairly longer and the hyperparameters are difficult to fine-tune.

In the future, we would like to continue fine-tuning the presented solutions in a hope of achieving
even better results. Performing further optimizations on the GAIL algorithm should also be advanta-
geous, as this model was the one with the poorest performance. In addition to this, we plan to apply
Curriculum Learning to solve the more complex Duckietown challenges.

The source code of our work is available on GitHub2.

2https://github.com/lzoltan35/duckietown_imitation_learning
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