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Abstract

Retrieval-Augmented-Generation and Gener-001
ation-Augmented-Generation have been pro-002
posed to enhance the knowledge required for003
question answering over Large Language Mod-004
els (LLMs). However, the former depends005
on external resources, and both require in-006
corporating the explicit documents into the007
context, which results in longer contexts that008
lead to more resource consumption. Re-009
cent works indicate that LLMs have mod-010
eled rich knowledge, albeit not effectively trig-011
gered or activated. Inspired by this, we pro-012
pose a novel knowledge-augmented framework,013
Imagination-Augmented-Generation (IAG),014
which simulates the human capacity to com-015
pensate for knowledge deficits while answering016
questions solely through imagination, without017
relying on external resources. Guided by IAG,018
we propose an imagine richer context method019
for question answering (IMcQA), which ob-020
tains richer context through the following two021
modules: explicit imagination by generating022
a short dummy document with long context023
compress and implicit imagination with Hyper-024
Network for generating adapter weights. Exper-025
imental results on three datasets demonstrate026
that IMcQA exhibits significant advantages in027
both open-domain and closed-book settings, as028
well as in both in-distribution performance and029
out-of-distribution generalizations 1.030

1 Introduction031

Knowledge-intensive tasks like question answer-032

ing (QA) necessitate access to extensive world033

and domain knowledge (Berant et al., 2013; Joshi034

et al., 2017; Kwiatkowski et al., 2019). Recently,035

Large Language Models (LLMs) have displayed036

notable competencies in almost every task and in-037

dustry within the “pre-train, prompt, and predict”038

paradigm (Liu et al., 2023b). However, LLMs lack039

the sufficient capability to independently handle040

1Our code will be available at https://anonymous.
4open.science/r/IMcQA
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Figure 1: Compared with RAG (Top) and GAG (Mid-
dle), the proposed IAG (Bottom) eschews external re-
sources, utilizing solely LLMs to imagine a shorter ex-
plicit document and more flexible implicit adapters.

knowledge-intensive tasks (Yu et al., 2023) and 041

usually generate hallucinations (Zhao et al., 2023). 042

In recent years, to alleviate the issue of hallu- 043

cinations in LLMs and improve performance in 044

knowledge-intensive tasks such as QA, researchers 045

have proposed numerous knowledge-augmented 046

methods for LLMs, which mainly include two cate- 047

gories: Retrieval-Augmented-Generation (RAG) 048

(Guu et al., 2020) and Generation-Augmented- 049

Generation (GAG) (Abdallah and Jatowt, 2023). 050

RAG (Top part of Figure 1) retrieves related docu- 051

ments from external resources (e.g., auxiliary tools 052

and domain documents) and then sends those re- 053

trieved documents and the question together into 054

LLMs (Izacard and Grave, 2021). RAG has demon- 055

strated formidable performance on several tasks 056

(Lewis et al., 2020). However, RAG not only re- 057

quires presupposed external resources but also ne- 058

cessitates more computational resources and longer 059

processing times (Xu et al., 2023a). Take typical 060

RAG method FiD (Izacard and Grave, 2021) as 061

an example, the required computing resources and 062

inference time continue to increase as the number 063

of retrieved documents increases. While retriev- 064

ing 100 documents requires processing over 12k 065
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tokens, it will result in an exceeding 100× prompt066

length (decades times of GPU consumption) and an067

over 1002× computational time (Liu et al., 2023a).068

To avoid dependence on external resources,069

GAG (Yu et al., 2023) has been proposed and070

can utilize LLMs like InstructGPT (Ouyang et al.,071

2022) to generate the relevant documents (Middle072

part of Figure 1). However, it requires additional073

financial costs (e.g., API calls) and still demands074

substantial computational resources and time. Ad-075

ditionally, both RAG and GAG utilize more ex-076

plicit external resources (symbolized documents),077

and the quality of the obtained content significantly078

impacts downstream tasks (Li et al., 2023; Shaier079

et al., 2024). For example, Gao et al. (2024) indi-080

cates that noise in the documents negatively affects081

the performance. Therefore, there is an urgent need082

to explore new knowledge-augmented methods.083

In fact, LLMs inherently contain rich knowl-084

edge and possess significant potential for resolv-085

ing knowledge-intensive tasks (Bhagavatula et al.,086

2020). Enhancing the performance of specific087

tasks can be achieved by better activating rele-088

vant knowledge or expanding memory capacity089

without relying on external resources. For exam-090

ple, simply repeating the question twice (Xu et al.,091

2023b), just reviewing and consolidating knowl-092

edge by appending a straightforward prompt “As093

far as I know” (Yao et al., 2023), and using visual-094

language models to imagine images (Tang et al.,095

2023), all approaches enhance the performance096

of LLMs on downstream tasks. Inspired by this,097

we introduce a novel knowledge-augmented frame-098

work Imagination-Augmented-Generation (IAG)099

for LLMs, which simulates the human capacity to100

compensate for knowledge deficits solely through101

imagination in QA. As shown in the bottom part of102

Figure 1, for resolving knowledge-intensive tasks,103

IAG utilizes solely LLMs to imagine a shorter ex-104

plicit document and more flexible implicit adapters.105

Within the framework of IAG, we introduce106

an imagine richer context method for question107

answering (IMcQA). To sufficiently utilize the in-108

herent knowledge of LLMs, we design two main109

modules to activate the various potential knowl-110

edge modeling in LLMs and obtain a richer context.111

Specifically, the explicit imagination module first112

uses symbol distillation to obtain the compressed113

context and then guides LLMs in generating a short114

and useful dummy document. Subsequently, the115

implicit imagination module utilizes the proposed116

HyperNetwork to generate LoRA weights to acti- 117

vate the task-processing ability of LLMs. Unlike 118

the LoRA (Hu et al., 2021) stores task knowledge 119

and ability in modules, the HyperNetwork learns 120

to imagine hidden knowledge for each question. 121

We evaluate the proposed IMcQA to various 122

LLMs, including T5 (Roberts et al., 2020a) and 123

Llama2 (Touvron et al., 2023). The experimental 124

results across three QA datasets indicate that the 125

proposed method yields performance gains while 126

reducing computational expenses and time. No- 127

tably, it even outperforms baseline methods that 128

retrieve and generate knowledge under the same 129

document settings. In conclusion, the contributions 130

of this paper are summarized as follows: 131

• We propose a new knowledge augmentation 132

framework IAG to fully leverage the LLMs’ 133

intrinsic knowledge more efficiently without 134

relying on external resources. 135

• We propose a novel QA method IMcQA that 136

employs two main modules (explicit imagina- 137

tion and implicit imagination) to better utilize 138

the knowledge stored in the LLMs and obtain 139

richer context in QA. 140

• Experimental results indicate that the pro- 141

posed method successfully activates the rel- 142

evant internal knowledge of LLMs. IMcQA 143

exhibits significant advantages in both open- 144

domain and closed-book settings, as well as 145

in both in-distribution performance and out- 146

of-distribution generalizations. 147

2 Related Work 148

This paper mainly utilizes context compression, hy- 149

pernetworks and knowledge distillation to achieve 150

knowledge enhancement. The following will eluci- 151

date pertinent research across four facets. 152

Knowledge Enhancement has usually been 153

adopted to alleviate the issue of insufficient knowl- 154

edge in LLMs. There are two main methods: RAG 155

(Sun et al., 2019) and GAG (Abdallah and Jatowt, 156

2023). The typical RAG method FiD (Izacard and 157

Grave, 2021) retrieves the documents from an ex- 158

ternal knowledge base to answer questions. As 159

LLMs can be considered a knowledge base, several 160

studies (Liu et al., 2022) propose to extract knowl- 161

edge from LLMs (e.g., GPT-3). For example, Yu 162

et al. (2023) generates 10 relevant documents for 163

world knowledge according to the question. How- 164

ever, RAG needs the related external resources, and 165
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both RAG and GAG still need to obtain and utilize166

verbose explicit long contexts. Recently, there have167

been some methods to enhance the LLMs’ ability168

through simulating human imagination of visual169

information. But they use existing visual-language170

models (Tang et al., 2023; Akter et al., 2024), while171

we prefer self-imagination to augment knowledge.172

Besides, they have not fully leveraged the param-173

eterized knowledge within the models (Xu et al.,174

2023b; Kazemnejad et al., 2023). In this paper,175

the proposed method for augmenting knowledge176

not only obviates the need for external resources177

but also enhances the efficiency of extracting and178

activating internal knowledge within LLMs.179

Context Compression has often been used to im-180

prove the efficiency of LLMs in processing long181

contexts. Recent studies (Mu et al., 2023) propose182

that long contexts be condensed into summary vec-183

tors (soft prompts) to ensure their effective utiliza-184

tion by LLMs. Simultaneously, some studies (Jiang185

et al., 2023) believe that information redundancy186

in lengthy texts and information entropy can be187

utilized to compress the contexts (Li et al., 2023).188

Unlike them, this paper is devoted to awakening189

the long-context modeling ability of LLMs. By190

learning an Imagine Model that can generate com-191

pressed contexts, the QA model that operates on192

short contexts can also possess a rich contextual193

understanding akin to the QA model designed for194

processing longer contexts.195

Knowledge Distillation is a technique where a196

smaller model learns to mimic the predictions of a197

larger model, aiming to retain performance while198

reducing computational resources (Hinton et al.,199

2015). Recent studies (West et al., 2022) present200

symbolic knowledge distillation, a process that fa-201

cilitates knowledge transfer from a teacher model202

via extracting training data to subsequently train a203

student model. In this paper, the process of obtain-204

ing compressed context during the explicit imag-205

ination resembles a form of symbolic distillation.206

Regarding training, our emphasis lies in distilling207

the long-context modeling abilities of LLMs.208

Hypernetworks is designed to reduce the number209

of parameters (Ha et al., 2016), i.e., a small neural210

network generates parameters for another big neu-211

ral network. Recent studies (Phang et al., 2022; Ivi-212

son et al., 2023) have explored the enhancement of213

model performance in zero- and few-shot settings214

through meta-learning involving hypernetworks.215

We utilize hypernetworks to acquire implicit imag-216

ine capabilities by dynamically generating LoRA 217

for efficiency and generalization. 218

3 Method 219

In this section, we introduce the detailed method of 220

IMcQA to activate LLMs’ intrinsic knowledge and 221

obtain a richer context for QA. The fundamental 222

premise underlying this method is that QA with a 223

richer context yields greater performance. Conse- 224

quently, diverse methods are employed for ques- 225

tions lacking in richer contexts to activate knowl- 226

edge within LLMs to replicate comparable effects 227

to those achieved with richer contexts. 228

Specifically, IMcQA comprises two main mod- 229

ules. Explicit imagination with long context com- 230

pression learns to imagine a short dummy docu- 231

ment (§ 3.2). And implicit imagination with the Hy- 232

perNetwork models hidden knowledge that learns 233

a shared knowledge feature projection across ques- 234

tions (§ 3.3). The HyperNetwork is trained to gen- 235

erate lightweight LoRA modules, aiming to align 236

the question and the internal knowledge. Besides, 237

there is long context distillation in training, which 238

learns the teacher’s rich representations to compen- 239

sate for missing knowledge in imagination (§ 3.4). 240

3.1 Formulation 241

The formulation of our task follows RAG for QA 242

(Guu et al., 2020). Let V∗ denote the infinite set, 243

encompassing all potential strings over the tokens 244

in vocabulary V , and this includes the empty string. 245

An instance within a QA dataset is defined as a 246

triplet (q, a, c) comprising question q, answer a, 247

and context c, where q, a, c ∈ V∗. Conventionally, 248

the context c is drawn from the knowledge corpus 249

Z , like Wikipedia, whereby Z ⊂ V∗. 250

The goal of QA is to learn a distribution function 251

p(a|q). In a closed-book setting, LLMs directly en- 252

code the given question q and generate the answer 253

a (Roberts et al., 2020b). However, employing 254

a direct approach of requesting models to output 255

answers frequently results in poor performance, pri- 256

marily attributable to the omission of a substantial 257

amount of world knowledge. Therefore, a pop- 258

ular approach is the open domain setting, which 259

marginalizes p(a|q, c) over contexts c. Additional 260

background details are available in A.1. 261

3.2 Explicit Imagination with Compress 262

To get the context c, we utilize LLMs to imagine a 263

short dummy document, which can mitigate knowl- 264
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Figure 2: Overview of IMcQA method. In the inference phase, for each question, the Imagine Model imagines a
short dummy document based on the question and the HyperNetwork generates specific LoRA weights. During
training, there are two stages: the first stage is the pre-training of the Imagine Model, aiming at its ability to
imagine a short dummy document based on the question, and the second stage is the HyperNetwork fine-tuning
using long context distillation (§ 3.4) to learn a map from the question to the LoRA weights.

edge corpus error (Lee et al., 2023) by considering265

potentially useful contexts. In the view of com-266

pression, we greatly reduce input length, minimize267

noise, and elevate the salience of essential tokens.268

As shown in the left part of Figure 2, to help269

LLMs fully utilize the knowledge and imagine270

compressed text, we first pretrain it on our col-271

lected question-compressed document pairs. By272

leveraging symbolic distillation, we employ the273

long-context compression method LongLLMLin-274

gua (Jiang et al., 2023) to condense a large corpus275

of retrieved documents. These compressed texts276

c′ then serve as fine-tuning data alongside specific277

prompts pq (A.2) and question-answer pairs for the278

Imagine Model Gθ (θ represents the model’s pa-279

rameter), which guides the model to think about its280

knowledge and imagine a short dummy document:281

d = Gθ(pq(q; c
′)) (1)282

where d is the dummy document generated from283

the Imagine Model. This process enables LLMs284

to conceive compressed knowledge that robustly285

parallels the question’s knowledge requirements.286

3.3 Implicit Imagination with HyperNetwork287

We advance upon LoRA (Hu et al., 2021) by sug-288

gesting the implementation of the HyperNetwork,289

which does not directly optimize the LoRA module290

but generates specific LoRA adapter weights using291

the inputs for QA (bottom part of Figure 2). This292

is akin to repeating the question in the prompt (Xu293

et al., 2023b) and incorporating certain topical cues294

Q VK

Multi-Head Attention

Add + Norm

FFN

Imagine Adapter

Add + Norm

FFN

Context + 
Question idx

Linear

Relu

Linear

LoRA 
Weights

HyperNetwork
Transformer

N × 

Figure 3: The Architecture of HyperNetwork. Hyper-
Network generates LoRA adapter weights for each ques-
tion. During training, only HyperNetwork, FFN, and
Norm weights are updated.

to stimulate the model’s recall of relevant ques- 295

tions (Wang et al., 2023). However, the distinction 296

lies in the fact that they serve as wake-up features, 297

whereas we are generating model parameters. 298

The HyperNetwork architecture for generating 299

LoRA weights is exhaustively outlined in Figure 300

3. Specifically, Dq
k and U q

k represent the low-rank 301

projections of layer k correlated with the Q, while 302

Dv
k and Uv

k correspond to those associated with the 303

V . HyperNetwork represented as gD and gU , takes 304

concat(f, i{q,v}k ) as input, where f is the feature 305

vectors that use the model’s encoder to obtain and 306

using whitening algorithm (Su, 2021) for dimen- 307
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sionality reduction, i{q,v}k ∈ {0, . . . , 2×#blocks}308

signifies the positional embedding differentiating309

between layers and between QV . Each HyperNet-310

work is defined by weights Wd and Wu which rep-311

resent the down and up projections respectively.312

Finally, the HyperNetwork equations for D{q,v}313

and U{q,v} can be expressed as:314

f = whitening(Encoder(q; d)) (2)315

316

x = concat(f, i{q,v}k | iqk = 2k, ivk = 2k + 1) (3)317
318

D{q,v}, U{q,v} = gD(x), gU (x) (4)319

where the Encoder represents the encoder of the320

model, whitening is a dimensionality reduction321

algorithm, and concat means to splice the content.322

gD and gU denote the descending and ascending323

dimensions of HyperNetwork. More formally,324

g(x) = MM(ReLU(MM,Wd),Wu) (5)325

where MM stands for matrix multiplication, ReLU326

is a activation function.327

3.4 Training with Long Context Distillation328

Within the framework of knowledge distillation,329

components such as hidden representations (Jiao330

et al., 2020), attention dependencies (Wang et al.,331

2020), and relations among representations (Park332

et al., 2021) are regarded as valuable knowledge333

for transfer. In this paper, we consider long context334

distillation (LCD) as the contextualized knowledge335

that mainly guides the student.336

Specifically, the teacher model FiD (Izacard and337

Grave, 2021), which utilizes longer contextual in-338

puts and theoretically contains more information339

(richer context). It will activate more specific inter-340

nal knowledge and serve as a supervisory model.341

The teacher model assists the student model T5342

(Roberts et al., 2020a), which has the same size as343

the teacher and leverages short contextual inputs.344

This aids in activating richer feature representations345

and knowledge. The optimization objective for the346

student model at each mini-batch zr = (xr, yr) is:347

Ls(θs, θt, zr) = αLce(yr, S(xr; θs))

+(1− α)Lce(T (xr; θt), S(xr; θs))
(6)348

where we have a teacher model denoted as T (·; θt)349

and a student model denoted as S(·; θs). The cor-350

responding model parameters are θt and θs.351

As shown in the right of Figure 2, we perform352

an additional representation alignment for better353

knowledge transfer. In our distillation, both teacher 354

model and student model have the L layers, we feed 355

the text into them and can obtain the corresponding 356

output hidden states {Ht
l }Ll=0, {Hs

l }Ll=0, and atten- 357

tion matrices {At
l}Ll=1, {As

l }Ll=1. We suppose the 358

student’s l-th layer is aligned with the teacher’s l-th 359

layer, then the outputs of the student (i.e., Hs
l and 360

As
l ) should be close to the teacher’s (i.e., Ht

l and 361

At
l). For aligning hidden states, following (Park 362

et al., 2021), we use cosine distance COS to calcu- 363

late the proximity between the hidden states of the 364

teacher and the student: 365

Lhid = − COS(Hs
l , H

t
l ) (7) 366

While for aligning attention dependencies, we fol- 367

low (Jiao et al., 2020) to optimize the mean square 368

error (MSE) between the attention matrices of the 369

teacher and the student: 370

Lattn = − MSE(As
l , A

t
l) (8) 371

The overall objective for knowledge transfer is: 372

Lalign(H
s
l , H

t
l , A

s
l , A

t
l) = Lattn + Lhid (9) 373

The overall objective for training IMcQA is the 374

weighted sum of the two objectives: 375

L = Ls + λLalign (10) 376

4 Experiment 377

In this section, we conduct experiments to demon- 378

strate the effectiveness and efficiency of IAG and 379

IMcQA on QA. The experiment mainly answers 380

four research questions (RQs): 381

RQ1: Can IAG achieve knowledge augmentation 382

for answering questions over LLMs? (§ 4.4) 383

RQ2: Does our method have good knowledge acti- 384

vation and generalization abilities? (§ 4.5) 385

RQ3: Does IAG have advantages in effectiveness 386

and efficiency compared to RAG and GAG? (§ 4.7) 387

RQ4: What is the role of explicit and implicit imag- 388

ination modules in IAG and IMcQA? (§ 4.8) 389

4.1 Datasets 390

We evaluate the proposed approach on three pub- 391

lic question answering datasets: NaturalQuestions 392

(NQ) (Kwiatkowski et al., 2019), WebQuestions 393

(WQ) (Berant et al., 2013) and TriviaQA (TQA) 394

(Joshi et al., 2017). To evaluate the model perfor- 395

mance, we use the exact match (EM) score for eval- 396

uating predicted answers (Rajpurkar et al., 2016). 397

We provide dataset details in the Appendix A.4. 398
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Models Reader
Params

# Docu-
ments NQ TriviaQA WebQ

# closed-book setting
T5-l (Roberts et al., 2020a) 770M 0 28.5* 28.7* 30.6*
T5-xl 3b 0 28.30 33.92 34.43
IMcQA-l (Ours) 770M 0 29.32 30.11 32.68
IMcQA-xl (Ours) 3b 0 29.59 35.71 37.40
# Retrieval Augmented Generation
DPR (Karpukhin et al., 2020) 110M 100 41.5* 56.8* 41.1*
RAG (Lewis et al., 2020) 400M 10 44.5* 56.1* 45.2*
FiD-l (Izacard and Grave, 2021) 770M 10 46.7* 61.9* 48.1*
FiD-xl 3b 10 50.1* 66.3* 50.8*
# Generation Augmented Generation
GENREAD-l (Yu et al., 2023) 770M 10† 40.3* 67.8* 51.5*
GENREAD-xl 3b 10† 42.6* 69.6* 52.6*
# Imagination Augmented Generation (Ours)
IMcQA-l 770M 1† 42.32 65.48 45.28
IMcQA-xl 3b 1† 46.51 68.38 50.45
IMcQA-l 770M 10 49.92 69.67 51.52
IMcQA-xl 3b 5‡ 50.87 70.34 52.78

Table 1: QA performances (%) of different methods on three datasets. The first part (closed-book setting) indicates
that only utilize questions; The latter three parts utilize explicit documents. The best results are in bold. * means
that those results are from existing papers, † denotes that the documents were generated (‡ indicates that the number
of documents is reduced due to insufficient memory for distillation). More results can be seen in Appendix A.5.1.

4.2 Baselines399

Both the moderately sized language model (< 1B)400

and the large language model (LLM) (≥ 3B) are401

under consideration. T5 (Roberts et al., 2020a)402

is selected as the backbone for our moderately403

sized language models. We evaluate our proposed404

IMcQA against several knowledge-enhanced ap-405

proaches, which include RAG models such as DPR406

(Karpukhin et al., 2020), RAG (Lewis et al., 2020),407

and FiD (Izacard and Grave, 2021), as well as the408

GAG model GENREAD (Yu et al., 2023), and pa-409

rameters efficient fine-tuning method LoRA (Hu410

et al., 2021). The Appendix A.3.2 provides further411

information about those baselines.412

For the zero-shot settings of LLMs (≥ 3B), we413

use Llama2-7B and Llama2-13B (Touvron et al.,414

2023) as the basic model. We evaluate with four415

diverse settings: without retrieval, with retrieval,416

with LoRA, and using the proposed IMcQA.417

4.3 Implementations418

In the pretraining stage, the Imagine Model initial-419

ized with T5-large utilizes the generated question-420

compressed pairs. During the second stage, the421

teacher model employs a FiD reader with different422

sizes (FiD-l and FiD-xl) that are fine-tuned on the 423

training split of target datasets. The student model 424

freezes the backbone and updates solely the Hyper- 425

Network, the feedforward neural network (FFN), 426

and the normalization layers (Chen et al., 2023). 427

More implementation details and experimental find- 428

ings are in the Appendix A.3. 429

4.4 Main Results 430

Table 1 shows the performance results, full results 431

including T5-Base are in the Appednidx A.5.1. 432

As shown in Table 1, when juxtaposed with 433

closed-book models, RAG, and GAG methods, 434

our proposed IAG framework IMcQA method ex- 435

hibits state-of-the-art performance with the equiva- 436

lent magnitude of document count and model size. 437

In the closed-book setting (in the upper part of 438

the table), our method outperforms the baseline by 439

an average of +2% EM score, indicating its excel- 440

lence in utilizing internal knowledge with imagina- 441

tion. It’s especially noteworthy that as the model 442

size expands, the performance advantages of the 443

imagination become ever more evident. 444

The following three parts of Table 1 show the 445

experimental results under the open domain setting. 446

Although our method only deals with one short 447
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dummy document, it can still achieve results sim-448

ilar to or better than the RAG and GAG methods,449

which handle 10 documents. The findings reveal450

that IMcQA exploits imagined condensed text to451

strike a balance between efficiency and overhead.452

Moreover, when IMcQA utilizes 10 retrieved doc-453

uments, it supersedes the performance of FiD and454

GENREAD with the EM average of +2.26% and455

+3.06%.456

4.5 Out-Of-Distribution (OOD) Performance457

To further demonstrate the generalizations of the458

IMcQA method and the importance of HyperNet-459

work, we also evaluate its performance in out-of-460

distribution (OOD) generalizations. Table 2 shows461

the IID and OOD performance of FiD, and IMcQA462

methods with different document settings when463

training on NQ (From NQ generalization to the464

other two datasets). Full OOD results of three465

datasets are shown in the Appendix A.5.2.466

It is patently clear that an increment in docu-467

ment provision leads to better OOD performance,468

likely due to the presence of answer-oriented con-469

tent within these documents. Remarkably, IMcQA470

can come within a relatively narrow 5% gap of FiD,471

even when utilizing a single imagined document as472

opposed to 10 retrieved ones.473

Simultaneously, IMcQA generally showcases su-474

perior performance in OOD when provided with 10475

retrieved documents. This superiority can be traced476

back to the pivotal role played by HyperNetwork477

in generating LoRA adapters’ weights based on478

questions. This equips models with the capability479

to invoke and access internal knowledge based on480

context-specific discourse rather than confining to481

resolving distinct questions.482

4.6 Zero-shot Results on LLMs483

Figure 4 and Figure 5 illustrate the zero-shot results484

for LLMs implementing IMcQA. This research485

seeks to explore the possibility of enhancing LLMs486

via IAG. Due to the high computational demands487

of training, we only fine-tuned the HyperNetwork488

on a mixed dataset without LCD in this experiment489

and evaluated performance in a zero-shot setting.490

Detailed prompt information can be found in the491

Appendix A.2.492

We discerned that Llama2’s performance can be493

enhanced by imagining knowledge autonomously.494

While leveraging explicit imagined context could495

amplify the average EM +1%, this is not as signif-496

icant as the improvement achieved by retrieving497

Models # Docu- NQ
ments NQ TQA WQ

T5 0 22.16 3.18 4.12
IMcQA 0 23.89 6.21 10.94
IMcQA 1† 40.14 46.61 18.92
FiD 10 46.81 53.93 24.02
IMcQA 10 47.01 55.74 24.13
T5-l 0 28.5* 3.18 4.12
IMcQA-l 0 29.32 10.17 14.06
IMcQA-l 1† 42.32 54.80 22.05
FiD-l 10 46.7* 57.93 25.12
IMcQA-l 10 49.92 60.03 25.79

Table 2: OOD results. The primary row in the table
header delineates the dataset trained, while the under-
scored secondary row demonstrates the in-distribution
performance (IID).

10 documents, indicating the limitations of relying 498

solely on prompt cues for triggering corresponding 499

knowledge. IMcQA can enhance knowledge via 500

two main imagination processes, escalating EM by 501

+15.33% for NQ, +11.97% for TQA, and +16.38% 502

for WQ. With IAG, Llama2-7B demonstrated an 503

average improvement of +14% across the three 504

datasets. This trend is also observed in Llama2- 505

13B’s results. This implies that even in zero-shot 506

settings, our method can still offer substantial ben- 507

efits to LLMs. More results can be seen in A.5.3. 508

4.7 Training Cost and Inference Speed-up 509

We proceeded to measure the inference speed, doc- 510

umented in GPU time, and training time for 5000 511

steps on the NQ dataset, using T5-Base. The ex- 512

periments were conducted on a single RTX 3090 513

GPU, maintaining a standard batch size of 8 during 514

training and 1 during inference. 515

As evident from Table 3, the proposed method’s 516

advantage lies in its diminished requirement for 517

parameter updates, which can be attributed to the 518

shared HyperNetwork’s utilization that generates 519

LoRA adapters, thereby negating the necessity of 520

Models Training
Params

# Docu-
ments

# Avg
Tokens

Inference
Time

GPU
Memory

T5 220M 0 19.8 79.8s 2828M
IMcQA 139.3M 0 19.8 82.3s 2710M
IMcQA 139.3M 1 522.1 214.6s 2882M
FiD 220M 10 1748.3 683.3s 4358M
GENREAD 220M 10 1912.5 704.8s 4412M
FiD 220M 100 16625.7 1293.2s 19048M

Table 3: Training and inference cost on the NQ. The
backbone model is T5-Base.
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Figure 4: Zero-Shot results (EM, %) of Llama2-7B on
three open-domain QA datasets.

individual LoRA adapters’ setup. Despite the lack521

of a training advantage owing to distillation con-522

straints, our approach achieves efficient reasoning523

through an extremely lightweight design. Com-524

pared to the other two methods, the token process-525

ing count is significantly decreased, while either526

outperforming them or showing negligible differ-527

ences in performance. This represents an optimal528

trade-off between efficiency and computational de-529

mand. Moreover, unlike GAG, our approach incurs530

no financial costs associated with API calls, and531

the reduced model size facilitates faster generation.532

4.8 Ablation Experiment533

In this study, we introduced two key imagination534

processes to stimulate LLMs’ internal knowledge:535

Explicit Imagination (EI) and Implicit Imagination536

(II). We particularly examined the influence of dif-537

ferent imagination types on performance.538

Figure 6 demonstrates that both EI and II are539

important for IMcQA. Omitting either one results540

in a considerable reduction in performance, with a541

drop exceeding 10% observed when EI is neglected.542

This is harmonious with the initial observation that543

performance improvement becomes more notice-544

able when relevant documents are available, thus545

underscoring EI’s superiority.546

The outcomes of Long Context Distillation547

(LCD) and the application of EI in the HyperNet-548

work also make marginal contributions to the over-549

all results. This validates the previous assertion550

that a more extensive context tends to optimize551

performance, although with limited gains.552

Figure 5: Zero-Shot results (EM, %) of Llama2-13B on
three open-domain QA datasets.

Figure 6: Ablation experiment results (%) of T5-Base
on three open-domain QA datasets.

5 Conclusion and Future Work 553

This study proposes a novel knowledge-augmented 554

strategy for LLMs, namely Imagine Augmented 555

Generation (IAG), and a specific method IMcQA 556

for open domain question answering. The proposed 557

method effectively activates and utilizes intrinsic 558

knowledge within LLMs through two imaginations: 559

explicit imagination, and implicit imagination. Ex- 560

perimental results demonstrate a significant im- 561

provement in QA performance while remaining 562

relatively lightweight. Although the main focus of 563

this method is on one specific task, we believe these 564

findings can offer a novel perspective on how to bet- 565

ter harness the potential of LLMs. In the future, we 566

plan to apply IAG to more NLP tasks and explore 567

multimodal knowledge-augmented generation. 568
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Limitations569

While this study has demonstrated significant570

achievements in QA tasks, there are notable limita-571

tions:572

Tasks. The proposed methods in the study are spe-573

cialized specifically for QA. It remains unknown574

how effective they would be in other types of575

knowledge-intensive tasks, such as fact-checking576

or dialogue systems. Further validation is needed577

to assess the generalizations and applicability of578

this approach.579

Multimodal. We have only considered imagined580

text and hidden representations. In future work, it581

is imperative to explore multimodal information582

including the impact of imagining images on per-583

formance.584

Method. Our method relies on the knowledge585

learned by LLMs in the pre-training phase, which586

may limit the model’s ability to quickly adapt to587

new information. The dependency on internal588

knowledge activation in IAG may lead to a less589

transparent decision-making process in the model,590

making it challenging to explain the logic behind591

the generated answers. In the future, there is a need592

to continue exploring adaptive knowledge enhance-593

ment methods to optimize results further.594

Ethical Considerations595

In this paper, we proposed a novel knowledge en-596

hancement method aimed at leveraging the knowl-597

edge of LLMs. However, LLMs may generate598

inappropriate or discriminatory knowledge. Our599

approach does not introduce ethical concerns. The600

datasets we used are public, and there are no pri-601

vacy issues.602
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A Appendix 872

A.1 Background 873

Our task formulation follows retrieval augmented 874

models for QA (Guu et al., 2020; Sachan et al., 875

2021). Let V∗ denote the infinite set, encompass- 876

ing all potential strings over the tokens in vocab- 877

ulary V , and this includes the empty string. An 878

instance within a QA dataset is defined as a triplet 879

(q, a, c) comprising question q, answer a, and con- 880

text c, where q, a, c ∈ V∗. Conventionally, the 881

context c is drawn from the knowledge corpus Z , 882

like Wikipedia, whereby Z ⊂ V∗. 883

The goal of QA is to learn a distribution func- 884

tion, represented as p(a|q), wherein the models 885

decode a string a that serves as an abstractive an- 886

swer to a given query q. In a closed-book setting, 887

LLMs directly encode the given question and pre- 888

dict the answer (Roberts et al., 2020b). Specifi- 889

cally, considering the context c as the empty string, 890
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the reliance is solely on the model parameters, i.e.,891

â = argmaxa∈V∗ p(a|q, θ), where θ represents the892

LLMs’ parameters. However, employing a direct893

approach of requesting models to output answers894

frequently results in subpar performance, primarily895

attributable to the omission of a substantial amount896

of world knowledge during the process. There-897

fore, a popular approach is open domain setting,898

which marginalizes p(a|q, c) over contexts c in the899

knowledge corpus (Lewis et al., 2020; Sachan et al.,900

2021) or generated from models (Yu et al., 2023).901

Given the computational infeasibility of calculating902

probabilities for all contexts, p(a|q, c) is approxi-903

mated to the sum of probabilities for top k contexts,904

i.e., p(a|q, c) =
ci∈c∑

c∈TopK(q)

p(a|q, ci)p(ci|q), where905

Topk(q) denotes the set of resulting top k passages906

after the retrieval or generated with a query q.907

A.2 Prompts for Explicit Imagine with LLMs908

The prompt for explicit imagination of the Imagine909

Model to imagine a short dummy useful document910

is:911

Imagine contexts based on the question: \n input912

\n Contexts: \n913

Table 7 shows the full prompts for zero-shot914

results on LLM that we use for open domain QA:915

NQ, TQA, WQ.916

A.3 Experimantal Settings917

In this section, we describe the implementation of918

our experiments in detail, including the baseline919

methods, backbone models, and hyperparameters.920

Our model is built based on the T5 (Roberts et al.,921

2020a). Differing from fine-tuning all model pa-922

rameters θ of the updated Pre-trained Language923

Model (LLM), LoRA (Hu et al., 2021) freezes924

all pre-trained Transformer parameters and opti-925

mizes only the parameters of each LoRA adapter.926

We employ LoRA to train a parameter-efficient927

fine-tuning baseline. Drawing from this, our ap-928

proach updates only the parameters of the Hyper-929

Network to generate the weights for each LoRA930

adapter. This method is adopted based on Lon-931

gLoRA’s (Chen et al., 2023) recommendations and932

experimental findings, demonstrating improved per-933

formance when the normalization and FFN layers934

components are updated. This is because: 1) dy-935

namically generating LoRA weights enhances gen-936

eralization and parameter sharing, and 2) LoRA937

performs comparably to fine-tuning but mitigates938

the risk of catastrophic forgetting.939

For the baseline, most of the hyperparameters are 940

the default parameters of FiD (Izacard and Grave, 941

2021). For LoRA (Hu et al., 2021), add the LoRA 942

module only to the QV of the attention layers and 943

also release the normalization and FFN layers. 944

We consider conducting experiments using three 945

different sizes of T5, namely T5-base, T5-large, T5- 946

3b, and Llama2-7B, Llama2-13B (Touvron et al., 947

2023). Due to memory constraints and online dis- 948

tillation limitations, A100 supports processing 20 949

documents for T5-3b, while Llama2 does not sup- 950

port distillation. All experiments with T5-3b are 951

conducted on 2 A100 GPUs, T5-large on 2 A6000 952

GPUs, and T5-Base on 2 RTX 3090 GPUs. How- 953

ever, experiments with Llama2-7b and 13b, except 954

for IMcQA on 2 A100 GPUs, are tested on 8 RTX 955

3090 GPUs. 956

A.3.1 Hyperparameters 957

The detailed hyperparameter setting is as shown in 958

Table 4. For the LoRA modules, we set the α 32 959

and the lora rank 32. 960

Models Docu-
ments Steps Lr Batch

Size
T5 0 40000 1e-4 8
LoRA-Base 0 40000 5e-4 8
IMcQA 0 50000 1e-3 8
LoRA-l 0 40000 1e-4 4
IMcQA-l 0 50000 5e-4 4
FiD-3b 0 40000 1e-4 2
LoRA-3b 0 40000 1e-4 4
IMcQA 0 50000 1e-4 1
LoRA-Base 0† 40000 5e-4 8
IMcQA 0† 50000 1e-3 8
LoRA-l 0† 40000 1e-4 4
IMcQA-l 0† 50000 5e-4 4
LoRA-3b 0† 40000 1e-4 2
IMcQA-3b 0† 50000 1e-4 1
IMcQA 10 50000 5e-4 1
IMcQA-l 10 50000 5e-4 1
FiD-3b 10 40000 1e-4 1
IMcQA-3b 10 50000 1e-4 1

Table 4: Hyperparameter Settings.

A.3.2 Baselines 961

DPR (Karpukhin et al., 2020) generates by search- 962

ing for the most relevant documents through dense 963

vector space representation. 964
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Models # Docu- NQ TQA WQ
ments NQ TQA WQ NQ TQA WQ NQ TQA WQ

T5 0 22.16 3.18 4.12 2.65 21.8 3.15 0.88 2.95 28.3
LoRA-Base 0 16.17 4.71 6.89 3.15 21.16 0.00 1.33 3.04 26.38
IMcQA 0 23.89 6.21 10.94 5.31 22.69 6.30 3.23 5.10 30.31
LoRA-Base 1† 37.17 45.20 15.62 19.57 55.37 12.50 14.15 30.89 28.88
IMcQA 1† 40.14 46.61 18.92 24.78 60.75 12.82 17.70 35.24 41.06
FiD 10 46.81 53.93 24.02 28.57 63.32 17.83 18.81 41.88 41.78
IMcQA 10 47.01 55.74 24.13 31.77 64.95 19.52 24.43 48.10 46.36
T5-l 0 28.5* 3.18 4.12 2.65 28.7* 3.15 0.88 2.95 30.6*
LoRA-l 0 17.70 7.49 8.66 3.54 23.87 4.72 0.00 5.65 29.13
IMcQA-l 0 29.32 10.17 14.06 7.02 30.11 7.81 2.65 7.06 32.68
LoRA-l 1† 37.61 48.50 20.71 20.54 62.71 14.81 15.36 33.83 39.37
IMcQA-l 1† 42.32 54.80 22.05 26.11 65.48 18.11 18.58 47.46 45.28
FiD-l 10 46.7* 57.93 25.12 34.29 61.9* 19.64 27.65 53.87 48.1*
IMcQA-l 10 49.92 60.03 25.79 34.35 69.67 20.28 30.19 54.94 51.52

Table 5: OOD results. The primary row in the table header delineates the dataset trained, while the underscored sec-
ondary row demonstrates the in-distribution performance. IMcQA attains optimal performance both in-distribution
and OOD under diverse document configurations.

FiD (Izacard and Grave, 2021) retrieve relevant965

documents and send them separately to the En-966

coder, then fuse the information in the Decoder.967

GENREAD (Yu et al., 2023) prompt LLMs like968

InstructGPT (Ouyang et al., 2022) to generate a969

large number of relevant documents and let the970

reader process them.971

LoRA We use LoRA (Hu et al., 2021) to obtain972

an efficiently fine-tuned baseline and compare it973

with our method.974

A.3.3 Evaluation975

For QA datasets, we choose the exact match (EM)976

score (Rajpurkar et al., 2016) as the evaluation977

metric. An answer is deemed correct if it aligns978

with any of the responses in the list of accept-979

able answers after normalization. Normalization980

involves transforming the text into lowercase, omit-981

ting articles, punctuation, and eliminating redun-982

dant spaces.983

A.4 Downstream Evaluation Datasets984

We use the following three Open-Domain QA for985

the experiments (§ 4.1).986

• NaturalQuestions ((Kwiatkowski et al., 2019))987

contains questions corresponding to Google988

search queries. The open-domain version of989

this dataset is obtained by discarding answers990

with more than 5 tokens, each accompanied991

by a Wikipedia article containing the answer.992

• TriviaQA ((Joshi et al., 2017)) contains ques- 993

tions gathered from trivia and quiz-league 994

websites. The unfiltered version of TriviaQA 995

is used for open-domain question answering, 996

each question is accompanied by pages from 997

web and Wikipedia searches that may contain 998

the answer. 999

• WebQuestions ((Berant et al., 2013)) contains 1000

questions from web queries matched to corre- 1001

sponding entries in FreeBase (Bollacker et al., 1002

2008). 1003

A.5 Full Experimental Results 1004

A.5.1 Supervised Performance 1005

As shown in Table 8, our initial observations in- 1006

dicate that regardless of the method implemented, 1007

supplying a certain quantity of related documents 1008

can expedite improvement and enhance perfor- 1009

mance in QA. FiD (Izacard and Grave, 2021) 1010

model outclasses all baseline models in perfor- 1011

mance. Notably, utilizing FiD-xl with a mere 10 1012

documents yields performance on par with that 1013

attained through the use of FiD-l with 100 docu- 1014

ments. Larger models not only encapsulate more 1015

knowledge but also demonstrate a superior ability 1016

to activate and apply this knowledge efficiently. 1017

Additionally, in comparison with LoRA (Hu 1018

et al., 2021) methods, IMcQA enhances EM scores 1019

by an average of +2.2%. In the closed-book set- 1020

ting, the LoRA method manifests a substantial de- 1021
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Figure 7: Zero-Shot results (Best_Subspan EM, %) of
Llama2-7B on three open-domain QA datasets.

crease in performance, likely attributable to the1022

inadequacy of learning sufficient knowledge via1023

questions for storage in the LoRA module. On1024

the other hand, IMcQA harnesses both explicit and1025

implicit imaginations to exploit knowledge for im-1026

proved outcomes. These results indicate that the1027

knowledge stored in the LLMs’ parameters can still1028

be further exploited.1029

A.5.2 OOD Results1030

Table 5 shows the full OOD results in QA. It can be1031

observed that our method has the best OOD gener-1032

alization ability on all three benchmarks. Although1033

LoRA performs well on the in-distribution part, its1034

performance is generally poor on OOD, with some1035

even showing negative performance. This high-1036

lights the importance of the domain adaptability1037

of the implicit imagination HyperNetwork in our1038

method, which generates LoRA adapter weights1039

based on input.1040

A.5.3 Zero-Shot results Best_Subspan EM1041

LLMs have limited capacity to utilize extensive1042

context effectively and are prone to generating il-1043

lusions and redundant content. Best_subspan EM1044

assesses whether the answer is included in the out-1045

put. Previous studies have corroborated that LLMs1046

encapsulate a considerable volume of knowledge1047

and exhibit robust performance in QA.1048

Here, we report the Best_Subspan_EM values of1049

Llama2-7B and Llama2-13B on three QA datasets.1050

From Figure 7 and Figure 8, it can be observed that1051

Best_Subspan_EM significantly improves, but the1052

EM values are relatively small. This indicates that1053

Figure 8: Zero-Shot results (Best_Subspan EM, %) of
Llama2-13B on three open-domain QA datasets.

LLMs may not effectively utilize retrieval docu- 1054

ments and are prone to outputting a lot of irrelevant 1055

information. Therefore, there is an urgent need to 1056

explore efficient techniques that leverage external 1057

information and internal knowledge. 1058

However, the model did exhibit a weak adher- 1059

ence to instructions, often failing to output the exact 1060

answer. Remarkably, Llama2-13B displayed a de- 1061

cline in EM with an increase in document length 1062

on the WQ dataset, whereas the Best_Subspan_EM 1063

value augmented. Contrarily, our method excelled 1064

in extracting key information by using text imagi- 1065

nation during the compression phase. 1066

A.5.4 OOD and Ablation Experiment Results 1067

Here, we supplement the experimental results of 1068

LoRA and IMcQA under supervised fine-tuning 1069

in closed-book settings and the ablation results of 1070

feedforward neural network (FFN) and Long Con- 1071

text Distillation (LCD). It can be observed that our 1072

method like LoRA, belongs to parameter-efficient 1073

fine-tuning, and because we share the HyperNet- 1074

work to generate LoRA adapter weights, we fine- 1075

tune fewer parameters. 1076

From Table 6, it can be seen that releasing FFN 1077

can bring more performance improvement, pos- 1078

sibly because adding LoRA in Attention cannot 1079

fully utilize enough knowledge (Yao et al., 2022). 1080

With the support of LCD, performance is further 1081

improved, with an average increase in EM of +5%. 1082

This also proves the effectiveness of our proposed 1083

LCD. In comparison with IMcQA and LoRA, it 1084

becomes more evident that LoRA tends to transfer 1085

knowledge to the LoRA module, resulting in low 1086
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Models # Docu- Trainable NQ TQA WQ
ments Params NQ TQA WQ NQ TQA WQ NQ TQA WQ

T5 0 220M 22.16 3.18 4.12 2.65 21.8 3.15 0.88 2.95 28.3
LoRA-Base 0 28.3M 5.43 3.15 4.02 0.00 9.60 0.00 0.22 1.77 20.47

w FFN 0 141.5M 16.17 4.71 6.89 3.15 21.16 0.00 1.33 3.04 26.38
w FFN & LCD 0 141.5M 21.37 2.82 6.89 1.99 17.94 3.74 0.00 2.82 32.50

IMcQA 0 26.1M 5.31 3.82 5.71 0.22 10.34 2.12 0.55 2.30 16.58
w FFN 0 139.3M 21.05 4.52 6.50 3.51 19.08 3.15 2.11 3.84 28.17
w FFN & LCD 0 141.5M 23.89 6.21 10.94 5.31 22.69 6.30 3.23 5.10 30.31

T5-l 0 770M 28.5* 3.18 4.12 2.65 28.7* 3.15 0.88 2.95 30.6*
LoRA-l 0 42.5M 4.42 6.50 7.87 3.98 10.03 3.94 1.99 6.71 18.11

w FFN 0 445.1M 17.70 7.49 8.66 3.54 23.87 4.72 0.00 5.65 29.13
w FFN & LCD 0 445.1M 28.32 4.52 10.94 5.31 25.71 6.12 1.75 4.52 29.92

IMcQA-l 0 34.8M 7.08 8.90 9.45 4.42 13.14 8.66 2.43 10.17 17.72
w FFN 0 437.5M 23.01 8.33 11.02 3.51 20.08 3.15 3.51 5.65 31.50
w FFN & LCD 0 437.5M 29.32 10.17 14.06 7.02 30.11 7.81 2.65 7.06 32.68

Table 6: OOD and ablation experiment results. * denotes the results are from the existing papers and LCD denotes
Long Context Distillation.

generalization. Our method enhances knowledge1087

activation through dynamic generation, showing1088

significant effects not only in-distribution but also1089

in OOD.1090
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Methods Prompt

CBQA

Please write a high-quality answer for the given question using your knowledge.
Only give me the answer and do not output any other words.
Question: {question}
Answer:

Retrieval

Please write a high-quality answer for the given question using only the provided
search results (some of which might be irrelevant). Only give me the answer
and do not output any other words.
Context: {context}
Answer the question based on the given passages.
Question: {question}
Answer:

Imagine

Please write a high-quality answer for the given question using your knowledge
and the provided imagined compressed results (some of which might be irrelevant).
Only give me the answer and do not output any other words.
Imagined Context: {context}
Answer the question based on your knowledge and the given imagined context.
Question: {question}
Answer:

Table 7: Prompts for different methods on Zero-Shot setting. CBQA denotes closed-book QA that just prompts the
model with the question.
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Models Reader
Params

# Docu-
ments NQ TriviaQA WebQ

# closed-book setting
T5 (Roberts et al., 2020a) 220M 0 25.9* 23.8* 27.9*
T5-l (Roberts et al., 2020a) 770M 0 28.5* 28.7* 30.6*
T5-xl 3b 0 28.30 33.92 34.43
LoRA-Base (Hu et al., 2021) 220M 0 16.17 21.16 26.38
LoRA-l (Hu et al., 2021) 770M 0 17.70 23.87 29.13
LoRA-xl 3b 0 23.15 32.16 35.24
IMcQA (Ours) 220M 0 23.89 22.69 30.31
IMcQA-l (Ours) 770M 0 29.32 30.11 32.68
IMcQA-xl (Ours) 3b 0 29.59 35.71 37.40
# Retrieval Augmented Generation
DPR (Karpukhin et al., 2020) 110M 100 41.5* 56.8* 41.1*
RAG (Lewis et al., 2020) 400M 10 44.5* 56.1* 45.2*
FiD (Izacard and Grave, 2021) 220M 100 48.2* 65.0* 46.71
FiD-l 770M 100 51.4* 67.6* 50.52
FiD-xl 3b 20 55.18 72.92 52.85
FiD-l 770M 10 46.7* 61.9* 48.1*
FiD-xl 3b 10 50.1* 66.3* 50.8*
# Generation Augmented Generation
GENREAD-l (Yu et al., 2023) 770M 10† 40.3* 67.8* 51.5*
GENREAD-xl 3b 10† 42.6* 69.6* 52.6*
# Our proposed method
LoRA-Base 220M 1† 34.51 54.05 32.28
LoRA-l 770M 1† 40.05 62.81 43.70
LoRA-xl 3b 1† 44.15 66.92 48.23
IMcQA 220M 1† 40.14 60.75 41.73
IMcQA-l 770M 1† 42.32 65.48 45.28
IMcQA-xl 3b 1† 46.51 68.38 50.45
IMcQA 220M 10 47.01 64.95 46.36
IMcQA-l 770M 10 49.92 69.67 51.52
IMcQA-xl 3b 5‡ 50.87 70.34 52.78

Table 8: Full QA performances (%) of different methods on three datasets. The first part (closed-book setting)
indicates that explicit documentation was not utilized; The latter three parts utilize explicit augmented documents.
The best results are in bold. * means that those results are from existing papers, † denotes that the number of
documents is generated (‡ indicates that the number of documents is reduced due to insufficient memory for
distillation).
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