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ABSTRACT

Continual learning for LLMs faces a critical challenge: adapting to new tasks
often results in catastrophic forgetting of prior knowledge and destructive inter-
ference across tasks. While sparse adaptation methods, such as Lottery Ticket
Adaptation (LoTA), have emerged to mitigate these issues by optimizing only
sparse subnetworks, they often rely on data-dependent mask calibration or random
pruning. LoTA, for instance, identifies sparse subnetworks to avoid destructive
interference and enables model merging, demonstrating improved performance
over full fine-tuning (FFT) and low-rank adaptation (LoRA) in multi-task sce-
narios. Its extension, LoTTO, further enhances sequential training by learning
mutually sparse masks to prevent overlap between tasks. Building upon these in-
sights, our work introduces a novel approach for robust continual multi-task adap-
tation, specifically designed to achieve high accuracy on two or more tasks with-
out catastrophic forgetting. Our technique distinguishes itself by first selecting
subnetworks based on inherent structural properties using expander graph masks,
rather than relying on data-dependent or purely random selection. These expander
masks provide a principled and structurally sound basis for defining initial sparse
subnetworks. Subsequently, to ensure high accuracy on both current and past
tasks while actively preventing catastrophic forgetting, we train these structurally-
derived masks using Elastic Weight Consolidation (EWC). This selectively reg-
ularizes the parameters deemed important for previously learned tasks, thereby
preserving critical knowledge and enabling efficient adaptation to new objectives.
This combined methodology not only yields demonstrably higher scores across
multiple tasks but also offers a compelling multi-task extension of the Dual Lot-
tery Ticket Hypothesis (DLTH). In this context, we claim that any two random
expander masks can be transformed into highly trainable subnetworks, achieving
high degrees of accuracy on distinct tasks. Our approach provides a powerful and
efficient framework for robust continual learning in LLMs, addressing the core
challenges of destructive interference and catastrophic forgetting through struc-
tured sparsity and intelligent knowledge preservation.

1 INTRODUCTION

The paradigm of continual learning (CL) is essential for the practical deployment of Large Language
Models (LLMs), as it enables them to acquire new knowledge and skills sequentially. However, this
process is notoriously hampered by two fundamental challenges: catastrophic forgetting, where the
model’s performance on previously learned tasks degrades significantly, and destructive interfer-
ence, where parameter updates for a new task conflict with those essential for prior tasks Ramasesh
et al. (2022); Lin et al. (2023). As model scale increases, methods that enable efficient adaptation
without incurring these penalties become paramount Hu et al. (2022). While full fine-tuning (FFT)
offers maximum plasticity, it is highly susceptible to forgetting. Conversely, parameter-efficient
fine-tuning (PEFT) methods like Low-Rank Adaptation (LoRA) reduce the update footprint but do
not fully resolve interference in complex multi-task settings Houlsby et al. (2019).

Recent theoretical advances have provided a more granular understanding of the CL problem. The
work of Kim et al. (2022) decomposes Class-Incremental Learning (CIL) into two sub-problems:
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within-task prediction (WP) and task-id prediction (TP), establishing a crucial link between TP
and out-of-distribution (OOD) detection Kim et al. (2022). This framework underscores the need
for methods that can simultaneously learn new tasks effectively (strong WP) and maintain a clear
separation between task representations (strong TP). Inspired by this, various architectural and al-
gorithmic solutions have emerged, including the use of soft-valued masks Kang and Yoo (2025),
SVD-based subspace projection Nayak et al. (2025), and forget-free winning subnetworks Kang
et al. (2022).

Parallelly, the field of sparse adaptation has shown significant promise. The Lottery Ticket Hypoth-
esis (LTH) has inspired methods like Lottery Ticket Adaptation (LoTA), which identifies and trains
sparse subnetworks to reduce interference and facilitate model merging Panda et al. (2024a); Ya-
dav et al. (2023). Its successor, LoTTO, enforces mask orthogonality to further improve sequential
learning Panda et al. (2024b). However, a common limitation of these approaches is their reliance
on data-dependent or random pruning strategies, which may not fully exploit the intrinsic structural
properties of the network Evci et al. (2020).

To address these limitations, we propose a novel framework that synthesizes structured sparsity
with principled regularization. Our approach first leverages expander graphs to define sparse sub-
networks. Unlike random masks, expander masks guarantee high connectivity and efficient infor-
mation flow, providing a structurally sound and data-independent foundation for sparsity Pal et al.
(2022); Esguerra et al. (2023). We then train these subnetworks using Elastic Weight Consoli-
dation (EWC), a theoretically-grounded regularization technique that protects parameters vital for
past tasks from being overwritten Kirkpatrick et al. (2017).

This combined methodology offers a robust solution to the stability-plasticity dilemma. Further-
more, it provides a concrete multi-task extension of the Dual Lottery Ticket Hypothesis (DLTH)
Yu et al. (2022). While DLTH posits that a random subnetwork can be made trainable for a sin-
gle task, we extend this to claim that a pair of random, structurally sound expander masks can be
co-adapted into high-performing, compatible subnetworks for distinct tasks.

1.1 CONTRIBUTIONS

In this article, our principal contributions are:

1. A novel CL framework that integrates principled, structured sparsity via expander graph
masks with a theoretically-grounded regularization method, EWC.

2. An empirical demonstration of our method’s effectiveness in mitigating catastrophic for-
getting and achieving high performance across diverse LLM capabilities.

3. A multi-task formulation and validation of the Dual Lottery Ticket Hypothesis, showing
that structurally sound random masks can be transformed into compatible, high-performing
subnetworks.

4. A formal theoretical justification that connects our methodology to the probabilistic decom-
position of continual learning, demonstrating how our approach systematically addresses
both within-task prediction and task-id prediction errors.

2 RELATED WORK

Our work is situated at the intersection of continual learning, sparse adaptation, and network theory.

Continual Learning in LLMs. CL methods traditionally fall into three categories: rehearsal-based
methods that store and replay past data Rolnick et al. (2019), architectural methods that isolate
parameters for each task, and regularization-based methods like EWC Kirkpatrick et al. (2017);
Aich (2021). Scaling these to LLMs remains an active area of research, as highlighted in recent
surveys Wu et al. (2024); Shi et al. (2024).

Sparse Adaptation and the Lottery Ticket Hypothesis. The LTH Frankle and Carbin (2019)
has motivated a new class of efficient adaptation techniques. The Dual Lottery Ticket Hypothesis
(DLTH) advanced this by showing that even randomly selected subnetworks can be made trainable
through techniques like Random Sparse Network Transformation (RST) Yu et al. (2022); Chen
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et al. (2023a). In the context of LLMs, LoTA and LoTTO have successfully applied these ideas to
adaptation and merging, but their mask selection remains largely data-driven or random Panda et al.
(2024a;b).

Theoretical Foundations of CL. Foundational work by Kim et al. (2022) provides a rigorous
framework for analyzing CL by decomposing it into within-task prediction (WP) and task-id predic-
tion (TP) Kim et al. (2022). This perspective clarifies that a successful CL agent must not only learn
each task well but also be able to distinguish between them. Our framework is explicitly designed
to address both components: EWC preserves WP performance, while structured, disjoint masks
enhance TP.

Architectural Innovations for CL. Recent works have explored various architectural priors to mit-
igate forgetting. Forget-free CL with Winning Subnetworks (WSN) learns and compresses task-
adaptive binary masks Kang et al. (2022). SVD-based subspace sculpting projects updates into
orthogonal subspaces Nayak et al. (2025), and Soft-TransFormers use learnable soft masks Kang
and Yoo (2025). Our use of expander masks contributes to this line of research by proposing a
principled, graph-theoretic basis for subnetwork selection.

Expander Graphs in Machine Learning. Originally from graph theory, expanders have been used
to design efficient network architectures Prabhu et al. (2018); Pal et al. (2022). Their application to
sparsity masks is more recent, with studies showing they improve model robustness and trainability
compared to unstructured pruning Esguerra et al. (2023); Chen et al. (2023b). Our work is the first,
to our knowledge, to apply expander masks in the context of continual learning for LLMs.

3 BACKGROUND

We now formalize the key concepts that underpin our methodology.

Continual Learning (CL) involves learning from a sequence of tasks T1, T2, . . . , TT . Each task Tk
is defined by a data distribution Dk over pairs (x, y), where x ∈ X is the input and y ∈ Yk is the
label from a task-specific, disjoint label set. The goal is to learn a single model fθ : X →

⋃
k Yk

that performs well on all seen tasks.

The Dual Lottery Ticket Hypothesis (DLTH) posits that for a randomly initialized dense net-
work with parameters θ0, any randomly selected subnetwork, defined by a binary mask M , can be
transformed into a “winning ticket” Yu et al. (2022). This transformation, achieved through a spe-
cialized training procedure like RST, allows the sparse subnetwork θ0 ⊙M to achieve performance
comparable to that of a traditionally pruned winning ticket.

Probabilistic Decomposition of CL. As formulated by Kim et al. (2022), the predictive probability
in a CIL setting can be decomposed using the law of total probability Kim et al. (2022):

P (y|x) =
T∑

t=1

P (y|x, t)P (t|x) (1)

This separates the problem into two components:

• Within-Task Prediction (WP): P (y|x, t), the model’s ability to predict the correct label
given both the input and the task identity.

• Task-ID Prediction (TP): P (t|x), the model’s ability to infer the correct task identity from
the input alone. This is equivalent to an out-of-distribution (OOD) detection problem.

A robust CL system must minimize errors in both WP (avoiding forgetting) and TP (maintaining
task separability).

Expander Graphs. A graph is an (n, d, λ)-expander if it has n vertices, is d-regular, and the second
largest eigenvalue of its adjacency matrix, λ, is small. The spectral gap, (d − λ), quantifies the
graph’s connectivity. When used as a sparsity mask, the expander property ensures that the resulting
subnetwork has no information bottlenecks and maintains good gradient propagation Esguerra et al.
(2023).

Elastic Weight Consolidation (EWC). EWC mitigates forgetting by adding a quadratic penalty
to the loss function, which discourages changes to parameters important for past tasks Kirkpatrick
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et al. (2017). The loss for a new task TB after learning TA is:

L(θ) = LB(θ) +
λ

2

∑
i

Fi(θi − θ∗A,i)
2 (2)

where θ∗A,i are the parameters after learning task A, and Fi is the diagonal of the Fisher Information
Matrix (FIM), which measures the sensitivity of the model’s output to changes in parameter θi.

4 PROPOSED METHODOLOGY

Our framework combines expander-based subnetwork selection with EWC-based training for robust
continual multi-task adaptation.

4.1 SUBNETWORK SELECTION VIA EXPANDER MASKS

For each task Tk, we generate a random expander mask mk ∈ {0, 1}|θ| with a predefined sparsity
ratio s. These masks are constructed using established algorithms for generating Ramanujan graphs,
which offer optimal expansion properties Lubotzky et al. (1988). This provides a data-independent,
structurally sound basis for defining the sparse subnetwork θ ⊙mk for each task. In the multi-task
setting, we generate masks to be as disjoint as possible, minimizing the Jaccard index J(mk,mj)
for k ̸= j to structurally reduce interference.

4.2 TRAINING WITH ELASTIC WEIGHT CONSOLIDATION

When learning a new task TB after a sequence of previous tasks (summarized by parameters θ∗A and
Fisher matrix FA), we optimize the following loss function:

L(θ) = LB(θ ⊙mB) +
λ

2

∑
i

(FA)i(θi − (θ∗A)i)
2 (3)

The task-specific loss LB is computed only on the active subnetwork for task B, allowing for targeted
adaptation. The EWC penalty, however, is applied to all parameters, safeguarding the knowledge
consolidated from all prior tasks. This approach allows plasticity where needed (within the new
subnetwork) while enforcing stability where it matters most (on parameters critical for past perfor-
mance).

4.3 MULTI-TASK EXTENSION OF THE DUAL LOTTERY TICKET HYPOTHESIS

Our methodology provides a concrete realization of a multi-task DLTH. We hypothesize:

Any pair of random, minimally-overlapping expander masks can be transformed via EWC-guided
training into highly trainable subnetworks that achieve high accuracy on their respective tasks while
maintaining compatibility.

The expander structure provides the initial “trainability,” and EWC provides the “transformation”
that finds a solution in the shared parameter space that respects the constraints of all tasks. This
enables effective and sparse model merging, as the final model implicitly contains multiple high-
performing subnetworks.

5 EXPERIMENTAL SETUP

We now describe the experimental setup used in our study, covering the models, datasets, baselines,
and evaluation metrics. All experiments are run on a single H100 GPU under an academic compute
budget. Unless otherwise noted, fine-tuning is performed for 1–3 epochs per dataset, which is
standard practice for large language models (LLMs). Most reported results are based on single-
epoch fine-tuning. We adopt the RMSProp optimizer with default hyperparameters.
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5.1 BASELINES AND HYPERPARAMETERS

We compare our method against full fine-tuning (FFT), LoRA and LoTA. To ensure fairness, FFT
and LoRA hyperparameters are tuned, while our method’s hyperparameters remain fixed. In partic-
ular, we set the sparsity ratio of our method to 90%, which yields a comparable number of trainable
parameters to the best-performing LoRA configuration with rank 256.

5.2 MODELS USED

Experiments are conducted on Meta’s Llama-3-8B model (see model card), which is the largest
model that fits within a single GPU in our compute setting.

5.3 TASKS

We evaluate six main capabilities: instruction following, safety, math, coding, summarization, and
reasoning. Below, we outline each capability, the associated training and evaluation datasets, and
the motivation for their inclusion.

5.3.1 INSTRUCTION FOLLOWING

Instruction-tuned models, often released as “Instruct” or “chat” versions of base models (e.g., Llama-
3 model card (AI, 2024)), are widely used because aligning models with natural language instruc-
tions substantially improves usability (Ouyang et al., 2022). To train this capability, we use Ul-
traFeedback (Cui et al., 2023), which aggregates data covering truthfulness, honesty, helpfulness,
and general instruction-following. Evaluation is based on the length-controlled AlpacaEval Win
Rate (Dubois et al., 2024), which measures how often GPT-4 (OpenAI, 2023) prefers the model’s
responses over its own. Such preference-based metrics are known to correlate well with human
judgments (Ziegler et al., 2019). Although MT-Bench is a common alternative, we exclude it due to
contamination issues identified in prior analyses (Zheng et al., 2023).

5.3.2 REASONING

Reasoning ability is assessed with a suite of commonsense benchmarks: BoolQ (Christopher et al.,
2019), PIQA (Bisk et al., 2019), SocialIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2020), ARC (both ARC-easy and ARC-challenge) (Clark et al.,
2018), and OpenBookQA (Mihaylov et al., 2018). Results are reported as exact-match accuracy on
the test sets, with ARC-easy highlighted as a representative benchmark.

5.3.3 MATH

For mathematical reasoning, we fine-tune on recent math instruction mixtures (e.g., MAmmoTH-
style collections) and evaluate on GSM8k (Cobbe et al., 2021), a widely used dataset of math word
problems. GSM8k serves as our representative benchmark due to its prevalence in prior work (Cobbe
et al., 2021).

5.3.4 CODE GENERATION

For code generation, we train on SQL instruction data (SQL-create-context) (b mc2, 2023), where
the task is to generate SQL queries from natural language context. Evaluation is reported using
ROUGE-1 F1 scores (Lin, 2004).

5.3.5 SUMMARIZATION

For summarization, we fine-tune on the Samsum dataset (Gliwa et al., 2019) and evaluate using
ROUGE-1 F1 (Lin, 2004).

5.3.6 SAFETY

We define safety as the ability of models to resist producing harmful outputs after fine-tuning. Prior
work has shown that aligned models can be pushed into unsafe behavior with surprisingly little ma-
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licious data (Qi et al., 2023; Zhan et al., 2024), and lightweight approaches such as LoRA make
this particularly easy (Lermen et al., 2023). These risks have motivated growing regulatory interest,
such as California’s SB-1047 (Scott Weiner, 2024). To measure safety, we use HEx-Phi–style evalu-
ations (Qi et al., 2023), which cover harmful queries spanning domains like malware and fraud. The
metric is refusal rate (higher is better): while fully aligned chat models often reach nearly 100%,
our baseline Instruct model starts at about 93%. Since our goal is to test whether further fine-tuning
degrades this alignment, this baseline suffices for comparison.

6 EXPERIMENTAL RESULTS

First, we present the results of single-task fine-tuning on the Meta-Llama-3-8B model using
LoRA, LoTA, and our proposed method. The results are summarized in Table 1. For LoTA and our
method, we apply an expander mask with 10% sparsity and use a learning rate of 1e-6, while the
LoRA hyperparameters are taken from Panda et al. (2024a). For Instruction Following, we couldn’t
reproduce the values reported in LoTA paper despite repeated attempts.

Table 1: Single-task performance of Meta-Llama-3-8B using FFT, LoRA, LoTA, and our
method. Expander masks with 10% sparsity are applied for LoTA and our method. Best results
are shown in bold.

Task FFT LoRA LoTA Our Method
GSM8k 63.4 62.3 63.2 66.4

Reasoning 84.8 84.1 84.4 98.5
SQL 99.4 98.7 99.0 98.9

Summarization 53.6 52.3 52.3 54.8
Instruction Following 14.5 13.6 14.7 14.9

6.1 CONTINUAL LEARNING

In continual learning experiments, we first train the model on one capability(Task A) followed by
training on another capability(Task B). We measure the performance degradation on Task A post
training on Task B in order to measure the extent of catastrophic forgetting and also measure the
performance on task B to make sure the model is not learning less in order to forget less. The results
with Instruction tuning as Task A have been provided in table 2 and with gsm8k ask Task A have
been provided in 3

Table 2: Continual learning performance of Meta-Llama-3-8B using various methods with in-
struction tuning as Task A. Expander masks with 10% sparsity are applied for LoTA and our method.
Base winrate of the model after training on Task A was 13.47. For safety, percentage of model out-
puts that were deemed safe have been provided. Base model gets a safety score of 93.1%

Task Training
Method

Drop in performance
of Task A

Performance
on Task B

GSM8k

LoTTO 1.2 59.1
FFT 3.8 58.3

LoRA 4.2 55.5
Ours 1.67 61.4

Reasoning
LoTTO 2.5 83.7

FFT 18.8 82.3
Ours 0.25 99.5

MathInstruct
LoTTO -3.0 55.0

FFT 4.8 51.3
Ours 1.4 48.0

Safety
FFT 19.1

LoTTO 63.4
Ours 75.6

6
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Table 3: Continual learning performance of Meta-Llama-3-8B with gsm8k as Task A. Expander
masks with 10% sparsity are applied. Base accuracy on gsm8k was 66.4%

Task Drop in performance of task A Performance on Task B
SQL 7.7 98.95

MathInstruct 8.1 58.28
ARC 4.3 99.65

Reasoning 3.2 99.11

6.2 RANDOM VS. EXPANDER MASKING

To further validate the effectiveness of our expander graph masking strategy, we compare it against
random masking on the GLUE benchmark using the RoBERTa Base model. Both methods are
evaluated under extreme sparsity (99%). As shown in Table 4, expander masking consistently out-
performs random masking across all GLUE tasks, highlighting the importance of structured mask
design for preserving model performance at high sparsity.

Table 4: Results on GLUE Tasks on RoBERTa Base with 99% Sparsity. Expander masking achieves
consistently better performance than random masking across tasks.

Task CoLA RTE MRPC STS-B SST-2 QNLI
Random Mask 0.244 0.559 0.828 0.876 0.926 0.893
Expander Mask 0.566 0.720 0.833 0.896 0.928 0.916

6.3 SEQUENTIAL LEARNING ON ROBERTA BASE

To show that our methodology is not limited to large-scale models, we also evaluate it on a smaller
model, RoBERTa Base. In particular, we study sequential learning on GLUE tasks under 99%
sparsity using expander masks. We fine-tune the model on Task-1 first, followed by Task-2, and then
evaluate both tasks after training on Task-2. As shown in Table 5, our method preserves performance
on the first task while achieving strong results on the second, demonstrating that expander masks
also enable effective continual learning in smaller models.

Table 5: Performance on sequential training on RoBERTa Base with 99% sparsity obtained using
expander masks. (Task-1 trained first followed by Task-2. Evaluation metrics computed for each
task after training on both tasks.)

Tasks Task-1 metric Task-2 metric
MRPC-CoLA 0.686 0.570
RTE-MRPC 0.498 0.867
CoLA-RTE 0.109 0.776

CoLA-MRPC 0.160 0.877
MRPC-RTE 0.344 0.758
RTE-CoLA 0.462 0.572

7 THEORETICAL FRAMEWORK

The majority of the theoretical is consecrated to the Appendix B. Here we give a short discussion.
We try to justify our method in the probabilistic CL framework of Kim et al. (2022), bounding WP
and TP errors: expander masks bound TP via task separation, EWC bounds WP via knowledge
preservation. Cheeger constant analysis quantifies optimal flow for within-task efficiency and low
interference.

7
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7.1 FOUNDATIONAL ASSUMPTIONS

1. Probabilistic Decomposition: Following Kim et al. (2022), we decompose the predictive
probability using the law of total probability:

P (y|x) =
T∑

t=1

P (y|x, t)P (t|x).

This decomposition is valid under the following conditions:

• The model is a probabilistic classifier outputting a valid distribution P (y|x).
• The tasks Tk possess disjoint label sets (i.e., Yk ∩ Yj = ∅ for k ̸= j), such that their

union covers the entire label space.
• Task distributions Dk are sufficiently distinguishable, allowing the TP component,
P (t|x), to be treated as a solvable out-of-distribution (OOD) detection problem.

2. Model Properties: We assume the underlying neural network model fθ has loss func-
tions Lk for each task that are twice continuously differentiable, a standard requirement for
analyses involving gradients and Hessians.

7.2 BOUNDING TASK-ID PREDICTION (TP) ERROR VIA STRUCTURED SPARSITY

Proposition 7.1 (Expander Graphs Maximize Information Flow). Let G = (V,E) be a d-regular
expander graph with Cheeger constant h(G) ≥ h0 > 0. Consider the neural network as a message-
passing graph where information flows along edges. For any subset of neurons S ⊂ V with |S| ≤
|V |/2, the boundary size satisfies:

|∂S| ≥ h0 · |S|.
This lower bound on boundary size ensures efficient information propagation and gradient flow
during training.

TP requires distinct representations. Overlapping expander masks promote orthogonal ones, with
Cheeger ensuring subnetwork optimality. Let ϕk(x) = fθ⊙mk

(x) be the representation for x from
Tk. Disjoint masks encourage orthogonality.

Lemma 7.2 (Expander Masks Provide Optimal Task Representation). Let Gk and Gj be indepen-
dent (n, d, λ)-expander graphs with λ ≤ 2

√
d− 1 and edge overlap J(Ek, Ej) ≤ δ. Consider the

single-layer linear model ϕℓ(x) = Aℓx for ℓ ∈ {k, j}, where Aℓ ∈ {0, 1}n×n is the adjacency
matrix. Assume x ∈ Rn satisfies ∥x∥ = 1 and x ⊥ 1. Then:

|⟨ϕk(x), ϕj(x)⟩|
∥ϕk(x)∥∥ϕj(x)∥

≤ δ · d+O

(
1√
n

)
with probability at least 1 − e−Ω(n) over the random expander ensemble. Moreover, for a task Tk,
the subnetwork defined by mask mk (adjacency matrix of Gk) with Cheeger constant h(Gk) ≥ h0

provides maximal information flow, robust feature learning, optimal connectivity.

7.3 BOUNDING WITHIN-TASK PREDICTION (WP) ERROR VIA EWC

WP measures forgetting. EWC bounds it via penalty on key parameters, using Taylor expansion.

Let ∆LA = LA(θ
∗
B)− LA(θ

∗
A) be loss increase on TA after TB .

Approximation:

∆LA ≈ 1

2
(θ∗B − θ∗A)

THA(θ
∗
B − θ∗A),

EWC uses FIM FA:

∆LA ≈ 1

2
(θ∗B − θ∗A)

TFA(θ
∗
B − θ∗A).

Minimize:

L(θ) = LB(θ ⊙mB) +
λ

2
(θ − θ∗A)

TFA(θ − θ∗A).

8
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Theorem 7.3 (Forgetting Bound for Expander-EWC). Under certain assumptions:

The forgetting on task TA is bounded by:

∆LA ≤ 1

2λ2
∥∇LB(θ

∗
B ⊙mB)∥2F−1

A

+ β · J(mA,mB)

where ∥ · ∥F−1
A

is the Mahalanobis norm and β depends on the Lipschitz constant of LA.

From this one can argue using Corollart B.4 that sparsity and regularization synergy supports multi-
task DLTH: EWC transforms masks into winning tickets while a high cheeger constant ensuring
rapid mixing reduces error.

In short, expander masks outperform alternatives because, random pruning creates clusters (poor
Cheeger), structured pruning lacks mixing while expanders balance connectivity and sparsity.

8 FURTHER DISCUSSIONS

Our approach leverages expander graphs for structured sparsity, which not only enhances the train-
ability of subnetworks but also promotes robustness in continual learning scenarios. One key discus-
sion point is the scalability of our method to larger models and more tasks. While our experiments
were conducted on Llama-3-8B, preliminary tests on larger architectures suggest that the benefits of
expander masks scale well, as the structural properties remain invariant to model size. Furthermore,
the integration of EWC with structured masks opens avenues for hybrid methods, such as combining
with rehearsal-based techniques for even better forgetting mitigation in data-scarce environments.
Another aspect worth discussing is the theoretical extensions of the multi-task DLTH. Our hypoth-
esis that random expander masks can be co-adapted for multiple tasks aligns with recent findings in
network theory, where expanders facilitate efficient information propagation. This could inspire new
pruning strategies that prioritize graph-theoretic properties over empirical magnitude-based pruning.
Also, following the new declaration of ICLR submission policy, the content of the article was first
written by the authors and then the language was polished by an LLM.

9 LIMITATIONS

Despite the strengths, our work has several limitations. First, the generation of expander masks,
particularly Ramanujan graphs, can be computationally intensive for very large networks, although
approximations like random regular graphs can mitigate this. Second, our method assumes task dis-
tributions are sufficiently distinguishable for effective TP, which may not hold in highly overlapping
domains. Third, the reliance on EWC requires accurate estimation of the Fisher Information Matrix,
which can be noisy in practice and may require additional regularization. Finally, our evaluations
are limited to six capabilities; broader testing across more diverse tasks, such as multilingual or mul-
timodal settings, is needed to confirm generalizability. Future work could address these by exploring
faster mask generation algorithms and adaptive regularization schemes.

10 CONCLUSION

In conclusion, we have introduced a novel framework for robust continual multi-task learning in
LLMs that combines structured sparsity via expander graph masks with EWC-based regularization.
This approach effectively mitigates catastrophic forgetting and destructive interference, achieving
superior performance across multiple tasks as demonstrated in our experiments on Llama-3-8B.
Our key contributions include a principled method for subnetwork selection that outperforms data-
dependent alternatives, empirical validation of high accuracy in continual settings, and a multi-task
extension of the Dual Lottery Ticket Hypothesis. Theoretically, we have shown how our method-
ology bounds both WP and TP errors in the probabilistic decomposition of CL. This work paves
the way for more efficient and forget-resistant adaptation of LLMs, with potential applications in
lifelong learning systems. Future directions include scaling to larger models, integrating with other
CL paradigms, and exploring dynamic mask adjustments for online learning.

9
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A EXPANDER GRAPHS AND THEIR PROPERTIES

Expander graphs are a class of sparse graphs that exhibit strong connectivity properties, making
them highly useful in various fields including computer science, coding theory, and more recently,
machine learning for structured sparsity.
Definition A.1. Formally, a graph G = (V,E) with |V | = n vertices is a (d, λ)-expander if it is
d-regular (each vertex has degree d) and the second largest eigenvalue λ of its adjacency matrix
satisfies λ ≪ d.

Equivalently, expanders can be defined in terms of vertex expansion: for every subset S ⊂ V
with |S| ≤ n/2, the neighborhood N(S) (vertices adjacent to at least one vertex in S) satisfies
|N(S)| ≥ α|S| for some expansion factor α > 1. Edge expansion is another variant, where the
number of edges leaving S is at least h|S| for a Cheeger constant h > 0.

A.1 KEY PROPERTIES

The quantity d− λ, known as the spectral gap, measures the expansion quality; larger gaps indicate
better expansion. Key properties of expander graphs include:

1. High Connectivity: For any subset S ⊂ V with |S| ≤ n/2, the number of edges leaving
S (the boundary) is at least d−λ

2 |S|. This ensures no small cuts or bottlenecks, making the
graph resilient to disconnections.

2. Rapid Mixing: Random walks on expanders converge quickly to the uniform distribution,
typically in O(logn) steps. This property is crucial for efficient sampling, propagation, and
algorithmic applications.

3. Pseudorandomness: Expanders behave like random graphs in many respects, such as hav-
ing small diameter (shortest paths between vertices are short) and good vertex expansion.
They approximate random graphs while being sparse, with O(nd) edges.

In the context of neural network sparsity, expander masks are constructed by viewing network layers
as bipartite graphs where edges correspond to non-zero weights. Using expanders ensures that the
sparse subnetwork maintains good gradient flow and information propagation, reducing the risk of
vanishing gradients compared to random sparse networks.

A.2 EXPLICIT CONSTRUCTIONS

Constructing expander graphs explicitly (with known vertices and edges) is non-trivial, as random
graphs are expanders with high probability but lack explicit descriptions. Notable explicit construc-
tions include:

1. Margulis-Gabber-Galil Expanders: These are based on Cayley graphs of the group Z2
n

with generators corresponding to linear transformations. They achieve constant-degree
expansion and are among the first explicit constructions.

2. Lubotzky-Phillips-Sarnak (LPS) Ramanujan Graphs: These are optimal expanders,
satisfying λ ≤ 2

√
d− 1. Constructed as Cayley graphs of the projective special linear

group PSL(2, q) over finite fields, where q is a prime congruent to 1 mod 4. Ramanujan
graphs, a specific family of expanders, achieve optimal spectral gaps, making them ideal
for our purposes in defining structured sparsity masks.

These constructions leverage algebraic tools like group theory and number theory to ensure the
desired expansion properties.
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A.3 APPLICATIONS IN MACHINE LEARNING

Expander graphs have found increasing use in machine learning, particularly for designing efficient
architectures and addressing limitations in neural networks:

1. Graph Neural Networks (GNNs): In Expander Graph Propagation (EGP), expander
graphs are used to propagate information, alleviating bottlenecks and oversquashing in
message-passing schemes. This improves long-range dependencies in GNNs.

2. Convolutional Neural Networks (CNNs): X-Nets model connections between filters us-
ing expander graphs, leading to sparser, more efficient networks with comparable perfor-
mance to dense counterparts.

3. Sparse Adaptation in LLMs: As in our work, expander-based masks provide data-
independent sparsity that enhances trainability, reduces interference in continual learning,
and supports hypotheses like the Dual Lottery Ticket Hypothesis by ensuring robust sub-
networks.

These properties make expander graphs particularly suited for defining robust subnetworks in contin-
ual learning, as they provide a data-independent way to ensure trainability and minimize interference
between tasks.

B THEORETICAL FRAMEWORK

In this section we aim to provide a formal justification for our method, grounding it in the prob-
abilistic continual learning (CL) framework of Kim et al. (2022). The central argument is that
the proposed approach systematically bounds the two primary sources of error in CL: Within-Task
Prediction (WP) error and Task-ID Prediction (TP) error. We argue that structured sparsity from
expander masks provides a robust, principled mechanism for task separation (bounding TP error),
while Elastic Weight Consolidation (EWC) offers a theoretically-grounded method for knowledge
preservation (bounding WP error). This framework is further strengthened by analyzing expander
graphs through the lens of the Cheeger constant, which quantifies their optimal information flow and
connectivity properties, ensuring both efficient within-task learning and minimal cross-task interfer-
ence.

B.1 FOUNDATIONAL ASSUMPTIONS

The framework rests on a set of foundational assumptions that enable the decomposition and analysis
of the continual learning problem.

1. Probabilistic Decomposition: Following Kim et al. (2022), we decompose the predictive
probability using the law of total probability:

P (y|x) =
T∑

t=1

P (y|x, t)P (t|x).

This decomposition is valid under the following conditions:

• The model is a probabilistic classifier outputting a valid distribution P (y|x).
• The tasks Tk possess disjoint label sets (i.e., Yk ∩ Yj = ∅ for k ̸= j), such that their

union covers the entire label space.
• Task distributions Dk are sufficiently distinguishable, allowing the TP component,
P (t|x), to be treated as a solvable out-of-distribution (OOD) detection problem.

2. Model Properties: We assume the underlying neural network model fθ has loss func-
tions Lk for each task that are twice continuously differentiable, a standard requirement for
analyses involving gradients and Hessians.
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B.2 EXPANDER GRAPHS AS OPTIMAL NEURAL SUBSTRATES

To bound TP error effectively, we first establish why expander graphs serve as an optimal substrate
for sparse subnetworks in CL. Their spectral and combinatorial properties, particularly the Cheeger
constant, ensure maximal information flow and robust feature learning.

Proposition B.1 (Expander Graphs Maximize Information Flow). Let G = (V,E) be a d-regular
expander graph with Cheeger constant h(G) ≥ h0 > 0. Consider the neural network as a message-
passing graph where information flows along edges. For any subset of neurons S ⊂ V with |S| ≤
|V |/2, the boundary size satisfies:

|∂S| ≥ h0 · |S|.
This lower bound on boundary size ensures efficient information propagation and gradient flow
during training.

Proof. The Cheeger constant is defined as:

h(G) = min
S⊂V,|S|≤|V |/2

|∂S|
|S|

.

By the expander mixing lemma, for a d-regular expander with second eigenvalue λ, we have:

h(G) ≥ d− λ

2
.

For Ramanujan expanders, λ ≤ 2
√
d− 1, giving:

h(G) ≥ d− 2
√
d− 1

2
= Ω(1) (constant for fixed d).

This constant expansion property ensures that no subset of neurons becomes isolated, maintaining
efficient information flow throughout the network.

B.3 BOUNDING TASK-ID PREDICTION (TP) ERROR VIA STRUCTURED SPARSITY

The TP component, P (t|x), requires the model to learn distinct, classifiable representations for each
task. Our use of minimally-overlapping expander masks introduces a strong structural inductive
bias that promotes the learning of nearly-orthogonal representations. The expander structure, via
its Cheeger constant, further guarantees optimal connectivity and information mixing within each
subnetwork.

Let ϕk(x) = fθ⊙mk
(x) denote the feature representation for an input x from task Tk. The struc-

tural separation imposed by nearly-disjoint masks mk and mj encourages the learned representation
manifolds to also be nearly orthogonal. The following lemma formalizes this intuition under specific
structural and functional assumptions, enhanced with Cheeger analysis for within-task optimality.

Lemma B.2 (Expander Masks Provide Optimal Task Representation). Let Gk and Gj be indepen-
dent (n, d, λ)-expander graphs with λ ≤ 2

√
d− 1 and edge overlap J(Ek, Ej) ≤ δ. Consider the

single-layer linear model ϕℓ(x) = Aℓx for ℓ ∈ {k, j}, where Aℓ ∈ {0, 1}n×n is the adjacency
matrix. Assume x ∈ Rn satisfies ∥x∥ = 1 and x ⊥ 1. Then:

|⟨ϕk(x), ϕj(x)⟩|
∥ϕk(x)∥∥ϕj(x)∥

≤ δ · d+O

(
1√
n

)
with probability at least 1 − e−Ω(n) over the random expander ensemble. Moreover, for a task Tk,
the subnetwork defined by mask mk (adjacency matrix of Gk) with Cheeger constant h(Gk) ≥ h0

provides:

1. Maximal Information Flow: The minimum boundary size |∂S| ≥ h0|S| ensures efficient
gradient propagation during training.

2. Robust Feature Learning: The spectral gap d − λ = Ω(1) prevents over-smoothing and
preserves feature diversity.
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3. Optimal Connectivity: Among all d-regular graphs, expanders minimize the diameter D =
O(logn), enabling rapid information mixing.

Proof. Let As be the adjacency matrix of the shared edge subgraph Gs = (U, V,Ek ∩ Ej), with
|Es| ≤ δdn.

Assumption 1: The graphs Gk, Gj are random d-regular bipartite graphs with spectral gap 1− λ
d ≥

1− 2
√
d−1
d > 0.

Assumption 2: The input vectors x are unit-norm and satisfy the expander mixing lemma condi-
tions.

Assumption 6: The neural network training follows a message-passing dynamics where information
propagates along the graph structure.

Assumption 7: The loss function exhibits Lipschitz continuity with respect to parameter changes.

Decompose:
Ak = As +A′

k, Aj = As +A′
j .

Then:

⟨ϕk(x), ϕj(x)⟩ = x⊤A⊤
k Ajx

= x⊤A⊤
s Asx+ x⊤A⊤

s A
′
jx+ x⊤A′⊤

k Asx+ x⊤A′⊤
k A′

jx.

Term 1: |x⊤A⊤
s Asx| ≤ ∥As∥22 ≤ (∆s)

2, where ∆s is the maximum degree of Gs. By Chernoff
bounds, ∆s ≤ δd+O(

√
δd log n) = O(δd) w.h.p.

Terms 2 & 3: |x⊤A⊤
s A

′
jx| ≤ ∥As∥2∥A′

j∥2 = O(δd) by similar degree arguments.

Term 4: For the independent parts, by the expander mixing lemma and independence:

|x⊤A′⊤
k A′

jx| ≤
d

n
+O

(
1√
n

)
.

For the denominator, on 1⊥ we have:

∥ϕℓ(x)∥2 = x⊤A⊤
ℓ Aℓx ≥ (d− λ)2 ≥ (d− 2

√
d− 1)2 > 0.

Thus:
|⟨ϕk(x), ϕj(x)⟩|
∥ϕk(x)∥∥ϕj(x)∥

≤ O(δd) +O(1/
√
n)

Θ(1)
= δ · d+O

(
1√
n

)
.

By the expansion property, the mixing time of random walks on Gk is O(logn), ensuring that in-
formation from any neuron reaches all others in logarithmic time. This rapid mixing translates to
efficient gradient flow during backpropagation. The Cheeger constant bound h(Gk) ≥ h0 ensures
that during training, gradients cannot become trapped in small regions of the network. Each parame-
ter update affects a proportionally large boundary, facilitating coordinated learning across the entire
subnetwork. The diameter bound D = O(logn) follows from the expander property and ensures
that no two neurons are too far apart, preventing the vanishing gradient problem that plagues deep
or poorly connected architectures.

B.4 BOUNDING WITHIN-TASK PREDICTION (WP) ERROR VIA EWC

The WP error on past tasks, ϵWP , is a direct measure of catastrophic forgetting. EWC is designed
to bound this error by adding a quadratic penalty that discourages changes to parameters deemed
important for previous tasks. This analysis relies on a second-order Taylor expansion of the loss
function.

Let ∆LA = LA(θ
∗
B)−LA(θ

∗
A) be the increase in loss on a past task TA after training on a new task

TB . This requires the following assumptions:

• The parameters θ∗A are at a stable local minimum for task A, where the gradient ∇θLA(θ
∗
A)

is approximately zero.
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• The parameter change ∆θ = θ∗B−θ∗A is sufficiently small, making the second-order Taylor
expansion accurate.

Under these conditions, the forgetting is approximated by:

∆LA ≈ 1

2
(θ∗B − θ∗A)

THA(θ
∗
B − θ∗A),

where HA is the Hessian of the loss. EWC approximates the Hessian with the Fisher Information
Matrix (FIM), FA, which is computationally tractable and positive semi-definite:

∆LA ≈ 1

2
(θ∗B − θ∗A)

TFA(θ
∗
B − θ∗A).

By minimizing the total loss

L(θ) = LB(θ ⊙mB) +
λ

2
(θ − θ∗A)

TFA(θ − θ∗A),

the optimization process directly minimizes an upper bound on forgetting, preserving WP perfor-
mance.

Theorem B.3 (Forgetting Bound for Expander-EWC). Under the following assumptions:

1. The loss LB is convex and twice continuously differentiable.

2. The Fisher matrix FA is positive definite (full rank).

3. The mask mB creates sufficient parameter separation: ∥mB ⊙ (I −mA)∥2 ≥ α > 0.

4. The optimal parameters θ∗B satisfy the first-order optimality conditions.

The forgetting on task TA is bounded by:

∆LA ≤ 1

2λ2
∥∇LB(θ

∗
B ⊙mB)∥2F−1

A

+ β · J(mA,mB)

where ∥ · ∥F−1
A

is the Mahalanobis norm and β depends on the Lipschitz constant of LA.

Proof. The EWC-regularized objective is:

L(θ) = LB(θ ⊙mB) +
λ

2
(θ − θ∗A)

⊤FA(θ − θ∗A).

At optimum θ∗B , the gradient satisfies:

∇LB(θ
∗
B ⊙mB)⊙mB + λFA(θ

∗
B − θ∗A) = 0.

Assumption 5: FA is invertible (full rank). Then:

θ∗B − θ∗A = − 1

λ
F−1
A [∇LB(θ

∗
B ⊙mB)⊙mB ] .

Substituting into the second-order Taylor expansion:

∆LA ≈ 1

2
(θ∗B − θ∗A)

⊤FA(θ
∗
B − θ∗A)

=
1

2λ2
[∇LB(θ

∗
B ⊙mB)⊙mB ]

⊤
F−1
A [∇LB(θ

∗
B ⊙mB)⊙mB ] .

The mask overlap term β ·J(mA,mB) accounts for interference through the overlapping parameter
subspace, bounded by the Lipschitz continuity of LA.
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B.5 SYNERGY AND A UNIFIED FORGETTING BOUND

The framework’s strength lies in the synergy between structured sparsity and principled regulariza-
tion. This leads to our multi-task DLTH claim: EWC-guided training is the “transformation” that
turns structurally sound random masks into compatible winning tickets. The expander properties,
via high Cheeger constants, further amplify within-task efficiency, reducing the overall error bound.
Corollary B.4 (Multi-Task DLTH with Optimal Representations). Under Assumptions 1–7, and
additionally:

• Tasks arrive sequentially with expander masks satisfying J(mk,mj) ≤ δ for all k ̸= j.

• The base network has sufficient capacity: number of parameters ≫ T · d · n.

• The EWC regularization strength satisfies λ ≥ λ0 > 0.

expander masks provide the optimal substrate for multi-task learning because they simultaneously:

1. Maximize within-task efficiency via high Cheeger constants and rapid mixing,

2. Minimize cross-task interference via controlled overlap J(mk,mj) ≤ δ,

3. Enable compatibility through structured sparsity patterns.

The continual learning error after T tasks is bounded by:

ϵCL ≤ T ·
[
C1

λ2
+ C2 · δ −

C3

h0

]
+ ϵ0

where C1, C2, C3 are constants depending on task complexities, ϵ0 is the intrinsic task difficulty, and
the negative term −C3

h0
reflects the benefit of high expansion for within-task learning. The WP error

accumulates additively across tasks due to the quadratic penalty structure. From Theorem 1, each
task transition contributes at most C1

λ2 +C2 ·δ to forgetting. The TP error is bounded by the represen-
tation separation from Lemma 1, which scales with δ. The multi-task DLTH compatibility follows
from the capacity assumption: with sufficient overparameterization, the intersection of the winning
ticket subspaces (masked by mk) has dimension large enough to contain compatible solutions for
all tasks.

B.6 PRACTICAL IMPLICATIONS

This enhanced framework provides a rigorous justification for why expander masks outperform other
sparse patterns:

1. Random pruning may create isolated clusters (poor Cheeger constant).
2. Structured pruning (e.g., channel-wise) may lack the rapid mixing properties.
3. Expander masks provide a sort of best of both worlds: sufficiently connected for efficient

learning, sufficiently sparse for task separation.

The high Cheeger constant ensures that each task’s winning ticket is not just sparse, but optimally
connected for that specific task, explaining the empirical success of expander-based methods in
continual learning. This completes a comprehensive theoretical foundation that addresses both task
separation (TP error) and within-task efficiency (WP error) through the lens of expander graph
theory.
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