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ABSTRACT

Assessing image aesthetics is a challenging computer vision task. One reason is
that aesthetic preference is highly subjective and may vary significantly among
people for certain images. Thus, it is important to properly model and quantify
such subjectivity, but there has not been much effort to resolve this issue. In
this paper, we propose a novel unified probabilistic framework that can model
and quantify subjective aesthetic preference based on the subjective logic. In this
framework, the rating distribution is modeled as a beta distribution, from which
the probabilities of being definitely pleasing, being definitely unpleasing, and be-
ing uncertain can be obtained. We use the probability of being uncertain to define
an intuitive metric of subjectivity. Furthermore, we present a method to learn deep
neural networks for prediction of image aesthetics, which is shown to be effective
in improving the performance of subjectivity prediction via experiments. We also
present an application scenario where the framework is beneficial for aesthetics-
based image recommendation.

1 INTRODUCTION
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Figure 1: Example images and their distributions of the rating scores given by raters. The two
images have similar mean rating scores (5.9167 and 5.9174 respectively) but different degrees of
subjectivity.

Image aesthetic assessment is to automatically evaluate the image in the aesthetic viewpoint, i.e.,
how aesthetically pleasing to human viewers an image will be. It is a challenging computer vision
task since it requires to imitate high-level aesthetic perception of humans, but it can be useful in many
applications including image search and retrieval, recommender systems, image enhancement, etc.

In order to obtain the aesthetic ground truth of an image, it is usual to ask a group of raters to
provide aesthetic scores for the image. In the binary classification task, the image is considered as
aesthetically pleasing if the mean score is higher than a threshold, and as unpleasing otherwise. It
is also possible to set a regression task where the mean rating score is predicted. However, these
tasks do not consider the diversity in the raters’ opinions. In Fig. 1, two example images and their
distributions of the rating scores from raters are shown, which are from the AVA dataset (Murray
et al., 2012). The two images have similar mean scores (about 5.92), so that they have the same
target mean rating score for mean rating regression and the same class label for binary classification.
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However, these do not capture the different levels of diversity in the raters’ opinions between the
two cases. While the distribution of ratings in Fig. 1a is concentrated around the mean score, that
in Fig. 1b is spread widely over the whole score range. Thus, in the case of Fig. 1b, the results of
the mean rating regression and binary classification may be disagreed by a significant proportion of
users.

Therefore, it is necessary to consider subjectivity in aesthetic assessment. However, only a limited
number of existing studies have dealt with the issue of subjectivity. In particular, the problem of
quantifying the level of subjectivity still remains unanswered. A straightforward way is to compute
the standard deviation (STD) (or variance) of the rating scores. However, it has an issue in terms
of interpretability because it does not have an upper limit and the meaning of its scale is unclear.
Similar metrics exist, such as mean absolute deviation around median (Kang et al., 2019), which
suffer from the same problem.

In this paper, we propose a novel unified probabilistic framework for modeling and quantifying the
subjectivity of image aesthetics based on the subjective logic (Jøsang, 2016). In this framework,
the rating distribution of an image is modeled as a beta distribution, from which the probabilities of
being definitely pleasing, being definitely unpleasing, and being uncertain can be obtained simulta-
neously. In particular, the probability of being uncertain defines an intuitive metric of subjectivity,
named aesthetic uncertainty. Unlike the existing subjectivity metrics, it is a probability measure,
which can be easily interpreted. Furthermore, we present a method to train deep neural networks for
effective prediction of the subjectivity metrics. We also present an application scenario where the
framework is beneficial for aesthetics-based image recommendation.

2 RELATED WORK

2.1 IMAGE AESTHETIC ASSESSMENT

In literature, three tasks have been mainly considered for automatic aesthetic assessment of images:
binary classification, mean score regression, and rating distribution prediction. The binary classi-
fication task distinguishing pleasing vs. unpleasing images has been considered most popularly.
There exist several methods, from those using handcrafted features (Li & Chen, 2009; Mavridaki &
Mezaris, 2015; Sun et al., 2018) to deep learning-based methods (Lu et al., 2014; Mai et al., 2016;
Liu et al., 2019; Sheng et al., 2020). To obtain more informative results than binary class informa-
tion, the mean rating regression task has been addressed (Zeng et al., 2019; Lee & Kim, 2019; Ke
et al., 2021). Prediction of the whole score distribution has been also considered (Talebi & Milanfar,
2018; Chen et al., 2020; Ching et al., 2020; She et al., 2021), which is the most challenging but has
potential to provide the most comprehensive information regarding the aesthetic characteristics of
the given image. In this paper, we consider all these tasks and also the subjectivity regression task.

2.2 SUBJECTIVITY OF IMAGE AESTHETICS

Subjectivity is a clearly distinguished issue in image aesthetics compared to other image-based prob-
lems such as object classification. While the class of an object in an image can be objectively
determined, subjective judgement is involved in image aesthetics, and thus an image preferred by
certain viewers is not necessarily pleasing to some other viewers. Park & Zhang (2015) modeled
the human aesthetic evaluation process by a dynamic system and showed that the response time for
aesthetic evaluation of an image is related to the subjectivity level of the image in terms of STD.
Kim et al. (2020) analyzed the relationship between subjectivity (expressed by STD) and user com-
ments, which showed that several factors such as unusualness and coexistence of aesthetic merits
and demerits are involved in determining the level of subjectivity of an image. There also exist
studies suggesting personalized image aesthetic assessment techniques that reflect the information
of a specific user (Ren et al., 2017; Wang et al., 2018; Li et al., 2019; Lee & Kim, 2019; Zhu et al.,
2020; Lv et al., 2021; Yang et al., 2022).

The rating distribution itself can give the information regarding subjectivity (as in Fig. 1) but only
implicitly (Kang et al., 2019). Therefore, there is a need to explicitly quantify subjectivity as a scalar
value. However, there is not much progress in this research direction. STD has been mostly used
(Talebi & Milanfar, 2018; Jang & Lee, 2021). Kang et al. (2019) defined additional subjectivity
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Figure 2: Image aesthetics via the subjectivity modeling. The fitted beta distributions and the corre-
sponding triples of (b, d, u) on the equilateral triangle are shown.

metrics including the mean absolute deviation around the median (MAD), distance to uniform dis-
tribution (DUD), and distance from the maximum entropy distribution (MED). However, all these
metrics have a limitation in interpretability because they have neither upper limits nor interpretable
scales (except 0). Our work addresses this issue and proposes an intuitive metric of subjectivity.

3 PROPOSED METHOD FOR SUBJECTIVITY MODELING

The proposed unified framework is based on the subjective logic (Jøsang, 2016). The subjective
logic is a probabilistic reasoning for modeling subjective opinions involving uncertainty. An aes-
thetic rating chosen from a range of scores (e.g., 1 to 10) is a multinomial opinion. However, if the
rating scale is normalized between 0 and 1, the rating can be considered as a binomial opinion indi-
cating the subjective belief about aesthetic pleasingness of the image. Then, this binomial opinion
is represented by three components (Jøsang, 2016): b (belief mass), d (disbelief mass), and u (un-
certainty mass), which correspond to the probabilities of being definitely pleasing, being definitely
unpleasing, and being uncertain, respectively. These components have values between 0 and 1, and
satisfy b + d + u = 1. As a result, the aesthetics of an image can be represented as a point on a
equilateral triangle as shown in Fig. 2b.

The binomial opinion can be modeled by a beta distribution whose probability density function
(PDF) is given by

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1, (1)

where 0 ≤ x ≤ 1, α and β are shape parameters, and B(α, β) is a normalization constant ensuring∫ 1

0
f(x;α, β)dx = 1. When the rating distribution of an image is given, a beta distribution is fitted

to the distribution by finding the optimal values of α and β that minimize the difference (e.g., earth
movers’ distance (EMD)) between the given and fitted distributions.

Finally, the three probabilities (b, d, and u) can be obtained from the fitted values of α and β as
follows (Jøsang, 2016):

b =
α− 1

α+ β
, d =

β − 1

α+ β
, u =

2

α+ β
. (2)

Fig. 2 shows examples of fitted beta distributions and their representations in the equilateral triangle
of b, d, and u. The image corresponding to the red-colored distribution in Fig. 2a would be consid-
ered as aesthetically pleasing by most people, which is reflected in the large value of b and the small
value of u in Fig. 2b. The blue-colored case in Fig. 2a is judged to have an intermediate level of
aesthetics without much disagreement among people, which is represented by the small value of u
and the similar values of b and d in Fig. 2b. The green-colored case would be classified as pleasing
if binary classification is performed, but it involves high subjectivity; thus, u appears to be large
while b > d.
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Figure 3: Examples of unimodal and multimodal aesthetic rating distributions (after score normal-
ization) and the fitted beta distributions.
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Figure 4: Schematic diagram of the losses used in the proposed simultaneous learning. The learned
model predicts both the rating distribution and the shape parameters of the fitted beta distribution,
from which L1 and L2 are computed, respectively. The predicted shape parameters are used for
conversion to a rating distribution, for which L3 is computed. The total loss is a weighted sum of
L1, L2, and L3.

The beta distribution is unimodal, while an original rating distribution may be multimodal. An ex-
ample case is shown in Fig. 3b, along with the fitted beta distribution. For the images in the AVA
dataset (Murray et al., 2012) used in our experiments, we conduct the dip test of unimodality (Har-
tigan & Hartigan, 1985) and find that 94.56% of the images have unimodal distributions, whereas
only 5.14% and 0.30% are bimodal and trimodal, respectively. Note that some of the multimodal
distributions may be due to noise in the ratings, which can be reduced by the unimodal modeling.
Thus, we can say that fitting to beta distributions is reasonable.

3.1 AESTHETIC UNCERTAINTY (AESU)

We define a new metric quantifying the level of subjectivity, called aesthetic subjectivity (AesU),
by u obtained from the subjectivity modeling. It has several advantages compared to the existing
metrics. Since AesU is a probability within [0, 1], one can intuitively grasp the level of subjectivity,
whereas the scales of the existing metrics are not well defined and thus not sufficiently intuitive. In
addition, AesU can be interpreted together with the other two probabilities (b and u) as discussed in
Fig. 2b, which is difficult with the mean and STD (or, MAD, DUD, MED) of ratings.
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4 PREDICTING IMAGE AESTHETICS

Based on our aesthetic modeling framework, we propose a method to train neural networks for pre-
diction of image aesthetics, called simultaneous learning. We aim to obtain the rating distribution
from a trained neural network, so that we can perform any of the binary classification of the mean
rating, mean rating regression, subjectivity regression, and rating distribution prediction. For this,
it is sufficient to make the neural network predict α and β of the fitted beta distribution. Our pre-
liminary experiment showed that this approach improves the performance of subjectivity regression
compared to the conventional approach where the rating distribution is predicted, but the perfor-
mance of the other tasks is lowered instead.

To solve this problem, we design the neural network model so as to predict both the rating dis-
tribution and the shape parameters of the fitted beta distribution. For training of the model, we
formulate three losses, L1, L2, and L3 (Fig. 4). First, L1 is calculated between the ground truth
rating distribution (RT ) and the predicted distribution (RP ) in terms of EMD, i.e.,

L1 = EMD(RP , RT ). (3)
Second, L2 is the root mean squared log error (RMSLE) between the ground truth shape parameters
(i.e., the shape parameters of the beta distribution fitted to the ground truth rating distribution) (BT )
and the predicted shape parameters (BP ):

L2 = RMSLE(BP , BT ). (4)
Here, RMSLE is used instead of mean squared error (MSE) or root mean squared error (RMSE)
in order to effectively handle the shape parameters that become larger by orders of magnitude oc-
casionally for some images. Third, the predicted shape parameters BP are used to build a rating
distribution, which is compared to the predicted rating distribution RP :

L3 = EMD(RP , B2R(BP )), (5)
where B2R(BP ) represents the process of converting BP to a rating distribution. This loss reduces
the discrepancy between the two sets of model outputs, i.e., the predicted distribution and the beta
distribution described by the predicted shape parameters. Finally, the total loss for our simultaneous
learning is given by a weighted sum of the three losses, i.e.,

L = w1 × L1 + w2 × wb × L2 + w3 × L3, (6)
where w1, w2, and w3 are the weights for the three losses, respectively, with w1 + w2 + w3 = 1,
and wb is used to compensate for the different scales of EMD and RMSLE.

5 EXPERIMENTS

5.1 DATASET

We use the AVA dataset (Murray et al., 2012). It contains photos and their aesthetic ratings from
challenges of DPChallenge1. The dataset is composed of 256,000 images. 236,000 images are for
training and 20,000 are for test.

5.2 BACKBONE MODELS

We use popular generic CNN models and a latest image aesthetic assessment model as backbone
models for our experiments. The former includes VGG16 (Simonyan & Zisserman, 2015), ResNet-
50 (He et al., 2016), and ConvNeXT-T (Liu et al., 2022), and the latter corresponds to the hierarchical
layout-aware graph convolutional network (HLAGCN) (She et al., 2021). HLAGCN models the
complex relations among interesting regions in the input image using a graph convolutional network.

5.3 APPROACHES

In the proposed method using the simultaneous learning, a model produces 12 output values (ten
for a rating distribution and two for the shape parameters of a beta distribution). For comparison,
we employ the conventional approach that predicts only the rating distribution (Talebi & Milanfar,
2018; Chen et al., 2020; Ching et al., 2020; She et al., 2021).

1http://www.dpchallenge.com
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Table 1: Results of subjectivity regression. The best and the second best cases are marked with bold
faces and underlines, respectively.

Approach Backbone Performance measure STD MAD MED DUD AesU

Conventional
(rating distribution)

VGG16

PLCC ↑

0.2314 0.2041 0.3065 0.3188 0.2231
ResNet50 0.2653 0.2539 0.3334 0.3627 0.2483

ConvNeXT-T 0.2930 0.2898 0.3643 0.3900 0.2750
HLAGCN 0.2399 0.1896 0.3347 0.3784 0.1638

Proposed
(simultaneous)

VGG16 0.2795 0.2727 0.3256 0.3320 0.2731
ResNet50 0.3148 0.3056 0.3665 0.3838 0.3120

ConvNeXT-T 0.3295 0.3338 0.3899 0.4105 0.3331
HLAGCN 0.3318 0.3194 0.3854 0.3918 0.3265

Conventional
(rating distribution)

VGG16

SROCC ↑

0.2283 0.2031 0.2925 0.2736 0.2311
ResNet50 0.2582 0.2523 0.3148 0.3175 0.2527

ConvNeXT-T 0.2849 0.2810 0.3419 0.3425 0.2764
HLAGCN 0.2829 0.2737 0.3402 0.3393 0.2745

Proposed
(simultaneous)

VGG16 0.2717 0.2701 0.3118 0.2939 0.2762
ResNet50 0.3029 0.2994 0.3451 0.3400 0.3081

ConvNeXT-T 0.3164 0.3261 0.3639 0.3601 0.3277
HLAGCN 0.3210 0.3136 0.3647 0.3519 0.3241

Conventional
(rating distribution)

VGG16

MAE ↓

0.1551 0.1531 0.0537 0.0638 0.0345
ResNet50 0.1513 0.1492 0.0533 0.0609 0.0343

ConvNeXT-T 0.1544 0.1499 0.0526 0.0595 0.0343
HLAGCN 0.1631 0.1555 0.0536 0.0622 0.0351

Proposed
(simultaneous)

VGG16 0.1565 0.1462 0.0533 0.0606 0.0340
ResNet50 0.1608 0.1439 0.0526 0.0565 0.0336

ConvNeXT-T 0.1550 0.1431 0.0520 0.0572 0.0333
HLAGCN 0.1544 0.1436 0.0520 0.0575 0.0333

Table 2: Results of binary classification, mean rating regression, and rating distribution prediction.
The best and the second best cases are marked with bold faces and underlines, respectively.

Approach Backbone
Binary classif. Mean rating Distribution

Accuracy ↑ PLCC ↑ SROCC ↑ MAE ↓ EMD ↓ KLD ↓

Conventional
(rating distribution)

VGG16 0.7818 0.6632 0.6582 0.4470 0.0484 0.0936
ResNet50 0.7936 0.6970 0.6931 0.4282 0.0465 0.0885

ConvNeXT-T 0.7942 0.7225 0.7207 0.4196 0.0456 0.0841
HLAGCN 0.7965 0.7031 0.7104 0.4163 0.0459 0.0825

Proposed
(simultaneous)

VGG16 0.7757 0.6513 0.6443 0.4536 0.0497 0.1044
ResNet50 0.7933 0.6931 0.6905 0.4250 0.0468 0.0963

ConvNeXT-T 0.7957 0.7156 0.7110 0.4151 0.0462 0.0891
HLAGCN 0.7942 0.7077 0.7054 0.4158 0.0458 0.0876

5.4 PERFORMANCE MEASURES

We consider various tasks of image aesthetic assessment, and use appropriate performance measures
for each task by following the previous studies (Talebi & Milanfar, 2018; Kang et al., 2019).

Our simultaneous learning method produces both a predicted rating distribution and a predicted
beta distribution (in the form of its shape parameters). Thus, both can be used to measure the
performance of the tasks. In our experiments, the predicted rating distribution is used for binary
classification, mean rating regression, and rating distribution prediction. For subjectivity regression,
the predicted subjectivity metrics are computed from the predicted beta distribution, which yields
better performance. The predicted AesU is obtained directly from the predicted shape parameters
using Eq. (2). In the case of the conventional approach predicting only the rating distribution,
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the existing subjectivity metrics are computed using the predicted rating distribution and AesU is
obtained after fitting to a beta distribution.

For the binary classification task, the classification accuracy is used. The threshold of the two
classes is set to a score of 5 in the scale of 1 to 10 as in (Lu et al., 2014; Mai et al., 2016; Liu
et al., 2019; Sheng et al., 2020). The performance of mean rating regression is measured in terms
of mean absolute error (MAE), Pearson linear correlation coefficient (PLCC), and Spearman rank-
order correlation coefficient (SROCC) between the ground truth mean ratings and the predicted
mean ratings. The same measures are also used for the subjectivity regression task. For distribution
prediction, we use EMD and the Kullback-Leibler divergence (KLD) between the ground truth and
predicted distributions.

5.5 IMPLEMENTATION DETAILS

All experiments are conducted on a PC that has AMD Ryzen 5 5600X CPU, 128GB of RAM,
NVIDIA Geforce RTX 3090 24GB GPU, and Microsoft Windows 10. We use Python 3.9.7, PyTorch
1.10.1, CUDA 11.3, and cuDNN 8.0.

We divide the training dataset further into 223,000 training images and 13,000 validation images.
The images are resized to 256× 256 (336× 336 for HLAGCN) and randomly cropped to 224× 224
(300× 300 for HLAGCN). and a random horizontal flip is applied for data augmentations.

In the simultaneous learning, we set w1 = 0.4, w2 = 0.5, and w3 = 0.1, indicating the relative
importance of the three losses, and wb = 0.2.

To train the models, we use the SGD optimization with a batch size of 48, a Nesterov momentum
paramenter of 0.9 and a weight decay parameter of 5 × 10−4. The learning rate is initially set to
5 × 10−3 and reduced by 5% every 10 epochs. The models are trained for 100 epochs, but if the
validation loss does not decrease for 10 epochs, the learning is stopped.

5.6 RESULTS

Table 1 shows the results of the subjectivity regression task for STD, MAD, MED, DUD, and AesU.
The proposed simultaneous learning approach shows improved performance compared to the con-
ventional approach in all cases except that the proposed approach yields the second best performance
in the case of STD with MAE. When the backbone models are compared, ConvNeXT-T performs
the best, and HLAGCN also performs similarly well. For ConvNeXT-T, the improvement by the pro-
posed approach over the conventional one is about 5% on average, with the maximum improvement
by about 21% for AesU in terms of PLCC. These results demonstrate that the proposed simultane-
ous learning approach using the three losses is effective to learn the subjectivity of image aesthetics.
In particular, the proposed subjectivity modeling plays a key role by reducing the noise in the raw
rating distribution.

Table 2 summarizes the results of the other tasks, i.e., binary classification, mean rating regression,
and rating distribution prediction. The proposed approach shows slightly lowered performance than
the conventional approach but only marginally. The performance decrease by the proposed approach
for ConvNeXT-T is only 1.4% on average. Note that this performance decrease is because we tune
our approach to maximize the performance of the subjectivity regression task.

5.7 ABLATION STUDY

We further conduct additional experiments with the best-performing model (ConvNeXT-T) to exam-
ine the effectiveness of the simultaneous learning and the way to compute the loss of the predicted
beta distribution.

5.7.1 IMPACT OF SIMULTANEOUS LEARNING

In our simultaneous learning method, the neural network models predict both the rating distribution
and the shape parameters of the beta distribution. In the conventional approach, only the rating dis-
tribution is predicted. We additionally test the case where the models predicts only the shape param-
eters of the beta distribution. The results are shown in Table 3. Predicting only the beta distribution
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Table 3: Comparison of the cases where the neural network models output either a predicted rating
distribution or a predicted beta distribution (in the form of shape parameters), or both (proposed si-
multaneous learning). The best and the second best cases are marked with bold faces and underlines,
respectively.

Approach

Bi-
clas. Mean rating Dist.

Subjectivity

STD MAD MED DUD AesU

Acc. LCC MAE EMD LCC MAE LCC MAE LCC MAE LCC MAE LCC MAE

Rating 0.794 0.723 0.419 0.046 0.293 0.154 0.290 0.150 0.364 0.053 0.390 0.060 0.275 0.034
Beta 0.782 0.682 0.439 0.050 0.339 0.152 0.332 0.144 0.383 0.052 0.377 0.060 0.336 0.033
Both 0.796 0.716 0.415 0.046 0.330 0.155 0.334 0.143 0.390 0.052 0.411 0.057 0.333 0.033

Table 4: Comparison of the two ways measuring L2 (without or with fitting to beta distributions) in
our simultaneous learning method. The better case is highlighted.

Fitting

Binary
classif. Mean rating Dist.

Subjectivity

STD MAD MED DUD AesU

Accuracy LCC MAE EMD LCC MAE LCC MAE LCC MAE LCC MAE LCC MAE

w/ 0.796 0.716 0.415 0.046 0.330 0.155 0.334 0.143 0.390 0.052 0.411 0.057 0.333 0.033
w/o 0.797 0.712 0.415 0.046 0.283 0.163 0.277 0.145 0.352 0.053 0.403 0.056 0.288 0.034

loses details of the original rating distribution, resulting in a lowered EMD in distribution prediction.
However, the case of predicting the beta distribution outperforms the case of predicting the rating
distribution in subjectivity regression, indicating the usefulness of our subjectivity modeling using
beta distributions. Overall, the proposed simultaneous learning shows the best performance among
the three cases.

5.7.2 IMPACT OF FITTING TO BETA DISTRIBUTION

In our loss function, L2 is measured between the beta distribution fitted to the ground truth rating
distribution and the predicted beta distribution (using their shape parameters). Instead, it can be also
measured without fitting, i.e., between the ground truth rating distribution and the rating distribution
converted from the predicted beta distribution (Fig. 5). In this case, the weights (w1, w2, and w3)
are kept the same, but wb is set to 1 because any scale difference between the losses do not exist.
The two cases are compared in Table 4. The performance of subjectivity regression is degraded
significantly without fitting, while the performance of the other tasks remains almost the same.

5.8 APPLICATION TO AESTHETIC IMAGE RECOMMENDATION

Finally, we illustrate an application scenario where our subjectivity modeling can be applied.

Consider an image recommender application, where the image aesthetics of the recommended im-
ages is considered important. Even if an image is predicted to be aesthetically pleasing in terms
of the mean rating, if a nonnegligible proportion of users would disagree on the prediction, then it
would be better not to recommend the image to users in order to maximize the users’ satisfaction.

For this, the proposed framework can be used to filter out the images that are predicted to have high
subjectivity levels. We perform ternary classification to classify an image as pleasing, unpleasing, or
uncertain, based on the three probabilities obtained from our subjectivity modeling framework. The
boundaries between the three classes are defined on the equilateral triangle of the three probabilities
as shown in Fig. 6. The center point where the boundaries meet is set by the median values of b,
d, and u for the training dataset.2 Then, the recommendation rule is to recommend only the images
classified to be pleasing. For comparison, we also consider the baseline rule to recommend an image
if it is predicted to be aesthetically pleasing from binary classification.

2The center point can be simply set to (b, d, u) = (1/3, 1/3, 1/3), but the number of images in each class
becomes significantly unbalanced. Thus, we use the median values.
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Conversion to rating distribution
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Figure 5: Two ways of measuring the loss of the predicted beta distribution (i.e., L2). (a) As in Fig.
4, RMSLE is measured between the predicted shape parameters and the ground truth shape parame-
ters (obtained by fitting to the ground truth rating distribution). (b) The predicted shape parameters
are converted to a rating distribution, which is compared to the ground truth rating distribution in
terms of EMD.

Uncertain

Unpleasing Pleasing

Figure 6: Class boundaries of the ternary classification on the equilateral triangle of b, d, and u.
The center point is set to the median value of each component for the training dataset, which is
(b, d, u) = (0.419, 0.444, 0.137).

We simulate the two rules on the test data of the AVA dataset using the trained ConvNeXT-T model.
Their performance is measured by the satisfaction ratio, which is calculated as the average propor-
tion of raters who voted scores higher than the threshold of binary classification over the recom-
mended images. The obtained satisfaction ratios are 58.26% and 61.79% for the baseline rule and
our rule, respectively. This improvement demonstrates the effectiveness of our framework in this
application.

6 CONCLUSION

We proposed a unified probabilistic framework for modeling image aesthetics, particularly con-
sidering proper quantification of the subjectivity. The framework allowed us to model the rating
distribution as a beta distribution and to obtain the probabilities of being definitely pleasing, being
definitely unpleasing, and being uncertain simultaneously. The probability of being uncertain was
used to define AesU, which is an intuitive subjectivity metric. We also proposed the simultaneous
learning method to improve the performance of subjectivity prediction, which was confirmed by the
experiments. Finally, we showed that our framework can be effective for aesthetics-based image
recommendation.
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