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ABSTRACT

Adversarial examples generated on one model can often be transferred to other
unseen models, but achieving high targeted transferability remains challenging
due to overfitting—especially under single-surrogate constraints. In this work, we
propose BAT, a generative approach that Boosts targeted Adversarial Transferability
by training the generator to align its outputs with a curated set of high-confidence
core target samples. These samples—either selected from real data or synthesized
from noise—serve as guidance across both output and feature spaces. To mitigate
overfitting without requiring multiple surrogates, BAT employs an ensemble of
frozen discriminators derived via pruning from a single pretrained surrogate model.
BAT is applicable whether both the generator’s training (source) and the evaluation
images come from the target models’ training domain or exhibit a domain shift; it
remains effective even without real target-class images during training. Extensive
experiments on ImageNet-1K show that BAT notably outperforms existing ℓ∞-
constrained targeted attacks. We also provide theoretical bounds that reveal how
ensemble size influences transferability, aligning with observed empirical trends.

1 INTRODUCTION
Adversarial examples, imperceptible to humans, can readily deceive deep neural networks
(DNNs) (Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2017; Lin et al., 2019). Adversarial
attacks are broadly classified into two categories based on attacker’s knowledge: white-box (Szegedy
et al., 2013; Carlini & Wagner, 2017; Moosavi-Dezfooli et al., 2016; Madry et al., 2017; Paniagua
et al., 2023) and black-box (Chen et al., 2020; Reza et al., 2023; Guo et al., 2019; Dong et al.,
2019; Wu et al., 2021) attacks. While white-box attacks presume complete knowledge of the target
classifier, black-box attacks do not make such extreme assumptions. Black-box attacks further split
into query-based (Ilyas et al., 2018; Maho et al., 2021; Rahmati et al., 2020; Reza et al., 2025) and
transferable (Wang et al., 2024b; Inkawhich et al., 2020a; Wu et al., 2024; Zhu et al., 2024) attacks.
Despite improvements in query-based attacks, excessive queries are still needed for success, driving
interest in transferable attacks, where adversarial examples are generated using a surrogate model
and then transferred to unknown target/victim models.
Depending on the objective, attacks can be either untargeted or targeted. The use of surrogate models
has shown remarkable success in transferability for untargeted attacks lately (Zhu et al., 2023; Wang
et al., 2024b; 2021; Wang & He, 2021; Chen et al., 2023b). However, their direct adaptations to the
targeted setting often overfit and fail to learn the target class distribution (Liu et al., 2016). Recently,
several innovative approaches have emerged to enhance targeted transferability. Targeted attacks
are generally divided into iterative (Inkawhich et al., 2019; Li et al., 2020a) and generative (Naseer
et al., 2021; Zhao et al., 2023; Fang et al., 2024) methods. Iterative (Zhao et al., 2021; Wei et al.,
2023) methods that craft instance-specific perturbations; and generative (Wang et al., 2023; Gao et al.,
2024) methods that train a generator to produce adversarial examples for arbitrary inputs. Generative
methods, which explicitly encourage the generator to learn the target class feature distribution, have
proven especially effective for targeted transfer.
Generative adversarial attacks are best described along two orthogonal axes. First, whether the
generator’s source distribution P matches the target models’ training domain Q (no domain shift,
P = Q) or differs from it (domain shift, P ̸= Q); unless noted otherwise, evaluation images are also
sampled from P . Second, whether training uses real target-class images from Q as references in the
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loss (target-data-guided) or not (target-data-free). Many attacks only address learning when domains
match (P = Q) (Zhao et al., 2023; Gao et al., 2024; Sun et al., 2024). Some works also tackle learning
when domains are shifted (P ̸= Q), often in a target-data-guided manner that incorporates real target
images as references (Naseer et al., 2021; Wang et al., 2023). These target-class references enable
measuring distributional distance between generated adversarial examples and target images using a
discriminator pretrained on Q. However, because all target samples are treated uniformly without
considering fidelity, the resulting adversarial examples may exhibit lower target-class confidence,
ultimately reducing transferability.
Existing targeted transferable attacks, particularly under a single-surrogate constraint, often suffer
from low transfer rates due to discrepancies between the surrogate’s and the unknown targets’ decision
boundaries. To mitigate this, Naseer et al. (2021) replaced a single discriminator with an ensemble of
pretrained surrogates, improving transfer by steering perturbations toward regions vulnerable across
diverse boundaries. Zhao et al. (2023) instead derived two discriminators from a single surrogate
(pretrained vs. fine-tuned) to maximize boundary discrepancy during generator training, but at the
cost of extra discriminator training with the access to source sample. Despite empirical evidence,
how ensemble size impacts targeted transfer remains theoretically underexplored.

Source Image ResNet18 ResNet50 VGG16 VGG19

(a) Attention heatmaps on different pretrained classifiers.
Source Image ResNet50 ResNet50PR1 ResNet50PR2 ResNet50PR3

(b) Attention heatmaps on ResNet50 and its different
pruned versions.

Figure 1: Attention heatmaps obtained leveraging
Grad-CAM (Selvaraju et al., 2017) for adversarial
images of a target class crafted on different models.

Inspired by the effectiveness of model ensem-
bles and motivated by the limitations of prior
work (Zhao et al., 2023), we ask: Can we train
a generator to produce highly transferable, tar-
geted adversarial examples using only discrim-
inators derived from a single surrogate—with
no additional model training? To investigate
this, we revisit the premise that discriminator
diversity improves transferability. Fig. 1 shows
that attention regions differ not only across
distinct architectures pretrained on ImageNet-
1K (Russakovsky et al., 2015) but also across
slightly pruned variants of a single model (e.g.,
randomly removing just 2% of weights from
ResNet50 (He et al., 2016)) when adversarial ex-
amples are crafted with I-FGSM (Kurakin et al.,
2018). These observations suggest that a diverse
discriminator ensemble can be obtained from a single model via pruning, with no extra training or
architectural changes. While self-ensembling has been explored in iterative attacks (Li et al., 2020b;
Wang et al., 2024a), its role in guiding generative attacks remains underexplored. Additional related
works are provided in Appendix B.
Our approach: BAT. We propose BAT, a generative framework that trains a generator by aligning
both output and intermediate feature distributions of generated adversarial examples with those
of a small, carefully selected set of core target samples—which are consistently classified as the
target class with high confidence across the discriminator ensemble. Under a single-surrogate
constraint, BAT builds this ensemble by pruning the surrogate to obtain diverse discriminators (no
extra training). To the best of our knowledge, BAT is among the first to leverage such a self-ensemble
to guide a generative attack using confidence-aware core target samples, encouraging the generator
to produce highly confident adversarial examples that generalize to unseen models. Based on the
core target sample type, we introduce three variants: BAT-BS (Best Samples) selects the most
confident real target-class images; BAT-CS (Crafted Samples) further increases their confidence via
targeted perturbations; and BAT-CN (Crafted Noise) uses no real target-domain images, synthesizing
target-class references from noise. Accordingly, when P ̸= Q, BAT-BS and BAT-CS instantiate
target-data-guided training, whereas BAT-CN instantiates target-data-free training. By combining
(i) self-ensembling via pruning with (ii) output–feature alignment to high-confidence core targets,
BAT achieves state-of-the-art targeted (SOTA) transfer for both P = Q and P ̸= Q, including cases
without access to real target-domain images The contributions are as follows:

• We propose BAT, a generative framework that significantly improves targeted adversarial
transferability by aligning generated examples with a small set of high-confidence core
target samples in both output and feature spaces.

• To mitigate overfitting to a single surrogate, BAT exploits an ensemble of pruned discrimi-
nators from one pretrained model, enhancing transferability without additional training.
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Figure 2: Schematic of BAT, comprising a generator GΦ and K discriminators derived from a single
surrogate model Dθ0 . The generator is trained to craft adversarial examples for a given target class,
with the goal of minimizing the difference between the distribution of the generated adversarial
examples and that of the core (high-confidence) target samples.

• When multiple surrogates are available, BAT naturally leverages architectural diversity;
pruning remains effective and stable even then.

• Extensive experiments on ImageNet-1K demonstrate that BAT outperforms state-of-the-art
ℓ∞-constrained targeted attacks, improving transfer success rates by 6–7% in BAT-CS.

• We theoretically derive lower and upper bounds on transferability, and present trade-off
analyses showing how the number of discriminators affects performance.

2 PRELIMINARIES

Let [L] := {1, . . . , L} and Y := {p ∈ [0, 1]L :
∑L

c=1 pc = 1}. Consider an L-class classifier
with parameters θj modeled as Dθj ∈ Ds : X → Y , where Ds := {Dθj}K−1

j=0 ⊂ D defines a
set of K classifiers accessible to an adversary, and D represents a set of all possible classifiers
for the same classification task. Dθj maps the input image space X to output space Y , which
represents the probability distribution over all classes. Let x ∈ X ⊂ [0, 1]C×H×W be an image,
and y = Dθj (x) ∈ Y be the predicted distribution over all L classes, where C,H,W denote
channels, height, and width of x, respectively. Then, the top-1 classification label is denoted
as D̂θj (x) = argmaxc∈[L]

[
Dθj (x)

]
c
, where

[
Dθj (x)

]
c

is the predicted probability of class c.

Additionally, consider D(f)
θj

: X → Rdf as the feature extractor from the f -th intermediate layer of
the model Dθj ; we write F := Rdf for this feature space. Let V : X → Y be an unknown victim
model and yt ∈ [L] a specified target class. A targeted transferable attack seeks an adversarial
example xadv = x+ δ such that V̂ (xadv) = yt under a perceptual constraint ∥δ∥∞ ≤ ϵ.

To encourage transferability to any V ∈ D \ Ds, we consider the constrained optimization
xadv =argmin

x′
EDθi∼DℓDθi

(x′, yt); s.t. ∥x′ − x∥∞ ≤ ϵ, (1)

where ℓDθ
(·, yt) is a targeted loss (e.g., KL loss Kullback & Leibler (1951)), measuring the dis-

tance between the generated example and the target class while enforcing the ℓ∞ constraint for
imperceptibility. If an adversary has access to a set of models Ds, Eq. 1 can be approximated as:

xadv =argmin
x′

1

|Ds|
∑

Dθj
∈Ds

ℓDθj
(x′, yt); s.t. ∥x′ − x∥∞ ≤ ϵ. (2)

3 PROPOSED METHOD: BAT
A schematic of BAT is shown in Fig. 2. BAT trains a single generator GΦ to craft ℓ∞-bounded
adversarial examples for a target class yt while the attacker has access to only one pretrained surrogate
Dθ0 , trained on the target domain Q. To obtain the model diversity needed for enhanced transferability,
we construct an ensemble Ds = {Dθj}Kj=1 by randomly pruning Dθ0 , and use the pruned copies as
discriminators. All discriminators are frozen and require no additional training.
Let P denote the distribution of source images used to train GΦ; unless noted otherwise, evaluation
images are also drawn from P . Let Q denote domain of the surrogate and unknown victims models
training dataset. We refer to no domain shift when P = Q and domain shift when P ̸= Q. Orthogonal
to this axis, we distinguish whether training uses real target-class images from Q as references in the
loss (target-data-guided) or uses no real target-class images (target-data-free).
Given a source set S = {xs

i}i with xs
i ∼ P , BAT mitigates overfitting to low-fidelity references

by constructing a compact set of core target samples T ⋆ for the target class yt using confidence
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consensus across the pruned ensemble Ds. In the target-data-guided setting, BAT-BS selects the
top-k real target images from Q ranked by ensemble confidence for yt, and BAT-CS further crafts
higher-confidence references by perturbing these images toward yt. In the target-data-free setting,
BAT-CN synthesizes target-class references directly from Gaussian noise by ascending ensemble
confidence toward yt. Subsequent subsections detail the self-ensemble method, the construction of
T ⋆ and the dual-space alignment losses that train GΦ using the frozen discriminators in Ds.

3.1 ENSEMBLE OF PRUNED DISCRIMINATORS

BAT derives an ensemble of K discriminators leveraging pruning of the surrogate, in the constrained
access to a single surrogate Dθ0 with parameters θ0 ∈ Rd, where d is the dimension of the parameter
space. Then, pruned versions of Dθ0 are obtained through both L1-norm unstructured pruning and
random-unstructured pruning (Paszke et al., 2019). The L1-norm unstructured pruning process is
formalized as follows:

Dθ̂1
= Dθ0⊙P , where P (i) =

{
1, if |θ(i)0 | > γ

0, otherwise,
, (3)

where P ∈ {0, 1}d is a binary masking vector and ⊙ denotes the Hadamard product. Besides, γ is a
threshold such that #{i ∈ [d] | |θ(i)0 | ≤ γ} = p1 · d, where p1 is the pruning ratio. Additional pruned
models are obtained using random-unstructured pruning, which is expressed as follows:

Dθ̂j
=Dθ0⊙Mj : M

(i)
j ∼ Bernoulli(1− pr), ∀i ∈ [d], j > 1, (4)

where Mj ∈ {0, 1}d is another binary masking vector with each element M (i)
j being a Bernoulli

random variable, effectively zeroing out the i-th parameter with probability pr. Thus, by combining
the original model Dθ0 with its pruned variants, an ensemble of K discriminators is given by

Ds = {Dθ0} ∪ {Dθ̂1
} ∪ {Dθ̂j

}K−1
j=2 . (5)

While BAT employs these two simple methods for self-ensembling, structured pruning (Paszke et al.,
2019) or techniques from (Li et al., 2020b), ensuring diverse discriminators, can also be employed.

3.2 CORE TARGET SAMPLES SELECTION

(a) (b) (c)

Figure 3: (a) Target samples colored by
ensemble confidence p̄(x) (brighter is
higher). (b) Retain high-confidence sam-
ples and refine them by bounded targeted
perturbations. (c) Resulting crafted refer-
ences with increased ensemble confidence.

The key objective in BAT is to guide the generator to
produce adversarial examples that align closely with
the high-confidence target regions in both output and
feature spaces across the discriminators in Ds. Thus,
the selection of target class samples, which guides the
training, is critical for enhancing the transferability of
these adversarial examples. Based on the access to target
class data T and the nature of references, BAT has three
variants: BAT-BS, BAT-CS, and BAT-CN. Both BAT-BS
and BAT-CS assume access to T . It is anticipated that
the confidence levels of target samples xt

i ∈ T may vary
across discriminators due to diverse decision boundaries.
Let pj(x) := [Dθj (x)]yt

and define the ensemble mean p̄(x) = 1
|Ds|

∑
Dθj

∈Ds
pj(x). We rank

candidates by the ensemble mean confidence p̄(x). To target the high-confidence region of the target
class, BAT-BS selects a subset T ∗

BS by taking the TopK elements of T under p̄(x):
T ∗
BS = TopK

(
T ; p̄(x)

)
.

Equivalently, T ∗
BS contains those x ∈ T whose ensemble score exceeds that of non-selected samples.

BAT-CS increases the ensemble confidence of each x̃ ∈ T ∗
BS by adding bounded targeted pertur-

bations (PGD-style), as depicted in Fig. 3 and detailed in Algorithm 1 in the Appendix, producing
a crafted set T ∗

CS that better targets the desired region. Conversely, BAT-CN synthesizes a high-
confidence set T ∗

CN by optimizing the same objective starting from noise initializations n ∼ N (0, I)
with clipping to [0, 1]C×H×W , which requires no access to real target-domain images.
We refer to T ∗

BS, T ∗
CS, and T ∗

CN collectively as the core target set T ⋆, used to drive output- and
feature-space alignment in the subsequent losses.

3.3 DISTRIBUTIONS DISTANCE MEASUREMENT

To guide the generator in crafting transferable adversarial examples, BAT minimizes the discrepancy
between the generated examples and the core target samples in both output space and feature space.
This dual-space alignment is enforced across all discriminators in the ensemble Ds.

4
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(i) Output Distribution Alignment. We use Kullback–Leibler (KL) divergence to quantify the
mismatch between the predicted class distributions of the generated adversarial examples and the
core target samples. For a mini-batch of size B, the symmetric KL divergence on a discriminator
Dθj ∈ Ds is given by:

LKL
Dθj

=
1

B

B∑
i=1

[
KL(Dθj (x

adv
i ) ||Dθj (x

t⋆
i )) + KL(Dθj (x

t⋆
i ) ||Dθj (x

adv
i ))

]
(6)

where xadv
i is a generated adversarial example and xt⋆

i ∈ T ∗ is a core target sample. The symmetric
formulation ensures stable optimization and mutual alignment between distributions.
(ii) Feature Distribution Alignment. To further constrain the generator to match the internal
target-class representation, we measure the cosine similarity between the intermediate features of the
generated and core samples:

Lf
Dθj

=
1

B

B∑
i=1

cos ⟨h(f)
j (xadv

i ), h
(f)
j (xt⋆

i )⟩, (7)

where h
(f)
j (x) = Df

θj
(x)/∥Df

θj
(x)∥2, and Df

θj
(x) denotes the intermediate feature representation

extracted from the f th layer of discriminator Dθj .

These losses collectively ensure that generated examples resemble high-confidence target-class
samples both at the output and representational levels, improving generalization to unseen models.

3.4 GENERATOR TRAINING

The goal of the generator training is to update the parameters Φ of GΦ so that it learns to generate
an adversarial example xadv

i , for a source image xs
i , which is capable of mapping to the target class

with high transferability satisfying the perturbation constraint ∥xadv
i − xs

i∥∞ ≤ ϵ. We use the same
generator backbone, FΦ, as in (Zhao et al., 2023; Naseer et al., 2021; Wang et al., 2023). The output
from the generator satisfying the perturbation constraint can be expressed as:

xadv
i = GΦ(x

s
i ) = clip(W ∗ FΦ(x

s
i )), (8)

where W is a smoothing parameter with fixed weights to filter out the high-frequency components
from the generated image, and clip(W ∗ FΦ(x

s
i )) = min(xs

i + ϵ,max(W ∗ FΦ(x
s
i ),x

s
i − ϵ)) keeps

each pixel of xadv
i within the perturbation budget ϵ. The generator is optimized using the combined

distribution alignment loss defined in Section 3.3. Specifically, the total loss is:

LG =
1

|Ds|
∑

Dθj
∈Ds

[
LKL
Dθj

− λ Lf
Dθj

]
, (9)

where LG captures the distributions distance between the generated adversarial examples and high-
confidence target samples, both in output and feature spaces, for all the discriminators Dθj ∈ Ds,
while λ controls the weight of the feature alignment term. The training procedure is outlined in
Algorithm 2, provided in the Appendix.

4 EXPERIMENTS

Baselines and hyperparameter settings. We compare BAT against state-of-the-art transferable
targeted attacks: two iterative methods (Po-Trip (Li et al., 2020a) and SU (Wei et al., 2023)) and four
generative methods (TTP (Naseer et al., 2021), M3D (Zhao et al., 2023), ESMA (Gao et al., 2024),
and CGNC (Fang et al., 2024)). ESMA and CGNC train a single generator for multiple target classes,
which typically reduces transfer; for fairness we also report CGNCFT, obtained by fine-tuning the
CGNC generator separately for each target class.
During BAT training, all discriminators Dθj ∈Ds are frozen; only the generator parameters Φ are
updated. We use the backbone FΦ and optimize with Adam (initial learning rate 2×10−3, exponential
decay each epoch; β1 = 0.5, β2 = 0.999) for T = 20 epochs with mini-batch size 16. Unless
otherwise specified, we train on 12 randomly selected ImageNet-1K target classes using a pretrained
ResNet-50 (He et al., 2016) surrogate and repeat with a pretrained DenseNet-121 (Huang et al.,
2017). To build Ds, we include the unpruned surrogate and its pruned variants using magnitude (L1)
unstructured pruning with ratio p1=0.6 (60% weights pruned) and random unstructured pruning with
probability pr=0.02 (2% per-weight pruning); features are taken from block-3 for both architectures
(as in SU (Wei et al., 2023)). By default we use |Ds|=5, an ℓ∞ perturbation budget ϵ=16/255, and
loss weights λ = 1.5 for the output/feature alignment terms (see Eq. 9).
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Table 1: TSR(%) of various attacks on different target classifiers under P=Q. BAT variants,
specifically BAT-CS and BAT-CN, outperform the SOTA methods by a large margin. ‘*’ indicates
the performance on the white-box surrogate model (Dθ0). For each target model, the best overall
method is highlighted in bold, while the best baseline method is underlined. Values in parentheses
indicate the improvement in TSR(%) over the best baseline.

Surrogate Attack RN18 RN50 RN101 DN121 DN161 VGG16BN VGG19BN MN-V2 ViT-B Average

RN50

Po-Trip 39.84 99.90* 56.95 61.26 61.87 21.28 23.90 19.18 3.81 43.11
SU 69.84 97.78* 79.83 76.35 77.62 71.82 72.00 50.88 6.71 66.98
ESMA 57.74 92.75* 66.71 65.59 64.87 72.04 66.99 54.04 21.97 62.52
CGNC 79.02 96.14* 84.82 83.26 84.34 80.71 75.14 65.31 24.56 74.81
CGNCFT 85.67 96.50* 89.17 88.83 89.17 85.17 81.33 75.83 40.83 81.39
TTP 78.06 94.96* 80.16 74.39 72.11 80.93 70.79 62.92 22.22 70.73
M3D 86.50 95.77* 88.73 88.32 87.62 84.17 82.57 81.54 51.73 82.99
BAT-BS 89.61 98.08* 92.76 92.23 89.73 92.64 89.67 81.76 42.67 85.46(+2.35)

BAT-CS 93.78 98.78* 95.22 94.16 93.31 94.45 94.04 86.60 50.45 88.98(+5.87)

BAT-CN 92.26 98.68* 94.57 93.94 92.51 93.70 92.13 85.46 47.27 87.84(+4.73)

DN121

Po-Trip 23.43 25.36 23.67 99.96* 54.14 10.64 13.36 13.18 2.75 29.61
SU 50.02 58.08 47.47 98.50* 78.72 49.46 53.43 31.05 5.08 52.42
ESMA 62.29 66.60 54.97 94.67* 77.80 66.15 60.22 46.14 20.70 61.06
CGNC 62.14 73.82 63.14 93.90* 74.20 65.78 74.23 56.44 24.60 65.36
CGNCFT 74.45 84.72 72.61 94.48* 85.19 80.28 81.49 70.14 34.66 75.34
TTP 64.71 61.27 60.54 93.75* 69.19 62.37 57.41 51.06 23.32 60.40
M3D 82.79 85.48 80.34 96.86* 88.17 80.96 79.28 75.16 48.77 79.76
BAT-BS 88.80 86.05 83.79 98.75* 88.97 83.53 82.38 76.49 42.02 81.20(+1.44)

BAT-CS 92.46 92.30 90.51 99.15* 92.02 90.71 89.51 81.66 48.36 86.30(+6.54)

BAT-CN 92.11 91.82 89.79 99.14* 93.90 91.18 88.38 79.21 48.45 86.00(+6.24)

Table 2: TSR(%) of various attacks on different target classifiers under P̸=Q where the source
images to train the generators are sampled from the Painting dataset. The performance is evaluated on
the Painting test set. ‘*’ indicates the performance on the white-box surrogate (Dθ0 ). For each target
model, the best overall method is highlighted in bold, while the best baseline method is underlined.
Values in parentheses indicate the improvement in TSR(%) over the best baseline.

Surrogate Attack RN18 RN50 RN101 DN121 DN161 VGG16BN VGG19BN MN-V2 ViT-B Average

RN50

TTP 76.41 93.07* 74.29 79.48 75.83 78.09 65.02 56.54 37.07 70.64
CGNC 83.09 97.48* 81.61 80.98 82.79 86.24 82.56 71.5 46.01 79.14
CGNCFT 91.43 98.56* 94.75 91.69 89.75 91.35 87.16 78.29 58.82 86.87
BAT-BS 92.65 98.16* 94.40 93.15 92.66 92.78 87.01 83.84 61.17 88.42(+1.55)

BAT-CS 93.48 98.93* 96.00 96.27 95.41 95.44 93.68 90.10 73.58 92.54(+5.67)

BAT-CN 93.73 98.88* 95.80 95.82 94.82 94.73 93.52 88.69 69.94 91.77(+4.90)

DN121

TTP 65.89 64.85 61.94 94.56* 76.61 64.04 53.55 46.72 27.76 61.77
CGNC 82.80 82.58 77.73 98.26* 89.90 83.13 78.88 63.83 49.21 78.48
CGNCFT 88.71 90.20 85.66 98.46* 92.68 90.41 86.55 76.13 56.01 84.98
BAT-BS 88.82 90.67 86.24 98.45* 90.20 89.10 87.11 77.10 59.57 85.25(+0.27)

BAT-CS 94.00 95.40 93.46 99.13* 95.63 94.51 93.30 82.42 70.17 90.89(+5.91)

BAT-CN 92.36 93.69 91.50 99.02* 94.75 91.56 90.05 78.41 69.97 89.03(+4.05)

Dataset. To evaluate BAT under both no domain shift (P=Q) and domain shift (P̸=Q), following
TTP (Naseer et al., 2021) we use ImageNet-1K (Russakovsky et al., 2015) and the Painting
dataset (Saleh & Elgammal, 2015). All surrogate and victim models (and thus the discriminator
ensemble) are trained on ImageNet-1K, which we take as the models’ training domain Q. In the
no-shift setting we train the generator on ImageNet-1K (P=Q); in the shift setting we train on
Painting (P̸=Q). For training, we sample 50,000 source images, and for evaluation, we consider
5,000 validation images from the corresponding domain. Additionally, when P̸=Q, we report results
on 5,000 ImageNet images. Unless otherwise specified, we perform experiments under P=Q.

BAT uses three variants—BAT-BS, BAT-CS, and BAT-CN—distinguished by how core target samples
are constructed. For each target class, BAT-BS ranks approximately 1,300 ImageNet-1K training
images of that class by ensemble confidence and selects the top k=300. BAT-CS starts from these
300 and increases their target confidence using Algorithm 1. BAT-CN initializes 300 references from
Gaussian noise and applies the same algorithm, using no real target-domain (Q) images. For crafting,
we use step size αc=0.25 for BAT-CS and αc=1 for BAT-CN with Tc=25 updates.

Target models. To assess the effectiveness of the adversarial examples produced by the trained
generator, we evaluate transferability on unseen victim models pretrained on ImageNet-1K: VGG-
16BN, VGG-19BN (Simonyan & Zisserman, 2014), ResNet-18/50/101 (RN18/RN50/RN101) (He
et al., 2016), DenseNet-121/161 (DN121/DN161) (Huang et al., 2017), MobileNetV2 (MNv2) (San-
dler et al., 2018), and ViT-B (Dosovitskiy et al., 2020). Beyond standard classifiers, we also
test against robustly trained models: adversarially trained Inception-v3 (Inc-v3adv) (Kurakin et al.,
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2016), ensemble adversarially trained Inception-ResNet-v2 (IR-v2ens) (Tramèr et al., 2017), and four
robustness-oriented ResNet-50 variants—RN50SIN (Stylized-ImageNet), RN50IN (stylized + natural
ImageNet) (Geirhos et al., 2018), RN50fine (fine-tuned RN50IN with an auxiliary set), and RN50Aux
(AugMix) (Hendrycks et al., 2019). We additionally evaluate under input-processing defenses;
detailed results are provided in the Appendix (Tab. 7).

Evaluation metric. We report the transfer success rate (TSR) for targeted attacks, i.e., the percent-
age of adversarial examples that cause an unknown victim to predict the intended target label. For a
given victim Dθk ∈D \ Ds, a target-class set Υ, and N evaluation images per class, the TSR is

TSR(%) =
100

N · |Υ|
∑
yt∈Υ

N∑
i=1

1
(
D̂θk(G

(yt)
Φ (xi)) = yt

)
, (10)

where G(yt)
Φ is the generator trained for target class yt, xi are evaluation inputs, and D̂θk denotes the

top-1 prediction. For multiple victims, we also report the average TSR across the evaluation set.

Table 3: Applicability matrix. Which
settings each generative method sup-
ports: P = Q vs. P ̸= Q, and target-
data-guided vs. target-data-free losses.

Method Domain match/shift References in loss
P=Q P̸=Q guided free

ESMA ✓ × × ✓
TTP ✓ ✓ ✓ ×
CGNC ✓ ✓ × ✓
M3D ✓ × × ✓

BAT-BS ✓ ✓ ✓ ×
BAT-CS ✓ ✓ ✓ ×
BAT-CN ✓ ✓ × ✓

Performance under no domain shift. Tab. 1 compares
TSR across all methods with P=Q. Consistent with prior
work, generative approaches substantially outperform it-
erative ones in targeted transfer. All three BAT variants
attain the highest average TSR, which correlates with their
ability to produce adversarial examples with higher target-
class confidence (Tab. 9; Appendix C). In particular, the
crafted-target variants (BAT-CS) yield the largest gains
by explicitly concentrating training on higher-confidence
regions. Remarkably, BAT-CN remains competitive de-
spite using no real target-domain images, underscoring
the strength of confidence-guided references synthesized
from noise. BAT variants also retain their advantage under
tighter perturbation budgets (Tab. 11; see Appendix C),
indicating robustness to smaller ℓ∞ constraints.

Performance under domain shift. For the P̸=Q setting, we compare against methods applicable
under domain shift—TTP (Naseer et al., 2021) and CGNC (Fang et al., 2024)—and exclude methods
that require source images from the target domain (e.g., ESMA (Gao et al., 2024), M3D (Zhao
et al., 2023)). Tab. 2 reports TSR on the Painting test set: BAT substantially improves transferability
in this regime as well, with BAT-CS and BAT-CN achieving results comparable to their no-shift
performance. Notably, while TTP is target-data-guided (uses real target-class images from Q as
references), BAT-CN is target-data-free and still surpasses it without any real images. Additional
results trained on Painting and evaluated on ImageNet-1K are provided in Appendix C, Tab. 10.

Applicability matrix. Tab. 3 summarizes the generative methods we evaluate, organized by (i)
domain match vs. shift (P=Q vs. P̸=Q) and (ii) references used in the loss—target-data-guided if
real Q target images are used, target-data-free otherwise. All methods use surrogates trained on Q.
A checkmark (✓) indicates the setting is demonstrated in prior work or directly applicable without
modification; a cross (×) indicates it is unsupported. As shown, all three BAT variants apply to both
the matched and shifted regimes: BAT-BS and BAT-CS are target-data-guided (like TTP), whereas
BAT-CN is target-data-free (like CGNC). Across both regimes (P=Q and P̸=Q), BAT consistently
achieves higher targeted success rates than TTP/CGNC (see Tab. 1 and Tab. 2).

Table 4: TSR(%) comparison among the gen-
erative methods, considering RN50 as sur-
rogate, under P=Q, against classifiers with
robust training mechanism on ImageNet.

Surrogate ϵ Attack Inc-v3adv IR-v2ens RN50SIN RN50IN RN50fine RN50Aux

RN50

16
255

ESMA 1.10 1.07 28.03 74.73 78.10 54.94
TTP 6.25 6.05 26.68 80.97 79.91 69.51
M3D 7.25 8.21 45.69 88.60 91.73 80.54

CGNCFT 7.33 9.26 34.98 91.23 93.48 78.05
BAT-BS 10.22 12.68 52.25 93.23 92.29 85.22
BAT-CS 10.33 12.94 57.28 95.66 94.63 87.34
BAT-CN 9.26 12.44 57.11 95.33 95.33 87.76

32
255

ESMA 10.93 15.02 43.38 78.75 79.07 63.66
TTP 23.61 25.92 37.48 81.28 80.27 73.86
M3D 21.57 39.00 61.33 92.38 93.43 88.89

CGNCFT 33.19 44.61 62.95 94.25 93.85 90.97
BAT-BS 38.16 47.50 64.33 95.48 94.40 90.03
BAT-CS 41.60 51.53 72.28 96.46 94.31 92.64
BAT-CN 39.36 50.53 71.74 97.24 95.54 92.03

Performance against robust models. Tab. 4 com-
pares the TSR, considering ResNet50 as surrogate,
against six robust models that are evaluated at two
perturbation thresholds: ϵ = 16

255 and 32
255 . As ex-

pected, TSR increases with ϵ. BAT variants perform
better against the mentioned robust models than the
baseline attacks. TSR considering DenseNet121 as
the surrogate against these models, along with exper-
iments demonstrating the BAT variants’ effectiveness
against input processing defenses and the robustness
of BAT due to the variability introduced by random
pruning, are discussed in Appendix C.
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Table 5: TSR(%) comparison of BAT-CS and TTPens us-
ing different combinations of the five discriminators derived
from one or more surrogates. Symbols: ’†’ indicates gener-
ator training leveraging pretrained ResNet{18, 34, 50, 101,
152}, ’‡’ indicates leveraging ResNet{18, 50}, DN121 and
VGG{16, 16BN}, and ’⋄’ indicates leveraging RN50, two
pruned versions of RN50, DN121 and one pruned DN121 as
discriminators. ’*’ marks white-box surrogate performance.

Attack RN18 RN50 RN101 DN121 DN161 VGG16BN VGG19BN MN-V2 ViT-B Average

BAT-CS 93.78 98.78* 95.22 94.16 93.31 94.45 94.04 86.60 50.45 88.98
TTPens

† 96.15* 96.36* 97.12* 92.25 91.90 88.91 89.72 88.41 48.32 87.68
BAT-CS† 98.50* 98.28* 98.44* 97.29 96.71 96.38 95.64 93.47 59.80 92.72
TTPens

‡ 95.41* 95.45* 91.76 95.46* 90.06 94.33* 90.52 88.90 49.03 87.88
BAT-CS‡ 98.45* 97.81* 96.14 98.22* 96.42 98.22* 96.06 94.22 61.61 93.02
BAT-CS⋄ 95.98 98.62* 96.55 98.67* 96.23 96.77 95.81 91.63 58.53 92.09

Impact of discriminators from dif-
ferent surrogates. We analyze how
using discriminators from various pre-
trained surrogates affects TSR. Tab. 5
demonstrates that BAT-CS, which em-
ploys an ensemble of discriminators
derived from a single ResNet50 model
through pruning, achieves a higher
average TSR than TTPens (Naseer
et al., 2021), which uses five distinct
pretrained ResNet models. The per-
formance of BAT-CS improves when
its discriminators are replaced with
pretrained ResNet models similar to
TTPens (third row). Furthermore, using discriminators from three model families—ResNet, DenseNet,
and VGG—slightly boosts TSR compared to using only ResNet (rows four and five). When de-
riving five discriminators from two model families, i.e., ResNet50 with two pruned versions of it
and DenseNet121 with a pruned version of it, BAT-CS achieves similar TSR to that with diverse
pretrained models from single or multiple model families (last row). These results suggest that
BAT-CS can further boost TSR by leveraging discriminator ensembles from diverse surrogate models,
when available, and pruned versions of these models, indicating the effectiveness of pruning.

Table 6: Ablation study on BAT variants showing the impact
of discriminator size (|Ds|) and core target sample selection
on TSR (%).

Method Variant |Ds| Target Sample Selection TSR (%)
BAT (baseline) 1 All (∼1300) 71.12
BAT-BS 5 All (∼1300) 75.85
BAT-BS 1 Core (best 300) 78.35
BAT-BS 5 Core (best 300) 85.46
BAT-CS 5 Confident Core (from best 300) 88.98
BAT-CN 5 Crafted Core (from noise) 87.84

Ablation study. Tab. 6 presents
the step-by-step progression of the
BAT framework, beginning with a
baseline using a single discriminator
and all available target class samples
(∼1300). Increasing the number of
discriminators to 5 via pruning im-
proves TSR from 71.12% to 75.85%.
Replacing all samples with a curated
set of 300 high-confidence target sam-
ples also yields a boost (78.35%) even
with a single discriminator. Combining both—core target samples and pruned ensemble—raises
TSR to 85.46%. Finally, BAT-CS and BAT-CN—both employing five discriminators and confidently
crafted core samples—further elevate the TSR to 88.98% and 87.84%, respectively. These results
highlight the individual and combined benefits of discriminator diversity and confidence-aware
target selection. Details on the choice of pruning parameters, the influence of target sample size,
the number of discriminators, and the impact of λ on transferability are provided in Appendix C.
Additionally, Appendix D includes a comprehensive trade-off analysis and training time comparison
across methods.

5 THEORETICAL ANALYSIS

As in Eq. 1, ideally an adversary aims to generate adversarial examples that minimize the expected loss
across all possible classifiers in D, ensuring high transferability. Additionally, it has been observed
that model ensemble offers greater robustness against adversarial attacks Pang et al. (2019). Based on
these observations, our theoretical analysis considers an extreme case: a virtual victim model V̄ ∈ D,
which is the ensemble average of all possible models in D, i.e. ℓV̄ (x, yt) = EDθi

∼D
[
ℓDθi

(x, yt)
]
.

Intuitively, adversarial examples capable of deceiving this virtual model can deceive any unknown
classifier with higher probability.

5.1 LOWER BOUND OF TRANSFERABILITY

In this part, we theoretically demonstrate the impact of the number of accessible models on the
lower-bound of transferability, which is inspired by Yang et al. (2021).
Theorem 1. Consider, ∃V̄ ∈ D, a virtual victim model, such that ∇xℓV̄ (x, yt) =
EDθi

∼D
[
∇xℓDθi

(x, yt)
]
. Additionally, assume that the similarity of the gradient of ∀Dθi ∈ D

with the gradient of V̄ is captured by EDθi
∼D

[
∥∇xℓDθi

(x, yt) − ∇xℓV̄ (x, yt)∥22
]
≤ σ2, and

∥∇xℓDθi
(x, yt)∥2 ≤ B. Assume the loss function of a set of randomly picked accessible models

8
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Dθj ∈ Ds ⊂ D and the target model V̄ are β-smooth, and ∀Dθj ∈ Ds are (αj , Dθj )-effective on the
generated samples with a perturbation constraint ∥δ∥2 ≤ ϵ′. Under these conditions, the probability
of transferability can be lower bounded by:

Pr(Tr(Ds, V̄ ,xadv, yt) = 1) ≥

1−A− ϵ′(1 +A) + cDs(1−A)

cv + ϵ′
− ϵ′

cv + ϵ′

√
2
(
1−

∥∇xℓV̄ (x, yt)∥2 − σ√
|Ds|

B

)
,

where A =
∑|Ds|

i=0 αj , cv := minx∈X
miny∈[L]−{yt} ℓV̄ (xadv,y)−ℓV̄ (x,yt)− β

2 ϵ′2

∥∇xℓV̄ (x,yt)∥2
, and

cDs
:= max

x∈X

(
miny∈[L]−{yt}

1
|Ds|

∑
Dθj

∈Ds
ℓDθj

(xadv, y)− 1
|Ds|

∑
Dθj

∈Ds
ℓDθj

(x, yt) +
β
2 ϵ

′2)
∥ 1
|Ds|

∑
Dθj

∈Ds
∇xℓDθj

(x, yt)∥2
.

Here cDs
is the average risk of the models in Ds and cv is the risk of the virtual victim model V̄ .

The definitions of transferability (Tr(.)) and (αj , Dθj )-effective attack are deferred to Appendix F.
In theorem 1, the value of A is sufficiently small as it is measured on the accessible models.
Additionally, cv is also sufficiently small as it is scaled by ∥∇xℓV̄ ∥2 Yang et al. (2021). Thus,
Pr(Tr(Ds, V̄ ,xadv, yt) = 1) takes the form ξ − ζ

√
κ+ σ

B
√

|Ds|
, where ζ and κ are the positive

constants, and ξ depends on |Ds|. In ξ, A can be approximated as a constant for a limited |Ds|; and
cDs , representing the average risk across ∀Dθj ∈ Ds, can also be treated as a constant. Hence, the
term that mainly captures the impact of |Ds| on transferability is σ/

√
|Ds|. According to this, the

lower bound of transferability is positively correlated with the number of accessible models when
|Ds| is small, and the rate of increase in transferability decays quickly and saturates as |Ds| grows, a
similar trend as observed in Fig. 5a in the Appendix. However, with a sufficiently large number of
models, as σ/

√
|Ds| approaches zero, the term A =

∑|Ds|
i=0 αj becomes dominant. This indicates that

an optimal number of accessible models, |Ds|, exists beyond which the lower bound of transferability
first increases positively with |Ds| but then decreases once this threshold is exceeded. Nevertheless,
if we redefine transferability simply as: Tr(Ds, V̄ ,xadv, yt) = ( ˆ̄V (xadv) = yt) that only focuses on
if the crafted xadv exploiting Ds successfully deceives the target model V̄ (without the constraint
of deceiving ∀Dθj ∈ Ds), ξ can be approximated as independent of |Ds|. Under this condition,
transferability exhibits a purely positive correlation with |Ds|. We note that theoretical analysis
is meant to offer guidance on how diversity impacts transferability, not a strict implementation
blueprint. In our theoretical analysis, we adopt the L2 norm primarily for its analytical convenience.
The geometry of the L2 ball allows for smoother derivation of bounds, enabling gradient-alignment
and smoothness-based arguments, which are more challenging to formulate under the L∞ constraint.
Importantly, the two norms are related. For any input of dimension d, an L∞-bounded perturbation
also satisfies an L2 bound: ∥δ∥2 ≤

√
d · ∥δ∥∞. This relationship ensures that our theoretical insights

under the L2 setting can be interpreted or extended to the L∞ regime by substituting the correspond-
ing bound. The detailed proof of theorem 1 along with upper bound of transferability are deferred to
Appendix F.

6 CONCLUSION

In this work, we propose BAT, a generative framework that improves targeted adversarial transferabil-
ity under single-surrogate constraints. BAT guides the generator using core target samples—derived
from natural images, refined, or synthesized from noise—and aligns adversarial examples with these
samples in both output and feature spaces using an ensemble of pruned discriminators. The framework
can also incorporate diverse model architectures when available, further enhancing transferability.
This confidence-aware alignment strategy enables BAT to produce highly transferable adversarial
examples that generalize well across unseen models. Experimental results show consistent gains
under no domain shift (P=Q) and domain shift (P̸=Q). Complementary theory provides lower/upper
bounds on targeted transferability and explains how the ensemble size trades off with performance.
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Appendix
In this supplementary material, we provide additional details and analyses that support and extend
the main findings of the paper:

• Section A describes the step-by-step procedures for (i) crafting high-confidence core target
samples across the discriminator ensemble and (ii) generator training.

• Section B reviews additional related works on adversarial attacks and ensemble-based
strategies.

• Section C presents extended experimental results, including evaluations on both standard
and robust models under P=Q and P̸=Q, along with ablations.

• Section D provides a trade-off analysis between transferability and training cost as a function
of discriminator count.

• Section E explores the applicability of BAT to vision-language models.

• Section F contains formal proofs for the theoretical results, including the transferability
bounds discussed in Section 5.

• Section G discusses the limitations of proposed BAT and its broader impacts.

• Section H includes visualizations of adversarial examples and perturbations.

• Section I provides additional attention heatmaps across models and their pruned variants.

Code for reproducing BAT is included as supplementary material and will be released publicly.

A ALGORITHMS
In this section, we provide the detailed procedures for (i) generating confident core target samples
across the discriminator ensemble and (ii) training the generator using the proposed BAT objective.

Algorithm 1: Crafted target sample

1 Inputs: Samples set T̃ , discriminators Ds, target class yt, iteration number Tc, learning rate αc.
2 Output: More confident target samples set T̂ .
3 δ0 = 0, T̂ = {}
4 foreach xt

i ∈ T̃ do
5 for m = 0 : Tc − 1 do
6 xi = xt

i + δm
7 Loss: LDs(xi, yt) =

∑
Dθj

∈Ds
CE(Dθj (xi), yt) /* CE: cross-entropy loss */

8 Obtain the gradient: ∇δLDs(xi, yt)
9 Update δm: δm+1 = δm − αc ∗ ∇δLDs(xi, yt)

10 Clip: δm+1 = min(max(xt
i + δm+1, 0), 1)− xt

i

11 T̂ = T̂ ∪ {x̂t
i}, where x̂t

i = xt
i + δTc

Algorithm 2: Training Generator
1 Inputs: Source dataset S, available surrogate model Dθ0 , target class yt, iteration number T .
2 Output: Trained generator GΦ.
3 Obtain ensemble of surrogate models Ds using Eq. 5.
4 T ∗ ← Core target samples exploiting Ds.
5 for κ = 0 : T − 1 do
6 foreach mini-batch {xs

i}Bi=1,x
s
i ∼ S do

7 Sample B target samples: {xt⋆
i }Bi=1,x

t⋆
i ∼ T ∗

8 Generate adv. examples using Eq. 8: {xadv
i }i, ∀xs

i ∈ {xs
i}Bi=1

9 Calculate loss LG using Eq. 9
10 Update parameters of GΦ: Φ← minLG
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B RELATED WORK

Untargeted transferable attacks. Untargeted adversarial attacks primarily utilize I-FGSM (Ku-
rakin et al., 2018), an iterative method, which iteratively adds perturbations in the direction of the
gradient w.r.t. input to craft adversarial examples. To escape local minima and enhance transferability,
MI-FGSM (Dong et al., 2018) introduces momentum-based optimization. Further improvements
in transferability have been achieved with more advanced momentum-based attacks such as NI-
FGSM (Lin et al., 2019), VMI-FGSM (Wang & He, 2021), GRA (Zhu et al., 2023) and so on.
Additionally, several works employ input transformation techniques to mitigate the over-fitting prob-
lem on surrogate models. For instance, Diverse input method (DIM) (Xie et al., 2019) randomly
resizes and adds padding to input samples; Time invariant method (TIM) (Dong et al., 2019) adopts
a Gaussian kernel to smooth the gradient before updating the perturbation; Scale invariant method
(SIM) (Lin et al., 2019) uses multiple scaled versions of the input to calculate the gradient; Ad-
mix (Wang et al., 2021) extends SIM by incorporating small portions of images from other categories;
Block shuffle and rotation (BSR) (Wang et al., 2024b) divides the input image into blocks and
calculates the gradient from a set of images obtained by randomly shuffling and rotating these blocks.
Additionally, some works enhance adversarial attacks by augmenting images with multiple trans-
formations predicted by a neural network. Automatic Model Augmentation (AutoMA) (Yuan et al.,
2021) adopts a Proximal Policy Optimization algorithm to find a strong policy. The Transformation-
enhanced Transfer Attack (ATTA) (Wu et al., 2021) trains an adversarial transformation network to
capture the most harmful distortions. Learning to Transform (L2T) (Zhu et al., 2024) identifies the
optimal combination of transformations to increase adversarial transferability.

Targeted transferable attacks. The untargeted attacks can be modified to craft targeted adversarial
examples; however, they show limited transferability. Consequently, a number of recent works are
dedicated to developing new methods to generate targeted adversarial examples. To enhance the
targeted transferability, (Inkawhich et al., 2019) optimizes the loss in feature space to improve the
feature similarity between source images and target images. Po-Trip (Li et al., 2020a) introduces
Poincare loss and Triplet loss, with the former designed to alleviate noise curing and the latter to push
the adversarial image from the source class to the target class. Moreover, (Zhao et al., 2021) identifies
that using simple logit loss, rather than cross-entropy loss, enhances targeted transferability. SU (Wei
et al., 2023) improves targeted transferability by incorporating feature similarity loss between the
source image and different local region within the source image. Additionally, auxiliary neural
networks are trained to learn the intermediate feature distribution of the target class considering
features from single or multiple layers in (Inkawhich et al., 2020a;b). SASD-WS (Wu et al., 2024)
enhances the generalization capability of the surrogate model by fine-tuning it, assuming full access
to the surrogate model’s training dataset.

Generative approaches have demonstrated leading targeted transferability. TTP (Naseer et al., 2021)
trains a generator to craft adversarial examples to align the output distribution of the source and
target domain obtained from the surrogate model. TTAA (Wang et al., 2023) improves over TTP by
additionally training a feature discriminator to capture and align the feature distribution of the source
and target images, M3D (Zhao et al., 2023) trains the generator by leveraging two discriminators,
both derived from a single surrogate model, to simultaneously maximize the discrepancy between
their decision boundaries during generator training to improve transferability to unknown models.
Furthermore, ESMA (Gao et al., 2024) and CGNC (Fang et al., 2024) train generators to generate
adversarial examples for multiple target classes. However, these methods often exhibit limited
transferability across models. To address this, CGNC enhances transferability by fine-tuning the
pretrained generator specifically for each target class.

Ensemble-based transferable attacks. The transferability of adversarial examples can be enhanced
by leveraging an ensemble of surrogates (Liu et al., 2016). The iterative attack in (Liu et al., 2016)
improves transferability by accumulating losses, while (Dong et al., 2019) incorporates both logits and
losses of the ensemble. (Cai et al., 2022) further refines this by taking a weighted average of ensemble
losses, where the weights are optimized through queries to the target model. Recognizing the variance
among ensemble models, (Xiong et al., 2022) proposed a stochastic variance-reduced ensemble
(SVRE) attack for better generalization, whereas (Chen et al., 2023a) adaptively ensembles model
outputs via the adaptive gradient modulation (AGM) strategy. Additionally, (Chen et al., 2023b)
introduced an iterative attack targeting common weak regions across the ensemble. While surrogate
ensembles significantly boost attack success rates, their effectiveness extends beyond classification
tasks (Chen et al., 2023a; Huang et al., 2023). Beyond standard ensembles, self-ensembling strategies
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Table 7: TSR(%) comparison of the proposed BAT variants with the baselines, under P=Q, against
the target model VGG19BN with different input processing-based defenses, including a set of image
smoothing techniques (Gaussian, Median, and Average), JPEG compression with different quality
factors (Q=70, Q=80, Q=90), and various data augmentation methods: Resize and Crop (R&C),
Horizontal Flip (HF), and Rotation by 30°. Dθ0 represents the surrogate model used to train the
generator. The best overall method is highlighted in bold, while the best baseline method is underlined.
Values in parentheses indicate the improvement by BATs in TSR(%) over the best baseline.

Dθ0 Attack Without Smoothing JPEG compression Data Augmentation Methods

Defense Gaussian Median Average Q=70 Q=80 Q=90 R&C HF Rotate(300)

R
N

50

ESMA 67.16 48.39 55.32 36.41 40.43 48.02 56.42 15.38 33.80 11.77
TTP 71.10 62.86 67.64 53.65 58.39 61.58 64.78 16.05 40.02 12.92

CGNCFT 81.36 77.59 80.17 69.13 69.24 73.21 77.24 18.02 42.53 15.48
M3D 83.38 67.09 72.58 56.71 62.93 68.71 75.13 17.94 42.55 11.31

BAT-BS 89.71(+6.33) 79.75(+2.16) 84.16(+3.99) 72.42(+3.29) 78.48(+9.24) 81.63(+8.42) 85.27(+8.03) 19.13(+1.11) 43.71(+1.16) 16.86(+1.38)

BAT-CS 93.97(+10.59) 84.98(+7.39) 87.22(+7.05) 77.43(+8.30) 84.00(+14.76) 86.60(+13.39) 89.71(+12.47) 23.50(+5.48) 52.35(+9.80) 20.53(+5.05)

BAT-CN 92.13(+8.75) 83.07(+5.48) 85.68(+5.51) 75.88(+6.75) 81.04(+11.80) 84.28(+11.07) 87.84(+10.60) 21.37(+3.35) 52.78(+10.23) 18.57(+3.09)

D
N

12
1

ESMA 61.23 50.98 59.65 42.40 39.90 45.60 50.95 11.47 30.73 11.57
TTP 62.57 53.69 57.59 48.73 50.00 52.55 55.75 11.71 33.44 11.74

CGNCFT 81.54 71.27 75.56 65.08 67.67 70.28 75.63 17.44 44.78 14.68
M3D 79.24 63.14 70.71 54.40 57.66 63.33 70.03 16.24 41.66 11.33

BAT-BS 82.66(+1.12) 72.96(+1.69) 76.33(+0.77) 67.53(+2.45) 68.93(+1.26) 71.53(+1.25) 76.11(+0.48) 17.45(+0.01) 46.63(+1.85) 14.68(0.00)

BAT-CS 89.62(+8.08) 82.15(+10.88) 84.74(+9.18) 76.96(+11.88) 80.69(+13.02) 82.70(+12.42) 85.49(+9.86) 25.68(+8.24) 48.72(+3.94) 19.98(+5.30)

BAT-CN 88.45(+6.91) 79.87(+8.60) 82.47(+6.91) 74.63(+9.55) 78.91(+11.24) 81.23(+10.95) 84.46(+8.83) 22.57(+5.13) 46.84(+2.06) 18.73(+4.05)

Table 8: TSR(%) comparison of the proposed BAT variants with the SOTA generative methods,
under P=Q, considering DenseNet121 as surrogate model, against classifiers with robust training
mechanism on ImageNet.

Surrogate ϵ Attack Inc-v3adv IR-v2ens RN50SIN RN50IN RN50fine RN50Aux

DN121

16
255

ESMA 1.30 1.38 18.37 58.19 61.50 47.76
TTP 4.69 5.98 13.85 53.05 56.64 49.92
M3D 5.37 6.80 38.28 77.73 83.02 71.41

CGNCFT 7.33 8.68 18.95 73.62 79.77 63.75
BAT-BS 7.47 11.44 38.03 81.52 81.70 73.72
BAT-CS 9.96 13.88 44.66 85.41 84.15 80.52
BAT-CN 7.28 13.69 41.80 86.88 85.53 81.25

32
255

ESMA 12.85 19.41 31.58 69.35 72.19 61.34
TTP 19.59 23.71 25.05 59.22 57.92 51.49
M3D 27.46 35.13 54.13 84.26 84.19 81.60

CGNCFT 28.69 38.18 42.68 85.82 83.95 83.29
BAT-BS 30.27 43.49 50.66 85.30 82.69 76.73
BAT-CS 36.84 50.08 58.48 89.82 86.73 84.14
BAT-CN 29.42 51.62 57.77 90.15 84.88 85.01

such as dropout and skip connections have been explored in (Li et al., 2020b). Furthermore, the
generative attack TTP (Naseer et al., 2021) demonstrates that replacing a single surrogate with an
ensemble can substantially improve attack performance.

C ADDITIONAL EXPERIMENTAL RESULTS
In this section, we present a comprehensive set of additional experiments to further analyze and
validate the effectiveness of BAT. We evaluate the robustness of BAT variants against various input-
processing defenses and adversarially trained target models, using both ResNet50 and DenseNet121 as
surrogates. We also investigate the impact of reduced perturbation budgets on targeted transferability.

Beyond robustness, we showcase BAT’s ability to generate highly confident adversarial examples,
thereby improving transferability. We further analyze the stability of BAT under different pruned
ensembles and explore the effect of key design choices, including the pruning ratio, the number of
core target samples used during training, the number of discriminators (|Ds|), and the parameter λ.
These analyses offer deeper insights into the generalization, scalability, and robustness of the BAT
framework across varying conditions.

Robustness against input-processing defense. We evaluate the performance of the proposed BAT
variants against a target model employing various input-processing-based defenses. These defenses
include smoothing techniques (Ding et al., 2019) such as Gaussian, Median, and Average filters;
the JPEG compression (Dziugaite et al., 2016) algorithm; and several data augmentation techniques.
For JPEG compression, we explore different quality factors (Q = 70, 80, and 90), where a higher Q
value corresponds to less compression. The data augmentation techniques include Resize and Crop
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Table 9: Average prediction probability of the target class for the generated adversarial examples
from 2,000 ImageNet validation images across various target classifiers under P=Q. ‘*’ indicates
the performance on the white-box surrogate model (Dθ0). The BAT variants, specifically BAT-CS
and BAT-CN, generate more confident adversarial examples by learning to generate samples targeting
the high-confidence region across discriminators. For each target model, the best overall method is
highlighted in bold, while the best baseline method is underlined. Values in parentheses indicate the
improvement in prediction probability over the best baseline.

Dθ0 Attack RN18 RN50 RN101 DN121 DN161 VGG16BN VGG19BN MN-V2 ViT-B Average

R
N

50

ESMA 0.459 0.884* 0.595 0.541 0.560 0.611 0.583 0.419 0.150 0.533
TTP 0.580 0.795* 0.660 0.557 0.577 0.620 0.523 0.443 0.149 0.545

CGNC 0.667 0.901* 0.779 0.725 0.767 0.697 0.639 0.513 0.179 0.652
CGNCFT 0.769 0.930* 0.863 0.817 0.802 0.793 0.747 0.630 0.243 0.733

M3D 0.728 0.899* 0.797 0.770 0.791 0.703 0.696 0.657 0.346 0.710
BAT-BS 0.794 0.934* 0.846 0.792 0.811 0.819 0.778 0.673 0.283 0.748(+0.015)

BAT-CS 0.859 0.962* 0.897 0.856 0.854 0.867 0.867 0.742 0.335 0.804(+0.072)

BAT-CN 0.840 0.961* 0.888 0.853 0.847 0.853 0.844 0.723 0.319 0.792(+0.059)

D
N

12
1

ESMA 0.506 0.566 0.477 0.883* 0.689 0.557 0.502 0.362 0.135 0.520
TTP 0.488 0.486 0.495 0.790* 0.533 0.499 0.459 0.353 0.149 0.472

CGNC 0.601 0.632 0.561 0.953* 0.749 0.608 0.601 0.421 0.165 0.588
CGNCFT 0.724 0.743 0.722 0.954* 0.775 0.727 0.728 0.565 0.230 0.685

M3D 0.694 0.729 0.704 0.923* 0.803 0.673 0.666 0.603 0.319 0.679
BAT-BS 0.740 0.735 0.729 0.948* 0.798 0.745 0.736 0.593 0.270 0.699(+0.014)

BAT-CS 0.840 0.843 0.830 0.971* 0.847 0.814 0.797 0.682 0.312 0.771(+0.085)

BAT-CN 0.829 0.834 0.821 0.973* 0.874 0.814 0.783 0.648 0.312 0.765(+0.080)

(R&C), which resizes each input image from 3× 224× 224 to 3× 256× 256, then crops it back to
3× 224× 224, Horizontal Flip (HF), and a 30◦ rotation of the input images to the target model.

To assess performance, we generate adversarial examples form the trained generators under P=Q
using 2,000 randomly selected ImageNet validation images. We then compare the transferability of the
generated adversarial examples—generated by the proposed BAT variants and baseline methods—to
the unknown target model VGG19BN , employing aforementioned defenses. As shown in Tab. 7, all
attacks exhibit a reduced transfer success rate (TSR) when input-processing defenses are applied to
VGG19BN , compared to the scenario without such defenses. This decrease in TSR can be attributed
to the information loss caused by the defenses. Among the input-processing defenses, R&C and
rotation are particularly effective, as they remove more information from the input, which can also
result in a loss of normal accuracy. Despite these challenges, our proposed BAT variants, specifically
BAT-CS and BAT-CN, outperform all baselines by a significant margin.

Performance against robust models. In the main text in Tab. 4, we compare TSR of the generative
methods, considering ResNet50 as the surrogate model, against six robust-trained models. Here, we
extend the evaluation by analyzing the TSR of the generators trained with different methods consider-
ing DenseNet121 (DN121) as the model accessible to the adversary. The results are demonstrated in
Tab. 8. From these results, a similar trend has been observed, and our proposed BAT variants continue
to demonstrate better performance over baseline attacks.

Confidence of adversarial examples. We examine the prediction probability for the target class
of the generated adversarial examples from 2,000 ImageNet validation images across the surrogate
model and various unknown target models. As shown in Tab. 9, adversarial examples generated
by the proposed BAT variants achieve significantly higher average confidence on the target class
across various target models compared to baseline methods. Specifically, as BAT-CS and BAT-CN
train generators to minimize the distribution distance between the generated adversarial examples
and the core target samples across discriminators (discussed in Section 3.2), the generators are
capable of generating adversarial examples that are more confidently classified towards the target
class. Hence, the generated adversarial examples using the proposed BAT variants demonstrate higher
transferability to the unknown target models.

More analysis under domain shift. In Tab. 2 (main text), we report results for the P̸=Q setting
where the generator is trained on Painting (P) while both the accessible surrogate and the target
models are trained on ImageNet-1K (Q); evaluation there uses Painting test images.
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Table 10: TSR(%) of various attacks on different target classifiers under P̸=Q where source images
for training the generators are sampled from the Painting dataset, and target models are pretrained
on ImageNet-1K. The BAT variants, specifically BAT-BS and BAT-CS outperform the baselines
applicable for domain shift by a notable margin, as evaluated on the 5,000 images from the ImageNet
validation set. This demonstrates that, despite being trained on the Painting dataset, the generator
can effectively craft adversarial examples of the images in the domain of target class training dataset.
‘*’ denotes the performance on the white-box surrogate model (Dθ0). For each target model, the
best overall method is highlighted in bold, while the best baseline method is underlined. Values in
parentheses indicate the improvement in TSR(%) over the best baseline.

Dθ0 Attack RN18 RN50 RN101 DN121 DN161 VGG16BN VGG19BN MN-V2 ViT-B Avg.

R
N

50

TTP 62.27 87.88* 62.91 68.21 63.09 65.97 57.39 47.26 16.02 59.00
CGNC 79.29 96.30* 85.30 83.63 84.74 81.20 75.62 65.50 24.80 75.15

CGNCFT 86.70 97.82* 91.85 90.56 90.83 88.31 84.31 76.44 35.32 82.46
BAT-BS 87.53 98.10* 91.81 91.15 89.70 88.44 85.74 76.50 39.01 83.11(+0.65)

BAT-CS 89.64 98.27* 91.85 93.32 91.96 90.93 89.58 83.07 43.37 85.78(+3.32)

BAT-CN 90.69 98.17* 91.43 93.00 90.91 91.05 89.92 80.92 42.8 85.43(+2.97)

D
N

12
1

TTP 51.98 51.67 47.84 89.83* 63.15 53.38 45.99 39.10 12.24 50.58
CGNC 66.21 78.29 67.08 91.82* 71.53 64.32 62.03 48.78 20.94 63.44

CGNCFT 85.02 85.19 80.28 98.73* 91.49 84.72 81.48 70.14 34.66 79.08
BAT-BS 87.29 84.54 82.29 98.34* 87.47 82.04 80.91 73.99 40.52 79.82(+0.74)

BAT-CS 88.57 88.81 85.46 98.73* 92.06 88.24 87.19 74.34 45.41 83.20(+4.12)

BAT-CN 88.80 89.03 84.80 98.61* 92.09 87.33 85.88 74.45 44.34 82.81(+3.73)

Table 11: TSR(%) of various attacks on different target classifiers under P=Q for varying perturbation
budgets ϵ with ResNet50 as surrogate.

ϵ Attack RN18 RN50 RN101 DN121 DN161 VGG16BN VGG19BN MN-V2 ViT-B Average

12
255

TTP 65.92 91.65 69.95 71.12 63.38 66.7 66.48 52.77 12.31 62.25
M3D 76.49 91.98 79.72 73.37 73.41 79.15 76.61 70.69 30.96 72.49

CGNCFT 67.01 91.19 76.37 72.09 72.19 75.36 70.28 59.89 27.33 67.97
BAT-BS 84.06 96.82 87.22 87.88 84.62 86.71 84.94 73.47 25.18 78.99
BAT-CS 88.18 97.67 91.25 90.23 89.42 89.81 88.71 79.08 31.13 82.83
BAT-CN 87.64 97.58 90.45 89.25 87.97 89.48 87.99 78.18 28.38 81.88

8
255

TTP 30.43 69.92 36.36 43.4 37.48 33.89 37.52 20.85 2.68 34.73
M3D 37.24 68.3 42.32 40.36 39.28 41.21 38.24 33.09 7.06 38.57

CGNCFT 17.83 47.39 21.93 23.55 26.47 29.18 26.38 12.27 2.90 23.10
BAT-BS 53.95 85.6 59.29 62.55 58.83 57.9 59.08 38.68 6.27 53.57
BAT-CS 58.34 88.23 65.46 66.7 64.44 62.97 63.93 44.88 7.37 58.04
BAT-CN 58.87 88.09 63.79 65.34 63.58 62.59 63.12 43.93 6.79 57.34

Here, we extend this analysis by keeping the same generators trained on Painting (P) but evaluating
on ImageNet-1K validation images (5,000 from Q). Tab. 10 compares BAT variants with baselines
under this protocol.

The results show that BAT remains competitive under this shift of evaluation seeds from P →Q:
targeted success rates decrease only modestly relative to the Painting-seed evaluation, yet BAT-
CS and BAT-CN continue to rank among the top performers. This indicates that BAT-trained
generators—guided by the frozen, Q-trained discriminator ensemble—generalize beyond the source
training domain, producing adversarial examples that transfer to images drawn from the models’
training domain Q.

Impact of reduced perturbation budget. While the default perturbation budget is set to ϵ =
16/255 to evaluate the performance of BAT variants, we further examine the effect of lower budgets,
considering ϵ = 12/255 and ϵ = 8/255. Using ResNet50 as the surrogate model, we observe from
Tab. 1 and Tab. 11 that TSR declines as the perturbation budget decreases. However, BAT methods
consistently achieve significantly higher TSR than the generative baselines, even under reduced
perturbation, demonstrating their strong generalization capability.

Stability of BAT concerning random pruning. We evaluate the stability of the proposed BAT
method, which exploits an ensemble of discriminators derived by random pruning the weights
of an accessible model, to train generators for highly transferable adversarial examples. For this
analysis, we used the BAT-BS variant. In addition to the original results shown in Tab. 1, we conduct
experiments in the no domain shift setting using four additional sets of ensemble models resulting
from independent random pruning, with ResNet50 as the surrogate model, to further verify the
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Table 12: TSR (%) of the proposed BAT-BS method across various target classifiers using five
distinct sets of pruned ensembles, each consisting of five discriminators derived from the surrogate
model ResNet50. The average performance and standard error (Avg. ± SE) exhibit small variation,
demonstrating the stability of the BAT-BS method across different sets of discriminator ensembles.

Attack RN18 RN50 RN101 DN121 DN161 VGG16BN VGG19BN MN-V2 ViT-B Avg.

Set-1 89.61 98.08* 92.76 92.23 89.73 92.64 89.67 81.76 42.67 85.46
Set-2 92.34 98.60* 95.69 93.63 93.33 92.56 88.95 90.78 38.51 87.15
Set-3 86.80 98.72* 94.88 93.88 91.49 91.13 87.56 88.89 39.79 85.90
Set-4 88.02 98.49* 94.35 93.08 91.55 88.24 88.95 88.83 41.57 85.90
Set-5 90.70 98.63* 95.37 93.92 92.95 92.38 90.31 90.22 40.52 87.22

Avg. ± SE 89.49 ± 0.97 98.50 ± 0.11 94.61 ± 0.52 93.35 ± 0.32 91.81 ± 0.64 91.39 ± 0.83 89.09 ± 0.46 88.10 ± 1.63 40.61 ± 0.72 86.33 ± 0.36

Table 13: TSR variation with varying pr using BAT-BS method leveraging ResNet50 as a surrogate.

pr 0.01 0.02 0.05 0.1

TSR(%) 83.06 85.46 78.59 72.62

stability of our approach. As shown in Tab. 12, the results across different ensemble sets are highly
consistent, indicating that BAT, which leverages pruned model ensembles, reliably trains generators
capable of creating highly transferable adversarial examples. This consistency indicates that BAT is
robust to the variability introduced by random pruning.

Choice of pruning parameters. Our design aims to preserve the accuracy of pruned models while
ensuring diverse decision boundaries. We use L1-norm pruning (p1 = 0.6) to obtain a single variant
and obtain the remaining variants through random pruning (pr = 0.02), resulting an accuracy drop of
∼7%, yet the models exhibit distinct attention maps, indicating varied behavior (see Section H). This
simple self-ensembling strategy is effective given limited model access. The pruning parameters are
chosen to balance accuracy and diversity—higher p1 degrades accuracy, while lower values reduce
diversity. Empirically, pr = 0.02 yields the highest TSR for BAT-BS (Tab. 13). Furthermore, using
only random pruning for self-ensembling results in ∼1% lower TSR compared to the ensemble
incorporating the L1-pruned discriminator, highlighting the complementary role of L1 pruning in
enhancing decision boundary diversity.
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Figure 4: TSR(%) variation, under P=Q, of the
adversarial examples generated from the trained
generator using the BAT-BS method with different
number of target samples to guide the generator
training, leveraging ResNet50 as a surrogate.

Impact of target sample’s size. We inves-
tigate the effect of the number of target sam-
ples used to train the generator by the BAT-BS
method on the TSR. For this analysis, we con-
sider the no domain shift scenario and employ
ResNet50 as a surrogate model, pretrained on
the ImageNet dataset. To train the generator for
a specific target class, we begin by sorting ap-
proximately 1,300 target samples based on their
average confidence scores across the discrimi-
nators. Starting with the top 100 most confident
samples, we gradually increase the number of
samples to assess the TSR at different levels.

As shown in Fig. 4, we obtain maximum TSR at
around 85.5% using 300 target samples. How-
ever, as the number of target samples increases
beyond 300, the TSR gradually declines. Based
on these observations, we select 300 target sam-
ples for training all proposed BAT variants in
our experiments to ensure better performance.
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Figure 5: (a) TSR of BAT-CS for different numbers of dis-
criminators, (b) TSR of BAT-CS for different values of λ.

Impact of |Ds| and λ. Fig. 5a
demonstrates the impact of the num-
ber of discriminators |Ds| on TSR. As
shown, the TSR increases with |Ds|
and quickly begins to saturate as |Ds|
increases. However, this improvement
comes at the cost of increased training
time. Thus, a tradeoff exists between
TSR and training time. For a compre-
hensive analysis of this trade-off, in-
cluding a comparison of training times
across all methods, please refer to Sec-
tion D. Moreover, we investigate the impact of λ in Eq. 9 on TSR. From Fig. 5b, the inclusion of
cosine similarity between the adversarial and core target samples in the feature space in the loss
function enhances TSR than that without (λ = 0). The maximum TSR is obtained when λ = 1.5.
We use ResNet50 as the surrogate to depict these figures.

D TRAINING TIME AND TRADEOFF ANALYSIS

In this section, we examine the time required to train the generator using our proposed BAT method,
which utilizes multiple discriminators (five in the default setting). We also analyze the tradeoff
between the TSR and training time complexity.
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Figure 6: (a) Training time per target class (in hours) required
to train a generator for proposed BAT-BS with varying num-
ber of discriminators; (b) Training time per target class (in
hours) required to train a generator for different generative
methods.

In a single iteration, let the time com-
plexity of a single discriminator and
the generator be O(Dθ) and O(GΦ),
respectively. If v is the total num-
ber of iterations per epoch and T de-
notes the number of epochs for gen-
erator training, the total complexity
for the BAT method with a single dis-
criminator is O(vT (GΦ + Dθ)) =
vTO(GΦ) + vTO(Dθ). BAT uses
an ensemble of discriminators derived
from a single surrogate model, so all
discriminators have the same archi-
tecture and time complexity. Thus,
with K = |Ds| discriminators, the to-
tal complexity becomes O(vT (GΦ +
KDθ)) = vTO(GΦ) + vTKO(Dθ).
This linear increase in training time with the number of discriminators suggests higher computational
costs with added discriminators. Empirically, we measure the training time per target class for BAT-
BS (a BAT variant). Fig. 6a illustrates that the training time per target class increases approximately
linearly with the number of discriminators, ranging from 3.61 hours with one discriminator to 7.81
hours with five discriminators. This trend indicates that adding more discriminators incurs higher
computational costs. The training time of the other variants of BAT would be quite similar as crafting
300 core target samples for BAT-CS/CN with 25 PGD steps takes ∼2 minutes, negligible compared
to the generator’s training time (∼8hrs).

Fig. 5a in the main text and Theorem 1 illustrate that the TSR is positively correlated with |Ds|.
However, as discussed, higher |Ds| increases training complexity. Hence, there is a tradeoff between
TSR and training time. Nevertheless, according to Fig. 5a and Theorem 1, the TSR improvement rate
decreases and eventually saturates as |Ds| grows. This suggests that, beyond a certain point, adding
discriminators yields marginal gains in transferability while continuing to increase training time.

Additionally, in Fig. 6b, we compare the training time per target class across different methods. All
the experiments are conducted on four NVIDIA Quadro RTX 6000, each with 24 GB of memory. The
TTP method, which uses only one discriminator, requires the least amount of time (3.60 hours). M3D,
despite using two discriminators, takes 9.17 hours, which is more than the time incurred by BAT-BS
with five discriminators (7.81 hours). This is because M3D focuses on maximizing the discrepancy
between discriminators during the generator’s training process, increasing the time requirement. Both
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Source Caption: "a yellow bucket with a
plant in it"

Adv. Caption: "a bird nest with a green
and yellow nest"

Source Caption: "a dog with a frur"
Adv. Caption: "a painting of a dog with

wings on its back"

Source Caption: "a young boy is standing
on a skateboard"

Adv. Caption: "a girl standing in front
of a group of birds"

(a) Target class: Vulture

Source Caption: "a yellow bucket with a
plant in it"

Adv. Caption: "a yellow bucket full of
fresh crabs"

Source Caption: "a dog with a frur"
Adv. Caption: "a group of crabs on a

green background"

Source Caption: "a young boy is standing
on a skateboard"

Adv. Caption: "a man in a red shirt
standing in front of a large group of

crabs"

(b) Target class: Crayfish

Figure 7: Attack on image-to-caption generator Vision-Language Pre-training BLIP (Li et al., 2022).
The adversarial images of the target class “Vulture” and “Crayfish” are generated from the source
images using a generator trained with the proposed BAT-CS method exploiting ResNet50 as a
surrogate. The generated adversarial examples are capable of successfully fooling BLIP as the
generated captions are related to target classes.

BAT-CS and BAT-CN take a few additional minutes to craft adversarial examples as compared to
BAT-BS.

CGNC, despite utilizing only one discriminator, requires 12.83 hours per class. This high training
time is due to CGNC’s use of a much larger ImageNet training set (around 1.3 million images over 10
epochs) compared to the 50,000-image subset used by TTP, M3D, and BAT-BS (which are trained over
20 epochs). Furthermore, CGNC’s generator architecture is more complex, comprising components
like a Vision-Language Feature Purifier, a Feature Fusion Encoder, and a Cross-Attention-based
Decoder, whereas TTP, M3D, and BAT-BS use simpler architectures with down-sampling, residual,
and up-sampling blocks. The added complexity of CGNC’s architecture further contributes to its
longer training time.

E ATTACK ON BLIP

We conduct attacks on the Vision-Language Pretraining BLIP (Li et al., 2022) model, which generates
image captions, to demonstrate the effectiveness of our method in targeting Vision-Language models.
Using BAT-CS, we created adversarial examples from a number of images and compared the captions
generated by BLIP for these adversarial images with those generated for the original images.

Fig. 7 showcases the captions produced by BLIP for adversarial examples, where the target classes
are set as “vulture” and “crayfish”. When the target class is “vulture,” the generated captions
predominantly refer to birds, while for “crayfish,” the captions often describe crabs. These results
indicate the potential of our approach to craft adversarial examples capable of misleading Vision-
Language models, underscoring its broader applicability.
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F PROOF OF THEOREMS

Definition 1. ((αj , Dθj )-Effective Attack). For any input x with ground truth label y and target
label yt, an attack is (αj , Dθj )-effective, if the crafted adversarial example xadv = x+ δ satisfies
Pr(D̂θj (x

adv) = yt) ≥ 1− αj , where D̂θj is the top-1 predicted label by the model Dθj .

Here, the (αj , Dθj )-Effective Attack captures the effectiveness of crafted adversarial examples to
fool the model Dθj with a certain probability (1− αj). Note that a smaller αj means the attack can
better mislead Dθj . If Dθj is among the accessible models used to train the generator to generate
adversarial examples, αj should be close to zero.

Definition 2. (Transferability) Given a set of accessible models Ds = {Dθj}K−1
j=0 and an unknown

victim model V , the transferability of a generated adversarial example xadv = x + δ, exploiting
Ds, to the target victim model V is defined as: Tr(Ds, V,x

adv, yt) = 1
(
(∧Dθj

∈Ds
(D̂θj (x

adv) =

yt)) ∧ (V̂ (xadv) = yt)
)
, where 1(.) denotes the indicator function and the operator ∧ is a logical-

and. Besides, Tr(.) = 1 indicates that along with the accessible models in Ds, the crafted xadv

successfully deceives the target model V .

In this definition of transferability, we are not concerned with whether the source image x is correctly
classified by the accessible model Dθj ∈ Ds or by the target model V since x can be sampled from a
different domain than the domain of the samples used to train the accessible models and the victim
model, e.g., the domain shift scenario.

F.1 PROOF OF LOWER-BOUND OF TRANSFERABILITY

Lemma 1. Let the vectors x,y, δ ∈ Rd, where ∥x∥2 = ∥y∥2 = 1 and ∥δ∥2 ≤ ϵ′. For a real number
c, if δ · y > c+ ϵ′

√
2− 2m, then δ · x > c, where m = cos⟨x,y⟩ = x·y

∥x∥2∥y∥2
.

Proof. From Cauchy-Schwarz inequality, |δ · (x − y)| ≤ ∥δ∥2∥x − y∥2 ≤
ϵ′
√

∥x∥2 + ∥y∥2 − 2 cos ⟨x,y⟩.

Thus, δ · x = δ · y + δ · (x− y) ≥ δ · y − ϵ′
√
2− 2m > c.

Lemma 2. For arbitrary events A and B, we have Pr(A ∩ B) ≥ 1 − Pr(A) − Pr(B), where Pr
denotes the probability of an event.

Proof. For events A and B, we have Pr(A∪B)+Pr(A ∪B) = 1. As Pr(A)+Pr(B) ≥ Pr(A∪B)
and Pr(A ∪B) = Pr(A∩B), we have Pr(A∩B) ≥ 1−Pr(A)−Pr(B). Therefor, Pr(A∩B) ≥
1− Pr(A)− Pr(B).

Lemma 3. For two random variable a A and B, and constants a and b, we have: Pr((A > a)∪(B >
b)) ≥ Pr(A+B > a+ b).

Proof. Consider the event {A + B > a + b}. If A + B > a + b, then it must be true that at lest
one of A > a or B > b must hold. This implies: {A+B > a+ b} ⊆ {A > a} ∪ {B > b}. Using
the fact that the probability of a set is at least as large as the probability of any subset, we have:
Pr((A > a) ∪ (B > b)) ≥ Pr(A+B > a+ b).

Lemma 4. Given a random variable z and an arbitrary vector b such that z, b ∈ Rd, ∥z∥2 ≤ B,
the cosine similarity between z and b can be lower bounded by:

E
[
cos ⟨z, b⟩

]
≥ ∥b∥2 − E[∥z − b∥2]

B
.
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Proof.

cos ⟨z, b⟩ = z · b
∥z∥2∥b∥2

≥ (b+ z − b) · b
B∥b∥2

=
∥b∥22 + (z − b) · b

B∥b∥2

≥ ∥b∥22 − ∥z − b∥2∥b∥2
B∥b∥2

=
∥b∥2 − ∥z − b∥2

B
.

Thus,

E
[
cos ⟨z, b⟩

]
≥

∥b∥2 − E
[
∥z − b∥2

]
B

.

Theorem 1. Consider, ∃V̄ ∈ D, a virtual victim model, such that ∇xℓV̄ (x, yt) =
EDθi

∼D
[
∇xℓDθi

(x, yt)
]
. Additionally, assume that the similarity of the gradient of ∀Dθi ∈ D

with the gradient of V̄ is captured by EDθi
∼D

[
∥∇xℓDθi

(x, yt) − ∇xℓV̄ (x, yt)∥22
]
≤ σ2, and

∥∇xℓDθi
(x, yt)∥2 ≤ B. Assume the loss function of a set of randomly picked accessible models

Dθj ∈ Ds ⊂ D and the target model V̄ are β-smooth, and ∀Dθj ∈ Ds are (αj , Dθj )-effective
on the generated samples with a perturbation constraint ∥δ∥2 ≤ ϵ′. Under these conditions, the
transferability can be lower bounded by:

Pr(Tr(Ds, V̄ ,xadv, yt) = 1) ≥ 1−A−ϵ′(1 +A) + cDs(1−A)

cv + ϵ′

− ϵ′

cv + ϵ′

√
2
(
1−

∥∇xℓV̄ (x, yt)∥2 − σ√
|Ds|

B

)
,

where A =
∑|Ds|

i=0 αj ,

cDs
:= max

x∈X

(
miny∈[L]−{yt}

1
|Ds|

∑
Dθj

∈Ds
ℓDθj

(xadv, y)− 1
|Ds|

∑
Dθj

∈Ds
ℓDθj

(x, yt) +
β
2 ϵ

′2)
∥ 1
|Ds|

∑
Dθj

∈Ds
∇xℓDθj

(x, yt)∥2
,

cv := min
x∈X

miny∈[L]−{yt} ℓV̄ (x
adv, y)− ℓV̄ (x, yt)− β

2 ϵ
′2

∥∇xℓV̄ (x, yt)∥2
.

Here cDs
is the average risk of the models in Ds and cv is the risk of the virtual victim model V̄ .

Proof. This proof builds upon the derivation in (Yang et al., 2021) with a primary focus on demon-
strating the impact of an ensemble of accessible models on adversarial transferability. According to
the definition of transferability, for a given input x, the generated adversarial example xadv = x+ δ
must be misclassified as the target class yt by both surrogate models Dθj ∈ Ds and the target model
V̄ . Hence, we have

Pr(Tr(Ds, V̄ ,xadv, yt) = 1) = Pr
(( ∧

Dθj
∈Ds

(D̂θj (x
adv) = yt)

)
∧ ( ˆ̄V (xadv) = yt)

)
(a)

≥1−
∑

Dθj
∈Ds

Pr(D̂θj (x
adv) ̸= yt)− Pr( ˆ̄V (xadv) ̸= yt)

(b)

≥ 1−
|Ds|−1∑
i=0

αj − Pr( ˆ̄V (xadv) ̸= yt),

(11)

where inequality (a) follows Lemma 2 and the (b) is obtained by utilizing Definition 1.
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For a given input xadv, a model Dθj will predict the label for which the loss ℓDθj
is minimum.

Thus, D̂θj (x
adv) ̸= yt ⇔ ℓDθj

(xadv, yt) > miny∈C ℓDθj
(xadv, y). Similarly, ˆ̄V (xadv) ̸= yt ⇔

ℓV̄ (x
adv, yt) > miny∈C ℓV̄ (x

adv, y), where C = [L]− {yt} is the set of all classes except the target
one.

As the loss function ℓDθj
, ∀Dθj ∈ Ds are β-smooth, we have:

|ℓDθj
(xadv, yt)− ℓDθj

(x, yt)− ⟨δ,∇xℓDθj
(x, yt)⟩| ≤

β

2
∥δ∥22 ≤ β

2
ϵ′2; ∀Dθj ∈ D, (12)

⇒ℓDθj
(x, yt) + δ · ∇xℓDθj

(x, yt)−
β

2
ϵ′2 ≤ ℓDθj

(xadv, yt) ≤ ℓDθj
(x, yt) + δ · ∇xℓDθj

(x, yt) +
β

2
ϵ′2,

(13)

where xadv = x+ δ and ∥δ∥2 ≤ ϵ′. Similarly, for the victim model V̄ , we have

ℓV̄ (x, yt) + δ · ∇xℓV̄ (x, yt)−
β

2
ϵ′2 ≤ ℓV̄ (x

adv, yt) ≤ ℓV̄ (x, yt) + δ · ∇xℓV̄ (x, yt) +
β

2
ϵ′2.

Now,∑
Dθj

∈Ds

Pr
(
D̂θj (x

adv) ̸= yt
)
=

∑
Dθj

∈Ds

Pr
(
ℓDθj

(xadv, yt) > min
y∈C

ℓDθj
(xadv, y)

)
(a)

≥ Pr
( ⋃

Dθj
∈Ds

(
ℓDθj

(xadv, yt) > min
y∈C

ℓDθj
(xadv, y)

))
(b)

≥ Pr
( ∑
Dθj

∈Ds

ℓDθj
(xadv, yt) >

∑
Dθj

∈Ds

min
y∈C

ℓDθj
(xadv, y)

)
≥ Pr

( ∑
Dθj

∈Ds

ℓDθj
(xadv, yt) > min

y∈C

∑
Dθj

∈Ds

ℓDθj
(xadv, y)

)
(c)

≥ Pr
( 1

|Ds|
∑

Dθj
∈Ds

(ℓDθj
(x, yt) + δ · ∇xℓDθj

(x, yt)−
β

2
ϵ′2) > min

y∈C

1

|Ds|
∑

Dθj
∈Ds

ℓDθj
(xadv, y)

)

= Pr
(
δ ·

1
|Ds|

∑
Dθj

∈Ds
∇xℓDθj

(x, yt)

∥ 1
|Ds|

∑
Dθj

∈Ds
∇xℓDθj

(x, yt)∥2
> f(x)

)
(14)

where the inequality (a) due to the fact that P (A) + P (B) ≥ P (A ∪ B), (b) and (c) is obtained
using Lemma 3 and Eq. 13. Moreover, f(x) is defined as follows:

f(x) =

(
miny∈C

1
|Ds|

∑
Dθj

∈Ds
ℓDθj

(xadv, y)− 1
|Ds|

∑
Dθj

∈Ds
ℓDθj

(x, yt) +
β
2 ϵ

′2)
∥ 1
|Ds|

∑
Dθj

∈Ds
∇xℓDθj

(x, yt)∥2
.

From Definition 1, we have
∑

Dθj
∈Ds

Pr
(
D̂θj (x

adv) ̸= yt
)
≤

∑|Ds|
j=0 αj . Thus, utilizing Eq. 14 we

have,

Pr
(
δ ·

1
|Ds|

∑
Dθj

∈Ds
∇xℓDθj

(x, yt)

∥ 1
|Ds|

∑
Dθj

∈Ds
∇xℓDθj

(x, yt)∥2
> f(x)

)
≤ A, (15)

where A :=
∑|Ds|

j=0 αj .
Similarly,

Pr
( ˆ̄V (xadv) ̸= yt

)
= Pr

(
ℓV̄ (x

adv, yt) > min
y∈C

ℓV̄ (x
adv, y)

)
(a)

≤ Pr
(
ℓV̄ (x, yt) + δ · ∇xℓV̄ (x, yt) +

β

2
ϵ′2 > min

y∈C
ℓV̄ (x

adv, y)
)

= Pr
(
δ · ∇xℓV̄ (x, yt)

∥∇xℓV̄ (x, yt)∥2
> g(x)

)
, (16)
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where inequality (a) is obtained from Eq. 13, and

g(x) =
miny∈C ℓV̄ (x

adv, y)− ℓV̄ (x, yt)− β
2 ϵ

′2

∥∇xℓV̄ (x, yt)∥2
.

Thus, according to Lemma 1 and having ∥δ∥2 ≤ ϵ′, δ ·
1

|Ds|
∑

Dθj
∈Ds

∇xℓDθj
(x,yt)

∥ 1
|Ds|

∑
Dθj

∈Ds
∇xℓDθj

(x,yt)∥2
> f(x) if

δ · ∇xℓV̄ (x, yt)

∥∇xℓV̄ (x, yt)∥2
> f(x) + ϵ′

√
2− 2S(Ds, V̄ ),

where S(Ds, V̄ ) measures the cosine similarity between
1

|Ds|
∑

Dθj
∈Ds

∇xℓDθj
(x,yt)

∥ 1
|Ds|

∑
Dθj

∈Ds
∇xℓDθj

(x,yt)∥2
and

∇xℓV̄ (x,yt)
∥∇xℓV̄ (x,yt)∥2

. Thus, we get

Pr
(
δ · ∇xℓV̄ (x, yt)

∥∇xℓV̄ (x, yt)∥2
> f(x) + ϵ′

√
2− 2S(Ds, V̄ )

)
≤Pr

(
δ ·

1
|D|

∑
Dθj

∈D ∇xℓDθj
(x, yt)

∥ 1
|D|

∑
Dθj

∈D ∇xℓDθj
(x, yt)∥2

> f(x)
)
≤ A, (17)

where the last inequality using Eq. 15. Given,

cDs
= max

x∈X

(
miny∈C

1
|Ds|

∑
Dθj

∈Ds
ℓDθj

(xadv, y)

− 1
|Ds|

∑
Dθj

∈Ds
ℓDθj

(x, yt) +
β
2 ϵ

′2
)

∥ 1
|Ds|

∑
Dθj

∈Ds
∇xℓDθj

(x, yt)∥2
.

Since cDs
≥ f(x), EQ. 17 can be expressed as,

Pr
(
δ · ∇xℓV̄ (x, yt)

∥∇xℓV̄ (x, yt)∥2
− ϵ′

√
2− 2S(Ds, V̄ ) > cDs

)
≤ A

Now, the maximum value of δ · ∇xℓV̄ (x,yt)
∥∇xℓV̄ (x,yt)∥2

− ϵ′
√
2− 2S(Ds, V̄ ) is ϵ′. Therefore, the expectation

can be bounded:

E
[
δ · ∇xℓV̄ (x, yt)

∥∇xℓV̄ (x, yt)∥2
− ϵ′

√
2− 2S(Ds, V̄ )

]
≤ ϵ′A+ cDs

(1−A)

Hence,

E
[
δ · ∇xℓV̄ (x, yt)

∥∇xℓV̄ (x, yt)∥2

]
≤ E

[
ϵ′
√
2− 2S(Ds, V̄ )

]
+ ϵ′A+ cDs

(1−A)

≤ ϵ′
√
2− 2E

[
S(Ds, V̄ )

]
+ ϵ′A+ cDs

(1−A)

Moreover, given

cv = min
x∈X

miny∈C ℓV̄ (x
adv, y)− ℓV̄ (x, yt)− β

2 ϵ
′2

∥∇xℓV̄ (x, yt)∥2
.

Since cv ≤ g(x), applying Markov’s inequality, we get

Pr
(
δ · ∇xℓV̄ (x, yt)

∥∇xℓV̄ (x, yt)∥2
> g(x)

)
≤Pr

(
δ · ∇xℓV̄ (x, yt)

∥∇xℓV̄ (x, yt)∥2
> cv

)
≤
ϵ′
√

2− 2E
[
S(Ds, V̄ )

]
+ ϵ′A+ cDs(1−A)

cv

≤
ϵ′(1 +A) + cDs(1−A) + ϵ′

√
2− 2E

[
S(Ds, V̄ )

]
cv + ϵ′

. (18)
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Given

EDθi
∼D

[
∥∇xℓDθi

(x, yt)−∇xℓV̄ (x, yt)∥22
]
≤ σ2.

Since EDθi
∼D

[
∇xℓDθi

(x, yt)
]
= ∇xℓV̄ (x, yt), we have,

E
[∥∥∥ 1

|Ds|
∑

Dθj
∈Ds

∇xℓDθj
(x, yt)−∇xℓV̄ (x, yt)

∥∥∥2
2

]
≤ σ2

|Ds|
. (19)

Given ∥∇xℓDθi
(x, yt)∥2 ≤ B, ∀Dθi ∈ D. Thus, we have ∥ 1

|Ds|
∑

Dθj
∈Ds

∇xℓDθj
(x, yt)∥2 ≤ B.

Therefore, using Lemma 4, we have the cosine similarity between 1
|Ds|

∑
Dθj

∈Ds
∇xℓDθj

(x, yt) and

∇xℓV̄ (x, yt):

S(Ds, V̄ ) ≥
∥∇xℓV̄ (x, yt)∥2 − σ√

|Ds|

B
(20)

Combining Eq. 11, Eq. 16, Eq. 18 and Eq. 20, we have the desired upper bound:

Pr(Tr(Ds, V̄ ,xadv, yt) = 1) ≥ 1−A−ϵ′(1 +A) + cDs
(1−A)

cv + ϵ′

− ϵ′

cv + ϵ′

√
2
(
1−

∥∇xℓV̄ (x, yt)∥2 − σ√
|Ds|

B

)
. (21)

F.2 PROOF OF UPPER-BOUND OF TRANSFERABILITY

Lemma 5. Suppose two unit vectors x and y satisfy x · y = S, then for any δ, we have min(δ ·
x, δ · y) ≤ ∥δ∥2

√
(1 + S)/2.

Proof. Denote α is the angle between x and y and then S = cos⟨x,y⟩ = cosα. If αx, αy are the
angles between δ and x and between δ and y, respectively, then we have max(αx, αy) ≥ α

2 =

cos−1 S
2 . Since cosα/2 =

√
S+1
2 , we have min(δ · x, δ · y) ≤ ∥δ∥2

√
(1 + S)/2.

Lemma 6. For a set of N random variables {xi}Ni=1 with a same mean b = E[xi], ∀i ∈ [N ], if

y =
∑N

i=1 xi, C ≤ ∥xi∥ ≤ B and λ2 ≤ E
[
∥xi − b∥2

]
, we have E

[
cos⟨y, b⟩

]
≤ B2+∥b∥2−λ2

N

2C∥b∥ .

Proof. Given

λ2 ≤ E
[
∥xi − b∥2

]
.

If y =
∑N

i=1 xi, then, λ2

N ≤ E
[
∥y − b∥2

]
. Therefore,

E
[
∥y∥2 + ∥b∥2 − 2∥y∥∥b∥ cos⟨y, b⟩

]
≥ λ2

N

=⇒ B2 + ∥b∥2 − 2C∥b∥E[cos⟨y, b⟩] ≥ λ2

N
(22)

Hence,

E[cos⟨y, b⟩] ≤
B2 + ∥b∥2 − λ2

N

2C∥b∥
.
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Theorem 2. Consider, ∃V̄ ∈ D, a virtual victim model, such that ∇xℓV̄ (x, y) =
EDθi

∼D
[
∇xℓDθi

(x, y)
]
. Additionally, assume that the similarity of the gradient of ∀Dθi ∈ D

with the gradient of V̄ is captured by λ2 ≤ EDθi
∼D

[
∥∇xℓDθi

(x, yt) − ∇xℓV̄ (x, yt)∥22
]
, and

C ≤ ∥∇xℓDθi
(x, yt)∥2 ≤ B. Assume the loss function of a set of accessible models Dθj ∈ Ds ⊂ D

and the target model V̄ are β-smooth, and the accessible models Dθj ∈ Ds are (αj , Dθj )-effective
on the generated samples with a perturbation constraint ∥δ∥2 ≤ ϵ′. Under these conditions, the
transferability can be upper bounded by:

Pr(Tr(Ds, V̄ ,xadv, yt) = 1) ≤
ξ + ϵ′B

√
1+E[S(Ds,V̄ )]

2

1
|Ds|

∑
Dθj

∈Ds
ℓDθj

(x, yt)− ϵ′B − βϵ′2
+

ξ + ϵ′B

√
1+E[S(Ds,V̄ )]

2

ℓV̄ (x, yt)− ϵ′B − βϵ′2
,

where ξ = EDθi
∼D

[
ℓDθi

(x, y)
]
, S(Ds, V̄ ) is the cosine similarity between

1
|Ds|

∑|Ds|
j=1 ∇xℓDθj

(x, y) and ∇xℓV̄ (x, y), and

E[S(Ds, V̄ )] ≤
B2 + ∥∇xℓV̄ (x, y)∥2 − λ2

|Ds|

2C∥∇xℓV̄ (x, y)∥
.

Here E[S(Ds, V̄ )] captures the expected similarity between 1
|Ds|

∑|Ds|
j=1 ∇xℓDθj

(x, y) and
∇xℓV̄ (x, y). E[S(Ds, V̄ )] is positively correlated with |Ds|. This implies the upper bound of
the transferability is also positively correlated with |Ds|.

Proof. Let xadv = x+ δ be an adversarial example of the image x with y and yt as the true label
and the target label, respectively. Since Dθj , ∀Dθj ∈ Ds minimizes the loss ℓDθj

, we have

D̂θj (x
adv) = yt =⇒ min

c∈C
ℓDθj

(xadv, c) > ℓDθj
(xadv, yt),

where C = [L]− {yt}. Hence

Pr(D̂θj (x
adv) = yt) ≤ Pr(ℓDθj

(xadv, y) > ℓDθj
(xadv, yt)). (23)

Similarly, for V̄ , we have

ˆ̄V (xadv) = yt =⇒ min
c∈C

ℓV̄ (x
adv, c) > ℓV̄ (x

adv, yt),

and that implies
Pr( ˆ̄V (xadv) = yt) ≤ Pr(ℓV̄ (x

adv, y) > ℓV̄ (x
adv, yt)). (24)

Since Dθj , ∀ ∈ Ds is β-smooth, we have:

ℓDθj
(x, y) + δ · ∇xℓDθj

(x, y) +
β

2
∥δ∥22 ≥ ℓDθj

(xadv, y).

Thus,

δ · ∇xℓDθj
(x, y) ≥ ℓDθj

(xadv, y)− ℓDθj
(x, y)− β

2
∥δ∥22

≥ ℓDθj
(xadv, yt)− ℓDθj

(x, y)− β

2
∥δ∥22 := cDθj

. (25)

Likewise for V̄ ,

δ · ∇xℓV̄ (x, y) ≥ ℓV̄ (x
adv, yt)− ℓV̄ (x, y)−

β

2
∥δ∥22 := cV̄ . (26)

Hence, from Eq. 25, we have

Pr
(
ℓDθj

(xadv, y) > ℓDθj
(xadv, yt)

)
≤ Pr

(
δ · ∇xℓDθj

(x, y) ≥ cDθj

)
. (27)

Similarly, from Eq. 26, we have

Pr
(
ℓV̄ (x

adv, y) > ℓV̄ (x
adv, yt)

)
≤ Pr

(
δ · ∇xℓV̄ (x, y) ≥ cV̄

)
(28)
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Hence,

Pr(Tr(Ds, V̄ ,xadv, yt) = 1)

= Pr
(( ∧

Dθj
∈Ds

D̂θj (x
adv) = yt

)
∧ ˆ̄V (xadv) = yt

)
(a)

≤ Pr
( ∧

Dθj
∈Ds

(
ℓDθj

(xadv, y) > ℓDθj
(xadv, yt)

)
∧
(
ℓV̄ (x

adv, y) > ℓV̄ (x
adv, yt)

))
(b)

≤ Pr
(( 1

|Ds|
∑

Dθj
∈Ds

δ · ∇xℓDθj
(x, y) ≥ 1

|Ds|
∑

Dθj
∈Ds

cDθj

)
∧ (δ · ∇xℓV̄ (x, y) ≥ cV̄ )

)
(c)

≤ Pr
(( 1

|Ds|
∑

Dθj
∈Ds

cDθj
≤ ϵ′

√
1 + S(Ds, V̄ )

2

∥∥∥ 1

|Ds|
∑

Dθj
∈Ds

∇xℓDθj
(x, y)

∥∥∥
2

)
⋃(

cV̄ ≤ ϵ′
√

1 + S(Ds, V̄ )

2

∥∥∥∇xℓV̄ (x, y)
∥∥∥
2

))
≤ Pr

( 1

|Ds|
∑

Dθj
∈Ds

cDθj
≤ ϵ′

√
1 + S(Ds, V̄ )

2

∥∥∥ 1

|Ds|
∑

Dθj
∈Ds

∇xℓDθj
(x, y)

∥∥∥
2

)

+ Pr
(
cV̄ ≤ ϵ′

√
1 + S(Ds, V̄ )

2

∥∥∥∇xℓV̄ (x, y)
∥∥∥
2

)
, (29)

where S(Ds, V̄ ) is the cosine similarity between 1
|Ds|

∑|Ds|
i=1 ∇xℓDθj

(x, y) and ∇xℓV̄ (x, y). In-
equality (a) is using Eq. 23 and Eq. 24, inequality (b) is due to the fact that Pr((A > a) ∩ (B >
b)) ≤ Pr((A+B) > (a+ b)) and using Eq. 27 and Eq. 28. The inequality (c) is a result of Lemma 5:
either

δ ·
1

|Ds|
∑

Dθj
∈Ds

∇xℓDθj
(x, y)

∥ 1
|Ds|

∑
Dθj

∈Ds
∇xℓDθj

(x, y)∥
≤ ∥δ∥2

√
1 + S(Ds, V̄ )

2

or

δ · ∇xℓV̄ (x, y)

∥∇xℓV̄ (x, y)∥
≤ ∥δ∥2

√
1 + S(Ds, V̄ )

2
.

We observe that by β-smoothness condition of the loss function,

cDθj
= ℓDθj

(xadv, yt)− ℓDθj
(x, y)− β

2
∥δ∥22 ≥ ℓDθj

(x, yt) + δ · ∇xℓDθj
(x, yt)− ℓDθj

(x, y)− β∥δ∥22

28
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Thus,

Pr
( 1

|Ds|
∑

Dθj
∈Ds

cDθj
≤ ϵ′

√
1 + S(Ds, V̄ )

2

∥∥∥ 1

|Ds|
∑

Dθj
∈Ds

∇xℓDθj
(x, y)

∥∥∥
2

)
≤ Pr

( 1

|Ds|
∑

Dθj
∈Ds

(
ℓDθj

(x, yt) + δ · ∇xℓDθj
(x, yt)− ℓDθj

(x, y)− β∥δ∥22
)

≤ ϵ′
√

1 + S(Ds, V̄ )

2

∥∥∥ 1

|Ds|
∑

Dθj
∈Ds

∇xℓDθj
(x, y)

∥∥∥
2

)

≤ Pr
( 1

|Ds|
∑

Dθj
∈Ds

(
ℓDθj

(x, yt)− ∥δ∥2∥∇xℓDθj
(x, yt)∥2 − ℓDθj

(x, y)− β∥δ∥22
)
≤ ϵ′B

√
1 + S(Ds, V̄ )

2

)

= Pr
( 1

|Ds|
∑

Dθj
∈Ds

ℓDθj
(x, y) + ϵ′B

√
1 + S(Ds, V̄ )

2
≥ 1

|Ds|
∑

Dθj
∈Ds

ℓDθj
(x, yt)− ϵ′B − βϵ′2

)

≤
E
[

1
|Ds|

∑
Dθj

∈Ds
ℓDθj

(x, y) + ϵ′B

√
1+S(Ds,V̄ )

2

]
1

|Ds|
∑

Dθj
∈Ds

ℓDθj
(x, yt)− ϵ′B − βϵ′2

≤
ξ + ϵ′B

√
1+E[S(Ds,V̄ )]

2

1
|Ds|

∑
Dθj

∈Ds
ℓDθj

(x, yt)− ϵ′B − βϵ′2
, (30)

where ξ = EDθi
∼D

[
ℓDθi

(x, y)
]
. Similarly for V̄ ,

Pr
(
cV̄ ≤ ϵ′

√
1 + S(Ds, V̄ )

2

∥∥∥δ · ∇xℓV̄ (x, y)
∥∥∥
2

)
≤

ξ + ϵ′B

√
1+E[S(Ds,V̄ )]

2

ℓV (x, yt)− ϵ′B − βϵ′2
. (31)

Hence,

Pr(Tr(Ds, V̄ ,xadv, yt) = 1) ≤
ξ + ϵ′B

√
1+E[S(Ds,V̄ )]

2

1
|Ds|

∑
Dθj

∈Ds
ℓDθj

(x, yt)− ϵ′B − βϵ′2
+

ξ + ϵ′B

√
1+E[S(Ds,V̄ )]

2

ℓV̄ (x, yt)− ϵ′B − βϵ′2
,

where E[S(Ds, V̄ )] is upper bounded by using Lemma 6 as follows:

E[S(Ds, V̄ )] ≤
B2 + ∥∇xℓV̄ (x, y)∥22 − λ2

|Ds|

2C∥∇xℓV̄ (x, y)∥2
.

G LIMITATIONS AND BROADER IMPACTS

Limitations. While BAT demonstrates strong targeted transferability under single-surrogate con-
straints, it has several limitations. First, the computational cost increases approximately linearly with
the number of discriminators, as shown in Fig. 6a, which may raise concern in resource-constrained
environments. Second, although Tab. 12 shows that BAT is generally stable across different random
pruning seeds, certain seeds or surrogate architectures may lead to higher variability, potentially
affecting reliability. Third, as illustrated in Tab. 11, BAT’s transferability declines under smaller
perturbation budgets, indicating the sensitivity to the strength of the threat model. Finally, BAT is
currently evaluated only under the ℓ∞ perturbation constraint; its applicability to other settings (e.g.,
physical-world attacks) remains an open question. Addressing these limitations presents important
opportunities for future research.
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Broader Impacts. This work proposes BAT, a generative framework aimed at improving the
targeted transferability of adversarial examples under single-surrogate constraints. The primary intent
is to advance our understanding of adversarial robustness and transfer behavior, which can aid in
designing more secure and generalizable machine learning systems. In particular, BAT highlights
how small structural modifications (e.g., pruning) and confidence-aware training can lead to stronger
transferable attacks, offering valuable insights for future defenses.

However, as with many works on adversarial attacks, there is potential for misuse. Techniques
developed in BAT could be repurposed to generate stronger targeted attacks against real-world
systems in domains such as biometric authentication or autonomous driving. To mitigate this risk, we
limit our experiments to standard datasets (e.g., ImageNet) and do not release pretrained generators
or plug-and-play attack pipelines. Any shared code will include disclaimers and be intended solely
for research and defense-oriented applications.

We believe that responsibly studying the targeted transferability is necessary to anticipate and counter
future adversarial threats, and we encourage the broader community to approach this space with
similar care.

H VISUALIZATION OF ADVERSARIAL EXAMPLES

In this section, we present multiple adversarial examples generated by the three variants of the
proposed BAT along with their corresponding perturbations for different target classes, as illustrated
in Fig. 8 to Fig. 11.

I MORE ATTENTION HEATMAPS

We present additional attention heatmaps for four different input images and their corresponding
adversarial examples, for target class#100, generated using the I-FGSM (Kurakin et al., 2018) method,
as illustrated in Fig. 12 and Fig. 13. These adversarial examples are crafted on pretrained models
on ImageNet-1K (Russakovsky et al., 2015), including ResNet18, ResNet50, VGG16, and VGG19,
along with five pruned versions of each. From Fig. 12 and Fig. 13, it is clear that the attention
heatmaps differ across the pruned models derived from the pretrained models, reflecting diverse
decision boundaries resulting from the pruning process.
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Source Perturbation Adv. Image Perturbation Adv. Image Perturbation Adv. Image

BAT-BS BAT-CS BAT-CN

Figure 8: Visualization of adversarial examples and their corresponding perturbations for the target
class “Vulture” on the ImageNet-1K dataset, generated by the proposed BAT methods using ResNet50
as the surrogate under no domain shift (P=Q).
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Source Perturbation Adv. Image Perturbation Adv. Image Perturbation Adv. Image

BAT-BS BAT-CS BAT-CN

Figure 9: Visualization of adversarial examples and their corresponding perturbations for the target
class “Night snake” on the ImageNet-1K dataset, generated by the proposed BAT methods using
ResNet50 as the surrogate under no domain shift (P=Q).
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Source Perturbation Adv. Image Perturbation Adv. Image Perturbation Adv. Image

BAT-BS BAT-CS BAT-CN

Figure 10: Visualization of adversarial examples and their corresponding perturbations for the
target class “Crayfish” on the ImageNet-1K dataset, generated by the proposed BAT methods using
ResNet50 as the surrogate under no domain shift (P=Q).
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Source Perturbation Adv. Image Perturbation Adv. Image Perturbation Adv. Image

BAT-BS BAT-CS BAT-CN

Figure 11: Visualization of adversarial examples and their corresponding perturbations for the target
class “Hook” on the ImageNet-1K dataset, generated by the proposed BAT methods using ResNet50
as the surrogate under no domain shift (P=Q).
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Source Image ResNet18 ResNet18PR1 ResNet18PR2 ResNet18PR3 ResNet18PR4 ResNet18PR5

Source Image ResNet50 ResNet50PR1 ResNet50PR2 ResNet50PR3 ResNet50PR4 ResNet50PR5

Source Image VGG16 VGG16PR1 VGG16PR2 VGG16PR3 VGG16PR4 VGG16PR5

Source Image VGG19 VGG19PR1 VGG19PR2 VGG19PR3 VGG19PR4 VGG19PR5

(a) Source image: Shetland sheepdog
Source Image ResNet18 ResNet18PR1 ResNet18PR2 ResNet18PR3 ResNet18PR4 ResNet18PR5

Source Image ResNet50 ResNet50PR1 ResNet50PR2 ResNet50PR3 ResNet50PR4 ResNet50PR5

Source Image VGG16 VGG16PR1 VGG16PR2 VGG16PR3 VGG16PR4 VGG16PR5

Source Image VGG19 VGG19PR1 VGG19PR2 VGG19PR3 VGG19PR4 VGG19PR5

(b) Source image: Brain coral

Figure 12: Attention heatmaps, obtained using Grad-CAM (Selvaraju et al., 2017), are shown for
adversarial images of input classes Shetland sheepdog and Brain coral. These adversarial examples
are crafted with target class #100 of ImageNet-1K on different classifiers and their corresponding
pruned versions.
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Source Image ResNet18 ResNet18PR1 ResNet18PR2 ResNet18PR3 ResNet18PR4 ResNet18PR5

Source Image ResNet50 ResNet50PR1 ResNet50PR2 ResNet50PR3 ResNet50PR4 ResNet50PR5

Source Image VGG16 VGG16PR1 VGG16PR2 VGG16PR3 VGG16PR4 VGG16PR5

Source Image VGG19 VGG19PR1 VGG19PR2 VGG19PR3 VGG19PR4 VGG19PR5

(a) Source image: Cougar
Source Image ResNet18 ResNet18PR1 ResNet18PR2 ResNet18PR3 ResNet18PR4 ResNet18PR5

Source Image ResNet50 ResNet50PR1 ResNet50PR2 ResNet50PR3 ResNet50PR4 ResNet50PR5

Source Image VGG16 VGG16PR1 VGG16PR2 VGG16PR3 VGG16PR4 VGG16PR5

Source Image VGG19 VGG19PR1 VGG19PR2 VGG19PR3 VGG19PR4 VGG19PR5

(b) Source image: Carton

Figure 13: Attention heatmaps, obtained using Grad-CAM (Selvaraju et al., 2017), are shown for
adversarial images of input classes Cougar and Carton. These adversarial examples are crafted with
target class #100 of ImageNet-1K on different classifiers and their corresponding pruned versions.
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