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Abstract

We present an extension to our runner-up approach from the previous edition of the Real
Robot Challenge. To solve the task of sequential goal reaching we focus on two aspects
to achieving near-optimal trajectory: Grasp stability and Controller performance. In the
simulated challenge, our method relied on a hand-designed Pinch grasp combined with Tra-
jectory Interpolation for better stability during the motion for fast goal reaching. In Stage
1, we observe reverting to Triangular grasp to provide a more stable grasp when combined
with Trajectory interpolation, possibly due to the sim2real gap. In future stages, we pro-
pose using sampling-based planning methods and multi-agent pathfinding algorithms for
complex rearrangement tasks. The video demonstration for our approach is available at
https://youtu.be/dlOueoaRWrM.
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Background: Pre-Stage

In Pre-Stage, we utilized the Cartesian Position Control with triangulated grasp (CPC-TG)
from [1] and adapted the publicly available codebase1 to work with the new task-environment.
However, upon directly running CPC-TG in simulation, we observed that it frequently drops
the cube when the active goal changes. This poor behaviour arises due to the sudden jerk
that the fingers experience and often-times attempts of fast-switching to active goal, both of
which result in poor grasping and ultimately the cube slipping out. As part of our solution,
we switched to pinch grasp [2] for a more stable grasp when shifting from one goal position to
another. In addition, we also implemented a simple linear trajectory interpolation mechanism
to generate more fine-grained intermediate waypoints in the direction of the active goal, thus
allowing for a smoother transition to the active goal using a PID controller. Although the
pinch grasp had high performance, we identified a potential shortcoming of Pinch Grasp that
it fails to regrasp dropped cube along the arena perimeter and proposed a solution to utilize
triangular grasps when lifting a cube near the corner.

Stage 1: Real Robot

In this part of the challenge, we began experimentation on the real robot using our approach
from Pre-Stage. After a few rounds of experiments and tuning cycles, we observed that, just
as in simulation, the quality of the pinch grasp degrades severely along the arena perimeter.
Although we experimented with switching to a Triangular grasp near the perimeter as pro-
posed in pre-stage, pinch grasp still negatively affected 2 our performance by failing to grasp
dropped cube. This motivated us to switch to the triangular grasp approach throughout the
arena, which led to more stable grasps with rare drops. We then replaced pinch grasp with
triangular grasp and reran the experiments. CPC-TG with trajectory interpolation proved
to be a surprisingly effective approach for this sequential goal reaching task.

Results We evaluate a total of 8 real robot experiments with differing goal trajectories,
spanning across three different robots.

Test Environment mean median stddev
Simulation (CPC-PG) -7270.249 -6113.044 2799.856

Real (CPC-PG) -17071.5 -17299.9 -4106.18
Real (CPC-TG) -9981.3 -9718.5 -1142.9

We observe Triangular Grasp to perform more robustly with fewer cube drops and
obtaining higher rewards. This is attributed to the sim2real gap where we observed that
Triangular Grasp provided a more stable grasp qualitatively.

The video demonstrating our approach on real robots can be found here:
https://youtu.be/dlOueoaRWrM. Another video https://youtu.be/RKZltgcjauY shows poor
regrasping demonstrated by our baseline (CPC-PG) near arena perimeter.

1https://github.com/cbschaff/benchmark-rrc
2Example of failed pinch grasp near the perimeter https://youtu.be/RKZltgcjauY
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Discussion For the given task-environment, to achieve high rewards, the optimal strategy
is to reach the current goal in the shortest path as fast as possible. Such optimal strategy
requires having a stable grasp that minimizes cube drops and a controller that allows for
quick transitions to goal. Overall our approach shows that manipulating a cube to reach
various configurations can be effectively achieved through a simple PID controller with few
key considerations of grasp and trajectory. Our method also transfers effectively to real
robots requiring less than two hours of finetuning. It is interesting to draw comparisons on
this particular task to learning-based methods like RL, which requires designing a shaped
reward function and then dealing with the sim2real gap, both of which still require significant
resources and human effort.

Stage 2: Rearrange Dice

While we do not yet have the details on this phase, we can continue our philosophy of starting
with the simplest approach we can think of that could potentially solve the problem, adding
complexity only to increase performance and address shortcomings. One simple approach
here is to begin by using all three arms to push all the dice to the rim of the container.
This will ensure that no dice exist in collision with one of the target locations. From here,
the problem reduces an instance of Stage 1 Cube Manipulation ∗N (the number of dice)
with obstacle avoidance. Where, for each die, we use 2 or 3 fingers to execute a grasp, life
vertically, move over the target location, rotate to the correct polar orientation (possible
in-hand due to at-most a 45◦ rotation assuming no side preference), and dropping the cube
into place. This will by no means produce a speedy performance, but it will create a good
baseline.

We can begin to augment this approach by drawing from the Multi-Agent Pathfinding
Literature (overview at [3], algorithm survey at [4]). At its simplest, we can sample discrete
points (including the die start points and all target goal points) across the environment,
connecting them into a planar graph. Using 2-3 fingers to push one die at a time and
assigning each die a goal to minimize total Euclidean distance traveled, we could solve the
planning problem with any graph search algorithm, such as Space-Time A∗ [5]. Using one
finger each, we could potentially move up to 3 dice at a time. Existing off-the-shelf Python
implementations [6] can lead to quick iteration cycles here.
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