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Abstract

Recent work using Rank-One Model Editing001
(ROME), a popular model editing method, has002
shown that there are certain facts that the al-003
gorithm is unable to edit without breaking the004
model. Such edits have previously been called005
disabling edits (Gupta et al., 2024a). These dis-006
abling edits cause immediate model collapse007
and limits the use of ROME for sequential edit-008
ing. In this paper, we show that disabling edits009
are an artifact of irregularities in the implemen-010
tation of ROME. With this paper, we provide011
a more stable implementation ROME, which012
we call r-ROME and show that model collapse013
is no longer observed when making large scale014
sequential edits with r-ROME, while further015
improving generalization and locality of model016
editing compared to the original implementa-017
tion of ROME. We also provide a detailed math-018
ematical explanation of the reason behind dis-019
abling edits.020

1 Introduction021

Large language models (LLMs) are expensive to022

train and the knowledge contained in these models023

gets obsolete with time. Model editing or knowl-024

edge editing (Yao et al., 2023) has recently come025

out as a popular method to update knowledge in026

large language models (LLMs). In this paper, we027

focus on one popular parameter-modifying model028

editing methods called ROME (Rank-One Model029

Editing) (Meng et al., 2022a).030

While a lot of model editing approaches perform031

well when making singular edits, editing multi-032

ple facts in a model still remains a challenge for033

parameter-modifying model editing methods. One034

way to make multiple edits to the same model035

is through sequential editing (Yao et al., 2023)036

- where we make a series of single edits to a model037

by modifying the parameters of the model after038

every edit. Recent works have started studying the039

effects of sequential editing and found that ROME040

Figure 1: A typical generation example after a disabling
edit is compared to a normal model edit using ROME.
The bold and underlined part in the text is input prompt.

(Meng et al., 2022a) was prone to a sudden model 041

collapse by a single edit (Gupta et al., 2024a; Yang 042

et al., 2024; Hu et al., 2024). This effect was first 043

observed in Gupta et al. (2024a) during sequential 044

editing. The collapse included complete loss of 045

downstream performance, inability to recall previ- 046

ously editing facts and loss of the ability to even get 047

edited. Such facts were named disabling edits by 048

Gupta et al. (2024a) and were later independently 049

observed by Yang et al. (2024); Hu et al. (2024). 050

Text generation examples for models post-collapse 051

from a disabling edit are shown in Figure 1. 052

Disabling edits are detrimental for knowledge 053

editing at scale. While a gradual model degrada- 054

tion is expected as we make sequential edits to a 055

model (Gupta et al., 2024a), disabling edits lead to 056

a sudden model collapse irrespective of when the 057

disabling fact is edited, making sequential editing 058

impossible. An example of this can be seen in Fig- 059

ure 3a, where instead of allowing gradual model 060

degradation when doing sequential editing like in 061

Figure 4, the presence of disabling edits lead to a 062

sudden and immediate model collapse. 063

In this paper, we aim to find the source of these 064

disabling edits. We first introduce two metrics for 065

identifying disabling edits - generation entropy and 066

the norm of matrix update. We plot edits made 067

by ROME along these two dimensions. We then 068

perform large scale editing of GPT2-XL (Radford 069
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DATASET IMPLEMENTATION
Efficacy Generalization Locality Fluency Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ GE ↑ S ↑

CF ORIGINAL 99.92 99.68 96.29 71.58 75.8 10.25 621.96 89.32

r-ROME 99.74 97.79 99.09 70.86 80.62 26.0 621.67 92.22

p-ROME 99.9 99.36 97.04 63.01 80.0 5.74 621.17 91.42

Table 1: We find that r-ROME outperforms the original implementation of ROME on standard model editing metrics
for GPT-J-6B with improved generalization and localization of edits and overall score. The above table is created
using a fixed random sample of 5000 edits from the CounterFact dataset (non-sequential).

et al., 2019) and GPT-J (Wang and Komatsuzaki,070

2021) using ROME on two popular model editing071

datasets - CounterFact (Meng et al., 2022a) and072

zsRE (Levy et al., 2017). We find that disabling073

edits only exist when editing facts from the Coun-074

terFact dataset and not the zsRE dataset. We then075

show that disabling edits in ROME were a result076

of irregularities in the implementation of ROME,077

and not an artifact of the optimization objective.078

Specifically, disabling edits were caused due to the079

assymetric usage of key-vectors in the update equa-080

tion of ROME. With this paper, we share our new081

ROME code-base and invite researchers to use it082

for model editing. Our implementation of ROME,083

which we call r-ROME, can be found here1.084

2 Background085

Facts are usually added in ROME using key-value086

format, where a key is the vector representation of087

a query-phrase and the value is the vector repre-088

sentation of the target object. For example, when089

adding a new fact - "The president of USA is John090

Cena", the query-phrase here is "The president of091

USA is" and the target object is "John Cena". The092

key-vector is defined by Meng et al. (2022a) is093

the activation of the first linear layer in the MLP094

targeted by ROME:095

k(l
∗)(x) = σ

(
W

(l∗)
fc γ

(
a
(l∗)
[x],i + h

(l∗−1)
[x],i

)
+ b

(l∗)
fc

)
(1)

096

Editing in ROME is done using a pair of vectors097

- (ke, ve) that represent a new fact being added. ke,098

also called the key-vector is a vector representation099

of the query-phrase, and ve, or the value-vector is100

the vector representation of the target object. The101

weights of the specific layer being edited in ROME102

are updated from W0 to Ŵ by inserting a new fact103

(ke, ve) using the following equation:104

1https://anonymous.4open.science/r/
rebuilding-rome-6DCC/README.md

Ŵ = W0 +∆

where ∆ = (ve −W0ke)
kTe C

−1
0

kTe C
−1
0 ke

(2) 105

where ∆ is the update to the current weight ma- 106

trix being edited such that the new fact (ke, ve) gets 107

incorporated. Additionally, each key-vector in ke 108

is not just the representation of a single prompt. 109

To enhance generalization, Meng et al. (2022a,b) 110

create the key-vector as an average representations 111

over the query-phrase with random prefixes. This is 112

done so that the represented key-vectors do not just 113

represent one way to phrase the query-phrase and 114

edits made using these representations can gener- 115

alize over different paraphrases of the edited facts. 116

The final key vector is found by averaging over N 117

random prefixes using the equation: 118

ke =
1

N

N∑
i=1

k(xi ⊕ p) (3) 119

Here k(xi ⊕ p) represents the key-vector corre- 120

sponding to a prefix xi being concatenated with 121

the original query-phrase p. Examples of prefixes 122

added in ROME can be seen in Table 2. In this 123

paper, we will refer to the averaged prefix represen- 124

tation of keys with ke, whereas when the represen- 125

tation just consists of the original prompt, we will 126

depict that with a superscript as koe . The following 127

equation explicitly differentiates between the two 128

mathematically: 129

koe = k(p) (4) 130

Evaluating Model Editing. Model editing is usu- 131

ally evaluated along three metrics - reliability, gen- 132

eralization and locality. Reliability measures if a 133

fact was successfully added in a model, generaliza- 134

tion measures if the edited fact is recalled through 135

2
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(a) ROME (b) r-ROME

(c) p-ROME

Figure 2: This figure shows the difference between the
original updates and our implementations for GPTJ (6B)
on the CounterFact dataset for 5k individual edits. Our
implementation shows much less potential disabling
edits indicated by lower |∆| values.

paraphrases of the prompt used to edit the fact,136

whereas locality measures if editing of one fact af-137

fects other facts stored inside a model. We follow138

standard model editing metrics proposed in Meng139

et al. (2022a). We refer the reader to Yao et al.140

(2023); Meng et al. (2022a) for a more comprehen-141

sive review of model editing metrics. Additionally,142

we also evaluated the model on downstream task143

performance as proposed by (Gupta et al., 2024a),144

which becomes especially important when making145

sequential edits to the same model. We evaluate146

the edited model on four tasks from the GLUE147

(Wang et al., 2018) benchmark - sentiment analysis148

(SST2), paraphrase detection (MRPC), natural lan-149

guage inference (NLI) and linguistic acceptability150

classification for doing downstream evaluation.151

3 Experiments152

3.1 Metrics to Identify Disabling Edits153

Disabling edits (Gupta et al., 2024a) are defined154

as singular knowledge edits that lead to sudden155

loss of ability to do downstream tasks or any kind156

of meaningful generation. Gupta et al. (2024a)157

also showed one way of identifying disabling edits158

was the unusually large norm of the update matrix.159

In other words, |∆| in equation 2 was unusually160

higher when compared to normal edits.2161

Figure 1 shows a typical example of model col-162

lapse where the model constantly repeats a single163

2|∆| = ∥∆∥2/N is the L2 norm of the update matrix
normalized by the number of elements in the update matrix.

word. The simplest metric to identify such a model 164

collapse is to calculate the entropy over the prob- 165

ability distribution of vocabulary elements of text 166

generated from the model. For this, a probability 167

distribution is calculated over the vocabulary of a 168

sample generation consisting of ten generations, 169

and is normalized by the vocabulary size to remove 170

the effect of the size of vocabulary. If the model 171

collapses as shown in Figure 1, we expected the 172

normalized entropy to be small and concentrated 173

around a handful of words. 174

3.2 Searching for Disabling Edits 175

The first set of experiments we do is to search for 176

disabling edits. We do this by making singular 177

model edits using ROME on GPT2-XL and GPT-J, 178

on two popular model editing datasets - Counter- 179

Fact and zsRE. We measure the above mentioned 180

metrics as shown in Figures 2 and 5. 181

We observe that edits made using the zsRE 182

dataset (Figure 5) are very consistent along the 183

two metrics, which means that the norm of the up- 184

date are consistently small and generation entropy 185

consistently high. The text generations made by 186

all post-edit models when editing zsRE are con- 187

sistently good and coherent, and do not have the 188

repetitiveness found in disabling edits. We thus 189

conclude that disabling edits are not present 190

when editing facts using the zsRE dataset. When 191

editing facts from the CounterFact dataset, we see 192

two clusters forming. We find that certain edits 193

have larger values of |∆| for ROME, indicating the 194

presence of disabling edits. This shows that edits 195

made using the CounterFact dataset can lead to 196

model collapse. 197

The difference in edits made by the two datasets 198

is due to one of the many reasons discussed in Ap- 199

pendix B, but it is hard to answer this question 200

without eliminating numerous confounding factors. 201

Such a study is beyond the scope of this short pa- 202

per, and hence we continue to focus on finding the 203

reasons behind disabling edits during model edit- 204

ing with ROME. Prior work Gupta et al. (2024a); 205

Yang et al. (2024); Hu et al. (2024) also observed 206

disabling edits only with the CounterFact dataset. 207

3.3 The Reason Behind Disabling Edits 208

After a long inquiry into the optimization objec- 209

tive of ROME, we found no reason for |∆| of cer- 210

tain edits to be so large. We then turned to the 211

implementation of ROME and found some inter- 212

esting discrepancies. Although seemingly benign, 213
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these discrepancies eventually lead to disabling ed-214

its. The core reason behind disabling edits is that215

instead of implementing equation 2 as mentioned216

in the paper, the authors of ROME (Meng et al.,217

2022a) implement the following equation for ∆:218

∆imp = (ve −W0k
o
e)

kTe C
−1
0

kTe C
−1
0 ko

e

(5)219

where ∆imp represents the actual implementa-220

tion of ∆ in the code by Meng et al. (2022a),221

with the difference highlighted in bold. The dif-222

ference in implementation and original derivation223

of ROME is the use of two different types of key224

vectors. Rather than using key-vectors that average225

over prefix prompts or ke (eq 3), the authors end226

up using koe (eq 4) is certain places in the update227

equation. We find that this asymmetry in usage228

of the key-vector causes disabling edits.229

To fix this issue, we create homogeneity in the230

usage of the key-vectors. We first use ke every-231

where in the update equation, an implementation232

we refer to as r-ROME. This is the correct imple-233

mentation of ROME as originally intended by the234

authors of Meng et al. (2022a). We then use keys235

generated using only the original prompts or koe236

homogeneously in the update equation, referred to237

as p-ROME. This also tests the hypothesis that238

using a key-vector averaged over random prefixes239

can create more generalizable edits.240

The first evidence of removal of disabling edits241

can be seen in Figure 2, where the |∆| of the up-242

dates are orders of magnitude smaller for r-ROME243

and p-ROME when compared to the original im-244

plementation. The overall results for independent245

edits are shown in Table 1. We find that edits made246

using r-ROME create more generalized edits at247

the slight expense of efficacy, resulting in a higher248

total edit score than the original implementation.249

p-ROME leads to increased efficacy and worse gen-250

eralization resulting in a slightly lower edit score,251

but still outperforms the original implementation.252

This shows that homogeneity in using key-vectors253

is crucial in making model edits.254

3.4 Sequential Editing with r-ROME255

A large part of the reason why disabling edits went256

unnoticed initially was because large scale edits257

were not performed on the same model and the258

model was not evaluated on downstream tasks. Re-259

cent works discovered disabling edits as a result260

performing sequential edits. Thus a final litmus test261

(a) Downstream Evaluation (b) |∆|

Figure 3: Sequential editing using original implementa-
tion of ROME on GPT-J (6B).

(a) Downstream Evaluation (b) |∆|

Figure 4: Sequential editing with r-ROME on GPT-J.

of r-ROME is to perform sequential editing. The 262

results for sequential editing can be seen in Figures 263

3 and 4. 264

Figure 3 shows a typical case of sequential edit- 265

ing using the original ROME code-base for GPT-J, 266

where the presence of a disabling edit leads to large 267

|∆| and leads to model collapse, as can be seen by 268

an immediate loss of downstream performance in 269

Figure 3a. With r-ROME (Figure 4), we see that 270

|∆| is orders of magnitude smaller and increases 271

smoothly, which allows the model to maintain its 272

general abilities and avoids model collapse. This 273

enables large scale sequential model editing with- 274

out loss of performance. Additional sequential 275

editing results using p-ROME and GPT-XL can be 276

found in section C. 277

4 Conclusion 278

In this paper, we show that model edits made us- 279

ing the original implementation of ROME lead to 280

unstable model edits eventually causing model col- 281

lapse. Our re-implementations of ROME, {r,p}- 282

ROME (code) prevents model collapse and leads 283

to stable and scalable model edits, thus making se- 284

quential editing possible using ROME. r-ROME 285

also provides better generalization and localization 286

of model edits when compared to the original im- 287

plementation. 288

4
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5 Limitations289

The focus of our paper was to identify reasons be-290

hind model collapse when using ROME and to291

mitigate such effects. While r-ROME does that292

and enables sequential editing with ROME, down-293

stream performance degradation and decreased sta-294

bility (as observed from increasing |∆|) still occurs295

at scale. This is an inherent limitation of ROME296

that we do not overcome and is beyond the scope297

of this paper.298
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A Related Work 350

Recent works (Gupta et al., 2024a; Yang et al., 351

2024; Hu et al., 2024) also observe the phe- 352

nomenon of disabling edits as a result of perform- 353

ing sequential edits with parametric methods such 354

as ROME and MEMIT (Meng et al., 2022b). The 355

sequential model editing task proves to be more 356

difficult for parametric editing methods at scale 357

due to model saturation and catastrophic forgetting. 358

Non-parametric methods such as SERAC (Mitchell 359

et al., 2022) bypass this limitation by maintaining 360

an external edit memory that removes the distinc- 361

tion between batched (simultaneous) and sequen- 362

tial edits. We primarily focus on single edits via 363

ROME in this paper, however, sequential editing 364

can be combined with batching for better scalability 365

(Gupta et al., 2024b). 366

B Differences between CounterFact and 367

zsRE Datasets 368

The observation made in the main paper about dis- 369

abling edits only occuring when editing with the 370

CounterFact dataset and not zsRE is quite surpris- 371

ing. It shows that there is a fundamental difference 372

in the updates made to the model when editing facts 373

using zsRE dataset and the CounterFact dataset. 374

The underlying reason for the difference in behav- 375

ior of post-edit model is likely related to the char- 376

acteristics of the two datasets. zsRE and Counter- 377

Fact dataset differ in three major ways. Firstly, the 378

CounterFact dataset contains counterfactual facts, 379

which means that lower probability facts are in- 380

serted into the model. The second difference in 381

the two datasets is that zsRE edits facts using a 382

question-answering prompt ("The president of 383

USA is"), whereas CounterFact prompts the model 384

in a text completion format ("The president of 385

USA is"). Thirdly, all facts in CounterFact are one- 386

word facts, are largely also tokenized into a single 387

token for GPT2-XL and GPT-J, whereas most facts 388

in zsRE contain multiple words. The difference 389

5

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax


Original Prompt The President of the USA is

Prefix Prompts The President of the USA is
Therefore, I like. The President of the USA is
He is a. The President of the USA is
Today is a sunnay day. The President of the USA is
On this day. The President of the USA is

Table 2: Table showing examples of random prefixes xi from 3 added to the original query-phrase.

(a) CounterFact - ROME (GPT-
J) (b) zsRE - ROME (GPT-J)

(c) CounterFact - ROME
(GPT2-XL) (d) zsRE - ROME (GPT2-XL)

Figure 5: This figure shows distribution of edits along
|Delta| and Normalized Entropy metric for edits using
the original ROME implementation on CounterFact and
zsRE dataset on GPT2-XL and GPT-J.

in edits made by the two datasets is possibly due390

to one of the underlying reasons, but it is hard to391

answer this question without eliminating numerous392

confounding factors. Such a study is beyond the393

scope of this paper, and hence we continue to focus394

on finding the reasons behind disabling edits during395

model editing with ROME. Prior work Gupta et al.396

(2024a); Yang et al. (2024); Hu et al. (2024) also397

observed disabling edits only with the CounterFact398

dataset.399

C Additional Sequential Editing400

Experiments401

The results for sequential edits on GPT-J are shown402

in Table 3. We indeed find that edits made us-403

ing r-ROME create more generalized edits at the404

slight expense of efficacy as in 1 but downstream405

performance is retained at scale. The original im-406

plementation’s downstream performance collapses407

almost immediately (3). p-ROME surprisingly re-408

tains downstream performance better than r-ROME409

(a) Downstream Evaluation (b) |∆|

Figure 6: Sequential editing with p-ROME on GPT-J
(6B).

at the tail end of the sequential edits. We suspect 410

this is related to the instability and noise the ran- 411

dom prefixes induce: r-ROME n-gram entropies 412

are more widely distributed than p-ROME (2). 413

We observe similar trends in the sequentuial edit- 414

ing scenario with GPT2-XL 1.5B as with GPT-J 415

6B. Notably, p-ROME performs worse in the down- 416

stream evaluations than r-ROME, we postulate that 417

this is due to the poorer generalization ability of 418

the smaller model; GPT-J’s generalization abilities 419

seem to bridge the downstream performance gap 420

between r-ROME and p-ROME. 421

(a) Downstream Evaluation (b) |∆|

Figure 7: Sequential editing using original implementa-
tion of ROME on GPT2-XL (1.5B) on the 5K Counter-
Fact samples.
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DATASET IMPLEMENTATION
Efficacy Generalization Locality Fluency Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ GE ↑ S ↑

CF ORIGINAL 62.43 11.23 59.12 7.49 52.05 −0.05 569.78 57.53

r-ROME 97.92 72.14 96.23 54.97 59.52 0.16 591.1 80.20

p-ROME 99.94 95.31 94.05 55.22 52.57 −1.54 504.18 75.64

Table 3: We find that our implementations (r-ROME & and p-ROME) retains edit performance significantly more
than the original implementation of ROME on standard model editing metrics for GPT-J-6B. We use the same 5k
CounterFact examples from as Table 1 sequentially.

(a) Downstream Evaluation (b) |∆|

Figure 8: Sequential editing with r-ROME on GPT2-XL
(1.5B) on the 5K CounterFact samples.

(a) Downstream Evaluation (b) |∆|

Figure 9: Sequential editing with p-ROME on GPT2-
XL (1.5B) on the 5K CounterFact samples.
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