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ABSTRACT

Adversarial examples generated on one model can often be transferred to other
unseen models, but achieving high targeted transferability remains challenging
due to overfitting—especially under single-surrogate constraints. In this work, we
propose BAT, a generative approach that Boosts targeted Adversarial Transferability
by training the generator to align its outputs with a curated set of high-confidence
core target samples. These samples—either selected from real data or synthesized
from noise—serve as guidance across both output and feature spaces. To mitigate
overfitting without requiring multiple surrogates, BAT employs an ensemble of
frozen discriminators derived via pruning from a single pretrained surrogate model.
BAT is applicable whether both the generator’s training (source) and the evaluation
images come from the target models’ training domain or exhibit a domain shift; it
remains effective even without real target-class images during training. Extensive
experiments on ImageNet-1K show that BAT notably outperforms existing -
constrained targeted attacks. We also provide theoretical bounds that reveal how
ensemble size influences transferability, aligning with observed empirical trends.

1 INTRODUCTION

Adversarial examples, imperceptible to humans, can readily deceive deep neural networks
(DNNs) (Goodfellow et al.l [2014; Moosavi-Dezfool1 et al., [2017; [Lin et al.l [2019). Adversarial
attacks are broadly classified into two categories based on attacker’s knowledge: white-box (Szegedy
et al.}2013; |Carlini & Wagner, 2017} [Moosavi-Dezfooli et al.,|2016; Madry et al.| 2017; [Paniagua
et al.l 2023) and black-box (Chen et al., [2020; Reza et al.| 2023} |Guo et al., [2019; Dong et al.,
2019; Wu et al., 2021) attacks. While white-box attacks presume complete knowledge of the target
classifier, black-box attacks do not make such extreme assumptions. Black-box attacks further split
into query-based (llyas et al., 2018 |[Maho et al.,|2021; Rahmati et al., |2020; Reza et al., [2025) and
transferable (Wang et al.| |2024bj [Inkawhich et al., 2020a; Wu et al., 2024; Zhu et al., 2024) attacks.
Despite improvements in query-based attacks, excessive queries are still needed for success, driving
interest in transferable attacks, where adversarial examples are generated using a surrogate model
and then transferred to unknown target/victim models.

Depending on the objective, attacks can be either untargeted or targeted. The use of surrogate models
has shown remarkable success in transferability for untargeted attacks lately (Zhu et al., [2023; Wang
et al.,[2024b; 2021; Wang & He} 2021; |Chen et al.,[2023b). However, their direct adaptations to the
targeted setting often overfit and fail to learn the target class distribution (Liu et al.,|2016). Recently,
several innovative approaches have emerged to enhance targeted transferability. Targeted attacks
are generally divided into iterative (Inkawhich et al.; 2019} |L1 et al.,|2020al) and generative (Naseer
et al.,|[2021}; |Zhao et al.| 2023} [Fang et al.| [2024) methods. Iferative (Zhao et al.| [2021; Wei et al.
2023)) methods that craft instance-specific perturbations; and generative (Wang et al., 2023} |Gao et al.,
2024) methods that train a generator to produce adversarial examples for arbitrary inputs. Generative
methods, which explicitly encourage the generator to learn the target class feature distribution, have
proven especially effective for targeted transfer.

Generative adversarial attacks are best described along two orthogonal axes. First, whether the
generator’s source distribution P matches the target models’ training domain Q (no domain shift,
P = Q) or differs from it (domain shift, P # Q); unless noted otherwise, evaluation images are also
sampled from P. Second, whether training uses real target-class images from Q as references in the
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loss (target-data-guided) or not (target-data-free). Many attacks only address learning when domains
match (P = Q) (Zhao et al.,2023;|Gao et al.,[2024;/Sun et al., 2024). Some works also tackle learning
when domains are shifted (P # Q), often in a target-data-guided manner that incorporates real target
images as references (Naseer et al.| [2021; |Wang et al.| [2023)). These target-class references enable
measuring distributional distance between generated adversarial examples and target images using a
discriminator pretrained on Q. However, because all target samples are treated uniformly without
considering fidelity, the resulting adversarial examples may exhibit lower target-class confidence,
ultimately reducing transferability.

Existing targeted transferable attacks, particularly under a single-surrogate constraint, often suffer
from low transfer rates due to discrepancies between the surrogate’s and the unknown targets’ decision
boundaries. To mitigate this, |Naseer et al.[(2021)) replaced a single discriminator with an ensemble of
pretrained surrogates, improving transfer by steering perturbations toward regions vulnerable across
diverse boundaries. [Zhao et al.| (2023) instead derived two discriminators from a single surrogate
(pretrained vs. fine-tuned) to maximize boundary discrepancy during generator training, but at the
cost of extra discriminator training with the access to source sample. Despite empirical evidence,
how ensemble size impacts targeted transfer remains theoretically underexplored.

Inspired by the effectiveness of model ensem-
bles and motivated by the limitations of prior
work (Zhao et al., [2023)), we ask: Can we train
a generator to produce highly transferable, tar-
geted adversarial examples using only discrim-
inators derived from a single surrogate—with
no additional model training? To investigate
this, we revisit the premise that discriminator
diversity improves transferability. Fig. [T|shows
that attention regions differ not only across
distinct architectures pretrained on ImageNet-
1K (Russakovsky et al.| [2015) but also across
slightly pruned variants of a single model (e.g.,

Source Image ResNet18 ResNet50 VGG16 VGG19

(a) Attention heatmaps on different pretrained classifiers.

Source Image  ResNet50 ResNet50”R  ResNet50PR2  ResNet50°R3
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(b) Attention heatmaps on ResNet50 and its different
pruned versions.

randomly removing just 2% of weights from
ResNet50 (He et al.,2016)) when adversarial ex-
amples are crafted with [-.FGSM (Kurakin et al.,

Figure 1: Attention heatmaps obtained leveraging
Grad-CAM (Selvaraju et al.,|2017) for adversarial
images of a target class crafted on different models.

2018)). These observations suggest that a diverse

discriminator ensemble can be obtained from a single model via pruning, with no extra training or
architectural changes. While self-ensembling has been explored in iterative attacks (Li et al., [2020b;
Wang et al., 2024a)), its role in guiding generative attacks remains underexplored. Additional related
works are provided in Appendix

Our approach: BAT. We propose BAT, a generative framework that trains a generator by aligning
both output and intermediate feature distributions of generated adversarial examples with those
of a small, carefully selected set of core target samples—which are consistently classified as the
target class with high confidence across the discriminator ensemble. Under a single-surrogate
constraint, BAT builds this ensemble by pruning the surrogate to obtain diverse discriminators (no
extra training). To the best of our knowledge, BAT is among the first to leverage such a self-ensemble
to guide a generative attack using confidence-aware core target samples, encouraging the generator
to produce highly confident adversarial examples that generalize to unseen models. Based on the
core target sample type, we introduce three variants: BAT-BS (Best Samples) selects the most
confident real target-class images; BAT-CS (Crafted Samples) further increases their confidence via
targeted perturbations; and BAT-CN (Crafted Noise) uses no real target-domain images, synthesizing
target-class references from noise. Accordingly, when P # Q, BAT-BS and BAT-CS instantiate
target-data-guided training, whereas BAT-CN instantiates target-data-free training. By combining
(i) self-ensembling via pruning with (ii) output—feature alignment to high-confidence core targets,
BAT achieves state-of-the-art targeted (SOTA) transfer for both P = Q and P # Q, including cases
without access to real target-domain images The contributions are as follows:
* We propose BAT, a generative framework that significantly improves targeted adversarial
transferability by aligning generated examples with a small set of high-confidence core
target samples in both output and feature spaces.

» To mitigate overfitting to a single surrogate, BAT exploits an ensemble of pruned discrimi-
nators from one pretrained model, enhancing transferability without additional training.
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Figure 2: Schematic of BAT, comprising a generator Gg and K discriminators derived from a single
surrogate model Dy, . The generator is trained to craft adversarial examples for a given target class,
with the goal of minimizing the difference between the distribution of the generated adversarial
examples and that of the core (high-confidence) target samples.

* When multiple surrogates are available, BAT naturally leverages architectural diversity;
pruning remains effective and stable even then.

* Extensive experiments on ImageNet-1K demonstrate that BAT outperforms state-of-the-art
{~,-constrained targeted attacks, improving transfer success rates by 6-7% in BAT-CS.

* We theoretically derive lower and upper bounds on transferability, and present trade-off
analyses showing how the number of discriminators affects performance.

2 PRELIMINARIES

Let [L] = {1,...,L}and Y == {p € [0,1]* : =%, p. = 1}. Consider an L-class classifier
with parameters 6; modeled as Dy, € D, : X — Y, where D, := {Dj, }K L D defines a
set of K classifiers accessible to an adversary, and D represents a set of alf possible classifiers
for the same classification task. Dy, maps the input image space X to output space ), which
represents the probability distribution over all classes. Let & € X C [0, 1]9*#*W be an image,
and y = Dy, (x) € Y be the predicted distribution over all L classes, where C, H, W denote
channels, height, and width of @, respectively. Then, the fop-1 classification label is denoted
as Dy, (x) = argmax.e(r) [Do, ()] . where [Dy, (z)]_ is the predicted probability of class c.
Additionally, consider Déf ). X — R as the feature extractor from the f-th intermediate layer of

the model ng; we write F := R% for this feature space. Let V : X — ) be an unknown victim
model and y, € [L] a specified target class. A targeted transferable attack seeks an adversarial

example 1V = x + § such that V (2*1") = y, under a perceptual constraint ||| < €.

To encourage transferability to any V' € D \ D,, we consider the constrained optimization

x =argminEp, ,lp, (',9); st |2 -zl <€ M

where {p, (-, ;) is a targeted loss (e.g., KL loss Kullback & Leibler| (1951)), measuring the dis-
tance between the generated example and the target class while enforcing the /., constraint for
imperceptibility. If an adversary has access to a set of models D, Eq.[I]can be approximated as:

o —argmln |D | Z €p,, (', y); st |2’ — x| <e. 2)
De].G'DS

3 PROPOSED METHOD: BAT

A schematic of BAT is shown in Fig.[2] BAT trains a single generator G to craft /,-bounded
adversarial examples for a target class y; while the attacker has access to only one pretrained surrogate
Dy, , trained on the target domain Q. To obtain the model diversity needed for enhanced transferability,
we construct an ensemble D, = {Dy, } 5(:1 by randomly pruning Dy, , and use the pruned copies as
discriminators. All discriminators are frozen and require no additional training.

Let P denote the distribution of source images used to train G ; unless noted otherwise, evaluation
images are also drawn from P. Let Q denote domain of the surrogate and unknown victims models
training dataset. We refer to no domain shift when P = Q and domain shift when P # Q. Orthogonal
to this axis, we distinguish whether training uses real target-class images from Q as references in the
loss (target-data-guided) or uses no real target-class images (farget-data-free).

Given a source set S = {xf}; with 27 ~ P, BAT mitigates overfitting to low-fidelity references
by constructing a compact set of core target samples T* for the target class y; using confidence
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consensus across the pruned ensemble D;. In the target-data-guided setting, BAT-BS selects the
top-k real target images from () ranked by ensemble confidence for y;, and BAT-CS further crafts
higher-confidence references by perturbing these images toward y,. In the target-data-free setting,
BAT-CN synthesizes target-class references directly from Gaussian noise by ascending ensemble
confidence toward y;. Subsequent subsections detail the self-ensemble method, the construction of
T* and the dual-space alignment losses that train G¢ using the frozen discriminators in D;.

3.1 ENSEMBLE OF PRUNED DISCRIMINATORS

BAT derives an ensemble of K discriminators leveraging pruning of the surrogate, in the constrained
access to a single surrogate Dy, with parameters §y € R%, where d is the dimension of the parameter
space. Then, pruned versions of Dy, are obtained through both L;-norm unstructured pruning and
random-unstructured pruning (Paszke et al.,[2019). The L;-norm unstructured pruning process is
formalized as follows: 1, if |96i)| > 4

D, =D , where Pl =
0 P {O, otherwise,

where P € {0, 1} is a binary masking vector and ® denotes the Hadamard product. Besides, v is a

threshold such that #{i € [d] | |9(()i)| < v} = p1 - d, where p; is the pruning ratio. Additional pruned
models are obtained using random-unstructured pruning, which is expressed as follows:

Dj = Dgyon, M(? ~ Bemoulli(1 — p,),Vi € [d],j > 1, )
where M; € {0, 1} is another binary masking vector with each element M J@ being a Bernoulli
random variable, effectively zeroing out the ¢-th parameter with probability p,.. Thus, by combining
the original model Dy, with its pruned variants, an ensemble of K discriminators is given by

Dy = {Dg, } U{Dy, } U{Dy,};5"- ®)

While BAT employs these two simple methods for self-ensembling, structured pruning (Paszke et al.|
2019) or techniques from (Li et al.,[2020b), ensuring diverse discriminators, can also be employed.

3.2 CORE TARGET SAMPLES SELECTION .

The key objective in BAT is to guide the generator to . 4 -~

produce adversarial examples that align closely with - ‘ y .
the high-confidence target regions in both output and ~ * « * ="

feature spaces across the discriminators in D,. Thus, '

the selection of target class samples, which guides the (a) (b) (©)
training, is critical for enhancing the transferability of
these adversarial examples. Based on the access to target
class data 7 and the nature of references, BAT has three hich b) Retain hich fid
variants: BAT-BS, BAT-CS, and BAT-CN. Both BAT-BS  ighen). (b) Retain high-confidence sam-
and BAT-CS assume access to 7. It is anticipated that ples and r.eﬁne them by bounded targeted
the confidence levels of target samples ! € T may vary p erturba.ttlolns. (c) Resulting crafted refer-
across discriminators due to diverse decision boundaries. "¢ with increased ensemble confidence.

Figure 3: (a) Target samples colored by
ensemble confidence p(x) (brighter is

Let p;(x) = [Dy,(x)],, and define the ensemble mean p(x) = ﬁ YDy ep, Pi(x). We rank
candidates by the ensemble mean confidence p(x). To target the high-confidence region of the target
class, BAT-BS selects a subset 7 by taking the TopK elements of 7 under p(x):
Tis = TopK(T; p(x)).

Equivalently, T3¢ contains those € 7 whose ensemble score exceeds that of non-selected samples.
BAT-CS increases the ensemble confidence of each & € T3g by adding bounded targeted pertur-
bations (PGD-style), as depicted in Fig. [3|and detailed in Algorithm[I]in the Appendix, producing
a crafted set 7g that better targets the desired region. Conversely, BAT-CN synthesizes a high-
confidence set 75y by optimizing the same objective starting from noise initializations n ~ N (0, I)
with clipping to [0, 1]9*H#*W which requires no access to real target-domain images.

We refer to Tgg, T, and Ty collectively as the core target set T*, used to drive output- and
feature-space alignment in the subsequent losses.

3.3 DISTRIBUTIONS DISTANCE MEASUREMENT

To guide the generator in crafting transferable adversarial examples, BAT minimizes the discrepancy
between the generated examples and the core target samples in both output space and feature space.
This dual-space alignment is enforced across all discriminators in the ensemble D;.

4
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(i) Output Distribution Alignment. We use Kullback—Leibler (KL) divergence to quantify the
mismatch between the predicted class distributions of the generated adversarial examples and the
core target samples. For a mini-batch of size B, the symmetric KL divergence on a discriminator
Dy, € D; is given by:

1 B
£, =5 > [KL(Do, (x7%) | Dy, (")) + KL(Ds, (") || Dy, ()] (©)
i=1

where ¢ is a generated adversarial example and z‘* € T* is a core target sample. The symmetric

formulation ensures stable optimization and mutual alignment between distributions.

(ii) Feature Distribution Alignment. To further constrain the generator to match the internal
target-class representation, we measure the cosine similarity between the intermediate features of the
generated and core samples:

B
i 1 adv *
£h, =5 > cos (b (@), h (@}), @
i=1

where h;f ) (x) = D(J;j (x)/ Hng (x)]|2, and ng () denotes the intermediate feature representation

extracted from the f** layer of discriminator Dy,.

These losses collectively ensure that generated examples resemble high-confidence target-class
samples both at the output and representational levels, improving generalization to unseen models.

3.4 GENERATOR TRAINING

The goal of the generator training is to update the parameters ® of G so that it learns to generate
an adversarial example ¢, for a source image x{, which is capable of mapping to the target class
with high transferability satisfying the perturbation constraint [|£¢% — ||, < €. We use the same
generator backbone, Fg, as in (Zhao et al., 2023} Naseer et al.,|2021; Wang et al., 2023). The output
from the generator satisfying the perturbation constraint can be expressed as:

z{ " = Gg(xF) = clip(W * Fop (), 8)

where W is a smoothing parameter with fixed weights to filter out the high-frequency components
from the generated image, and clip(WV * Fg(x?)) = min(x] + €, max(W x Fg(xf), 27 — €)) keeps
each pixel of % within the perturbation budget e. The generator is optimized using the combined
distribution alignment loss defined in Section[3.3] Specifically, the total loss is:
1 KL )
@:m > [ﬁng —/\ﬁngL )

Dej €Ds

where Lg captures the distributions distance between the generated adversarial examples and high-
confidence target samples, both in output and feature spaces, for all the discriminators Dy, € Ds,
while A controls the weight of the feature alignment term. The training procedure is outlined in
Algorithm 2] provided in the Appendix.

4 EXPERIMENTS

Baselines and hyperparameter settings. We compare BAT against state-of-the-art transferable
targeted attacks: two iterative methods (Po-Trip (Li et al.l 2020a) and SU (Wei et al.,|2023))) and four
generative methods (TTP (Naseer et al.,|2021), M3D (Zhao et al.,|2023), ESMA (Gao et al.} 2024),
and CGNC (Fang et al., 2024)). ESMA and CGNC train a single generator for multiple target classes,
which typically reduces transfer; for fairness we also report CGNCpgr, obtained by fine-tuning the
CGNC generator separately for each target class.

During BAT training, all discriminators Dy, € D; are frozen; only the generator parameters  are
updated. We use the backbone Fg and optimize with Adam (initial learning rate 2x10~3, exponential
decay each epoch; 5, = 0.5, B2 = 0.999) for T = 20 epochs with mini-batch size 16. Unless
otherwise specified, we train on 12 randomly selected ImageNet-1K target classes using a pretrained
ResNet-50 (He et al.| [2016) surrogate and repeat with a pretrained DenseNet-121 (Huang et al.|
2017). To build D,, we include the unpruned surrogate and its pruned variants using magnitude (L;)
unstructured pruning with ratio p; =0.6 (60% weights pruned) and random unstructured pruning with
probability p, =0.02 (2% per-weight pruning); features are taken from block-3 for both architectures
(as in SU (Wei et al., 2023)). By default we use |Dy| =35, an £, perturbation budget e=16/255, and
loss weights A\ = 1.5 for the output/feature alignment terms (see Eq.[9).

5
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Table 1: TSR(%) of various attacks on different target classifiers under P=Q. BAT variants,
specifically BAT-CS and BAT-CN, outperform the SOTA methods by a large margin. ‘*’ indicates
the performance on the white-box surrogate model (Dy,). For each target model, the best overall
method is highlighted in bold, while the best baseline method is underlined. Values in parentheses
indicate the improvement in TSR(%) over the best baseline.

| Surrogate | Attack | RN18 RN50 RNI101 DNI21 DNI61 VGGl6py VGG19gy MN-V2  VIiT-B | Average |

Po-Trip 39.84  99.90*%  56.95 61.26 61.87 21.28 23.90 19.18 3.81 43.11
SU 69.84 97.78%  79.83 76.35 77.62 71.82 72.00 50.88 6.71 66.98
ESMA 5774  92.75%  66.71 65.59 64.87 72.04 66.99 54.04 21.97 62.52
CGNC 79.02  96.14*  84.82 83.26 84.34 80.71 75.14 65.31 24.56 74.81

RN50 CGNCgr | 85.67 96.50*%  89.17 88.83 89.17 85.17 81.33 75.83 40.83 81.39
TTP 78.06 94.96*  80.16 74.39 72.11 80.93 70.79 62.92 2222 70.73
M3D 86.50 95.77%  88.73 88.32 87.62 84.17 82.57 81.54 51.73 82.99
BAT-BS 89.61 98.08* 92.76 92.23 89.73 92.64 89.67 81.76 42.67 | 85.46(,2.35)
BAT-CS 93.78 98.78*% 95.22 94.16 93.31 94.45 94.04 86.60 50.45 | 88.98, 557
BAT-CN 9226 98.68* 94.57 93.94 92.51 93.70 92.13 85.46 4727 | 87.84(44.73)
Po-Trip 2343  25.36 23.67 99.96* 54.14 10.64 13.36 13.18 2.75 29.61
SU 50.02 58.08 47.47 98.50* 78.72 49.46 53.43 31.05 5.08 52.42
ESMA 62.29  66.60 54.97 94.67* 77.80 66.15 60.22 46.14 20.70 61.06
CGNC 62.14  73.82 63.14 93.90* 74.20 65.78 74.23 56.44 24.60 65.36

DNI21 CGNCgy | 7445 84.72 72.61 94.48* 85.19 80.28 81.49 70.14 34.66 75.34
TTP 64.71 61.27 60.54 93.75% 69.19 62.37 57.41 51.06 23.32 60.40
M3D 82.79 85.48 80.34 96.86* 88.17 80.96 79.28 75.16 48.77 79.76
BAT-BS 88.80  86.05 83.79 98.75* 88.97 83.53 82.38 76.49 42.02 | 81.20(41.44)
BAT-CS 9246 92.30 90.51 99.15*  92.02 90.71 89.51 81.66 48.36 | 86.30(, .54
BAT-CN  92.11 91.82 89.79 99.14%* 93.90 91.18 88.38 79.21 48.45 | 86.00(46.24)

Table 2: TSR(%) of various attacks on different target classifiers under P#£Q where the source
images to train the generators are sampled from the Painting dataset. The performance is evaluated on
the Painting test set. ‘*’ indicates the performance on the white-box surrogate (Dg,). For each target
model, the best overall method is highlighted in bold, while the best baseline method is underlined.
Values in parentheses indicate the improvement in TSR(%) over the best baseline.

| Surrogate | Attack | RN18 RN50 RNIO1 DNI21 DNI61 VGGl6py VGG19py MN-V2  VIiT-B | Average |

TTP 76.41 93.07* 7429 79.48 75.83 78.09 65.02 56.54 37.07 70.64
CGNC 83.09 97.48* 8l.61 80.98 82.79 86.24 82.56 71.5 46.01 79.14

RN50 CGNCgr | 9143 98.56*%  94.75 91.69 89.75 91.35 87.16 78.29 58.82 86.87
BAT-BS  92.65 98.16% 94.40 93.15 92.66 92.78 87.01 83.84 61.17 | 88.42(11.55)
BAT-CS 93.48 98.93*  96.00 96.27 95.41 95.44 93.68 90.10 73.58 | 92.54(,5.7)
BAT-CN  93.73 98.88* 95.80 95.82 94.82 94.73 93.52 88.69 69.94 | 91.77 (4.4.90)
TTP 65.89  64.85 61.94  9456*%  76.61 64.04 53.55 46.72 27.76 61.77
CGNC 82.80 82.58 7773 98.26%  89.90 83.13 78.88 63.83 49.21 78.48

DNI21 CGNCgr | 88.71  90.20 85.66  98.46*  92.68 90.41 86.55 76.13 56.01 84.98
BAT-BS  88.82 90.67 86.24  98.45*  90.20 89.10 87.11 77.10 59.57 | 85.25(40.27)
BAT-CS 94.00 95.40 93.46 99.13* 95.63 94.51 93.30 82.42 70.17 | 90.89(,5.01)
BAT-CN 9236 93.69 91.50 99.02* 94.75 91.56 90.05 78.41 69.97 | 89.03(44.05)

Dataset. To evaluate BAT under both no domain shift (P=Q) and domain shift (P#Q), following
TTP (Naseer et al., 2021) we use ImageNet-1K (Russakovsky et al.l [2015) and the Painting
dataset (Saleh & Elgammal, 2015). All surrogate and victim models (and thus the discriminator
ensemble) are trained on ImageNet-1K, which we take as the models’ training domain Q. In the
no-shift setting we train the generator on ImageNet-1K (P=0Q); in the shift setting we train on
Painting (P#Q). For training, we sample 50,000 source images, and for evaluation, we consider
5,000 validation images from the corresponding domain. Additionally, when P#Q, we report results
on 5,000 ImageNet images. Unless otherwise specified, we perform experiments under P=0.

BAT uses three variants—BAT-BS, BAT-CS, and BAT-CN—distinguished by how core target samples
are constructed. For each target class, BAT-BS ranks approximately 1,300 ImageNet-1K training
images of that class by ensemble confidence and selects the top k=300. BAT-CS starts from these
300 and increases their target confidence using Algorithm[I] BAT-CN initializes 300 references from
Gaussian noise and applies the same algorithm, using no real target-domain (Q) images. For crafting,
we use step size a.=0.25 for BAT-CS and a,.=1 for BAT-CN with 7, =25 updates.

Target models. To assess the effectiveness of the adversarial examples produced by the trained
generator, we evaluate transferability on unseen victim models pretrained on ImageNet-1K: VGG-
16N, VGG-19N (Simonyan & Zisserman, [2014), ResNet-18/50/101 (RN18/RN50/RN101) (He
et al.|[2016), DenseNet-121/161 (DN121/DN161) (Huang et al.,[2017), MobileNetV2 (MNv2) (San+
dler et al., 2018)), and ViT-B (Dosovitskiy et al., 2020). Beyond standard classifiers, we also
test against robustly trained models: adversarially trained Inception-v3 (Inc-v3,4y) (Kurakin et al.,
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2016)), ensemble adversarially trained Inception-ResNet-v2 (IR-v2.,s) (Tramer et al.l 2017), and four
robustness-oriented ResNet-50 variants—RNS50gy (Stylized-ImageNet), RNSOy (stylized + natural
ImageNet) (Geirhos et al., |2018)), RN504;,e (fine-tuned RN50py with an auxiliary set), and RN50ax
(AugMix) (Hendrycks et al., |2019). We additionally evaluate under input-processing defenses;
detailed results are provided in the Appendix (Tab.][7).

Evaluation metric. We report the transfer success rate (TSR) for targeted attacks, i.e., the percent-
age of adversarial examples that cause an unknown victim to predict the intended target label. For a
given victim Dy, € D \ D;, a target- class set T, and N evaluatlon 1mages per class, the TSR is

TSR(%) = S S 1 (Do, (GF (w0) = ), (10)

Yy €Y i=1

ITI

where Q(y’ is the generator trained for target class y;, , are evaluation inputs, and .ng denotes the
top-1 predlctlon. For multiple victims, we also report the average TSR across the evaluation set.

Periormance under fo domain SQh‘fé fab.[compares b 3 Applicability matrix. Which
Workafgreoifesra;ti\r/r;eapgr(s)2:2:/;165 sti)st:ant?;li;s ()etherlforI;rrll?z‘r- settings each generative method sup-
erative ones in targeted transfer. All three BAT variants ports: P = Qvs. P 7 Q. and farget-
attain the highest average TSR, which correlates with their
ability to produce adversarial examples with higher target-

data-guided vs. target-data-free losses.

Method Domain match/shift References in loss

class confidence (Tab.[9} Appendix [C). In particular, the P=Q  P#£Q

. ] - | guided free
crafted-target variants (BAT-CS) yield the largest gains ESMA % ” » ¥
by explicitly concentrating training on higher-confidence  trp v v v x
regions. Remarkably, BAT-CN remains competitive de- CGNC v v X v
spite using no real target-domain images, underscoring M3D v X X v
the strength of confidence-guided references synthesized = BAT-BS v v v X

. ) . . BAT-CS v v v X
from noise. BAT variants also retain their advantage under  gar.cn v v % v

tighter perturbation budgets (Tab. see Appendix [C),
indicating robustness to smaller /., constraints.

Performance under domain shift. For the P=£Q setting, we compare against methods applicable
under domain shift—TTP (Naseer et al.,|2021) and CGNC (Fang et al., [2024)—and exclude methods
that require source images from the target domain (e.g., ESMA (Gao et al., 2024), M3D (Zhao
et al.,2023)). Tab. 2|reports TSR on the Painting test set: BAT substantially improves transferability
in this regime as well, with BAT-CS and BAT-CN achieving results comparable to their no-shift
performance. Notably, while TTP is target-data-guided (uses real target-class images from Q as
references), BAT-CN is target-data-free and still surpasses it without any real images. Additional
results trained on Painting and evaluated on ImageNet-1K are provided in Appendix [C| Tab. 10}

Applicability matrix. Tab. [3|summarizes the generative methods we evaluate, organized by (i)
domain match vs. shift (P=0Q vs. P#£Q) and (ii) references used in the loss—target-data-guided if
real Q target images are used, target-data-free otherwise. All methods use surrogates trained on Q.
A checkmark (v) indicates the setting is demonstrated in prior work or directly applicable without
modification; a cross (x) indicates it is unsupported. As shown, all three BAT variants apply to both
the matched and shifted regimes: BAT-BS and BAT-CS are target-data-guided (like TTP), whereas
BAT-CN is target-data-free (like CGNC). Across both regimes (P=Q and P#£Q), BAT consistently
achieves higher targeted success rates than TTP/CGNC (see Tab. [I|and Tab. [2).

Performance against robust models. Tab.[d]com- Taple 4 TSR(%) comparison among the gen-

pares the TSR, considering ResNet50 as surrogate, erative methods, considering RN50 as sur-
against six robust models that are evaluated at two  rogate, under P=Q, against classifiers with

: C e — 32 . -
perturbation thresholds: € 255 and 525 AS eX- robust training mechanism on ImageNet.
pected, TSR increases with e. BAT variants perform
better agalnst the mentioned robust models than the Surrogate | € Attack | Inc-v3,4, IR-v2.,; RN50sy RN50 RN50g,. RNSO A,
. . . ESMA 1.10 1.07 2803 7473 78.10 5494
baseline attacks. TSR considering DenseNet121 as . CET”I% zig gféz g§§§ gg%%gl éiﬁ §§§;§
the surrogate against these models, along with exper- TURATES | 102 e 3225 953 929 §30
; d ine the BAT variants’ effecti Baton  9a6  bai A 8% N8 §ae
iments demonstrating the variants’ effectiveness ryso | BATCN 926 1244 ST 953 953 w776
against input processing defenses and the robustness PRIV B e R
of BAT due to the variability introduced by random IR awle G R B a0
BAT-CS 41.60 5153 7228 9646 9431  92.64
BAT-CN 39.36  50.53  71.74 9724 9554 9203

pruning, are discussed in Appendix
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Impact of discriminators from dif- Table 5: TSR(%) comparison of BAT-CS and TTP,,,, us-
ferent surrogates. We analyze how ing different combinations of the five discriminators derived
using discriminators from various pre-  from one or more surrogates. Symbols: *1* indicates gener-
trained surrogates affects TSR. Tab.[5] ator training leveraging pretrained ResNet{18, 34, 50, 101,
demonstrates that BAT-CS, which em- 152}, °1” indicates leveraging ResNet{18, 50}, DN121 and
ploys an ensemble of discriminators  VGG{16, 16y}, and "¢’ indicates leveraging RN50, two
derived from a single ResNet50 model  pruned versions of RN50, DN121 and one pruned DN121 as

through pruning, achieves a higher discriminators. **’ marks white-box surrogate performance.
average TSR than TTP.,s; (Naseer

BAT-CS* | 98.45% 97.81* 96.14  9822%  96.42 98.22% 96.06 94.22 61.61

its discriminators are replaced with BAT-CS® | 9598 98.62* 9655 98.67* 96.23 96.77 95.81 91.63 5853
pretrained ResNet models similar to

TTPey, (third row). Furthermore, using discriminators from three model families—ResNet, DenseNet,
and VGG—slightly boosts TSR compared to using only ResNet (rows four and five). When de-
riving five discriminators from two model families, i.e., ResNet50 with two pruned versions of it
and DenseNet121 with a pruned version of it, BAT-CS achieves similar TSR to that with diverse
pretrained models from single or multiple model families (last row). These results suggest that
BAT-CS can further boost TSR by leveraging discriminator ensembles from diverse surrogate models,
when available, and pruned versions of these models, indicating the effectiveness of pruning.

93.02
92.09

et al.’ 2021)’ Wthh uses ﬁve diStil’lCt | Awack | RNIS RN50 RNIOI DNI2I DNI6I VGGlésy VGGI95y MN-V2 VITB | Average |
. BAT-CS | 9378 9878* 9522 9416 9331 94.45 94.04 8660 5045 | 88.98
pretrained ResNet models. The per- ‘ TTP,,.,! | 96.15% 9636¢ 97.12¢+ 9225 9190 8891 8072 8341 4832 | 87.68
. BAT-CS' | 98.50% 98.28% 0844* 9729 9671 9638 95.64 9347  59.80 | 92.72
formance of BAT-CS 1mmproves when TP} | 9541% 9545% 9176 9546* 9006  94.33* 90.52 8890 49.03 | 87.88

Ablation study. Tab. [f] presents Table 6: Ablation study on BAT variants showing the impact

the step-by-step progression of the of discriminator size (|Ds|) and core target sample selection
BAT framework, beginning with a  on TSR (%).

baseline using a single discriminator

and all available target class samples Method Variant |D,|  Target Sample Selection TSR (%)
(~1300). Increasing the number of BAT (baseline) 1 All (~1300) 7112
discriminators to 5 via pruning im- rne > o ((b”elsfg%)o) Logel
proves TSR from 71.12% to 75.85%. BAT-BS 5 Core (best 300) 85.46

: : BAT-CS 5 Confident Core (from best 300) 88.98
RePlaClng all samples with a curated BAT-CN 5 Crafted Core (from noise) 87.84

set of 300 high-confidence target sam-
ples also yields a boost (78.35%) even
with a single discriminator. Combining both—core target samples and pruned ensemble—raises
TSR to 85.46%. Finally, BAT-CS and BAT-CN—both employing five discriminators and confidently
crafted core samples—further elevate the TSR to 88.98% and 87.84%, respectively. These results
highlight the individual and combined benefits of discriminator diversity and confidence-aware
target selection. Details on the choice of pruning parameters, the influence of target sample size,
the number of discriminators, and the impact of A on transferability are provided in Appendix
Additionally, Appendix [D]includes a comprehensive trade-off analysis and training time comparison
across methods.

5 THEORETICAL ANALYSIS

Asin Eq.[1} ideally an adversary aims to generate adversarial examples that minimize the expected loss
across all possible classifiers in D, ensuring high transferability. Additionally, it has been observed
that model ensemble offers greater robustness against adversarial attacks |Pang et al.| (2019). Based on
these observations, our theoretical analysis considers an extreme case: a virtual victim model V' € D,
which is the ensemble average of all possible models in D, i.e. £y (z,y:) = Ep, ~p VDei (z, 1))
Intuitively, adversarial examples capable of deceiving this virtual model can deceive any unknown
classifier with higher probability.

5.1 LOWER BOUND OF TRANSFERABILITY

In this part, we theoretically demonstrate the impact of the number of accessible models on the
lower-bound of transferability, which is inspired by |Yang et al.[(2021).

Theorem 1. Consider, 3V € D, a virtual victim model, such that Vgzly(x,y;) =
Ep, ~p [Vwépgi (z,y:)|. Additionally, assume that the similarity of the gradient of YDy, € D
with the gradient of V is captured by EDHZND[HVEZDQI_ (@, y:) — Valy(x,y)|3] < o and
[Valp, (,yt)ll2 < B. Assume the loss function of a set of randomly picked accessible models
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Dy, € Ds C D and the target model V are B-smooth, and VDy, € D are (o, Dy, )-effective on the
generated samples with a perturbation constraint ||8||2 < €. Under these conditions, the probability
of transferability can be lower bounded by:

Pr(Tr(st vaadvvyt) = 1) >

6/(1+A)+C'D (I,A) € HV KV(:B yt)HQ \/ﬁ
1-A- : - 2(1- )
Cy + ¢ Cy + € B

)

D, . min, ot Lo (22 y)—L R 776/2
whereA:Z‘ | o velL]—{u;} Lv ( y)—Ly (x,y:)

im0 O, Cy = Milgex Vol @, yf)\|2 , and

; 1 d 1 B
(minye(z)—{y,} D.] Zng ep, £Dy, (", y) — D] Zpej e, {Do, (@, ye) + 5€2)
cp, := max )

max I Yp,,ep. Valn,, (@, u1)]2

Here cp, is the average risk of the models in Dy and c, is the risk of the virtual victim model V.

The definitions of transferability (7. (.)) and (e, Dy, )-effective attack are deferred to Appendix@
In theorem [I] the value of A is sufficiently small as it is measured on the accessible mode
Additionally, ¢, is also sufficiently small as it is scaled by ||V Ly |2 [Yang et al|(2021). Thus,

Pr(T,(Ds, V, 2%, y;) = 1) takes the form & — ¢ [k + \/‘7 where ¢ and k are the positive

constants, and & depends on |D;|. In &, A can be approximated as a constant for a limited |D;|; and
cp,, representing the average risk across VDg, € D, can also be treated as a constant. Hence, the

term that mainly captures the impact of |Ds| on transferability is o /+/|D;s|. According to this, the
lower bound of transferability is positively correlated with the number of accessible models when
|D4| is small, and the rate of increase in transferability decays quickly and saturates as |Ds| grows, a
similar trend as observed in Fig. [5a]in the Appendix. However, with a sufficiently large number of

models, as o/+/|D;| approaches zero, the term A = ZLDO‘ aj becomes dominant. This indicates that
an optimal number of accessible models, |D;|, exists beyond which the lower bound of transferability
first increases positively with |D,| but then decreases once this threshold is exceeded. Nevertheless,

if we redefine transferability simply as: T}.(Ds, V, £, ;) = (f/(m“d“) = 7,) that only focuses on

if the crafted £® exploiting D, successfully decelves the target model V' (without the constraint
of deceiving VDy, € D;), £ can be approximated as independent of |D,|. Under this condition,
transferability exhibits a purely positive correlation with |D,|. We note that theoretical analysis
is meant to offer guidance on how diversity impacts transferability, not a strict implementation
blueprint. In our theoretical analysis, we adopt the L2 norm primarily for its analytical convenience.
The geometry of the L2 ball allows for smoother derivation of bounds, enabling gradient-alignment
and smoothness-based arguments, which are more challenging to formulate under the L, constraint.
Importantly, the two norms are related. For any input of dimension d, an L,-bounded perturbation
also satisfies an L2 bound: ||§]l2 < v/d - ||6||s. This relationship ensures that our theoretical insights
under the L2 setting can be interpreted or extended to the L., regime by substituting the correspond-
ing bound. The detailed proof of theorem|[T]along with upper bound of transferability are deferred to

Appendix [

6 CONCLUSION

In this work, we propose BAT, a generative framework that improves targeted adversarial transferabil-
ity under single-surrogate constraints. BAT guides the generator using core target samples—derived
from natural images, refined, or synthesized from noise—and aligns adversarial examples with these
samples in both output and feature spaces using an ensemble of pruned discriminators. The framework
can also incorporate diverse model architectures when available, further enhancing transferability.
This confidence-aware alignment strategy enables BAT to produce highly transferable adversarial
examples that generalize well across unseen models. Experimental results show consistent gains
under no domain shift (P=Q) and domain shift (P#Q). Complementary theory provides lower/upper
bounds on targeted transferability and explains how the ensemble size trades off with performance.
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Appendix

In this supplementary material, we provide additional details and analyses that support and extend
the main findings of the paper:

* Section[A]describes the step-by-step procedures for (i) crafting high-confidence core target
samples across the discriminator ensemble and (ii) generator training.

¢ Section [Bl reviews additional related works on adversarial attacks and ensemble-based
strategies.

* Section|[C|presents extended experimental results, including evaluations on both standard
and robust models under P=Q and P#Q, along with ablations.

* Section[D]provides a trade-off analysis between transferability and training cost as a function
of discriminator count.

* Section [E]explores the applicability of BAT to vision-language models.

* Section [F] contains formal proofs for the theoretical results, including the transferability
bounds discussed in Section[3l

* Section [G]discusses the limitations of proposed BAT and its broader impacts.
* Section [H]includes visualizations of adversarial examples and perturbations.

* Section [[|provides additional attention heatmaps across models and their pruned variants.
Code for reproducing BAT is included as supplementary material and will be released publicly.

A  ALGORITHMS

In this section, we provide the detailed procedures for (i) generating confident core target samples
across the discriminator ensemble and (ii) training the generator using the proposed BAT objective.

Algorithm 1: Crafted target sample

Inputs: Samples set 7T, discriminators Ds, target class y, iteration number 7T, learning rate c..
Output: More confident target samples set T.
6o=0 T={}
foreach =} € T do
form=0:7.—1do
T =, + O
Loss: Lp, (®i,yt) = >p, ep, CE(Do, (®i),y¢) /» CE: cross—entropy loss x/
, EDs
Obtain the gradient: Vs Lp, (@i, yt)
Update dp: Om+1 = Om — ac * Vs Lp, (@i, y¢)
Clip: 6,n+1 = min(max(x! + 8,,41,0),1) — !

| 7 =TuU{a!}, where &} = z! + or,

Algorithm 2: Training Generator

Inputs: Source dataset S, available surrogate model Dy, , target class y;, iteration number 7.
Output: Trained generator G .
Obtain ensemble of surrogate models D, using Eq.
T™ < Core target samples exploiting Ds.
fork =0:7 —1do
foreach mini-batch {x{}E.,, x5 ~ S do
Sample B target samples: {x!*} 2, x!* ~ T*
Generate adv. examples using Eq. {z2%});, Vai e {x}2,
Calculate loss Lg using Eq. [
Update parameters of Go: ¢ < min Lg
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B RELATED WORK

Untargeted transferable attacks. Untargeted adversarial attacks primarily utilize I-FGSM (Ku;-
rakin et al., |2018)), an iterative method, which iteratively adds perturbations in the direction of the
gradient w.r.t. input to craft adversarial examples. To escape local minima and enhance transferability,
MI-FGSM (Dong et al., 2018) introduces momentum-based optimization. Further improvements
in transferability have been achieved with more advanced momentum-based attacks such as NI-
FGSM (Lin et al., 2019), VMI-FGSM (Wang & Hel 2021)), GRA (Zhu et al.,, |2023) and so on.
Additionally, several works employ input transformation techniques to mitigate the over-fitting prob-
lem on surrogate models. For instance, Diverse input method (DIM) (Xie et al., 2019) randomly
resizes and adds padding to input samples; Time invariant method (TIM) (Dong et al.l 2019) adopts
a Gaussian kernel to smooth the gradient before updating the perturbation; Scale invariant method
(SIM) (Lin et al., 2019) uses multiple scaled versions of the input to calculate the gradient; Ad-
mix (Wang et al.| [2021)) extends SIM by incorporating small portions of images from other categories;
Block shuffle and rotation (BSR) (Wang et al., 2024b) divides the input image into blocks and
calculates the gradient from a set of images obtained by randomly shuffling and rotating these blocks.
Additionally, some works enhance adversarial attacks by augmenting images with multiple trans-
formations predicted by a neural network. Automatic Model Augmentation (AutoMA) (Yuan et al.,
2021)) adopts a Proximal Policy Optimization algorithm to find a strong policy. The Transformation-
enhanced Transfer Attack (ATTA) (Wu et al.,[2021) trains an adversarial transformation network to
capture the most harmful distortions. Learning to Transform (L2T) (Zhu et al., 2024)) identifies the
optimal combination of transformations to increase adversarial transferability.

Targeted transferable attacks. The untargeted attacks can be modified to craft targeted adversarial
examples; however, they show limited transferability. Consequently, a number of recent works are
dedicated to developing new methods to generate targeted adversarial examples. To enhance the
targeted transferability, (Inkawhich et al.| 2019) optimizes the loss in feature space to improve the
feature similarity between source images and target images. Po-Trip (Li et al.| 2020a) introduces
Poincare loss and Triplet loss, with the former designed to alleviate noise curing and the latter to push
the adversarial image from the source class to the target class. Moreover, (Zhao et al.,[2021) identifies
that using simple logit loss, rather than cross-entropy loss, enhances targeted transferability. SU (Wei
et al., [2023)) improves targeted transferability by incorporating feature similarity loss between the
source image and different local region within the source image. Additionally, auxiliary neural
networks are trained to learn the intermediate feature distribution of the target class considering
features from single or multiple layers in (Inkawhich et al.,[2020ajb). SASD-WS (Wu et al.}[2024)
enhances the generalization capability of the surrogate model by fine-tuning it, assuming full access
to the surrogate model’s training dataset.

Generative approaches have demonstrated leading targeted transferability. TTP (Naseer et al., [2021)
trains a generator to craft adversarial examples to align the output distribution of the source and
target domain obtained from the surrogate model. TTAA (Wang et al.,2023)) improves over TTP by
additionally training a feature discriminator to capture and align the feature distribution of the source
and target images, M3D (Zhao et al.| [2023)) trains the generator by leveraging two discriminators,
both derived from a single surrogate model, to simultaneously maximize the discrepancy between
their decision boundaries during generator training to improve transferability to unknown models.
Furthermore, ESMA (Gao et al.,|2024) and CGNC (Fang et al., 2024) train generators to generate
adversarial examples for multiple target classes. However, these methods often exhibit limited
transferability across models. To address this, CGNC enhances transferability by fine-tuning the
pretrained generator specifically for each target class.

Ensemble-based transferable attacks. The transferability of adversarial examples can be enhanced
by leveraging an ensemble of surrogates (Liu et al.,|2016). The iterative attack in (Liu et al.,[2016)
improves transferability by accumulating losses, while (Dong et al.l[2019) incorporates both logits and
losses of the ensemble. (Cai et al.,[2022) further refines this by taking a weighted average of ensemble
losses, where the weights are optimized through queries to the target model. Recognizing the variance
among ensemble models, (Xiong et al.l 2022} proposed a stochastic variance-reduced ensemble
(SVRE) attack for better generalization, whereas (Chen et al.,|2023a) adaptively ensembles model
outputs via the adaptive gradient modulation (AGM) strategy. Additionally, (Chen et al., 2023b)
introduced an iterative attack targeting common weak regions across the ensemble. While surrogate
ensembles significantly boost attack success rates, their effectiveness extends beyond classification
tasks (Chen et al.,2023aj;|Huang et al., 2023). Beyond standard ensembles, self-ensembling strategies
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Table 7: TSR(%) comparison of the proposed BAT variants with the baselines, under P=0, against
the target model VGG19 py with different input processing-based defenses, including a set of image
smoothing techniques (Gaussian, Median, and Average), JPEG compression with different quality
factors (Q=70, Q=80, Q=90), and various data augmentation methods: Resize and Crop (R&C),
Horizontal Flip (HF), and Rotation by 30°. Dy, represents the surrogate model used to train the
generator. The best overall method is highlighted in bold, while the best baseline method is underlined.
Values in parentheses indicate the improvement by BATs in TSR(%) over the best baseline.

| Dy | Attack | Without | Smoothing | JPEG compression | Data Augmentation Methods |
| | | Defense | Gaussian Median Average | Q=70 Q=80 Q=90 | R&C HF Rotate(30") |
ESMA 67.16 48.39 5532 36.41 40.43 48.02 56.42 15.38 33.80 11.77
TTP 71.10 62.86 67.64 53.65 5839 61.58 64.78 16.05 40.02 12.92
o | CGNCpr 81.36 71.59 80.17 69.13 69.24 7321 7724 18.02 42.53 15.48
Z M3D 83.38 67.09 72.58 56.71 62.93 68.71 75.13 17.94 42.55 1131
& BATBS | 89711633 | 7975(s216) 84.16(1300) 7242(1320) | 7848(4020) 81.63(isaz)  8527(1s03) 19130101 4371 1s)  16.86(4138)
BAT-CS | 9397 1050) | 84.98(,730) 87.22(17.05) 7743(1530) | 8400 1076) 86.60 1339 89.71( 1547 2350 545, 52.35(19.50) .53(45.05)
BAT-CN | 92.13(1575) | 83.07(;548) 85.68(4551) 75881675 | 81.04(11180) 84.28(41107) 8784(i1060) 21.37(4335) 52.78(11023) 18.57(13.00)
ESMA 61.23 50.98 59.65 42.40 39.90 45.60 50.95 11.47 30.73 1157
TTP 62.57 53.69 57.59 4873 50.00 52.55 55.75 11.71 3344 11.74
= | CGNCey 81.54 7127 75.56 65.08 67.67 7028 75.63 17.44 4478 14.68
2 M3D 79.24 63.14 70.71 54.40 57.66 6333 70.03 1624 41.66 1133
O BATBS | 82.66(1112) | 7296(:160) 76.33(077) 67531245 | 68.93(4126) 71531125  76.0110as) 1745001 46631155  14.680.00)
BAT-CS | 89.62(ys50s) | 82.15(110.55) 84.74(1o18) 76.96( 1155) | 80.69 1302 8270 1245) 85491955) 25.68(1524) 487204304 199801530
BAT-CN | 8845(691) | 79.87(48.60) 8247(+6.91) 74.63(40.55) | 7891(r1120) 81.23(410.05) 844601883 22.57(4513) 46.84(41206) 18.73(4a.05)

Table 8: TSR(%) comparison of the proposed BAT variants with the SOTA generative methods,
under P=0Q, considering DenseNet121 as surrogate model, against classifiers with robust training
mechanism on ImageNet.

| Surrogate | € | Attack | Inc-v3,q, IR-v2,, RN5Ogpy RN50;y RN50g,e RN50a |

ESMA | 130 138 1837 5819 6150 47.76
TTP 469 598 1385 5305 5664 49.92

s | _M3D 537 680 3828 7773 8302 7141

35 | CGNCrp | 733 868 1895 7362 7977 6375

BAT-BS | 747 1144 3803 81.52 8170 7372

BAT-CS | 996 1388 44.66 8541 84.15 8052

DNI21 BAT-CN | 728 1369 4180 86.88 85.53 81.25
ESMA | 1285 1941 3158 6935 7219 6134

L, | TIP 1959 2371 2505 5922 5792 5149

2| M3D | 2746 3513 5413 8426 8419 81.60
CGNCyr | 2869 38118 4268 8582 8395 8329

BAT-BS | 3027 4349 5066 8530 8269 7673

BAT-CS | 36.84 50.08 5848 8982 8673 84.14

BAT-CN | 2942 5162 5777 90.15 8488  85.01

such as dropout and skip connections have been explored in (Li et al.l [2020b). Furthermore, the
generative attack TTP (Naseer et al., 2021)) demonstrates that replacing a single surrogate with an
ensemble can substantially improve attack performance.

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present a comprehensive set of additional experiments to further analyze and
validate the effectiveness of BAT. We evaluate the robustness of BAT variants against various input-
processing defenses and adversarially trained target models, using both ResNet50 and DenseNet121 as
surrogates. We also investigate the impact of reduced perturbation budgets on targeted transferability.

Beyond robustness, we showcase BAT’s ability to generate highly confident adversarial examples,
thereby improving transferability. We further analyze the stability of BAT under different pruned
ensembles and explore the effect of key design choices, including the pruning ratio, the number of
core target samples used during training, the number of discriminators (|D;|), and the parameter .
These analyses offer deeper insights into the generalization, scalability, and robustness of the BAT
framework across varying conditions.

Robustness against input-processing defense. We evaluate the performance of the proposed BAT
variants against a target model employing various input-processing-based defenses. These defenses
include smoothing techniques (Ding et al.l [2019) such as Gaussian, Median, and Average filters;
the JPEG compression (Dziugaite et al., 2016) algorithm; and several data augmentation techniques.
For JPEG compression, we explore different quality factors (Q = 70, 80, and 90), where a higher Q
value corresponds to less compression. The data augmentation techniques include Resize and Crop
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Table 9: Average prediction probability of the target class for the generated adversarial examples
from 2,000 ImageNet validation images across various target classifiers under P=0. ‘*’ indicates
the performance on the white-box surrogate model (Dyg,). The BAT variants, specifically BAT-CS
and BAT-CN, generate more confident adversarial examples by learning to generate samples targeting
the high-confidence region across discriminators. For each target model, the best overall method is
highlighted in bold, while the best baseline method is underlined. Values in parentheses indicate the
improvement in prediction probability over the best baseline.

| Dy, | Attack | RN18 RN50 RNI101 DNI21 DNI161 VGGl6gy VGG19py MN-V2 VIT-B | Average |

ESMA | 0459 0.884*  0.595 0.541 0.560 0.611 0.583 0.419  0.150 0.533

TTP 0.580 0.795*%  0.660 0.557 0.577 0.620 0.523 0.443  0.149 0.545

S CGNC | 0.667 0.901*  0.779 0.725 0.767 0.697 0.639 0513 0.179 0.652

2 | CGNCer | 0769  0.930%  0.863 0.817 0.802 0.793 0.747 0.630  0.243 0.733

R~ M3D 0.728  0.899*  0.797 0.770 0.791 0.703 0.696 0.657  0.346 0.710
BAT-BS | 0.794 0.934*  0.846 0.792 0.811 0.819 0.778 0.673  0.283  0.748(40.015)
BAT-CS | 0.859 0.962*  0.897 0.856 0.854 0.867 0.867 0.742  0.335  0.804(,¢.072)
BAT-CN | 0.840 0.961*  0.888 0.853 0.847 0.853 0.844 0.723 0319 0.792(10.059)

ESMA | 0506 0.566 0477  0.883*  0.689 0.557 0.502 0362  0.135 0.520

TTP 0488 0486 0495  0.790*  0.533 0.499 0.459 0.353  0.149 0.472

b CGNC | 0.601 0.632  0.561  0.953*  0.749 0.608 0.601 0.421 0.165 0.588

= CGNCgr | 0724  0.743  0.722  0.954*  0.775 0.727 0.728 0.565  0.230 0.685

a M3D 0.694 0.729  0.704  0.923*  0.803 0.673 0.666 0.603  0.319 0.679
BAT-BS | 0.740 0.735 0.729  0.948*  0.798 0.745 0.736 0.593 0270  0.699(40.014)
BAT-CS | 0.840 0.843 0.830 0971* 0.847 0.814 0.797 0.682  0.312  0.771(40.085)
BAT-CN | 0.829 0834 0.821 0.973* 0.874 0.814 0.783 0.648  0.312  0.765(40.080)

(R&C), which resizes each input image from 3 x 224 x 224 to 3 x 256 x 256, then crops it back to
3 X 224 x 224, Horizontal Flip (HF), and a 30° rotation of the input images to the target model.

To assess performance, we generate adversarial examples form the trained generators under P=0
using 2,000 randomly selected ImageNet validation images. We then compare the transferability of the
generated adversarial examples—generated by the proposed BAT variants and baseline methods—to
the unknown target model VGG19 gz, employing aforementioned defenses. As shown in Tab. [/} all
attacks exhibit a reduced transfer success rate (TSR) when input-processing defenses are applied to
VGG19p N, compared to the scenario without such defenses. This decrease in TSR can be attributed
to the information loss caused by the defenses. Among the input-processing defenses, R&C and
rotation are particularly effective, as they remove more information from the input, which can also
result in a loss of normal accuracy. Despite these challenges, our proposed BAT variants, specifically
BAT-CS and BAT-CN, outperform all baselines by a significant margin.

Performance against robust models. In the main text in Tab. 4] we compare TSR of the generative
methods, considering ResNet50 as the surrogate model, against six robust-trained models. Here, we
extend the evaluation by analyzing the TSR of the generators trained with different methods consider-
ing DenseNet121 (DN121) as the model accessible to the adversary. The results are demonstrated in
Tab.[8] From these results, a similar trend has been observed, and our proposed BAT variants continue
to demonstrate better performance over baseline attacks.

Confidence of adversarial examples. We examine the prediction probability for the target class
of the generated adversarial examples from 2,000 ImageNet validation images across the surrogate
model and various unknown target models. As shown in Tab. 9] adversarial examples generated
by the proposed BAT variants achieve significantly higher average confidence on the target class
across various target models compared to baseline methods. Specifically, as BAT-CS and BAT-CN
train generators to minimize the distribution distance between the generated adversarial examples
and the core target samples across discriminators (discussed in Section [3.2), the generators are
capable of generating adversarial examples that are more confidently classified towards the target
class. Hence, the generated adversarial examples using the proposed BAT variants demonstrate higher
transferability to the unknown target models.

More analysis under domain shift. In Tab.[2](main text), we report results for the P#£Q setting
where the generator is trained on Painting (P) while both the accessible surrogate and the target
models are trained on ImageNet-1K (Q); evaluation there uses Painting test images.
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Table 10: TSR(%) of various attacks on different target classifiers under P#Q where source images
for training the generators are sampled from the Painting dataset, and target models are pretrained
on ImageNet-1K. The BAT variants, specifically BAT-BS and BAT-CS outperform the baselines
applicable for domain shift by a notable margin, as evaluated on the 5,000 images from the ImageNet
validation set. This demonstrates that, despite being trained on the Painting dataset, the generator
can effectively craft adversarial examples of the images in the domain of target class training dataset.
“** denotes the performance on the white-box surrogate model (Dy,). For each target model, the
best overall method is highlighted in bold, while the best baseline method is underlined. Values in
parentheses indicate the improvement in TSR(%) over the best baseline.

| Dy, | Attack | RN18 RN50 RNIOl DNI21 DNI61 VGGl6gy VGGI9py MN-V2 VIiT-B | Avg. |

TTP 6227 87.88* 6291 68.21 63.09 65.97 57.39 47.26 16.02 59.00

CGNC | 79.29 96.30*  85.30 83.63 84.74 81.20 75.62 65.50  24.80 75.15

@ | CGNCpr | 86.70 97.82%  91.85 90.56 90.83 88.31 84.31 7644  35.32 82.46
é BAT-BS | 87.53 98.10¥ 91.81 91.15 89.70 88.44 85.74 76.50  39.01 | 83.11(40.65)
BAT-CS | 89.64 98.27* 91.85 93.32 91.96 90.93 89.58 83.07 43.37 | 85.78,3.37)
BAT-CN | 90.69 98.17* 91.43 93.00 90.91 91.05 89.92 80.92 42.8 | 85.43(42.97)

TTP 51.98 51.67 4784  89.83*  63.15 53.38 45.99 39.10 12.24 50.58

_ CGNC | 66.21 7829  67.08 91.82*  71.53 64.32 62.03 48.78  20.94 63.44

o | CGNCpr | 85.02  85.19 80.28  98.73*  91.49 84.72 81.48 70.14  34.66 79.08
E BAT-BS | 87.29 8454 8229 98.34* 8747 82.04 80.91 73.99  40.52 | 79.82(,0.74)
BAT-CS | 88.57 88.81 8546  98.73*  92.06 88.24 87.19 7434 4541 | 83.20(,4.12)
BAT-CN | 88.80  89.03 84.80 98.61*  92.09 87.33 85.88 7445 4434 | 82.81(, 373

Table 11: TSR(%) of various attacks on different target classifiers under P=Q for varying perturbation
budgets € with ResNet50 as surrogate.

| e | Atack | RNI§ RN50 RNI01 DNI21 DNI61 VGGl6égn VGGI9sny MN-V2  ViT-B | Average |

TTP 6592  91.65  69.95 71.12 63.38 66.7 66.48 52.77 12.31 62.25
12 M3D 7649 9198  79.72 73.37 73.41 79.15 76.61 70.69 30.96 72.49
255 | CGNCgr | 67.01 9119 7637 72.09 72.19 75.36 70.28 59.89 27.33 67.97
BAT-BS | 84.06 96.82 87.22 87.88 84.62 86.71 84.94 73.47 25.18 78.99
BAT-CS | 88.18 97.67 91.25 90.23 89.42 89.81 88.71 79.08 31.13 82.83
BAT-CN | 87.64 97.58  90.45 89.25 87.97 89.48 87.99 78.18 28.38 81.88
TTP 3043 69.92 36.36 43.4 37.48 33.89 37.52 20.85 2.68 34.73
s M3D 3724 683 42.32 40.36 39.28 41.21 38.24 33.09 7.06 38.57
255 | CGNCer | 17.83 4739 21.93 23.55 26.47 29.18 26.38 12.27 2.90 23.10
BAT-BS | 53.95 85.6 59.29 62.55 58.83 57.9 59.08 38.68 6.27 53.57
BAT-CS | 58.34 88.23  65.46 66.7 64.44 62.97 63.93 44.88 7.37 58.04
BAT-CN | 58.87 88.09  63.79 65.34 63.58 62.59 63.12 43.93 6.79 57.34

Here, we extend this analysis by keeping the same generators trained on Painting (P) but evaluating
on ImageNet-1K validation images (5,000 from Q). Tab. @] compares BAT variants with baselines
under this protocol.

The results show that BAT remains competitive under this shift of evaluation seeds from P — Q:
targeted success rates decrease only modestly relative to the Painting-seed evaluation, yet BAT-
CS and BAT-CN continue to rank among the top performers. This indicates that BAT-trained
generators—guided by the frozen, Q-trained discriminator ensemble—generalize beyond the source
training domain, producing adversarial examples that transfer to images drawn from the models’
training domain Q.

Impact of reduced perturbation budget. While the default perturbation budget is set to € =
16/255 to evaluate the performance of BAT variants, we further examine the effect of lower budgets,
considering € = 12/255 and e = 8/255. Using ResNet50 as the surrogate model, we observe from
Tab.[T]and Tab. [ T]that TSR declines as the perturbation budget decreases. However, BAT methods
consistently achieve significantly higher TSR than the generative baselines, even under reduced
perturbation, demonstrating their strong generalization capability.

Stability of BAT concerning random pruning. We evaluate the stability of the proposed BAT
method, which exploits an ensemble of discriminators derived by random pruning the weights
of an accessible model, to train generators for highly transferable adversarial examples. For this
analysis, we used the BAT-BS variant. In addition to the original results shown in Tab. [T| we conduct
experiments in the no domain shift setting using four additional sets of ensemble models resulting
from independent random pruning, with ResNet50 as the surrogate model, to further verify the
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Table 12: TSR (%) of the proposed BAT-BS method across various target classifiers using five
distinct sets of pruned ensembles, each consisting of five discriminators derived from the surrogate
model ResNet50. The average performance and standard error (Avg. + SE) exhibit small variation,
demonstrating the stability of the BAT-BS method across different sets of discriminator ensembles.

| Atack | RNI8 RN50 RN101 DNI21 DNI6l  VGGl6py  VGGI9sy  MN-V2 VILB | Avg |
Set-1 89.61 98.08* 92.76 9223 89.73 92.64 89.67 81.76 4267 85.46
Set-2 9234 98.60% 95.69 93.63 9333 9256 88.95 90.78 38.51 87.15
Set-3 86.80 98.72% 94.88 93.88 91.49 9113 87.56 88.89 39.79 85.90
Set-4 88.02 98.49% 9435 93.08 91.55 88.24 88.95 88.83 4157 85.90
Set-5 90.70 98.63* 95.37 93.92 9295 9238 9031 90.22 4052 87.22

\ |

Avg. +SE | 89.49+0.97 9850+0.11 94.61+0.52 9335+0.32 91.81+0.64 9139+0.83 89.09+046 88.10+1.63 40.61+0.72 | 86.33+0.36

Table 13: TSR variation with varying p,. using BAT-BS method leveraging ResNet50 as a surrogate.

| pr 001 002 005 0.1 |
| TSR(%) 83.06 8546 78.59 72.62 |

stability of our approach. As shown in Tab.[I2] the results across different ensemble sets are highly
consistent, indicating that BAT, which leverages pruned model ensembles, reliably trains generators
capable of creating highly transferable adversarial examples. This consistency indicates that BAT is
robust to the variability introduced by random pruning.

Choice of pruning parameters. Our design aims to preserve the accuracy of pruned models while
ensuring diverse decision boundaries. We use L;-norm pruning (p; = 0.6) to obtain a single variant
and obtain the remaining variants through random pruning (p,, = 0.02), resulting an accuracy drop of
~7%, yet the models exhibit distinct attention maps, indicating varied behavior (see Section [H). This
simple self-ensembling strategy is effective given limited model access. The pruning parameters are
chosen to balance accuracy and diversity—higher p; degrades accuracy, while lower values reduce
diversity. Empirically, p,, = 0.02 yields the highest TSR for BAT-BS (Tab. [I3)). Furthermore, using
only random pruning for self-ensembling results in ~1% lower TSR compared to the ensemble
incorporating the L;-pruned discriminator, highlighting the complementary role of L; pruning in
enhancing decision boundary diversity.

Impact of target sample’s size. We inves-
tigate the effect of the number of target sam-
ples used to train the generator by the BAT-BS

90.0

87.5 1

— 85.46

method on the TSR. For this analysis, we con- R 85.01 84I-i2 ii 84l-i4 83147

sider the no domain shift scenario and employ & 825 T ii

ResNet50 as a surrogate model, pretrained on 'G‘J 80.0 4 79.68

the ImageNet dataset. To train the generator for 27751 II II II II

a specific target class, we begin by sorting ap- o 7504 II II II II II 7385
proximately 1,300 target samples based on their <™ II II II II II II
average confidence scores across the discrimi- 7251 II II II II II II
nators. Starting with the top 100 most confident 70.0 -

100 300 500 700 1000 1300

samples, we gradually increase the number of Target samples number

samples to assess the TSR at different levels.

As shown in Fig. 4] we obtain maximum TSR at  Figure 4: TSR(%) variation, under P=Q, of the
around 85.5% using 300 target samples. How- adversarial examples generated from the trained
ever, as the number of target samples increases generator using the BAT-BS method with different
beyond 300, the TSR gradually declines. Based number of target samples to guide the generator
on these observations, we select 300 target sam- training, leveraging ResNet50 as a surrogate.

ples for training all proposed BAT variants in

our experiments to ensure better performance.
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Impact of |D,| and ). Fig.

demonstrates the impact of the num- £ §89 A

ber of discriminators | Dy| on TSR. As & o 5"8I7I2/ | 2 o x/x —
shown, the TSR increases with |D;| % ii Hun agf’ e

and quickly begins to saturate as [Dg| £ ®2°sras 2874

increases. However, this improvement R e 0 1 2 3 4
comes at the cost of increased training Number of discriminators A

time. Thus, a tradeoff exists between (a) b

o a (b)
TSR and training time. For a compre- Figure 5: (a) TSR of BAT-CS for different numbers of dis-

hensive analysis of this trade-off, in-  criminators, (b) TSR of BAT-CS for different values of \.
cluding a comparison of training times

across all methods, please refer to Sec-

tion [D} Moreover, we investigate the impact of A in Eq.[9)on TSR. From Fig.[5b] the inclusion of
cosine similarity between the adversarial and core target samples in the feature space in the loss
function enhances TSR than that without (A = 0). The maximum TSR is obtained when A = 1.5.
We use ResNet50 as the surrogate to depict these figures.

D TRAINING TIME AND TRADEOFF ANALYSIS

In this section, we examine the time required to train the generator using our proposed BAT method,
which utilizes multiple discriminators (five in the default setting). We also analyze the tradeoff
between the TSR and training time complexity.

In a single iteration, let the time com-
plexity of a single discriminator and
the generator be O(Dy) and O(Gg),
respectively. If v is the total num-
ber of iterations per epoch and T de-
notes the number of epochs for gen-
erator training, the total complexity
for the BAT method with a single dis-
criminator is O(vT(Gy + Dyg)) =
vTO(Gg) + vT'O(Dg). BAT uses (@) (b)
an ensemble of discriminators derived
from a single surrogate model, so all
discriminators have the same archi-
tecture and time complexity. Thus,
with K = |D,| discriminators, the to-
tal complexity becomes O(vT(Go +
KDg)) = ’UTO(Q@) + UTKO(D(;).
This linear increase in training time with the number of discriminators suggests higher computational
costs with added discriminators. Empirically, we measure the training time per target class for BAT-
BS (a BAT variant). Fig. [6a]illustrates that the training time per target class increases approximately
linearly with the number of discriminators, ranging from 3.61 hours with one discriminator to 7.81
hours with five discriminators. This trend indicates that adding more discriminators incurs higher
computational costs. The training time of the other variants of BAT would be quite similar as crafting
300 core target samples for BAT-CS/CN with 25 PGD steps takes ~2 minutes, negligible compared
to the generator’s training time (~8hrs).

-
N

12783
ii

9.17

—
)

ii H =
I EE RN
T HEEN

Training time in hours
Training time in hours

o N & o ®

TTP M3D CGNC BAT-BS BAT-CSBAT-CN
Number of discriminators Attack methods

Figure 6: (a) Training time per target class (in hours) required
to train a generator for proposed BAT-BS with varying num-
ber of discriminators; (b) Training time per target class (in
hours) required to train a generator for different generative
methods.

Fig. 5a in the main text and Theorem [1|illustrate that the TSR is positively correlated with |Ds].
However, as discussed, higher | D;| increases training complexity. Hence, there is a tradeoff between
TSR and training time. Nevertheless, according to Fig. 5a and Theorem|[I] the TSR improvement rate
decreases and eventually saturates as |Ds| grows. This suggests that, beyond a certain point, adding
discriminators yields marginal gains in transferability while continuing to increase training time.

Additionally, in Fig.[6b] we compare the training time per target class across different methods. All
the experiments are conducted on four NVIDIA Quadro RTX 6000, each with 24 GB of memory. The
TTP method, which uses only one discriminator, requires the least amount of time (3.60 hours). M3D,
despite using two discriminators, takes 9.17 hours, which is more than the time incurred by BAT-BS
with five discriminators (7.81 hours). This is because M3D focuses on maximizing the discrepancy
between discriminators during the generator’s training process, increasing the time requirement. Both
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Figure 7: Attack on image-to-caption generator Vision-Language Pre-training BLIP 2022).
The adversarial images of the target class “Vulture” and “Crayfish” are generated from the source
images using a generator trained with the proposed BAT-CS method exploiting ResNet50 as a
surrogate. The generated adversarial examples are capable of successfully fooling BLIP as the
generated captions are related to target classes.

BAT-CS and BAT-CN take a few additional minutes to craft adversarial examples as compared to
BAT-BS.

CGNC, despite utilizing only one discriminator, requires 12.83 hours per class. This high training
time is due to CGNC’s use of a much larger ImageNet training set (around 1.3 million images over 10
epochs) compared to the 50,000-image subset used by TTP, M3D, and BAT-BS (which are trained over
20 epochs). Furthermore, CGNC'’s generator architecture is more complex, comprising components
like a Vision-Language Feature Purifier, a Feature Fusion Encoder, and a Cross-Attention-based
Decoder, whereas TTP, M3D, and BAT-BS use simpler architectures with down-sampling, residual,
and up-sampling blocks. The added complexity of CGNC’s architecture further contributes to its
longer training time.

E ATTACK ON BLIP

We conduct attacks on the Vision-Language Pretraining BLIP model, which generates
image captions, to demonstrate the effectiveness of our method in targeting Vision-Language models.
Using BAT-CS, we created adversarial examples from a number of images and compared the captions
generated by BLIP for these adversarial images with those generated for the original images.

Fig.[7|showcases the captions produced by BLIP for adversarial examples, where the target classes
are set as “vulture” and “crayfish”. When the target class is “vulture,” the generated captions
predominantly refer to birds, while for “crayfish,” the captions often describe crabs. These results
indicate the potential of our approach to craft adversarial examples capable of misleading Vision-
Language models, underscoring its broader applicability.
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F PROOF OF THEOREMS

Definition 1. ((a;, Dy, )-Effective Attack). For any input x with ground truth label y and target
label y;, an attack is (oj, Do, )-effective, if the crafted adversarial example 2% = g + § satisfies
Pr(f)gj () = y;) > 1 — ay, where 1593. is the top-1 predicted label by the model Dy,.

Here, the (o, Dy, )-Effective Attack captures the effectiveness of crafted adversarial examples to
fool the model Dy, with a certain probability (1 — «;). Note that a smaller a; means the attack can
better mislead Dy, . If Dy, is among the accessible models used to train the generator to generate
adversarial examples, o; should be close to zero.

Definition 2. (Transferability) Given a set of accessible models Dy = { Dy, }]K:_Ol

victim model V, the transferability of a generated adversarial example ¥ = x + 8, exploiting
D, to the target victim model V is defined as: T,(Ds, V, 2%, y;) = 1 ((/\Dej ep. (Do, (x2dv) =
ye)) A (V(x) = y,)), where 1(.) denotes the indicator function and the operator A is a logical-

and. Besides, Tr(.) = 1 indicates that along with the accessible models in Dy, the crafted 2
successfully deceives the target model V.

and an unknown

In this definition of transferability, we are not concerned with whether the source image « is correctly
classified by the accessible model Dy, € D; or by the target model V' since & can be sampled from a
different domain than the domain of the samples used to train the accessible models and the victim
model, e.g., the domain shift scenario.

F.1 PROOF OF LOWER-BOUND OF TRANSFERABILITY

Lemma 1. Let the vectors x,y,d € R where ||z||2 = ||y|l2 = 1 and ||8||2 < €. For a real number
¢ ifd-y>c+e/2—2m, thend - & > ¢, where m = cos(x,y) = m

Proof. From Cauchy-Schwarz inequality, [0 - (x — y)| < |dfl2lz — ylz <
¢ Vlzllz + [lyll2 — 2 cos (z,y).

Thus,d -z =6 - y+6-(x—y) > -y—evV2-2m>c. O

Lemma 2. For arbitrary events A and B, we have Pr(AN B) > 1 — Pr(A) — Pr(B), where Pr
denotes the probability of an event.

Proof. Forevents A and B, we have Pr(AUB)+Pr(AU B) = 1. AsPr(4) +Pr(B) > Pr(AUB)
and Pr(AU B) = Pr(AN B), we have Pr(AN B) > 1 — Pr(A) — Pr(B). Therefor, Pr(AN B) >

1 —-Pr(A) — Pr(B). O

Lemma 3. For two random variable a A and B, and constants a and b, we have: Pr((A > a)U(B >
b)) >Pr(A+ B>a+b).

Proof. Consider the event {A + B > a + b}. If A+ B > a + b, then it must be true that at lest
one of A > a or B > b must hold. This implies: {A+ B > a+b} C {4 > a}U{B > b}. Using
the fact that the probability of a set is at least as large as the probability of any subset, we have:
Pr((A>a)U(B>b))>Pr(A4+ B >a+b). O

Lemma 4. Given a random variable z and an arbitrary vector b such that z,b € R,
the cosine similarity between z and b can be lower bounded by:

zll2 < B,

[ll2 — E[l|z — b]2]
E[cos(z,b)] > B .
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Proof.
z-b (b+z-b)-b
cos(z,b) = >
A TR T T
b3+ (==b)-b
Bl[bl|2
> 6112 = [z = bll2[bll2
B||bl|2
_ l[bll2 = [Iz—bll
— g
Thus,

Ibll2 — E[||z — bll2]
E[cos(z,b)] > B .

O

Theorem 1. Consider;, 3V € D, a virtual victim model, such that Vzly(x,y;) =
Ep,,~p [mepgi (z, yt)] Additionally, assume that the similarity of the gradient of YDy, € D
with the gradient of V is captured by ED%ND[HVJD% (z,y:) — wa‘-/(sc,yt)ng} < o2, and
IValp,, (x,yt)ll2 < B. Assume the loss function of a set of randomly picked accessible models
Dy, € Ds C D and the target model V are B-smooth, and VDy, € D; are (ozj7D9j)—eﬂective
on the generated samples with a perturbation constraint ||6|2 < €. Under these conditions, the
transferability can be lower bounded by:

_ "1+ A 1-A
Pr(TT(Dmvaxadvayt) = 1) Z 1- A_€ ( + ) +CDS( )

Cy + €
Vol (x, - =
. \/2(1 Tk o,
Cy +¢€ B 7
where A = Zﬁg' aj,
(minye[L]_{yt} ﬁ ZDQEfDS Eng (:l:ad”7y) . ﬁ ZDQ.EDS eng (5157%) + §6/2>
Cp, 1= max = ] 7
rEX ||W ZDejEDs vzeDe_7 (mayt)HQ
. MiNger)—{y,} Cy (2% y) — by (e, y:) — §6/2
€y = min
reEX Hvace\_/(wayt)HQ

Here cp, is the average risk of the models in Dy and c, is the risk of the virtual victim model V.

Proof. This proof builds upon the derivation in (Yang et al.}[2021) with a primary focus on demon-
strating the impact of an ensemble of accessible models on adversarial transferability. According to
the definition of transferability, for a given input z, the generated adversarial example %%’ = x + §
must be misclassified as the target class y; by both surrogate models Dy, € D; and the target model
V. Hence, we have

Dy. €Dy
(@) o L G L
>1— Y Pr(Do, (") #ye) = Pr(V(@*®) #ye) 21— Y aj = Pr(V(@*®) £ ),
Dy, €D, i=0

where inequality (a) follows Lemma[2]and the (b) is obtained by utilizing Definition
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For a given input %, a model Dy, will predict the label for which the loss £ Dy, is minimum.

Thus, 159 (22 £y & €D9 (229 ;) > min,ec éDej (229 y). Similarly, V (2%?) # y, <

Oy (29 yy) > mingec by (z ad”, y), where C = [L] — {y:} is the set of all classes except the target
one.

As the loss function /¢ Dy, ,VDy, € D; are 3-smooth, we have:

[€p,, (&%, 1) — £py (@, 1) — (8, Valp, (2,:)] < *||5||2 66’27 VDy, € D, (12)

:>€D9j (%, yt) + 6 : Va:EDej (587 yt) - §€/2 S ZDej (Scadv7 yt) S éDsj (wa yt) + 6 : Vngej (l’, yt) =+ §€

13)

where %% =  + § and ||6||2 < €. Similarly, for the victim model V, we have
EV(xvyt) +6- V:EEV(wa yt) - 26/2 < EV(madvayt) < Zf/(mayt) +4- vmg\?'(wvyt) + 26/2'

Now,
Z Pr (DOj (madv) 75 yt) — Z Pr (fDej (xad”7 yt) > miggDej (madv, y))
Dy, €D, Dy, €. ve

(@
zPr( U (EDej(w“d”,yt)>§1§1€ié1€D9,(x“d”,y)))

J
Do, €Dss

(®)
> Pl" Z EDQ adv7 t) Z gneingsj ((Badv,y))

Dy, €D, Dy, €D,
Z EDQJ. adv? yt) > min Z ng adv? y))
Dy, €D, vee Dy, €D,

(;)Pr( ! Z (Up, (,y1)+6-Valp, (x )—ﬁ %) > min —— Z 1 adv ))
et |D5| ng s Yt x ng s Yt 2 yEC |D ‘ De » Y

Dy, €D, Dy, €D,

I Valp, (2, yt)

;] 24Dy, €D, Y&tDo \T> Yt

= pr (5. e ' > f(@)) (14)

I8 20, e, Valon, (@02

where the inequality (a) due to the fact that P(A) + P(B) > P(A U B), (b) and (c) is obtained
using Lemma [3]and Eq.[13] Moreover, f(x) is defined as follows:

(minyec ﬁ ZDej e, (Ds, (", y) — ﬁ ZDej ep, {Do, (2, y¢) + §6/2)
Ilﬁ ZDGAGD ngDs. (iB, yt)”Q

From Deﬁnition we have ) Dy e, T (ﬁg (x22v) £y, ) < § D a . Thus, utilizing Eq. lwe
ki s
have,

flx) =

|D \ ZDG €D, Vv gDe (x, Y1)
I Sy, e, Vealon, (@ 90l

Pr (5- f(w)) <A, (15)

where A := ZLD OI Q.
Similarly,
Pr (V@) # ) = Pr (¢y (@, yy) > min £y (2", y)
Yy
(@)

< Pr (b () + 8- Valo @) + D¢ > min by (2% )
Y

ng\?(w,yt)
=Pr 0 S 16
“( Vel @yl o(x)). (16)
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where inequality (a) is obtained from Eq. |13} and
minyec by (2", y) — by (@, 41) — §€°
IValy (@, yt)ll2

g(x) =

1
™7 Zpej eDs meoej (,y¢)

Thus, according to Lemmaand having ||6]]2 < €, 6 - T

[Ds] ZDGJ, €Ds Vm[Dg]. (xye) 2

VwKV(zayt) / ¥
0 —————=— > f(x)+€4/2—-25(Ds, V),
[Valy (@, y)l2 @) ( )

ﬁ ZDB €Dy va:éDej (,y¢)
J

> f(x) if

where S(DS,V) measures the cosine similarity between == o an d
[Ds| DejEDS olpy (@1
Valy (2,y1)
M%. Thus, we get
Valy (@, yt) .
Pr (6 = s f(x) + €y /2 — QS(DS,V)>
||vm€\7(w7yt)”2
Dy D VatDy (T, Yt
SPI‘ ((5 |D| 9;6 0j > f(w)) S A7 (17)

by Loy, ep Valny, (@ 50)ll2
where the last inequality using Eq.[T3] Given,
(minyGC \Dilq Zng €D, gDej (wadvv y)
_ - ﬁ Zng €D, éDsj (@, y:) + gelz)
¢p, = max 2 ZD% ep, Valn, (@91l

Since cp, > f(z), EQ.[I7]can be expressed as,
vm‘€\7(wvyt) ! %
pr(5. =2V EY) o gD, V) s ep ) < A
O et ®u7) > e0.)

Now, the maximum value of ¢ - % —€'\/2 —25(D,, V) is €. Therefore, the expectation
can be bounded:

VJV (213’ yt)

El§ ———72— —
{ vagv(%yth

¢\/2 - 28(D,, V)] <€A+ ep,(1— A)
Hence,

Vel (x,y;) 7
E|§ =220 | <E|e'y/2—25(Ds, V)| +A+cp,(1-A
3 et Bl (V)] + 4t e, (1= 4)

< &\/22E[S(D., V)] + €A+ ep,(1-A)

Moreover, given

. minyec gv(wadv, y) _ ‘6‘7 (213, yt) — §€/2
Cy = min
xeX ||Vw‘€\7(wayt)”2
Since ¢, < g(z), applying Markov’s inequality, we get
Vm£7 (CB yt)
Pr(s. =V Jt) g(x
C Rty il ~ )
V:JV(%%)
<Pr{(d i > G
C Fatv ol ~ )
e’\/Q —2E[S(D,, V)] + €A+ cp, (1 — A)
<
Cy
1+ A)+ ep, (1~ A) + ¢\ /3 PE[S(D, V)
. - . (18)
v+ €
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Given

Epy,~0 [[Valb,, (,91) — Valy (@, y)[3] < 0.
Since Ep, ~p [vnggi (z,y:)] = Valy (z,y,), we have,
o2

IDs|”

E[HWIS'DZ Valy (@11 ~Vatp (] < (19

0;€Ds

Given ||Valp,, (2,y:)ll2 < B, VDy, € D. Thus, we have || ;5 ZngeDS Valp,, (z,y)ll2 < B.

Therefore, using Lemmaﬂ we have the cosine similarity between ID—l‘ YDy ep, Val D, (z,y:) and
s J s

Valy (113, yt):

IVl (2, y:)ll2 — \/ﬁ

S(Ds, V) > e 20)
Combining Eq.[TT] Eq.[T6] Eq.[I8]and Eq.[20} we have the desired upper bound:
PH(T.(D,, V20, ) = 1) 21— A=Y A)cv—l_JcmS(l )
e % (- [Valo (@ ulz - w%s)_ .
Cy + € B
O

F.2 PROOF OF UPPER-BOUND OF TRANSFERABILITY

Lemma 5. Suppose two unit vectors x and y satisfy x -y = S, then for any 8, we have min(§ -

x,0-y) < |d]24/(1+95)/2.

Proof. Denote « is the angle between & and y and then S = cos(z, y) = cos . If a,, vy, are the
angles between d and x and between ¢ and y, respectively, then we have max(a,,ay) > § =

2
cos™l S

2. Since cos /2 = /£, we have min(d - &, 6 - y) < [|6]|2/(1 + 5)/2. O

Lemma 6. For a set of N random variables {x;}\_| with a same mean b = E[z;], Vi € [N, if

2
Y= Zfil x;, C < ||z;|| < Band \*> < E[||z; — b||?], we have E | cos(y, b)] < %

Proof. Given
A < E[|le; — b|?].

Ify = Zi\il x;, then, /\Wz < E[|ly — b||?]. Therefore,

)\2
Efllyll* + [1b]* = 2llll[[b] cos(y, b)] > T
)\2
— B + [[b]]* = 2C[b||E[cos(y, b)] > T (22)
Hence,
B2+ |b]? - &
Elcos(y, b)] < —— =
2C]|b]]
O
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Theorem 2. Consider, 3V € D, a virtual victim model, such that Vgly(z,y) =
Epy, ~p [mepsi (x, y)] Additionally, assume that the similarity of the gradient of VDy, € D
with the gradient of V is captured by \*> < EDeiND[HVwZDBi (z,y:) — Valy(x,y.)|3], and
C < ||Valp, (z,y1)|2 < B. Assume the loss function of a set of accessible models Dy, € Dy C D

and the target model V are B-smooth, and the accessible models Dy, € D are (o, Dy, )-effective
on the generated samples with a perturbation constraint |||z < €. Under these conditions, the
transferability can be upper bounded by:

Pr(T,(D,, V2", ) = 1) S s £+ ¢By HEEPE)
Ly ss V, T s Yt) =

< + )
B S0, co, ooy @) — @B 2 Ly (@,y) — /B = Be?

A

where ¢ = ]EDGiND[ZDQi(cc,y)], S(Ds,V) is the cosine similarity between
A S Vatp, (x.y) and Vaty (z,y), and

2
B2 4 ||V ly (z,9)[* - \%5|

E[S(D,, V)] <
15¢ 20 Valr (@, 9]

‘ngll vwéDej (:13, y) and

Valy(z,y). E[S(Ds, V)] is positively correlated with |Ds|. This implies the upper bound of
the transferability is also positively correlated with | D;|.

Here E[S(Ds,V)] captures the expected similarity between I%IZ

Proof. Let ®™ = & + § be an adversarial example of the image a with y and y; as the true label
and the target label, respectively. Since Dy, V. Dy, € Dy minimizes the loss Y4 Dy, » W have

ﬁg]. () =y, — ICIIEI(IZI EDaj (x4 ¢) > (D(,j (x4 y,),
where C = [L] — {y:}. Hence

Pr(Dg, (z*") = y;) < Pr(lp, (@*",y) > lp, (@™, y.)). (23)
Similarly, for V, we have

‘Q/(a:ad”) =y = Icneiélﬁf/(w“d”,c) > KV(w“d”,ytL

and that implies

Pr(V(z®") = y) < Pr(ly (2™, y) > by (x*®, y1)). (24)
Since Dy, ,V € Dy is f-smooth, we have:

ﬂ adv
(D, (@,y) + 8 Valn, (@,y) + 58]3 > to, (@, y).

Thus,
5+ Valn,, (@.4) > Lo, (@°,y) ~ o, (z.) ~ 5 |3]
> p,, (% yy) — U, (z,y) — §||6||§ = cp,, - (25)
Likewise for V/,
5 Valy (@) > Ly ) — Ly () — 2 1813 := ey 26)
Hence, from Eq. 23] we have
Pr (ﬂpsj (w“d”, y) > EDej (m“d”, yt)) <Pr (5 . Vwépsj (x,y) > CDGj). 27
Similarly, from Eq.[26] we have
Pr (fv(w“d“, y) > f(/(wad“,yt)) <Pr (6 Valy(x,y) > cv) (28)
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Hence,

D@j Ds
(a)
S PI‘( (EDQ (wadv,y) >£D9 ($ad1)7y )) A (é_(wadv ) >/ ( adu7y )))
ngGDS
(b) 1
SPr(l 1% 8 Valn, @)= or 3 en) A8 Vely(ey) 2 ep)
Do, €D ! Dy, €D,
(c) 1 14+ 5D,V 1
< Pr (( Z cp, <€ ( )H— Z Vzlp, (w,y)H )
|Ds| 2 |Ds|
ngeD
1+ 5( DS,V

[v=tote0])

Z €Dy, <e\/1+S nV H Z Valp,, xyH)
| n) ., Dsl
el VBTl

where S(D;, V) is the cosine similarity between ID | ZlD v 2Dy, (z,y) and Vzly(x,y). In-

equality (a) is using Eq.[23|and Eq.[24] E inequality (b) i 1s due to the fact that Pr((A>a)N (B >

b)) < Pr((A+ B) > (a+D0)) and using Eq.[27)and Eq.[28] The inequality (c) is a result of Lemma 5}
either

5 D31 2oy, e, ValD,, (@Y 181 1+ S(Ds,V)
' > 2
| \D13|ZD97.€DS Valp, (z,y)] 2
or
v:cef/( ) 1+S( )
5- <6
Vaty @] = 10 2

We observe that by S-smoothness condition of the loss function,

adv B
CDej = ZDsj (17 ¢ 7yt) - gDej (way) - 5”(5”% > EDBJ- (wayt) +4- meDej (117yt) - Eng (w,y) - BH&HS
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Thus,

(D Z CD9<€V1+S — H|D| Z VzDewa)
<P

gDej (iIZ, yt) +4- VmﬂDej (w7yt) - stj ((B7y) - BHJH%)

BT L 5 o)

1 , 14+ S(D,,V
<Pr(mr 3 (o, (@v) — 1812]Vato,, (@.90)ll — o, (@) - A13]3) < &8y 2P V)
| S‘ ngEDS . .
_ ! 1+S(D5,‘7) _ 2
_Pr(|Ds‘ Z Eng(w,y)—i—eB 5 Z p,, (x,y:) — € B — Be )
ngeDs D@ €D;

1+8(D,,V
E[ﬁ ZDQJE’DS EDQJ (CC,y) +¢'B %}
S S0 co, oy, @) — B~ B

£+€,B /1+IE[S(2DS,V)]
< (30)

- |Dls| Zng €D, gDej (@, y¢) — ¢'B — e’

where { = Ep, ~p [ZD&: (x, y)] . Similarly for V,

+E[S(Ds, V)]
1 S s E+ By Tt
€y ————— + ’ H6 Valiy(z,y H ) 2 (31)
by (x,y;) — € B — Be'?’
Hence,
) ¢ + ¢ By/ HESP.V)) £+€B /1+]E[S(D V)]
Pr(TT(DS7Va$adU7yt) = 1) 2

< b
B |le$\ ZD%EDS p,, (T,y:) — € B — e gv(ﬂc Yt) — € B — Be?

where E[S(Ds, V)] is upper bounded by using Lemma@ as follows:

_ B+ Vaty (@ 9)l - i
=T Vel (@ gl

E[S(Ds, V

G LIMITATIONS AND BROADER IMPACTS

Limitations. While BAT demonstrates strong targeted transferability under single-surrogate con-
straints, it has several limitations. First, the computational cost increases approximately linearly with
the number of discriminators, as shown in Fig. [pa] which may raise concern in resource-constrained
environments. Second, although Tab. |12|shows that BAT is generally stable across different random
pruning seeds, certain seeds or surrogate architectures may lead to higher variability, potentially
affecting reliability. Third, as illustrated in Tab. [T, BAT’s transferability declines under smaller
perturbation budgets, indicating the sensitivity to the strength of the threat model. Finally, BAT is
currently evaluated only under the ¢, perturbation constraint; its applicability to other settings (e.g.,
physical-world attacks) remains an open question. Addressing these limitations presents important
opportunities for future research.
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Broader Impacts. This work proposes BAT, a generative framework aimed at improving the
targeted transferability of adversarial examples under single-surrogate constraints. The primary intent
is to advance our understanding of adversarial robustness and transfer behavior, which can aid in
designing more secure and generalizable machine learning systems. In particular, BAT highlights
how small structural modifications (e.g., pruning) and confidence-aware training can lead to stronger
transferable attacks, offering valuable insights for future defenses.

However, as with many works on adversarial attacks, there is potential for misuse. Techniques
developed in BAT could be repurposed to generate stronger targeted attacks against real-world
systems in domains such as biometric authentication or autonomous driving. To mitigate this risk, we
limit our experiments to standard datasets (e.g., ImageNet) and do not release pretrained generators
or plug-and-play attack pipelines. Any shared code will include disclaimers and be intended solely
for research and defense-oriented applications.

We believe that responsibly studying the targeted transferability is necessary to anticipate and counter
future adversarial threats, and we encourage the broader community to approach this space with
similar care.

H VISUALIZATION OF ADVERSARIAL EXAMPLES

In this section, we present multiple adversarial examples generated by the three variants of the
proposed BAT along with their corresponding perturbations for different target classes, as illustrated

in Fig.[§]to Fig.
I MORE ATTENTION HEATMAPS

We present additional attention heatmaps for four different input images and their corresponding
adversarial examples, for target class#100, generated using the [-FGSM (Kurakin et al.|[2018]) method,
as illustrated in Fig. [12|and Fig. These adversarial examples are crafted on pretrained models
on ImageNet-1K (Russakovsky et al., [2015), including ResNet18, ResNet50, VGG16, and VGG19,
along with five pruned versions of each. From Fig. [12] and Fig. [T3] it is clear that the attention
heatmaps differ across the pruned models derived from the pretrained models, reflecting diverse
decision boundaries resulting from the pruning process.
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Source Perturbation Adv. Image Perturbation Adv. Image Perturbation Adv. Image

Figure 8: Visualization of adversarial examples and their corresponding perturbations for the target
class “Vulture” on the ImageNet-1K dataset, generated by the proposed BAT methods using ResNet50
as the surrogate under no domain shift (P=9Q).
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Source Perturbation Adv. Image Perturbation Adv. Image Perturbation Adv. Image

Figure 9: Visualization of adversarial examples and their corresponding perturbations for the target
class “Night snake” on the ImageNet-1K dataset, generated by the proposed BAT methods using
ResNet50 as the surrogate under no domain shift (P=Q).
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Source Perturbation Adv. Image Perturbation Adv. Image Perturbation Adv. Image

Figure 10: Visualization of adversarial examples and their corresponding perturbations for the
target class “Crayfish” on the ImageNet-1K dataset, generated by the proposed BAT methods using
ResNet50 as the surrogate under no domain shift (P=Q).
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Source Perturbation Adv. Image Perturbation Perturbation Adv. Image

Figure 11: Visualization of adversarial examples and their corresponding perturbations for the target
class “Hook” on the ImageNet-1K dataset, generated by the proposed BAT methods using ResNet50
as the surrogate under no domain shift (P=9Q).
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Figure 12: Attention heatmaps, obtained using Grad-CAM (Selvaraju et al.,[2017), are shown for
adversarial images of input classes Shetland sheepdog and Brain coral. These adversarial examples
are crafted with target class #100 of ImageNet-1K on different classifiers and their corresponding

pruned versions.
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Figure 13: Attention heatmaps, obtained using Grad-CAM (Selvaraju et al., 2017), are shown for
adversarial images of input classes Cougar and Carton. These adversarial examples are crafted with
target class #100 of ImageNet-1K on different classifiers and their corresponding pruned versions.
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