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ABSTRACT

The committor functions are central to investigating rare but important events in
molecular simulations. It is known that computing the committor function suffers
from the curse of dimensionality. Recently, using neural networks to estimate the
committor function has gained attention due to its potential for high-dimensional
problems. Training neural networks to approximate the committor function needs
to sample transition data from straightforward simulations of rare events, which
is very inefficient. The scarcity of transition data makes it challenging to approx-
imate the committor function. To address this problem, we propose an efficient
framework to generate data points in the transition state region that helps train neu-
ral networks to approximate the committor function. We design a Deep Adaptive
Sampling method for TRansition paths (DASTR), where deep generative mod-
els are employed to generate samples to capture the information of transitions
effectively. In particular, we treat a non-negative function in terms of the inte-
grand in the loss functional as an unnormalized probability density function and
approximate it with the deep generative model. The new samples from the deep
generative model are located in the region of the transition and fewer samples are
located in the other region, which provides effective samples for approximating
the committor function and significantly improves the accuracy. We demonstrate
the effectiveness of the proposed method with both simulations and realistic ex-
amples.

1 INTRODUCTION

Understanding transition events between metastates in a stochastic system plays a central role in
chemical reactions and statistical physics (Okuyama-Yoshida et al., 1998; E & Vanden-Eijnden,
2006; Berteotti et al., 2009; E & Vanden-Eijnden, 2010). The physical process can be formulated as
the following stochastic differential equation (SDE)

dXt = −∇V (Xt)dt+
√
2β−1dWt, (1)

where Xt ∈ Ω ⊂ Rd is the state of the system at time t, V : Ω 7→ R denotes a potential function, β
is the inverse temperature, and Wt is the standared d-dimensional Wiener process. For two disjoint
subsets of this stochastic system, we are interested in the transition rate, which can be characterized
by the commttor function. For two distinct metastable regions A,B ⊂ Ω, and A ∩B = ∅, denoting
by τω the first hitting time of a subset ω ⊂ Ω for a trajectory, the committor function q : Ω 7→ [0, 1] is
defined as q(x) = P (τB < τA|X0 = x), where P denotes the probability. The committor function
is a probability that a trajectory of SDE starting from x ∈ Ω first reaches B rather than A. By
definition, it is easy to verify that q(x) = 0 for x ∈ A and q(x) = 1 for x ∈ B. This committor
function provides the information of process of a transition, and it is governed by the following
partial differential equation (PDE) (Lai & Lu, 2018; Li et al., 2019)

−β−1∆q(x) +∇V (x) · ∇q(x) = 0, x ∈ Ω\(A ∪B),

q(x) = 0, x ∈ A,

q(x) = 1, x ∈ B,

∇q(x) · n = 0, x ∈ ∂Ω\(A ∪B),

(2)

where n is the outward unit normal vector of the boundary ∂Ω\(A ∪ B). Once the committor
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function q(x) is found, we can use it to extract the statistical information of reaction trajectories (E
& Vanden-Eijnden, 2006; 2010).

Obtaining the committor function q needs to solve the above high-dimensional PDE, which is com-
putationally infeasible for traditional grid-based numerical methods. Some efforts have been made
to employ deep neural networks to solve it (Khoo et al., 2019; Li et al., 2019; 2022). Training
deep neural networks to approximate the committor function requires data points, which is usually
achieved by sampling from the equilibrium distribution of the SDE. When the transition is rare, the
samples from the transition state region are difficult to obtain from the SDE. As shown in the litera-
ture (Rotskoff et al., 2022; Kang et al., 2024), if the data points are not generated from the transition
paths, then the trained neural network for approximating the committor function will have a large
generalization error. To address this problem, we propose a new framework called Deep Adaptive
Sampling on rare TRansition paths (DASTR) to train the deep neural network. More specifically,
we generate samples in the transition region using an iterative construction. To do this, we define
a proper sampling distribution using the current approximation of the committor function by neural
networks and the potential function in the SDE. This sampling distribution that reveals the transition
information is approximated by a deep generative model based on which new samples are gener-
ated and added to the training set. Once the training set is updated, the neural network model for
the approximation of the committer function is further trained for refinement. This procedure is
repeated to form the algorithm of deep adaptive sampling on rare transition paths. In other words,
we push the samples into regions where the transition is by constructing a proper sampling distribu-
tion step by step. In this way, effective samples are selected to train the model, resulting in a better
approximation of the committor function. The main contributions of this work are as follows.

• We propose a general framework, called deep adaptive sampling on rare transition paths,
for estimating the high-dimensional committor function.

• We demonstrate the efficiency of the proposed method with numerical studies, including
the alanine dipeptide problem.

2 RELATED WORK

We summarize the most related lines of this work.

Neural Networks for Committor Functions. Committor functions are represented by deep neu-
ral networks and can be trained by minimizing a variational loss functional. The training data points
for discretizing the variational loss are usually sampled from the Gibbs measure (Khoo et al., 2019;
Li et al., 2020; 2022), which needs to simulate the stochastic differential equations. This sampling
method is inefficient due to the scarcity of transition data, especially for realistic systems at low
temperatures. So, the committor function cannot be approximated well based on such a sampling
strategy. Modified sampling methods are proposed in (Li et al., 2019; Rotskoff et al., 2022; Hasyim
et al., 2022; Kang et al., 2024; Lin & Ren, 2024) to alleviate this issue, where a new probability mea-
sure for sampling is employed by modifying the potential function to produce enough data points in
the transition region. Our approach generalizes these sampling strategies.
Adaptive Sampling of Neural Network Solver. The basic idea of adaptive sampling involves
utilizing a non-negative error indicator, such as the residual square, to refine collocation points in
the training set. Sampling approaches (Gao & Wang, 2023) (e.g., Markov Chain Monte Carlo) or
deep generative models (Tang et al., 2023; Wang et al., 2024; Tang et al., 2024) are often invoked to
sample from the distribution induced by the error indicator. Typically, an additional deep generative
model (e.g., normalizing flow models) or a classical model (e.g., Gaussian mixture models (Gao
et al., 2023; Jiao et al., 2023)) for sampling is required. This work uses the variational formulation
and defines a novel indicator for adaptive sampling by incorporating the trait of committor functions.

3 NEURAL NETWORK SOLVER FOR COMMITTOR FUNCTIONS

The neural network approximation of partial differential equations involves minimizing a proper loss
functional, e.g., the residual loss (Sirignano & Spiliopoulos, 2018; Raissi et al., 2019; Karniadakis
et al., 2021) or the variational loss (E & Yu, 2018; Liao & Ming, 2021; Lu et al., 2021). For the
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committor function, we consider the variational loss (Li et al., 2019) instead of the residual loss. The
variational loss involves up to first-order derivatives of the committer function while the residual loss
needs to compute the second-order derivatives, in other words, computing the residual loss is more
expensive, especially for high dimensional problems (large d in equation 2). Let qθ(x) be a neural
network parameterized with θ, where the input of the neural network is the state variable x. One
can solve the following variational problem to approximate the committor function

min
θ

∫
Ω\(A∪B)

|∇qθ(x)|2e−βV (x)dx,

s.t. qθ(x) = 0,x ∈ A; qθ(x) = 1,x ∈ B.

(3)

The details of the derivation of equation 3 can be found in Appendix A.1. We then obtain the
following unconstrained optimization problem by adding a penalty term

min
θ

∫
Ω\(A∪B)

|∇qθ(x)|2e−βV (x)dx+λ

(∫
A

qθ(x)
2pA(x)dx+

∫
B

(1−qθ(x))2pB(x)dx
)
, (4)

where λ > 0 is a penalty parameter, pA and pB are two probability density functions on A and B
respectively.

To optimize the above variational problem, one needs to generate some random collocation points
from a proper probability distribution to estimate the integral in equation 3. One choice is to sample
collocation points from the Gibbs measure e−βV (x)/Z, where Z =

∫
Ω\(A∪B)

e−βV (x)dx is the
normalization constant, and this can be done by simulating the SDE defined in equation 1. However,
generating collocation points by the SDE is inefficient for approximating the committor function,
especially for chemical systems with low temperatures (or high energy barriers). This is because
the committor function focuses on the transition area while the samples generated by the Langevin
dynamics (equation 1) cluster around the metastable regions A and B. This implies that the samples
from the SDE may not include sufficient effective samples for training qθ. Hence, we need a strategy
to seek more effective samples to approximate the committor function, which will be presented in
the next section.

Now suppose that we have a set of collocation points S = {xi}Ni=1, where each xi ∈ Ω\(A ∪B) is
drawn from a certain probability distribution p, and two sets of collocation points SA = {xA,i}NA

i=1

and SB = {xB,i}NB
i=1, where each xA,i and each xB,i are drawn from pA and pB respectively. The

optimization problem 4 can be discretized as follows

min
θ

1

N

N∑
i=1

|∇qθ(xi)|2
e−βV (xi)

p(xi)
+ λ

(
1

NA

NA∑
i=1

qθ(xA,i)
2 +

1

NB

NB∑
i=1

(qθ(xB,i)− 1)2

)
. (5)

The key point here is to choose an effective set S to train qθ. In the next section, we will show
how to adaptively generate effective collocation points (a high-quality dataset) on rare transition
paths, based on which we expect to improve the accuracy of the approximate solution of equation 2.
Considering that the main difficulties come from the transition state region, we will focus on how to
choose S and assume that the integral on the boundary is well approximated by two prescribed sets
SA and SB . For simplicity, we will ignore the penalty term when discussing our method.

4 DEEP ADAPTIVE SAMPLING ON TRANSITION PATHS

Our goal is to adaptively generate more effective data points distributed in the region of the transition
state. This is achieved by designing a deep adaptive sampling method on the transition path.

Main Idea. Suppose that at k-th step, we have obtained the current approximate solution qθk
with

Sk. We want to use the information of qθk
and the potential function V to detect where the transition

area is, based on which we expect to generate some data points in the transition state region that can
effectively improve the discretization given by Sk. We then refine Sk to get Sk+1 for the next training
step. The more effective data points in the transition area we have, the more accurate solution qθ we
can obtain. To achieve this, we define a proper probability distribution for sample generation based
on the following observations: First, |∇xq|2 has a peak in the transition state region, implying that
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more data points should be introduced around the peak. Second, we may lower the energy barrier to
facilitate transitions between the metastable states, which can be done by adding a biased potential
Vbias to the original potential V (Li et al., 2019; Kang et al., 2024).

Sample Generation. Let pV,q be a probability density function (PDF) that is dependent on V and
qθ. Here, we give two choices for constructing pV,q . One choice is to set

pV,q(x) =
|∇qθ(x)|2e−βV (x)

C1
, (6)

where C1 is the normalization constant. That is, we treat the nonnegative integrand in equation 3
as an unnormalized probability density function. If there exists a high energy barrier, we can use a
biased potential Vbias to lower the energy barrier, which yields the following sampling distribution

pV,q(x) =
|∇xqθ(x)|2e−β(V (x)+Vbias(x))

C2
, (7)

where C2 is the corresponding normalization constant. The biased potential can be cho-
sen to be an umbrella potential (Kästner, 2011) or a potential derived from the metadynam-
ics (Bussi & Laio, 2020; Barducci et al., 2008). The above two sampling distributions can be

Figure 1: The schematic of DASTR for computing the committor function. Training a
deep neural network qθ to approximate the high-dimensional committor function must use a high-
quality dataset (i.e. data points from the transition area). The key point is to define a sampling
distribution pV,q dependent on the current approximate solution and the potential. Effective data
points in the transition area are generated by sampling from pV,q , which is achieved through
training a deep generative model.

applied to collective vari-
ables (the dimensionality
of collective variables is
smaller than that of x) to
achieve the dimension reduc-
tion, which will reduce the
computational complexity.
Suppose that there exist some
collective variables S(x) =
[s1(x), . . . , sm(x)]⊤ with
m ≪ d. We can re-
strict our attention to the
collective variables in equa-
tion 6 and equation 7, i.e.,
pV,q(x) = pV,q(S(x)). For
interested readers, we refer
to (Fiorin et al., 2013) for
more details of this method.
The collective variable
method will be applied to the
numerical study in section
5.3.

Now the question is how can
we generate samples from the
above sampling distribution?
Here, we use KRnet, which is
a type of flow-based generative models (Dinh et al., 2016; Kingma & Dhariwal, 2018), for PDF ap-
proximation and sample generation. We note that other deep generative models with exact likelihood
computation (Chen et al., 2018; Song et al., 2021) can also be used here. Let pKRnet(x; Θf ) be a
PDF model induced by KRnet with parameters Θf (Tang et al., 2020; Wan & Wei, 2022; Tang et al.,
2022; 2023). The PDF model pKRnet is induced by a bijection fKRnet with parameters Θf :

pKRnet(x; Θf ) = pZ(fKRnet(x)) |det∇xfKRnet| ,

where pZ is a prior PDF (e.g., the standard Gaussian distribution). We can approximate pV,q through
solving the optimization problem

Θ∗
f = argmin

Θf

DKL(pV,q(x)∥pKRnet(x; Θf )),

where DKL(·∥·) indicates the Kullback-Leibler (KL) divergence between two distributions.
Minimizing the KL divergence is equivalent to minimizing the cross entropy between pV,q

4
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and pKRnet (De Boer et al., 2005; Rubinstein & Kroese, 2013): H(pV,q, pKRnet) =
−
∫
Ω\(A∪B)

pV,q(x) log pKRnet(x; Θf )dx. Since the samples from pV,q are not available, one can
approximate the cross entropy using the importance sampling technique:

H(pV,q, pKRnet) ≈ − 1

N

N∑
i=1

pV,q(xi)

pKRnet(xi; Θ′
f )

log pKRnet(xi; Θf ), (8)

where pKRnet(xi; Θ
′
f ) is a known PDF model to efficiently generate the samples {xi}Ni=1 by the

KRnet, i.e.,
xi = f−1

KRnet(zi), (9)

with zi being sampled from the standard Gaussian distribution. We then minimize the discretized
cross entropy equation 8 to obtain an approximation of Θ∗

f .

DASTR Algorithm. Our strategy is stated as follows. Let S0 = {x0,i}N0
i=1 be a set of col-

location points that are sampled from a given distribution p0(x) (say the Gibbs distribution) in
Ω\(A ∪ B). Using S0, we minimize the empirical loss defined in equation 5 to obtain qθ1

.
With qθ1

, we minimize the cross entropy in equation 8 to get p1 = pKRnet(x; Θ
∗,(1)
f ). A new

set Sg1 = {x1,i}n1
i=1 with n1 ≤ N0 is generated by f−1

KRnet(zi; Θ
∗,(1)
f ) (see equation 9) to re-

fine the training set. To be more precise, we replace n1 points in S0 with Sg1 to get a new
set S1. Then we continue to update the approximate solution qθ1

using S1 as the training set.

Algorithm 1 DASTR
.
Input: Initial qθ0 , maximum stage number
Nadaptive, maximum epoch number Ne, batch
size m, initial training set S0 = {x0,i}N0

i=1.
for k = 0 : Nadaptive − 1 do

for i = 1 : Ne do
for l steps do

Sample m samples from Sk.
Update qθ(x) by descending the
stochastic gradient of the discrete vari-
ational loss (see equation 10).

end for
end for
for i = 1 : Ne do

for l steps do
Sample m samples from Sk.
Update pKRnet(x; Θf ) by de-
scending the stochastic gradient
of H(pV,q, pKRnet) (see equation 8).

end for
end for
Refine the training set: use pk+1 to get
Sk+1.

end for
Output: qθ

In general, at the k-stage, suppose that we have
nj samples Sgj = {xj,i}

nj

i=1 from pj for j =
1, . . . , k, where pj is the PDF model at the j-
th stage and it can be trained by letting pj−1 =
pKRnet(xi; Θ

′
f ) in equation 8. The training set

Sk at the k-th stage consists of xj,i. We use Sk
to obtain qθk+1

as

θk+1 = argmin
θ

k∑
j=0

1

nj

nj∑
i=1

αj |∇qθ(xj,i)|2
e−βV (xj,i)

pj(xj,i)

(10)
where qθ is initialized as qθk

, αj =

nj/
∑k

j=0 nj is a weight to balance the differ-
ent distributions pj , and n0 is the number of
points kept in S0 at the k-th stage. Starting
with pk = pKRnet(x; Θ

∗,(k)
f ), the density model

pKRnet(x; Θf ) is updated by equation 8 to get
pk+1. A new set Sgk+1 = {xk+1,i}

nk+1

i=1 of col-
location points is generated by equation 9. We
then use Sgk+1 to refine the training set to get
Sk+1. We repeat the above procedure to obtain
Algorithm 1 for the deep adaptive sampling on
transition paths. We call this method DASTR
for short. The main idea of our algorithm is also
illustrated in Figure 1.

5 NUMERICAL STUDY

We conduct three numerical experiments to demonstrate the effectiveness of the proposed method.
The first one is a 10-dimensional rugged Mueller potential problem, the second one is a 20-
dimensional standard Brownian motion problem, and the last one is the alanine dipeptide problem
with the dimension d = 66. The detailed settings of numerical experiments are provided in Ap-
pendix A.2.
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5.1 RUGGED MUELLER POTENTIAL

We consider the extended rugged Mueller potential embedded in the 10-dimensional space, which
is a well-known test problem in computational chemical physics (Li et al., 2019; 2022). The ex-
tended rugged Mueller potential is given by V (x) = Vrm(x1, x2) + 1/(2σ2)

∑10
i=3 x

2
i , where x =

[x1, x2, . . . , x10] and Vrm(x1, x2) is the rugged Mueller potential defined in [−1.5, 1]× [−0.5, 2]

Vrm(x1, x2) =

4∑
i=1

Die
ai(x1−ξi)

2+bi(x1−ξi)(x2−ηi)+ci(x2−ηi)
2

+ γsin(2kπx1)sin(2kπx2).

We set σ = 0.05 as in (Li et al., 2019), and the other parameters are set to be the same as in (Lai &
Lu, 2018). The inverse temperature is set to β = 1/10. In this test problem, the two metastable sets
A and B are two cylinders with centers [x1, x2] = [−0.558, 1.441] and [x1, x2] = [0.623, 0.028]
respectively and radius 0.1. In this setting, the solution of this 10-dimensional problem is the same as
that of the two-dimensional rugged Mueller potential, i.e., q(x) = qrm(x) (Li et al., 2019; 2022). So,
we can use the finite element method implemented in FEniCS (Alnæs et al., 2015; Logg et al., 2012)
to obtain a reference solution to evaluate the performance. For comparison, we also implement the
artificial temperature method (Li et al., 2019) as the baseline model. Here we define the L2 relative
error ∥qθ − qref∥2 / ∥qref∥2, where qθ and q denote two vectors whose elements are the function
values of qθ and qref at some grids respectively. The settings of neural networks and training details
can be found in Appendix A.2.1.

1.5 1.0 0.5 0.0 0.5 1.0
x1

0.5

0.0

0.5

1.0

1.5

2.0

x2

A

B

Sample Points
Test Points

(a) Samples from SDE.
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(b) Samples from SDE us-
ing the artificial temperature
method, β = 1/20.
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th stage.

(d) DASTR, samples at the 5-
th stage.
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15-th stage.

(f) DASTR, samples at the
30-th stage.

Figure 2: DASTR, samples for the 10-dimensional rugged Mueller potential problem. The red line
denotes the test points from the 1/2-isosurface (q ≈ 1/2) projected onto the x1-x2 plane.

Figure 2 shows the samples from different sampling strategies, where these samples are projected
onto the x1-x2 plane. Specifically, Figure 2a shows the samples generated by SDE defined in equa-
tion 1. It can be seen that the samples from SDE are located around the two metastable states A and
B, which is not able to provide effective samples to approximate the committor function. Figure 2b
shows the samples from SDE with the artificial temperature method. While more samples show up
in the transition state region compared with Figure 2a, there still does not exist sufficient information
in the dataset to capture the committor function well. Our method is able to provide effective sam-
ples in the transition area. As shown in Figures 2c-2f, the evolution of the training set with respect
to adaptivity iterations k = 2, 5, 15, 30 is presented, where we randomly select 5000 samples in the
training set for visualization. Obviously, such samples are distributed in the transition state region
(Ω\(A ∪B)), which is desired for computing the committor function.

Figure 3a shows the error behavior of different methods. In Figure 3b-3d, we compare the reference
solution qref obtained by the finite element method, the DASTR solution given by 4× 105 samples
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(d) The artificial tem-
perature method

Figure 3: Solutions, 10-dimensional rugged Mueller potential test problem.

and the approximate solution given by 4 × 105 samples with the artificial temperature method.
Figure 4 shows the relative errors with respect to different sample sizes. From Figure 4, it is seen that
the DASTR method is much more accurate than the method of sampling from dynamics. Due to the
difficulty of sampling in the transition state region using SDE with the artificial temperature method,

1 2 3 4
|S|

10 2

10 1

100

L2  
R

el
at

iv
e 

E
rr

or

×105

Artificial Temperature
DASTR

Figure 4: The error w.r.t. sample
size |S|.

the solution obtained through the artificial temperature method
fails to accurately capture the information of the committor func-
tion in the transition state region. To further investigate the perfor-
mance of the proposed method, in Table 1, we show the L2 relative
errors of neural networks with varying numbers of neurons subject
to different sample sizes. Here, we sample 12099 points near the
1/2-isosurface ( q(x) ≈ 0.5 ) to compute the relative error. Our
DASTR method is one order of magnitude more accurate than the
baseline method in all settings.

Table 1: 10-dimensional rugged Mueller potential test problem: errors for different settings of neural
networks and sampling strategies. We take 4 independent runs to compute the error statistics (mean
± standard deviation).

Number of Neurons in Hidden Layer

Sampling Method |S| 20 50 100

SDE with the
artificial temperature method

1 × 105 0.5446 ± 0.0724 0.4693 ± 0.0627 0.4023 ± 0.0819

2 × 105 0.3183 ± 0.0592 0.2677 ± 0.0708 0.3063 ± 0.0477

3 × 105 0.2717 ± 0.0487 0.2780 ± 0.0584 0.3955 ± 0.0311

4 × 105 0.3822 ± 0.0555 0.3019 ± 0.0649 0.3822 ± 0.1213

DASTR (this work)

1 × 105 0.0620 ± 0.0070 0.0602 ± 0.0113 0.0615 ± 0.0071

2 × 105 0.0498 ± 0.0102 0.0443 ± 0.0049 0.0310 ± 0.0024

3 × 105 0.0386 ± 0.0089 0.0412 ± 0.0091 0.0172 ± 0.0028

4 × 105 0.0371 ± 0.0056 0.0343 ± 0.0065 0.0206 ± 0.0052

5.2 STANDARD BROWNIAN MOTION

In this test problem, we consider the committor function under the standard Brownian motion (Hart-
mann et al., 2019; Nüsken & Richter, 2023). For a stochastic process (Xt)t≥0 ∈ Rd, which
is a standard Brownian motion starting at x ∈ Rd, that is, Xt = x + Wt, corresponding to
∇V (Xt) = 0 and β = 1/2 in equation 1. The two metastable sets A and B are defined as
A = {x ∈ Rd : ∥x∥2 < a}, B = {x ∈ Rd : ∥x∥2 > b} with b > a > 0. With these set-
tings, for d ≥ 3, there exists an analytical solution q(x) = (a2−∥x∥2−d

2 a2)/(a2− b2−da2). In this
test problem, we set d = 20 and a = 1, b = 2. The settings of neural networks and training details
can be found in Appendix A.2.2. Since the solution to this test problem cannot be projected onto the
low-dimensional space, we here compare different sampling methods by computing the L2 relative
error at a validation set with 5000 data points along a curve {(κ, . . . , κ)⊤ : κ ∈ [a/

√
d, b/

√
d]}

(Nüsken & Richter, 2023).

Figure 5 shows the results of the 20-dimensional standard Brownian motion test problem. Specifi-
cally, Figure 5a shows the solutions obtained by different sampling methods, where it can be seen
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that the DASTR solution is more accurate than those of other sampling strategies. Figure 5b shows
the behavior of relative errors during training, where DASTR performs better than the uniform sam-
pling strategy and SDE. Figure 5c shows the relative errors for the uniform sampling method, SDE,
and DASTR, where different numbers of samples are tested. From Figure 5c, it is clear that, as
the number of samples increases, the relative error of DASTR decreases more quickly than those of
SDE and the uniform sampling strategy.
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(a) Solutions, |S| = 2× 104.
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(b) The error evolution, |S| =
2× 104.
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(c) The error w.r.t. sample
size.

Figure 5: Solutions evaluated along a curve and the behavior of relative errors, 20-dimensional
standard Brownian motion test problem. The relative error is computed at the points along the curve
{(κ, . . . , κ)⊤ : κ ∈ [a/

√
d, b/

√
d]}.
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(a) Uniform samples.
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(b) Samples from SDE.
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(d) DASTR, k = 5.
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(f) DASTR, k = 30.

Figure 6: Histogram of the norm of samples, 20-dimensional test problem.

To see why DASTR works well, let us visualize the L2-norm of samples from different sampling
strategies. Figure 6 shows the histogram of the norm of samples for different sampling strategies.
From Figure 6a and Figure 6b, we can see that most of the samples fall into the interval where the
norm of samples is near 2. This means that it is difficult to generate samples in the transition state
region using the uniform sampling strategy or SDE. Indeed, in high-dimensional spaces, most of the
volume of an object concentrates around its surface (Vershynin, 2018; Wright & Ma, 2022). Hence,
using uniform samples or samples generated by SDE is inefficient for estimating the committor
function. Figures 6c, 6d, 6e, and 6f show the histogram of the norm of samples from DASTR.
These histograms imply that the samples from DASTR capture the information of transitions, which
improves the accuracy of estimating the committor function. In Table 2, we again present the L2

relative errors of neural networks with varying numbers of neurons subject to different sample sizes.
Our DASTR method is one order of magnitude more accurate than the baseline methods in most
settings.

5.3 ALANINE DIPEPTIDE

In this part, the isomerization process of the alanine dipeptide in vacuum at T = 300K is stud-
ied. This test problem is a benchmark in various literatures (Li et al., 2019; Kang et al., 2024).
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Table 2: 20-dimensional standard Brownian motion test problem: error for different settings of
neural networks and sampling strategies. We take 4 independent runs to compute the statistics of the
error (mean ± standard deviation).

Number of Neurons in Hidden Layer

Sampling Method |S| 20 50 100

Uniform

5 × 103 0.1767 ± 0.0240 0.1906 ± 0.0214 0.4555 ± 0.0557

1 × 104 0.1861 ± 0.0319 0.1760 ± 0.0492 0.1310 ± 0.0197

1.5 × 104 0.2125 ± 0.0220 0.2003 ± 0.0295 0.1454 ± 0.0609

2 × 104 0.1963 ± 0.0866 0.1611 ± 0.0227 0.1402 ± 0.0515

SDE

5 × 103 0.2127 ± 0.0802 0.2641 ± 0.0416 0.3696 ± 0.0633

1 × 104 0.2846 ± 0.0523 0.2606 ± 0.0343 0.1586 ± 0.0179

1.5 × 104 0.2861 ± 0.0177 0.1865 ± 0.0220 0.1706 ± 0.0434

2 × 104 0.2321 ± 0.0278 0.1864 ± 0.0254 0.1342 ± 0.0434

DASTR (this work)

5 × 103 0.0996 ± 0.0374 0.1073 ± 0.0128 0.0266 ± 0.1396

1 × 104 0.0835 ± 0.0215 0.0415 ± 0.0167 0.0410 ± 0.0106

1.5 × 104 0.0824 ± 0.0412 0.0197 ± 0.0045 0.0141 ± 0.0053

2 × 104 0.0227 ± 0.0051 0.0209 ± 0.0096 0.0114 ± 0.0021

C 7eq

．
 

修

t t

Figure 7: The two metastable states and two
transition states of the alanine dipeptide. C7eq :
(ϕ, ψ) ≈ (−85◦, 75◦) and Cax : (ϕ, ψ) ≈
(72◦,−75◦) are two metastable states, (a) :
(ϕ, ψ) ≈ (0◦,−65◦) and (b) : (ϕ, ψ) ≈
(130◦,−125◦) are two transition states.

The molecule we consider here consists of 22 atoms,
each of which has three coordinates. This means
that the dimension of the state variable is d = 66
in equation 2. There are two important dihedrals
related to their configurations: ϕ (C-N-CA-C) and
ψ (N-CA-C-N), i.e., the collective variables. The
two metastable conformers of the molecule are C7eq

and Cax located around (ϕ, ψ) = (−85◦, 75◦) and
(72◦,−75◦) respectively. More specifically, the two
metastable sets A and B are defined as (Li et al.,
2019): A = {x : ∥(ϕ(x), ψ(x))− C7eq∥2 < 10◦},
B = {x : ∥(ϕ(x), ψ(x))− Cax∥2 < 10◦}. In
Figure 7, the molecule structures of two metastable
states and two transition states are displayed.

The goal is to compute the committor function under
the CHARMM force filed (Jo et al., 2008; Brooks
et al., 2009; Lee et al., 2016). Due to the high energy barrier between the two metastable states A
and B, it is almost impossible for the molecule to cross this barrier from A to B. Consequently,
sampling in the transition state region is extremely challenging. Nevertheless, generating samples
in the transition area is crucial for training neural networks to approximate the committor function.
Moreover, for this realistic problem, we need to ensure that the samples from deep generative models
obey the molecular configuration, which makes this problem much more challenging to solve. To
handle such a tricky situation, we combine our DASTR method with the umbrella sampling method
(Kästner, 2011) and the collective variable method. Simply speaking, we use the proposed DASTR
method to generate the target collective variables used in the umbrella potential. The details of the
overall procedure can be found in Appendix A.2.3.

For this problem, it is intractable to obtain the reference solution with grid-based numerical methods.
To assess the performance of our method, we again consider those samples from the 1/2-isosurface.
More specifically, we first use umbrella sampling (see Appendix A.3) to sample 1 × 107 points.
After that, we use the trained model to compute qθ at these sample points and filter to keep points
on the set Γ := {x : |qθ(x) − 0.5|} ≤ 5 × 10−5. We then select 300 points in Γ and conduct 200
simulations of SDE for each point to obtain the corresponding trajectory. By counting the number
of times of these points first reachingB beforeA, we can estimate q for such points by the definition
of committor functions. If the trained model qθ is indeed a good approximation of the committor
function, then the probability distribution (in fact, we use the relative frequency to represent the true

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

probability) of reaching B before A should be close to a normal distribution with mean 0.5 (Chen
et al., 2023).
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(b) DASTR, k = 6.
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(d) Umbrella sampling, k = 3.
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(e) Umbrella sampling, k = 6.
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(f) Umbrella sampling, k = 9.

Figure 8: Samples during training, the alanine dipeptide test problem. We use DASTR to generate
target CVs in the transition state region; the umbrella sampling method is employed to generate
samples around the target CVs to refine the training set.

The results are shown in Figure 8 and Figure 9. In Figure 8a-8c, we show the candidate samples gen-
erated by DASTR. It is clear that these samples are located in the transition state region. To ensure
that the samples obey the molecular configuration, we use the umbrella sampling method to refine
them as shown in Figure 8d-8f. From Figure 9, it is seen that the approximate committor function
values cluster around 1/2, which indicates that our DASTR method provides a good approximation
on the 1/2-isosurface.
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(a) Metadynamics, 150
neurons.
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(b) DASTR, 80 neu-
rons.
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(c) DASTR, 100 neu-
rons.
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(d) DASTR, 150 neu-
rons.

Figure 9: The alanine dipeptide test problem: the histograms of the committor function values on
the 1/2-th isosurface of qθ with different numbers of neurons. qθ is a five-layer fully connected
neural network. The training details can be found in Appendix A.2.3.

6 CONCLUSION

We developed a novel deep adaptive sampling approach on rare transition paths (DASTR) for esti-
mating the high-dimensional committor function. With DASTR, the scarcity of effective data points
can be addressed, and the performance of neural network approximation for the high-dimensional
committor function is improved significantly.
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A APPENDIX

A.1 DERIVATION OF VARIATIONAL FORMULATION

Let u = q + γη be the result of a perturbation γη of q, where γ is small and η is a differentiable
function. Since q is the minimizer of equation 3, for any η, we have

0 =
1

2

∂

∂γ
|γ=0

∫
Ω\(A∪B)

|∇u(x)|2e−βV (x)dx

=

∫
Ω\(A∪B)

∇q(x) · ∇η(x)e−βV (x)dx

=

∫
Ω\(A∪B)

∇ ·
(
∇q(x)η(x)e−βV (x)

)
dx−

∫
Ω\(A∪B)

η(x)∇ ·
(
∇q(x)e−βV (x)

)
dx

= −
∫
Ω\(A∪B)

η(x)∇ ·
(
∇q(x)e−βV (x)

)
dx

= −
∫
Ω\(A∪B)

η(x)e−βV (x) (∆q(x)− β∇V (x) · ∇q(x)) dx,

(11)

where the fourth equality follows from the integration by parts and the Neumann condition in equa-
tion 2. Because equation 11 holds for any η, we have ∆q(x)− β∇V (x) · ∇q(x) = 0, which is the
desired PDE form of the committor function.

A.2 IMPLEMENTATION DETAILS

A.2.1 RUGGED MUELLER POTENTIAL

We choose a four-layer fully connected neural network qθ with 100 neurons to approximate the
solution, and the activation function of qθ in hidden layers is set to the hyperbolic tangent function.
The activation of the output layer is the sigmoid function. For KRnet, we take five blocks and eight
affine coupling layers in each block. A two-layer fully connected neural network with 120 neurons
is employed in each affine coupling layer. The activation function of KRnet is the rectified linear
unit (ReLU) function. To generate points in Ω\(A ∪ B), we use the KRnet to learn the sampling
distribution pV,q(x) = |∇qθ(x)|2e−βV (x) in the box [−1.5, 1] × [−0.5, 2] × [−1, 1]

d−2, and then
remove points within the region A and B. This can be done by adding a logistic transformation
layer (Tang et al., 2023) or a new coupling layer proposed in (Zeng et al., 2023). We set λ = 10
in equation 4. The learning rate for the ADAM optimizer is set to 0.0001, with a decay rate 0.8
applied every 200 epochs during training qθ, and the batch size is set to m = 5000. The numbers
of adaptivity iterations is set to Nadaptive = 30 when Ne = 50 in Algorithm 1. In this test problem,
we replace all the data points in the current training set with new samples.

It is difficult to sample in the transition region when directly running the simulation of SDE. We
implement the artificial temperature method as the baseline. More specifically, we increase the
temperature by setting β′ = 1/20 to obtain the modified SDE. This modified Langevin equation
is solved by the Euler-Maruyama scheme with the time step ∆t = 10−5. With this setting, the
data points are sampled from the trajectory of the modified Langevin equation. In this example, we
compare the results obtained from DASTR with those from the artificial temperature method.

A.2.2 STANDARD BROWNIAN MOTION

We choose a four-layer fully connected neural network qθ with 100 neurons to approximate the
solution, and the activation function of qθ is set to the square of the hyperbolic tangent function.
For KRnet, we take five blocks and eight affine coupling layers in each block. A two-layer fully
connected neural network with 120 neurons is employed in each affine coupling layer. The activation
function of KRnet is the rectified linear unit (ReLU) function. The learning rate for the ADAM
optimizer is set to 0.001, with a decay rate 0.8 applied every 200 epochs during training qθ. We set
the number of adaptivity iterations to Nadaptive = 30, with Ne = 50 training epochs per stage. The
batch size for training qθ is set to m = 1000 and for training the PDF model is set to m = 5000.
In the first stage, we generate N0 uniform samples from Ω\(A ∪ B) and N0/2 points each from
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∂A and ∂B. For the remaining stages, we select N0/2 points from the uniform samples and N0/2
points from the deep generative model. We set λ = 1000 in equation 4.

We use the deep generative model to approximate pV,q(x) = |∇qθ(x)|2e−βV (x), where the prob-
ability density function induced by the deep generative model is defined in the box [−2, 2]

d. To
ensure points in Ω\(A∪B), we just remove points within the region A and B generated by the deep
generative model. For comparison, we also use the SDE to generate data points to train qθ, where
the Euler-Maruyama scheme with the time step ∆t = 10−6 is applied to get the trajectory.

A.2.3 ALANINE DIPEPTIDE

In this test problem, we choose the dihedrals ϕ (with respect to C-N-CA-C), ψ (with respect to
N-CA-C-N) as the collective variables (CVs). For this real example, it is not suitable for using
the uniform samples as the initial training set, since uniform samples are not effective for solving
this high-dimensional (d = 66) problem and also do not obey the molecular configuration. We use
metadynamics to generate samples as the initial training set.

Metadynamics is an enhanced sampling technique to explore free energy landscapes of complex
systems. The idea of metadynamics is to add a history-dependent biased potential to the system to
discourage it from revisiting previously sampled states (Bussi & Laio, 2020; Barducci et al., 2008).
This is done by periodically depositing Gaussian potentials along the trajectory of the collective
variables (CVs). Mathematically, the Gaussian potential can be expressed as:

VG,t(x) =

t′<t∑
t′=0,τ,2τ,...

w exp

(
−

m∑
i=1

(Si(x)− Si(xt′))
2

2σ2
i

)
, (12)

wherew is the height of the Gaussian potential, σ is the width of the Gaussian potential,m is number
of CVs, and Si(xt) denotes the collective variables at time t. After adding the above Gaussian
potential, we generate samples using the modified potential:

Vmodified(x) = V (x) + VG,t(x),

where V (x) is the original potential. That is, the biased potential in equation 7 is the Gaussian
potential function VG,t. During the simulation, the Gaussian potential lowers the energy barrier,
allowing the system to explore more configurations of molecules. So, we can generate effective data
points as the initial training set by metadynamics for this alanine dipeptide problem.

We simulate the Langevin dynamics with the time step ∆t = 0.2 fs and a damping coefficient 1 ps−1.
One term of the Gaussian potential is added every 500 steps, with parameters w = 1.0 kJ/mol,
σ = 0.1 rad. We finally get a total of 10000 terms in equation 12. Samples are selected outside
the regions A and B, and system configurations are saved to conduct the importance sampling
step in equation 10. The simulation is conducted in OpenMM (Eastman et al., 2017), a molecular
dynamics simulation toolkit with high-performance implementation. Figure 10 shows the samples
from the original dynamics and metadynamics. From this figure, it is clear that using metadynamics
to generate initial data points is better since more samples are located in the transition region.

We choose a five-layer fully connected neural network qθ (with 80, 100, 150 neurons) to approximate
the solution, and the activation function of hidden layers is set to the hyperbolic tangent function.
The activation of the output layer is the sigmoid function. Here, we only use the deep generative
model to model the sampling distribution in terms of the collective variables ϕ and ψ. The trained
KRnet is used to generate S(x0) = [ϕ, ψ]⊤ in equation 13 (see Appendix A.3). For KRnet, we take
one block and six affine coupling layers in each block. A two-layer fully connected neural network
with 64 neurons is employed in each affine coupling layer. The activation function of KRnet is the
rectified linear unit (ReLU) function. The learning rate for the ADAM optimizer is set to 0.0001,
with a decay factor of 0.5 applied every 300 epochs. We set the batch sizem = 5000 andNe = 300.
The numbers of adaptivity iterations is set toNadaptive = 10. We sample 1.5×104 points inA andB
respectively to enforce the boundary condition in the training process for all stages. We set λ = 10
in equation 4.

We employ KRnet to learn the sampling distribution in equation 7. In the first stage, we train the
neural network qθ using 2 × 105 points sampled by metadynamics. Then we use these points to
train the PDF model induced by KRnet with support [−180◦, 180◦]

2, with the bias potential Vbias in
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Figure 10: Samples from the original dynamics and metadynamics.

equation 7 being the Gaussian potential VG,t defined in equation 12. In the rest of the stages, we
train the neural network qθ with 5×104 points sampled by umbrella sampling with the bias potential
VUS (see Appendix A.3) and 1.5× 105 points by metadynamics. We train the KRnet using the same
sample points as those of training qθ.

During the training procedure, we increase kus in equation 13 from 200 kJ/mol to 600 kJ/mol. We
sample 100 points for each target CVs in the umbrella sampling procedure. For comparison, we use
the solution obtained by training a neural network qθ with 150 neurons with 2× 105 points sampled
via metadynamics for 3000 epochs.

A.3 UMBRELLA SAMPLING

The umbrella sampling method is also an enhanced sampling technique. It introduces external bi-
ased potentials to pull the system out of local minima, thereby enabling a more uniform exploration
of the entire free energy surface. This method is particularly effective in calculating free energy dif-
ferences and studying reaction pathways in complex molecular processes. The umbrella sampling
method employs a series of biased simulations, dividing the reaction space of collective variables
into multiple overlapping windows, where each biased potential is applied in its corresponding win-
dow (Kästner, 2011). The umbrella potential is usually defined as:

VUS(x) =
1

2

m∑
i=1

kus(Si(x)− Si(x0))
2, (13)

where Si(x) represents the CVs with respect to x, m is the number of CVs, and kus is the force
constant. In this work, we focus on sampling in the final window, helping us effectively sample
the desired regions of CVs. Therefore, we perform a rapid iterative process of umbrella sampling to
transfer the CVs to the target region, and finally sample near the target CVs in the modified potential:

Vmodified(x) = V (x) + VUS(x),

where V is the original potential, and the Si(x0) in equation 13 is the target CVs generated by the
trained deep generative model.
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