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Fig. 1: LeHome provides a high-fidelity simulation platform by integrating various household scenarios and objects within

the scenarios, especially deformable objects.

I. INTRODUCTION

The household scenario is the living space where humans
engage in the most frequent and essential daily activities,
encompassing diverse tasks such as preparing food, and
managing clothing. Unlike those in more structured scenes
such as industries, these tasks feature distinct challenges:
interactions with diverse, non-standardized objects and adap-
tation to unstructured, dynamic environments.

However, most prior work [1], [S] has focused on rigid
and articulated objects, with limited support for deformable
objects. In reality, many household tasks inherently involve
deformable items [4], [3] such as garments, food, and
sponges. These objects lack fixed shapes and exhibit non-
linear deformations that are difficult to model. This presents
two fundamental challenges: (i) collecting real-world house-
hold data is prohibitively expensive and labor-intensive, as
deformable objects’ variable states and the inherent com-
plexity of household environments make it difficult to obtain
sufficient high-quality data; and (ii) achieving accurate and
authentic modeling of deformation is intrinsically hard, since
it requires simultaneously capturing complex material prop-
erties, nonlinear dynamics, and realistic interactions.

To address these challenges, we propose LeHome, a

novel household simulation environment. LeHome builds
a comprehensive household asset library and categorizes
deformable objects into six types—plasmas, granular ma-
terials, linear objects, thin shells, volumetric objects, and
fluids—while employing multiple physical simulation meth-
ods (e.g., PBD, FEM, Dynamic Grids) to ensure physically
realistic behaviors. Moreover, an Action Graph framework
is introduced to model complex manipulation logic, ensuring
causal consistency between actions and outcomes and pro-
viding a solid physical foundation for high-quality data gen-
eration. At the hardware level, LeHome supports mainstream
industrial robots (e.g., URSe, Franka), as well as open-
source low-cost platforms (e.g., LeRobot [2], XLeRobot),
enabling real-world validation and large-scale deployment
in household settings. In addition, LeHome integrates a
universal teleoperation data collection scheme, supporting
multiple control modes and compatibility across virtual and
real scenarios, while leveraging domain randomization to
facilitate effective sim-to-real policy transfer.

II. THE LEHOME ENVIRONMENT

LeHome consists of three core components: LeHome
Assets, LeHome Engine, and LeHome Benchmark.
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Fig. 2: Simulated Deformable Objects of LeHome cover 6 categories with a large number of visually and physically

high-fidelity assets for each category.

A. Assets and Physics

Beyond standard rigid and articulated objects, LeHome
provides a diverse set of deformable assets, categorized into
six classes to ensure accurate physical modeling and targeted
methodological support as shown in Fig. [}

o Plasmas: Tonized particles governed by electromagnetic
forces (e.g., Flame).
e Granular: Discrete aggregates dominated by inter-
particle forces (e.g., Dust, Beans).
o Linear Objects: Characterized by high tensile strength
and bending deformation (e.g., Cable, Rope).
o Thin-Shells: Planar geometries with anisotropic proper-
ties (e.g., Paper, Garment).
o Volumetric Objects: Continuum bodies with elastic and
plastic behaviors (e.g., Sausage, Cutlet).
e Fluids: Continuously deforming matter with no fixed
shape (e.g., Water, Juice).
To accurately simulate these categories, LeHome employs
a variety of physics methods. Position-Based Dynamics
(PBD) is used for large-scale thin-shells, fluids, and lin-
ear objects. The Finite Element Method (FEM) is applied
to volumetric objects and small-scale thin-shells to finely
characterize local stress-strain relationships. For plasmas
and granular materials, a Dynamic Grid method is used to
efficiently capture the flow-like phenomena.

B. Action Graph Mechanism

Previous simulators struggle to model fine-grained phys-
ical interactions like cutting or state transitions, failing to
replicate real-world “cause-and-effect” details. To overcome

this, LeHome introduces Action Graph, a graphical logic
modeling technology for high-fidelity dynamic interactions.

The Action Graph is an event-driven system composed
of three key components: i) Nodes: Basic logical units,
including On-Trigger, Computation, and State Update nodes.
ii) Connections: Directed edges that define dependencies and
data flow between nodes. iii) Execution Logic: An event-
driven mechanism that activates relevant node chains only
when a trigger event occurs, ensuring efficiency.

For instance, in the sausage-cutting task (Fig.[3): i) An On-
Trigger Node detects the collision between the knife and the
sausage. ii) This triggers a Computation Node that performs
real-time geometric mesh segmentation based on the cutting
plane. iii) A State Update Node is synchronously activated to
create new objects (the split halves) and update their physical
properties and textures. This mechanism ensures smooth,
realistic, and physically consistent interactions.

C. Low-Cost Robots and Teleoperation

To promote the large-scale adoption of household robots,
LeHome offers comprehensive support for low-cost and
compact robot platforms, featuring the full LeRobot series
(LeRobot, xLeRobot, LeKiwi) alongside mainstream indus-
trial robots (Franka, UR5e). To facilitate efficient collection
of manipulation data, LeHome integrates a versatile teleop-
eration framework (Fig. @), which comprises: i) Accessible
Controls: Keyboard and game controller interfaces for 6-DoF
end-effector control, balancing ease of use and functionality.
ii) Master-Follower System: A high-fidelity setup where a
physical master arm directly drives its virtual counterpart,
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Fig. 3: Example Action Graph Workflow on sausage cut-

ting, which consists of an On-Trigger Node, a Computation
Node, and a State Update Node.

enabling precise expert demonstrations, particularly for com-
plex bimanual manipulation tasks.

LeHome meets real-time data collection requirements on a
single workstation equipped with an Intel i7-12700 CPU, 64
GB RAM, and an NVIDIA RTX 4090 GPU, with memory
usage maintained around 12 GB.

III. EXPERIMENTS

We conducted experiments to demonstrate that LeHome
can (1) provide a platform to support policy learning algo-
rithms for various household tasks, and (2) generate data that
facilitates policy execution in the real world. We selected six
representative tasks, including Fold Garment, Cut Sausage,
Assemble Burger, and Wipe Surface, which cover bimanual
manipulation, tool use, and interactions with deformable
objects, fluids, and rigid bodies.

In simulation experiments, we adopted ACT, Diffusion
Policy, SmolVLA and Pi0 as our baselines. For each task,
50 teleoperated demonstrations were collected for training.
The results show that all algorithms were successfully trained
and evaluated. For example, in tasks such as Fold Garment
and Assemble Burger, methods like ACT and SmolVLA
achieved success rates above 60%, indicating that the simu-
lated environment supports various types of policy learning
effectively. To further assess the visual and physical fidelity
of LeHome, we conducted sim-to-real experiments compar-
ing two training regimes: Real-Only (using 10 real-world
demonstrations) and Few-shot (pre-trained in simulation with
domain randomization and fine-tuned on the 10 real demos).
The results show that policies augmented with LeHome’s
simulated data achieved substantially higher real-world suc-
cess rates—for instance, ACT improved from 10-20% to

Fig. 4: Teleoperation Methods. (Left) We integrate Joystick
and Keyboard to teleoperate XLeRobot, and (Right) Leader-
Follower Teleoperation for LeRobot.

40-70%, and SmolVLA from 10-20% to 40-60%. These
findings demonstrate that LeHome’s high-fidelity simulation
effectively bridges the sim-to-real gap and enhances policy
generalization in real-world environments.

IV. CONCLUSION

We presented LeHome, a comprehensive simulation envi-
ronment and benchmark for manipulating deformable objects
in household scenarios. LeHome provides a diverse suite of
physically grounded deformable assets, a novel Action Graph
mechanism for realistic interactions, and end-to-end support
for low-cost robotic platforms. Our experiments confirm that
LeHome is a valuable testbed for policy learning and that its
high-fidelity simulation data can significantly improve real-
world task performance. We believe LeHome will provide a
critical foundation for advancing the large-scale deployment
of robots in household environments.
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