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Abstract

Deep learning has become a standard method for pattern recognition in medical images,
but curation of large-scale annotated clinical data is challenging due to scarcity or ethical
issues. Alternatively, synthetically generated data could supplementary be used to train
neural networks. In this work, we propose the novel training scheme that uses synthetic
chest X-rays generated from 3D photon-counting CT volumes for quantifying the internal
patient rotation o. This can automatically inform the technician if and how re-exposure is
needed without the need of extensive image analysis. X-ray images were forward projected
with a step size of 2° rotation along patient axis. 1167 images and labels were trained on
a modified DenseNet-121 to detect . Results on 252 test images showed good correlation
between true and predicted a, with R? = 0.992, with 95% confidence level of ~ £2°. !
Keywords: Synthetic Data, Patient Rotation Detection, Photon-counting CT, Chest X-
ray

1. Introduction

Chest X-ray (CXR) is one of the most frequently acquired medical images. The preferred
setup is posterior-anterior (PA) CXR, where the patient is standing in front of the detector.
However, for immobile patients, only anteroposterior (AP) CXR can be performed, where
the detector is positioned behind the patient on the bed. It is not uncommon that the patient
is rotated due to sickness or medical instruments. This rotation could lead to changes in lung
density and trachea position, thus reducing diagnostic confidence. Currently, cardiothoracic
ratio and the clavicle-spine distance are used to determine if a CXR is rotated. However,
such evaluation might require clinical expertise and hinder clinical workflow. Hence, an
algorithm to quantify internal patient rotation is desired, which can automatically inform
the technician if and how the re-exposure is needed.

There is an emerging usage of realistic synthetic data for machine learning in medicine
(Chen et al., 2021). Synthetic medical data generated by forward simulated models (Fok
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et al., 2022), physical simulations (Moturu and Chang, 2018) or Al-driven generative models,
helped improving learning performance. A CNN trained with synthetic X-ray using CT-
derived airspace quantification achieved expert radiologist level of accuracy on real CXR
(Barbosa Jr et al., 2021). Synthetic X-rays from generative networks (GAN) were used for
lesion segmentation, landmark detection and surgical tool detection learning (Gao et al.,
2023), which outperformed real-data-trained models due to the effectiveness of training on
a larger dataset. However, GANs could be vulnerable to generalization and may fail to
reproduce anatomically accurate images (Yi et al., 2019).

In this study, we trained a network to estimate patient rotation using synthetic CXR
generated by forward projecting from photon-counting CT volumes. Our proposed approach
enables us to generate projections from different angles of the same CT volume, thus allowing
for the automatic generation of a large amount of training CXR and ground truth labels at
the same time. Moreover, these projections closely resemble real CXR as they are generated
from patient CT volumes. We hypothesize that the trained model would implicitly learn
features in chest rotation without the need for annotations such as cardiothoracic ratio or
clavicle-spine distance.
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Figure 1: (a) Patient rotation along z-axis; (b) Proposed simulation of rotated (A,B) and
non-rotated (C) image; (c) Forward projection setup; (d) Examples of synthetic
chest X-rays with no rotation 0°, and maximum rotation at -20° and 20°.

2. Methods and Materials

Synthetic X-ray Generation A total of 80 photon-counting CT datasets were used,
each with voxel size 0.5x0.5x0.7mm?, and ~1000 slices. Each CT volume underwent for-
ward projection by ray tracing, which takes into account the cone-beam geometry of the
system. X-rays are projected with angle « in range of [-20°, 20°], with a step size of 2°
and the central projection at 0°. The X-ray source to patient distance is 150 cm, patient to
detector distance is 30 cm, and the simulated detector is 1800x 1800 pixels. Furthermore,
standard radiographic image post-processing and cropping to the lung region were applied.
X-ray simulation illustration and examples of generated images are shown in Figure 1.



LEARNING FROM SYNTHETIC MEDICAL X-RAY

Network and Experiment A total of 1680 synthetic X-ray images were generated from
80 patients, each with 21 projections. Training, validation and testing consist of 1176, 252,
and 252 images, respectively. All images were resized to 256x256 pixels, and intensities
normalized to [0, 1]. We used DenseNet-121 (Huang et al., 2017). We used hyperbolic
tangent function (Tanh) as the activation function in the final output layer, so to preserve
the sign as our target labels consist of negative and positive values. We also map the output
values to the range of [-20, 20]. The model was trained on Nvidia RTX A40 GPU with batch
size of 16. Mean-squared error loss and Adam optimizer with learning rate of 0.01 were
used and early stopping at epoch 203.
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Figure 2: (a) The absolute error between aregict and ourye along training epochs; (b) Re-
gression fit for ayregicc and e in test data with coefficient of determination
R? and linear slope coefficients 3; (c) Bland-Altman plot for the differences of
Opredict and e in test data. Red dashed line indicates mean difference, gray
dotted lines indicate 95% confidence interval.

3. Results and Discussion

From Figure 2a, the median, 5% and 95 percentile of absolute error between Opredict and
arye level off around zero after &~ 150 epochs in training. On the test data (n = 252),
the regression fit (Figure 2b) shows the range of prediction. Diagonal line and R? = 0.992
indicate good correlation between apregict and rye. In Figure 2c, the differences between
Qpredict and ourye scattered evenly across the mean difference = 0.0385°, and close to the zero
line, which shows no bias. Most data points lies within the 95% confidence interval limits
(mean £ 1.96 x standard deviation of the differences) at —2.25° and 2.33°, which agrees
well as our synthetic X-ray images were simulated with a 2° step size. This also indicates
no systematical error in synthetic X-ray generation and the modeling of this learning task.
Evaluation on real CXR will be the next step.

4. Conclusion

We leveraged synthetically-generated images for learning the quantification of internal pa-
tient rotation in CXR, as originally limited by the availability of rotated and labelled CXR.



Fok FIESELMANN HERBST ECKERT BEISTER KAPPLER SAALFELD

References

Eduardo J Mortani Barbosa Jr, Warren B Gefter, Florin C Ghesu, Siqi Liu, Boris Mailhe,
Awais Mansoor, Sasa Grbic, and Sebastian Vogt. Automated detection and quantifi-
cation of covid-19 airspace disease on chest radiographs: a novel approach achieving
expert radiologist-level performance using a deep convolutional neural network trained
on digital reconstructed radiographs from computed tomography-derived ground truth.
Investigative radiology, 56(8):471-479, 2021.

Richard J Chen, Ming Y Lu, Tiffany Y Chen, Drew FK Williamson, and Faisal Mahmood.
Synthetic data in machine learning for medicine and healthcare. Nature Biomedical En-
gineering, 5(6):493-497, 2021.

Wai-Yan Ryana Fok, Martin Grashei, Jason G Skinner, Bjoern H Menze, and Franz
Schilling. Prediction of multiple ph compartments by deep learning in magnetic reso-
nance spectroscopy with hyperpolarized 13c-labelled zymonic acid. EJNMMI research,
12(1):24, 2022.

Cong Gao, Benjamin D Killeen, Yicheng Hu, Robert B Grupp, Russell H Taylor, Mehran
Armand, and Mathias Unberath. Synthetic data accelerates the development of general-

izable learning-based algorithms for x-ray image analysis. Nature Machine Intelligence,
pages 1-15, 2023.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian @ Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
viston and pattern recognition, pages 4700-4708, 2017.

Abhishek Moturu and Alex Chang. Creation of synthetic x-rays to train a neural network
to detect lung cancer. Journal Beyond Sciences Initiative, University of Toronto, in
Toronto, 2018.

Xin Yi, Ekta Walia, and Paul Babyn. Generative adversarial network in medical imaging:
A review. Medical image analysis, 58:101552, 2019.



	Introduction
	Methods and Materials
	Results and Discussion
	Conclusion

