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Abstract

Motivated by the idea that large algorithmic infrastructures, such as neural networks,
must carefully plan retraining procedures due to budget constraints, this work
proposes a new multi-armed bandit framework in which the agent can modify the
distribution of the arms up to M times throughout interaction. Each modification,
referred to as a retraining step, leads to an improvement in the distributions that
either increases the reward obtained or makes the optimal arm easier to identify.
Specifically, we analyze two settings: in the first one (Improvable Arms), we
assume that each retraining step increases the mean of all arms and reduces their
variance. In the second setting (Decreasing Biases), we assume that the reward
observations are obfuscated by some bias, which each retraining step helps to
eliminate. We propose algorithms for both models and prove that they exhibit
optimal rates with respect to the time horizon T .

1 Introduction

In recent years, the use of machine learning systems has seen unprecedented growth. Such innovation
is accompanied by an exponential increase in the amount of data accessible to the algorithms; data
that is often gradually expanded due to continued interaction with users, as in recommendation
systems or AI chatbots. This poses new challenges for service providers: while having well-calibrated
algorithms is fundamental for their widespread application and their reliability, executing a retraining
process is often exceedingly costly and comes with substantial environmental impacts. One way to
account for these costs is to limit the number of permitted retrainings (determined, for instance, by
budget constraints). This raises the question of how to optimally schedule retrainings after the initial
deployment.

We formulate this problem as a multi-armed bandit instance where an agent, while interacting with
the environment, has the possibility to retrain the model up to M times. Each retraining step improves
the arm distribution by either increasing the average reward or correcting internal biases, rendering
the optimal arm easier to identify. As data keeps being collected over time, and retraining using a
bigger dataset is always preferable, we assume that arm improvements become more significant the
longer the agent delays the retraining. Thus, the agent faces a new dilemma: whether to benefit sooner
from an earlier upgrade with a smaller impact or wait longer for a more substantial improvement.
We study two different improvement models: in the first, each retraining yields a decrease in the
reward variance, alongside a positive shift of the average of the distributions of the arms. This models
the enhanced performance exhibited by an algorithm after a retraining process, which enables it to
better recognize the optimal action and thus receive an increased reward. Such behavior could be
observed, for instance, when retraining a recommendation system, such that the modified algorithm
offers better suggestions (increased average) and leads to more consistent users’ reactions (reduced
variance). In the second setting, we assume the observations collected by the agent to be corrupted by
some bias, as it is the case for models that are trained over limited amount of data, or for which the
training dataset is not completely representative of the broader population Thus, each retraining step
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corresponds to a possibility to correct the algorithm, hence identifying and mitigating the effect of
the bias. For both models, we design algorithms to select both a sequence of actions and retraining
times that achieve optimal regret rates with respect to the time horizon T .

1.1 Outline and contributions

We introduce a novel multi-armed bandit setting, called Budgeted Improving Bandits (BIB), in which
the agent can positively modify the distribution of the arms M times across the interaction. We
particularly assume that the extent to which arms improve increases when these changes occur later
in time. We analyze two different settings:

• BIB with Improvable Arms (BIB-IA): in this model, each retraining increases the mean of
all arms by a constant factor cj ≤ c and reduces their variance by a factor bounded by t−α,
with α ≤ 1, c ≥ 0 known parameters. We provide an algorithm that exhibits an optimal
regret ofRT = Õ(max{T 1−α/1−αM+1

, cT 1/2+α}) in high probability.

• BIB with Decreasing Biases (BIB-DB): in this setting, we assume the observations obtained
to be biased. Each retraining of the model scales down the bias, from an initial variance of
σ, by a factor again bounded by t−α. We propose an algorithm that achieves a regret rate of
Õ(σT 1−α/2/1−(α/2)M+1

+ ϕ
√
T ), where ϕ is the variance of the rewards.

The rest of the paper is organized as follows. In Section 2, we present the two different models,
the sequential interaction protocol between the agent and the environment, and the notations used.
Sections 3 and 4 respectively include the analysis of BIB-IA and BIB-DB. In both cases, we define
the estimator for the average, the algorithm used, and provide bounds on the regret obtained by the
algorithms and their optimality with respect to the time horizon T . The technical proofs for the
results presented are deferred to Appendix A and B.

1.2 Related Work

The multi-armed bandit framework [Lattimore and Szepesvári, 2020] offers a powerful formalism
to model sequential decision-making in an unknown environment. From the initial seminal works
[Thompson, 1933, Robbins, 1952], a vast literature has originated, which examines countless variants
of the original problem. Our work bears some resemblance to settings in which the distribution of the
arms might change during the interaction, as in non-stationary bandits [Besbes et al., 2014, Wei and
Luo, 2021, Auer et al., 2019], restless bandits [Whittle, 1988, Guha et al., 2010, Ortner et al., 2012],
and rising bandits Heidari et al. [2016], Montenegro et al. [2023], Metelli et al. [2022]. However,
the fact that in our case the changes in the distributions are directly controlled by the agent marks a
significant difference with these works, whose main results aim at outlining algorithms able to face
unknown and possibly abrupt changes in the distribution, or for which the change in the rewards of
an arm across rounds is a function of the number of times the arm has been played.

Some comparison can be drawn as well with the field of batched bandits [Perchet et al., 2015, Gao
et al., 2019, Esfandiari et al., 2021], where the time horizon T is considered to be divided into batches
by a grid of time steps, and the learner can only rely on the information gathered during previously
concluded batches. While there is no change of distribution between different batches, this line of
research also focuses on understanding how to select the optimal grid of times in which we split the
total run, in order to minimize the excess regret.

Another related line of research is multi-fidelity multi-armed bandits [Kandasamy et al., 2016b,a,
Wang et al., 2023, Poiani et al., 2024]. Inspired by multi-fidelity in other fields (e.g. Bayesian
optimization), this framework studies a setting in which, for every arm, the agent has access to m
different approximations of the distribution of its reward. These approximations are increasing in
quality, meaning that their average concentrates tighter around the true one, but also increasing in
the cost that choosing each of them yields. The agent can choose which fidelity to require at every
time step, aiming to simultaneously minimize the regret and the overall costs of playing. Despite
some similarities with our second model, as in the existence of several degrees in the quality of the
observations, our setting is again quite different, since the agent is granted only a limited number
of switches (M ) among different distributions and cannot choose to downgrade to a worse quality
observation after having retrained the model. Finally, the extent to which the distributions of the arms
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in our problem improve depends on the retraining time; this is a key aspect that does not exist in the
multi-fidelity case.

Lastly, one way to interpret our setting is through the lens of scaling laws of large language models
[Kaplan et al., 2020, Hestness et al., 2017, Cherti et al., 2023]. This term refers to power laws that
link the performance of a model to its parameters, such as the number of input parameters, the size
of the training dataset, or the computing power. Several empirical works have highlighted how the
performance of the predictors with respect to the size of the training dataset m scales as 1/mα with
α ≤ 1. This motivated our choice of the retaining function as further detailed in Section 2.

2 Setting

Consider a multi-armed bandit model where, across T rounds, an agent sequentially chooses an
action among a set K (with |K| = K) and receives a reward drawn from an associated unknown
distribution. Specifically, at each round t, the agent plays an action it and earns a reward rτt (it). It
then either observes the real reward or a biased observation oτt (i) (both rewards and observations
are to be specified shortly). Before each round starts, the agent can decide to retrain the model.
This retraining step corresponds to an improvement in the distribution of all the arms, which either
increases the average reward and reduces their variance, or makes the optimal arm easier to identify
by correcting its bias. We denote the hard limit on the number of permitted retrainings by M
and by τ = {t̂1, . . . , t̂M}, the set of time-steps at which retraining happens, with the convention
t̂0 = 0, t̂M+1 = T . We also use the notation ⌊t⌋τ (ι(⌊t⌋τ )) to denote the latest step (retraining index)
at which the model was retrained before time t, that is,

⌊t⌋τ = max
j∈[M ]

{
t̂j : t ≥ t̂j

}
and ι(⌊t⌋τ ) = argmax

j∈[M ]

{
t̂j : t ≥ t̂j

}
.

We now explicitly specify that two improvement models, determining both rτt (it) and oτt (i), both
depend on a decreasing function s that encapsulates the retraining gain.

Budgeted Improving Bandits with Improvable Arms (BIB-IA) In this case, each retraining step
j has the effect of increasing the average of the distribution by a positive quantity cj , and reducing the
variance by a factor depending on the time when such retraining occured. This models the intuitive
idea that an improvement in the infrastructure leads to better and less fluctuating rewards. Formally,
we assume the reward of arm i to be a random variable of the form

rτt (i) = µτt (i) + s(⌊t⌋τ )ξt := µ(i) +

ι(⌊t⌋τ )∑
j=0

cj + s(⌊t⌋τ )ξt , (1)

where ξt is a σ-conditionally subgaussian centered random variable. After playing an arm it, the
agent gets to observe the true reward rτt (it). In the equation above, µτt (i) indicates the average
reward at time t, composed of the initial average µ(i) and the sum of the increments cj , accumulated
thanks to the previous retraining processes. The individual values cj are unknown to the agent; yet,
we assume cj ≤ c, ∀j = 1, . . . ,M where c is a known quantity, and denote c0 = 0.

Budgeted Improving Bandits with Decreasing Biases (BIB-DB) In the second model, we instead
assume that the agent does not have access to the true reward resulted from choosing a certain action,
but only receives an observation corrupted by some bias. The effect of a retraining process is to
reduce this bias. Formally, the reward and observation obtained by playing arm i at time t with
retraining steps τ are given by

rτt (i) = µ(i) + εt

oτt (i) = rτt (i) + s(⌊t⌋τ )ξ⌊t⌋τ (i) .
(2)

Thus, the observation aggregates the reward at time t, rτt (i), depending only on the quality of the
arm i, and a bias term that remains fixed between retraining steps (i.e., µτt (i) = µ(i)). We assume
ξ⌊t⌋τ and εt to be mutually independent and, similarly to the previous model, respectively σ and ϕ-
conditionally subgaussian centered random variables.
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Algorithm 1 Sequential interaction between the agent and the environment
Input: Time horizon T , arms K, parameter α.

1: while t ≤ T do
2: Agent picks action it
3: if t = t̂j ∈ τ then
4: Set ⌊t⌋τ = t̂j
5: end if
6: BIB-IA Agent receives reward rτt (it)
7: BIB-DB Agent receives reward rτt (it), while observing oτt (it)
8: t← t+ 1
9: end while

In both models, we assume that for all the arms, the associated reward and observation distributions
have support bounded by R regardless of the retraining times τ .

In order to derive meaningful results, we make the following assumption on the function s that
governs the decrease in variance/bias between retraining epochs.
Assumption 1. There exists α ∈ [0, 1] such that s(x) ≤ x−α/2 if x > 0 and s(0) < 1.
Remark 1. The proposed algorithms and the concentration bounds derived for the estimators also
work for more general functions s. Still, the assumed bounds allow us to recover precise expressions
for the optimal retraining times and sharper regret bounds. In particular, this assumption is inspired
by the scaling laws of large language models. Such laws relate the performance of neural networks
to the size of their input parameters, as the dimension of the training set. Specifically, they have been
demonstrated [Kaplan et al., 2020] to exhibit a power-like behavior with exponents smaller than 1.

The sequential interaction for both models is detailed in Algorithm 1.

As standard in the multi-armed bandit literature, the performance of an algorithm is measured in
terms of (pseudo)-regret. The goal is to design an algorithm that chooses the retraining times τ and a
sequence of actions that minimize the quantity

RT =

T∑
t=1

µτ
∗

t (i∗)− µτt (it) . (3)

Our benchmark, in this case, is an omniscient adversary who knows the distributions of the rewards,
hence the optimal arm i∗, and chooses the optimal retraining times τ∗. Note that if i∗ is known,
then the optimal retraining times are also deterministic and problem-independent. Indeed, in the
first model, the optimal strategy is to promptly exploit all the retraining budget, to benefit from the
maximal increased average for as many rounds as possible, from which τ∗ = {1, . . . ,M}. In the
other case, since the bias term impacts only the observations, the retraining times have no effect on
the true rewards. Their sole role is to make the best arm more easily identifiable, hence the optimal
strategy is independent of them and any choice of τ∗ would yield to the same cumulative reward.
Remark 2. In the problem we are considering, these changes in the distribution are meant to model
a costly retraining process that must be carefully scheduled; therefore, we limit the analysis to the
case M ≪ T . Note that the case M ≃ T is of independent interest, since it corresponds to a
framework in which the distribution of the arms continuously varies with time, hence equivalent to a
nonstationary bandit setting. Specifically Roychowdhury et al. [2025] studies a bandit problem in
which the distribution of every arm at time t is Gaussian with variance σ2

/t. Such setting could be
traced back to our BIB-IA model, for M = T and a specific choice of the parameters involved.

Notations In what follows, we denote by [[a, b]] the set of all integers between a and b and ∧, ∨
represent respectively the minimum and the maximum between two quantities. RT = Õ(BT ) means
that there exists a (possibly problem-dependent) constant C such that RT = O(log(T )CBT ).

3 Budgeted Improving Bandits with Improvable Arms (BIB-IA)

In this section, we analyze the BIB-IA model introduced in Section 2, where the rewards follow the
distribution detailed in Equation (1). An example of such a setting can be found in recommendation
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or advertising systems. In these cases, a retraining process is an improvement of the underlying
algorithm, responsible for suggesting content, which better identifies users’ preferences. Therefore,
after each of these modifications, when proposing an ad, which corresponds to playing a specific
arm in the bandit setting, it will be possible to observe more consistent clients’ reactions and an
increased click-through rate, which can be respectively translated into decreased variance and
improved average of the distributions of the rewards. In this case, the agent faces two different types
of exploration-exploitation dilemmas. On one side, there is the intrinsic one of the bandit framework,
which forces the agent to choose between exploring the actions, hence gathering more information
about their distributions, or exploiting what seems to be the optimal action, with the risk of suffering
considerable regret if this is not the case. On the other side, the agent also has to decide when
to retrain the model, knowing that a longer wait yields a more significant variance improvement.
Simultaneously, since each retraining comes with an increase in the average for every arm, the agent
might decide to sacrifice some possible improvement in the variance to favor an earlier increase in
the average reward of each arm. In contrast, the optimal strategy of the benchmark, already knowing
the best arm, should exhaust all the retraining budget in the first rounds to benefit the most from the
improved reward. Thus, the total regret is caused by both the delay in the retraining and the choice of
suboptimal arms. In the rest of this section, we show how to balance both these tradeoffs in order to
obtain order-optimal regret bounds.

Let τ be a set of retraining times. We consider an estimator for the average µ(i) of each arm, defined
as a convex combination of the rewards obtained at each round. Formally, let

Στt (i) =
∑
p≤t

1

σ2(⌊p⌋τ ∨ 1)−α
1{ip = i} ∨ 1

then, the estimator is defined as

r̂τt (i) =
1

Στt (i)

∑
p≤t

rτp(i)

σ2(⌊p⌋τ ∨ 1)−α
1{ip = i} . (4)

This estimator allows us to define an upper and lower confidence bound for each arm’s initial average
µ(i) since it satisfies the following concentration result, adapted to our case from the standard
Hoeffding-Azuma inequality.
Lemma 1. Fix an arm i, consider (rτt (it))t≥1 the sequence of random rewards, which is adapted
with respect to the filtration Ft = σ(rτ1 (i1), . . . , r

τ
t−1(it−1)). Then for any t ∈ N∗ and δt ∈ (0, 1),

the estimator defined in Equation (4) satisfies

Στt (i) = 0 or

∣∣∣∣∣∣r̂τt (i)−
µ(i) + ⌊t⌋τ∑

j=0

cj

∣∣∣∣∣∣ ≤ 2

√
log(1/δt)

Στt (i)

with probability at least 1− 2Tαtδt.

The algorithm we consider is an instance of Successive-Elimination, whose details are described at
Algorithm 2. The upper and lower confidence bounds, thanks to the lemma above, are defined as

UCBτt (i, δ) = r̂τt (i) + 2

√
log(1/δ)

Στt (i)

LCBτt (i, δ) = r̂τt (i)− 2

√
log(1/δ)

Στt (i)
.

(5)

In the definition of Algorithm 2, we require both the elimination of the arms and the retraining to
happen only at the end of loops inside which all the still active arms have been played in a round-robin
fashion. In what follows, we define an auxiliary set of switching times τ̃ = {t̃1, . . . , t̃M}, which are
given in input to the algorithm. During the run, they will be approximated such that each instant
t̂j ∈ τ corresponds to the rounding of t̃j to the first instant of time, after t̃j , where a loop over all the
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Algorithm 2 Successive Elimination for BIB
Input: Time horizon T , arms K, parameter α, set of set of active arms A0 = K, estimates
UCBτ0 (i, δ) = LCBτ0 (i, δ) = 0, ∀i ∈ K, confidence parameter δ, designated retratining times
τ̃ = {t̃1, . . . , t̃M}, adaptive retraining times τ = ∅.

1: while t ≤ T do
2: for i ∈ At−1 do
3: Agent picks action it = i
4: BIB-IA Agent receives rτt (it) and updates UCBτt (i, δ) and LCBτt (i, δ)
5: BIB-DB Agent receives rτt (it), observes oτt (it) and updatesUCBτt (i, δ) and LCBτt (i, δ)
6: At ← At−1

7: t← t+ 1
8: end for
9: z := maxk∈At−2

LCBτt−1(k, δ)
10: At−1 ← {i ∈ At−2, UCB

τ
t−1(i, δ) ≥ z}

11: if ⌊t⌋τ < ⌊t⌋τ̃ then
12: Set Retrain the model and add τ ← τ ∪ {t}
13: end if
14: end while

still active arms has ended. Note that this creates adaptivity in the definition of τ , since the precise
value of the retraining times is a random quantity, as it depends on the number of active arms which
is, in its turn, a random quantity depending on the interaction between the agent and the environment.

The algorithm enjoys the following regret bound:

Theorem 1. Let β(j) be the function β(j) = 1−αj

1−α , and c∗ and λ the quantities

c∗ = A

(
T

M2

) 1/2−β(M)
1+αβ(M)

(6)

and

λ =

[
A2 T

M2
min

{
1

c∗2
,
1

c2

}] 1
(2+α)β(M)

, (7)

where A = 8σ
√
K log(4KTα+5). Then, the regret of Algorithm 2, with estimate as in Equation (4),

confidence intervals as in Equation (5) and confidence parameter δ = 1/4KT 5+α, satisfies

RT ≤ Õ
(
K

3
2+

1
2β(M)(2+α)M1+ 1

β(M+1) ·max
{
T

1
2β(M+1) , cT

1
2+α

})
with probability at least 1− 1/T , when the retraining times are chosen as t̃j = λβ(j).

Sketch of proof. (See Appendix A.2.1 for the full proof) The proof works by initially decomposing
the regret as

RT =

T∑
t=1

(
µτ

∗

t (i∗)− µτt (i∗)
)
+

T∑
t=1

(µτt (i
∗)− µτt (it)).

The first term corresponds to the regret suffered due to an incorrect choice of the retraining times
with respect to the optimal strategy and is bounded by cMt̂M . The second term, instead, is caused by
the choice of suboptimal arms. We further decompose it into the regret accumulated in each of the
M + 1 epochs. Using the regret decomposition lemma [Lattimore and Szepesvári, 2020, Lemma
4.5] and the concentration bound for the estimator, we find that for each epoch j, the regret is of the
order of Nτ

j (i)/
√

Στ
t̂j+1

(i)−Στ
t̂j

(i), where Nτ
j (i) is the number of times arm i has been played during

epoch j. Since during the j-th epoch, the variance of arm is constant and equal to t̂−αj , the difference
Στ
t̂j+1

(i)− Στ
t̂j
(i) is of the order t̂αjNj(i). Furthermore, using the fact that Nj(i) ≤ t̂j+1, we prove

that the regret accumulated in each epoch is proportional to
√
t̂j+1/t̂αj . From which,

RT ≤ cMt̂M +

M∑
j=0

√
t̂j+1/t̂αj ,
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and substituting the choice of the retraining times as specified in the statement yields the result.

The behavior of the switching times depending on the parameter c The switching times specified
in Theorem 1, illustrate the optimal strategy to face this bandit problem depending on the parameter
c. Indeed, when c is small, and by consequence so are the individual increases cj , the agent should
prioritize a choice of retraining times that allows her to gather the biggest amount of information,
aiming at reducing the variance, and consequently minimizing the component of the regret caused by
an incorrect choice of the arm. Conversely, when c grows, the priority should be given to improving
the average, since the increase in the reward brought by each retrain step is substantial. This is reflected
in the definition of the switching times through to the quantity λ which is inversely proportional to c,
such that for large values of c the retraining times converge to the optimal ones τ∗ = {1, . . . ,M}.
A particular case is when c = 0, corresponding to the one in which there is no improvement in the
average generated by a retraining step, which instead has the only effect of reducing the variance.

Similarly as before it is possible to decompose the regret asRT =
∑M
j=0

√
t̂j+1/t̂αj , and the optimal

retraining times are therefore obtained by solving the constraint optimization problem, imposing that
0 = t̂0 ≤ . . . ≤ t̂M+1 ≤ T , leading to a regret of the order of T

1
2β(M+1) . Note that this is, for all

values of α, better than the canonical regret rate of bandits (
√
T ) as expected since the optimal arm

becomes more and more easy to identify across the interaction.

The rate obtained in Theorem 1 is optimal with respect to T , as shown by the following theorem.
Theorem 2. Let ν be a bandit instance, whose rewards, for every possible action and time step,
follow the structure detailed in Equation (1). Let A be a random algorithm that selects both an arm
to be played at every timestep t, and a set of M retraining times τ = {t̂1, . . . , t̂M}. Then, there exists
a bandit instance ν for which, every choice of τ , the expected regret of algorithm A with horizon T is
lower bounded by

RA,ν,T ≥ Ω

((
σ
√
K

M + 1

) 2
2+α

max
{
T

1
2β(M+1) , c

α
2+αT

1
2+α

})
.

Finally, we analyzed a full-information setting, in which at every round the agent observes the
rewards for all arms. In this case, an analogous estimator to the one defined in Equation (4) and a
greedy routine allow to recover the following regret bound, which has the same dependency in T of
Theorem 1, and only improves in terms of K.

Theorem (Informal statement). Let c∗ = Õ(T
1/2−β(M)
1+αβ(M) ) and λ = Õ(T/max{c∗2,c2})

1
(2+α)β(M) . Then

the regret of a greedy algorithm with retraining times t̂j = λβ(j) is

RT = Õ
(
max

{
T

1
2β(M+1) , cT

1
2+α

})
All the details regarding this model, such as the definition of the estimator, the algorithm, and the
results can be found in Appendix A.1

4 Budgeted Improving Bandits with Decreasing Biases (BIB-DB)

In this section, we analyze the BIB-DB setting, where we assume that the agent interacts with
a more challenging bandit instance, in which for every played action, she receives a sample of
the reward further corrupted by some bias. This setting represents the case in which the reward
resulting from a certain action is mediated by the model itself, which, for instance, translates a
qualitative feedback into a quantitative reward, as could be in a reviewing system. In this case,
the resulting value is exposed to some degree of subjectivity and likely presents some bias. An
improvement of the algorithm represents a correction of the embedding mechanism, such that after
its deployment, the rewards observed are more representative of the true value. Another example
is the case where the information collected comes, for instance, from a distinct population, whose
individual characteristics impact the distribution of the reward, as might be the case for surveys
or clinical trials. In this scenario, a retaining step corresponds to an opportunity for the service
provider to improve the algorithm by sourcing data from heterogeneous datasets. By comparing
diverse batches of information, it is therefore possible to estimate the bias and reduce it. Again, we

7



assume the impact of this correction to be proportional to the time in which the retraining is executed,
motivated by the idea that a longer wait yields richer datasets. The final regret rates will depend on
the initial magnitude of the bias, the number of retrainings allowed, and the influence each one has
thanks to the parameter α, as highlighted by the following theorems.

Analogously to the analysis in Section 3, we use the instance of Successive-Elimination defined in
Algorithm 2, which employs an estimator of the average defined as follows. Fix an arm i, and assume
there exists some constants γj such that, if i is still active at time t̂j+1 then

∑t̂j+1

p=t̂j+1
1{ip = i} > γj

almost surely; we will later specify these constants. Then, we can define

r̂jt (i) =
1

Nτ
j (i) ∨ 1

t̂j+1∧t∑
p=t̂j+1

oτp(i)1{ip = i ∧Nτ
j (i) ≤ γj}

where Nτ
j (i) =

∑t̂j+1∧t
p=t̂j+1

1{ip = i ∧Nτ
j (i) ≤ γj} counts the times an arm has been played during

each epoch, stopped at γj . Note that r̂jt (i) corresponds to the average of the observations obtained
during epoch j where only the initial γj information is considered, and the following observations are
discarded. The final estimator is again obtained as a weighted average across epochs. Specifically, let

Πτt (i) =

ι(⌊t⌋τ )∑
j=0

1

σ2(⌊t⌋τ ∨ 1)−α + ϕ2
/Nτ

j (i)
,

then, the estimator is defined as

r̂τt (i) =
1

Πτt (i)

ι(⌊t⌋τ )∑
j=0

r̂jt (i)

σ2(⌊t⌋τ ∨ 1)−α + ϕ2
/Nτ

j (i)
, (8)

where we use the convention 1/0 = ∞ and 1/∞ = 0. By the linearity of expectation, it is straight-
forward to see that for i.i.d. samples, E [r̂τt (i)] = µ(i). We prove that a similar result holds for the
adaptive case as well, as stated in the following lemma.
Lemma 2. Consider an arm i and the sequence of random observations (oτt (it))t≥1, which is adapted
with respect to the filtration Ft = σ

(
(ξt̂0(i), . . . , ξ⌊t⌋τ (i)), (i1, . . . , it), (ϵ1(i1), . . . , ϵt(it))

)
. Let

r̂τt (i), then the estimator defined in Equation (8), then for every δ ∈ (0, 1), it holds

P

(
|r̂τt (i)− µ(i)| ≤ R

√
32 log(4γι(⌊t⌋τ )/δ)

Πτt (i)(σ
2 + ϕ2)

)
≥ 1− δ

where R is a bound on the support of the distribution of the observations.

This allows us to define upper and lower confidence bounds necessary for Algorithm 2. Specifically,

UCBτt (i, δ) = r̂τt (i) +R

√
32 log(4γι(⌊t⌋τ )/δ)

Πτt (i)(σ
2 + ϕ2)

LCBτt (i, δ) = r̂τt (i)−R

√
32 log(4γι(⌊t⌋τ )/δ)

Πτt (i)(σ
2 + ϕ2)

.

(9)

Utilizing this concentration result, we derive the following regret bound.

Theorem 3. Let κ be the function κ(j) = 1−(α/2)j

1−α/2 , and λ the quantity λ = T 1/κ(M+1). Consider the

estimates defined as in Equation (8), with γj = λκ(j+1)−λκ(j)

K − 1. Then, the regret of Algorithm 2,
using these estimates, with confidence intervals as in Equation (9) and confidence parameter δ =
1/K2T 4, is bounded by

RT ≤ Õ
(
MK

(
σT

1
κ(M+1) + ϕ

√
KT

))
with probability 1− 1/T , when the retraining times are picked as t̃j = λκ(j), ∀j = 1, . . . ,M .
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As before, the retraining times specified in the statement represent preliminary retraining steps The
true value of each t̂j is obtained by rounding the corresponding t̃j to the end of the loop where all the
still active arms are played in a round-robin way, as done in Section 3.

Remark 3. Note that the choice of γj as expressed in the statement is valid. Indeed, consider the
true retraining time t̂j , defined adaptively. Let i be an arm still active at the end of the j-th epoch
and Aj be the set of active arms at time t̂j . Since the algorithm plays the arms in a round-robin way
and the number of active arms during epoch j can only decrease, we have

t̂j+1∑
p=t̂j+1

1{ip = i} ≥ t̂j+1 − t̂j
|Aj |

.

Moreover, since |Aj | ≤ K.

t̂j∑
p=t̂j+1

1{ip = i} ≥ t̂j+1 − t̂j
K

=

⌈
t̃j+1

⌉A − ⌈t̃j⌉A
K

≥ λκ(j+1) − λκ(j)

K
− 1

where ⌈·⌉A represents the rounding to the end of the round-robin loop. The last inequality follows
from the fact ∀j, t̃j ≤

⌈
t̃j
⌉A ≤ t̃j +K.

Sketch of proof. (See Appendix B.2.1 for the full proof) Similarly as before, it is possible to decom-
pose the total regret asRT =

∑
j Rj , whereRj is the regret accumulated during epoch j. Using the

regret decomposition lemma [Lattimore and Szepesvári, 2020, Lemma 4.5] and the concentration
bound of Lemma 2, we find that each Rj is of the order of Ñj(i)/

√
Π̃τ

T (i), where Ñj(i) is the total
amount of times arm i has been played during epoch j and Π̃τT (i) the term in ΠτT (i) relative to epoch
j. By further expliciting the value of Π̃τT (i), the terms rewrite as Ñj(i)/

√
Nj(i)(σ

√
Nj(i)/t̂αj + ϕ).

Note that, due to its definition, Nj(i) ≤ (t̂j+1−t̂j/K)− 1 and when the inequality is strict, we have
Nj(i) = Ñj(i) ≤ t̂j+1 − t̂j . Hence in both cases, if replaced in the regret decomposition, we obtain

thatRj is bounded by σ
(
t̂j+1/

√
t̂αj

)
+ϕ
√
t̂j+1. The final result follows by considering a sum over

all the epochs and replacing the retraining times as in the statement.

From the regret bound of Theorem 3, it is possible to gather some intuition regarding the nature
of this model. The bound is composed of two independent terms σT 1/k(M+1) and ϕ

√
T . The latter

corresponds to the standard regret rate of a bandit instance where the distribution of the reward is
ϕ-subgaussian, while the former is distinctive of our model and is caused by the bias. Note that in
general, σT 1/κ(M+1) is the leading term, as expected since the obfuscated observations that the agent
receives in this setting make the problem harder than in the canonical multi-armed-bandit framework.
The only cases in which the regret bound obtained matches the standard

√
T rate, are for large values

of M if α = 1, or if σ ≪ ϕ. Both cases represent occurrences in which the bias term is eventually
negligible, either because its variance σ is substantially smaller than the noise variance ϕ, or because
each of the frequent retraining steps leads to major improvements, again significantly shrinking σ.

To prove the optimality of this bound, we provide the following result.

Theorem 4. Let ν be a bandit instance, whose rewards, for every possible action and time step follow
the structure detailed in Equation (2). Assume that for every time t, the agent receives an observation
from every arm, in a full-information fashion. Let A be a random algorithm that selects both an arm
to be played at every time t, and a set of M retraining times τ = {t̂1, . . . , t̂M}. Then, there exists a
bandit instance ν, for which, for every choice of τ , the expected regret of algorithm A with horizon T
is lower bounded by

RA,ν,T ≥ Ω
(
max

{
σT

1/κ(M+1), ϕ
√
T
})

.

Note that Theorem 4 considers a full-information version of the BIB-DB setting. The result also
implies an analogous bound in terms of T for the case in which the agent can only rely on bandit
feedback, since bandit feedback is more restrictive than full information. Still, the bandit case often

9



has a worse dependency on the number of arms K that is not captured in this lower bound, which
also exists in our upper bound.

For the full-information version of this model, whose details can be found in Appendix B.1, we also
provide an upper bound on the regret rate. The algorithm we outline for this is an instance of a greedy
routine that utilizes a similar estimator to the one defined in Equation (8), updating it for all the arms
at every round. The bound of the regret in this case has the same dependency on T as in Theorem 3,
as shown by the following.

Theorem (Informal statement). In a BIB-DB setting with full information, the regret of a greedy
algorithm is bounded by

RT ≤ Õ(σT
1/κ(M+1) + ϕ

√
T )

when retraining times are defined as t̂j = λκ(j) and λ = T 1/κ(M+1).

5 Conclusion

In this work, we presented a novel multi-armed bandit framework, called budgeted improving bandits,
in which the agent can modify the distribution of all the arms for a fixed number of times M . We
analyzed two different ways in which such action impacts the distribution of the arms. In the first,
we assume each retraining step to augment the average of the reward distribution and decrease its
variance when the retraining is executed. In the second, we assume that the observations obtained
by the agent are corrupted by some bias, and each retraining step serves to shrink this bias. In both
models, the longer the agent waits before retraining, the better its gain, and agents must decide
whether to update early, gaining small improvement for a longer duration, or wait with the update
in order to get a larger performance boost for a short period of time. For both variants, we provide
algorithms that exhibit optimal rates with respect to the time horizon T . We leave characterizing the
optimal dependence of the regret on the number of arms K to future work.

Given the novelty of the model, many possible research directions stem from this work. It would
be interesting, for instance, to understand what regret rates are achievable when the improvement
that each retraining yields is not known beforehand. In particular, one could study whether, given
enough retraining steps, the improvement parameter α could be estimated on the fly. Alternatively,
our work can be extended to support more general improvement profiles s, including non-polynomial
parametric families or even assuming it only belongs to a specific class of functions, as in monotone
Lipschitz or Hölder functions. In terms of performance, we provide minimax regret bounds that are
order optimal w.r.t. the interaction length. It is worthwhile to characterize the optimal regret also
w.r.t. the number of arms and update steps, as well as derive instance-dependent bounds. Lastly, it is
possible to extend other formulations that model retraining, including problems in which the number
of retraining steps is unlimited but each comes with some cost, considering retraining for each arm
separately, situations where the agent has partial control over the extent to which models improve,
and more.
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Algorithm 3 Follow the Leader with full-information
Input: Time horizon T , arms K, parameter α, retaining times τ , estimates r̂τ0 (i) = 0, ∀i ∈ K

1: while t ≤ T do
2: Agent picks action it = argmaxi∈K r̂

τ
t−1(i), breaking ties arbitrarily

3: if t = tj ∈ τ then
4: Set ⌊t⌋τ = t̂j
5: end if
6: BIB-IA Agent receives reward rτt (it) observes rewards rτt (i) , ∀i ̸= it ∈ K
7: BIB-DB Agent receives reward rτt (it) observes oτt (i) , ∀i ∈ K
8: Agent updates estimate r̂τt (i)
9: t← t+ 1

10: end while

A BIB-IA Model

A.1 BIB-IA with Full-Information

In this section, we analyze a modified version of the BIB-IA model where we assume the agent
obtains, at every round, a sample from the distribution of the reward of each arm. In this case, the
estimator used is obtained by modifying the one defined in Equation (4) such that it takes into account
the additional information received. Specifically, we define the estimator as

r̂τt (i) =
∑
p≤t

rp(i)
σ2(⌊p⌋τ∨1)−α∑
p≤t

1
σ2(⌊p⌋τ∨1)−α

. (10)

The algorithm proposed in this case is an instance of Follow-the-Leader, that maintains and updates
the estimate r̂τt (i) for all the arms i ∈ K and greedily chooses the biggest one at every round. The
details of the routine are included in Algorithm 3.

We present the following result which bounds the regret rates of Algorithm 3. Note that the algorithm
exhibits the same dependency in T , as the version with bandit feedback of Section 3, while a different
dependency with respect to the number of arms K.

Theorem 5. Define the function β(j) = 1−αj

1−α and the quantities

c∗ := 8σ
√
2 log(KT 2)

(
T

M2

) 1/2−β(M)
1+αβ(M)

and

λ :=

[
128σ2 log(KT 2)

T

M2
min

{
1

c∗2
,
1

c2

}] 1
(2+α)β(M)

.

Then, the regret of algorithm Algorithm 3, when using the estimates defined in Equation (10), and
retraining times t̂j = ⌈λβ(j)⌉, j = 1, . . . ,M , is bounded by

RT ≤ 4
(
8σ
√
2 log(KT 2)

)1+ 1
(2+α)β(M)

M max
{
T

1
2β(M+1) , cT

1
2+α

}
with probability at least 1− 1/T .

Proof. In what follows, we denote by µτt (i
∗) the average reward of arm i at time t with respect

to retraining times τ . Similarly, µτ
∗

t (i) indicates the average reward at time t of arm i when the
retraining times are chosen optimally. Recall that, as motivated in Section 2, for this model the
optimal times correspond to τ∗ = {1, . . . ,M}, since they are the ones for which it is possible to
benefit for the longest time of the increased average rewards. We start our analysis by considering the
following lemma.
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Lemma 3. The regret accumulated by an algorithm interacting with a bandit problem whose rewards
follow the structure detailed in Equation (1) with respect to some retraining times τ , is bounded by

RT ≤ cMt̂M +

T∑
t=1

µ(i∗)− µ(it)

Hence, we focus on the second term
∑T
t=1 µ(i

∗)−µ(it). Note that, by adding and subtracting r̂τt (it),
it holds

T∑
t=1

µ(i∗)− µ(it) =
T∑
t=1

µ(i∗)− r̂τt (it) + r̂τt (it)− µ(it)

≤
T∑
t=1

µ(i∗)− r̂τt (i∗) + r̂τt (it)− µ(it) ,

where in the last inequality we used the fact that r̂τt (i
∗) ≤ r̂τt (it), which holds due to the greedy

nature of the algorithm. Let’s now define the following good event

Gt =

{
|r̂τt (i)− µ(i)| ≤ σ

√
2 log(K/δt)∑
p≤t

1
(⌊p⌋τ∨1)−α

, ∀i ∈ K

}
Lemma 4. The event Gt happens with probability at least 1− δt.

Considering this event with δt = 1/T 2, and applying the bound therein both on i∗ and it, we have

T∑
t=1

µ(i∗)− µ(it)

≤
T∑
t=1

2σ

√
2 log(KT 2)∑
p≤t

1
(⌊p⌋τ∨1)−α

(i)
=

T∑
t=1

2σ

√√√√ 2 log(KT 2)∑(ι(⌊t⌋τ )−1)∨0
j=0

t̂j+1−t̂j
(t̂j∨1)−α + t−⌊t⌋τ

(t̂j∨1)−α2

(ii)
=

t̂1∑
t=1

2σ
√

2 log(KT 2)√
t

+

M∑
i=1

t̂i+1∑
t=t̂i+1

2σ
√

2 log(KT 2)√∑i−1
j=0(t̂j+1 − t̂j)(t̂αj ∨ 1) + (t− t̂i)t̂αi

= 2σ
√

2 log(KT 2)

√
t̂1 +

M∑
i=1

t̂i+1−t̂i−1∑
s=0

2σ
√

2 log(KT 2)√∑i−1
j=0(t̂j+1 − t̂j)(t̂αj ∨ 1) + st̂αi

,

with probability at least 1− 1/T 2. Note that (i) follows from decomposing the sum in the denominator
in the different epochs and observing that during epoch j the value ⌊p⌋τ is constant and equal to
t̂j , while (ii) splitting the regret in the one accumulated in each epoch and treating the first epoch
separately. The internal sum in the second term of the expression above can be further bounded by
using integral approximation as follows

t̂i+1−t̂i−1∑
s=0

1√∑i−1
j=0(t̂j+1 − t̂j)(t̂αj ∨ 1) + st̂αi

≤
∫ t̂i+1−t̂i−1

0

1√∑i−1
j=0(t̂j+1 − t̂j)(t̂αj ∨ 1) + st̂αi

ds
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≤ 2

t̂αi ∨ 1

√√√√ i∑
j=0

(t̂j+1 − t̂j)(t̂αj ∨ 1) .

By replacing this in the above bound, we obtain

T∑
t=1

µ(i∗)− µ(it) ≤ 2σ
√

2 log(KT 2)

√
t̂1 + 2σ

√
2 log(KT 2)

M∑
i=1

2

t̂αi ∨ 1

√√√√ i∑
j=0

(t̂j+1 − t̂j)(t̂αj ∨ 1)

≤ 4σ
√

2 log(KT 2)

M∑
i=0

√
t̂i+1

t̂αi ∨ 1
.

Replacing this in the initial bound obtained stated in Lemma 3, leads to

RT ≤ cMt̂M +

M∑
i=0

4σ
√
2 log(KT 2)

√
t̂i+1

t̂αi ∨ 1

The regret bound is then obtained by replacing the values of t̂i as defined in the statement of the
theorem, and considering the relation they satisfy highlighted by the following lemma

Lemma 5. Let x, u ∈ R and n ∈ N, then

x
1−un

1−u = x · xu
1−un−1

1−u .

Applying this respectively to λ, α, and i, we found that the values t̂i, defined the statement satisfy

t̂i+1 =
⌈
λβ(i+1)

⌉
=
⌈
λ · λαβ(i)

⌉
≤ ⌈λ⌉t̂i .

Thus the regret can be bounded by

RT ≤ cM
(
λβ(M) + 1

)
+ 8σ

√
2 log(KT 2)M

(√
λ+ 1

)
+ 8σ

√
2 log(KT 2)

√
T

λαβ(M)
, (11)

where we have used the fact that λ ≤ ⌈λ⌉ ≤ λ + 1. The final bound is obtained by replacing the
value of λ as specified in the statement. Note that, in one case we have c ≤ c∗ and

λ =

[
128σ2 log(KT 2)

T

c∗2M2

]1/(2+α)β(M)

=

(
T

M2

)1/1+αβ(M)

,

which replaced in eq. (11) gives

RT ≤c∗M
(
T

M2

) β(M)
1+αβ(M)

+ 8σ
√
2 log(KT 2)

M (
T

M2

) β(M)
2(1+αβ(M))

+M
αβ(M)

1+αβ(M)T
1

2(1+αβ(M))


+ c∗M + 8σ

√
2 log(KT 2)M ,

further replacing c ≤ c∗, leads to

RT ≤ 32σ
√
2 log(KT 2)MT

1
2(1+αβ(M)) .

On the other end, if c > c∗, the value of λ, by definition, becomes

λ =

[
128σ2 log(KT 2)

T

(cM)2

]1/(2+α)β(M)

,
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which replaced in eq. (11), gives

RT ≤
(
8σ
√

2 log(KT 2)
) 2

2+α

(cM)
α

2+αT
1

2+α

+
(
8σ
√
2 log(KT 2)

)1+ 1
(2+α)β(M)

M

(
T

(cM)2

) 1
2(2+α)β(M)

+
(
8σ
√
2 log(KT 2)

) 2
2+α

(cM)
α

2+αT
1

2+α

+ cM + 8σ
√
2 log(KT 2) ,

hence

RT ≤ 4
(
8σ
√
2 log(KT 2)

)1+ 1
(2+α)β(M)

McT
1

2+α

Combining the two results yields

RT ≤ 4
(
8σ
√
2 log(KT 2)

)1+ 1
(2+α)β(M)

M max
{
T

1
2(1+αβ(M)) , cT

1
2+α

}
we finally obtain the desired result by considering an union bound among all the events Gt.

A.2 Proofs of Section 3

A.2.1 Proof of Theorem 1

We start by considering again the initial bound on the regret given by Lemma 3 considering the
rewards obtained with retraining times τ , and as before we focus on the second term.

Let t be the last time step where arm i was active before being eliminated. Consider the event

G̃ =
⋂
t≤T

{
UCBτt (i

∗, δ) > max
i
LCBτt (i, δ)

}
from, the concentration bound, this intersection holds with probability at least 1 − 1/2T , where
we have replaced δ = 1/4KT 5+α, as mentioned in the statement. Thus, under this event, we know
that at time t the optimal arm i∗ is still active. Then, from the elimination condition of Successive
Elimination and the concentration result in Lemma 1 for the estimators, it holds that

µ(i∗)− µ(i) ≤ 2

(
2

√
log(1/δt)

Στt (i
∗)

+ 2

√
log(1/δt)

Στt (i)

)
,

with probability at least 1− 2tTαδt. Note that, from the definition of Algorithm 2, the elimination of
arms happens only at the end of loops during which all the still active arms are played in a round-robin
fashion. From this follows that every couple of arms still active at any time t has been played the same
amount of times. Furthermore, also by definition, the retraining steps happen outside of round-robin
routines, hence arms that are still active during one of these loops have an equal variance term in the
expression of Στt . Thus

Στt (i
∗) =

∑
p≤t

1

σ2(⌊p⌋-ατ ∨ 1)
1{ip = i∗} =

∑
p≤t

1

σ2(⌊p⌋−ατ ∨ 1)
1{ip = i} = Στt (i) ,

moreover, since arm i is not played again after time t, it holds Στt (i) = ΣτT (i). From this, we can
define the following event, which holds with probability at least 1− 2tTαδt

Git =

{
|µ(i∗)− µ(i)| ≤ 8

√
log(1/δt)

ΣτT (i)

}
.
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Let NT (i) =
∑T
t=1 1{it = i}, and δt = 1/4KT 5+α, under the event Git ∩ G̃ using the regret

decomposition lemma, it holds

T∑
t=1

µ(i∗)− µ(it) =
∑
i∈K

∆iNT (i)

≤
∑
i∈K

8

√
log(4KT 5+α)

ΣτT (i)
NT (i)

≤ 8σ
√
log(4KT 5+α)

∑
i∈K

∑
p≤T 1{ip = i}√∑

p≤T
1

(⌊p⌋τ∨1)−α1{ip = i}

≤ 8σ
√
log(4KT 5+α)

∑
i∈K

M∑
j=0

∑t̂j+1

p=t̂j+1
1{ip = i}√∑

p≤T
1

(⌊p⌋τ∨1)−α1{ip = i}
.

We can further bound this by disregarding all the terms in the denominator but the ones relative to the
j-th epoch, where 1/⌊p⌋−α

τ = t̂αj , so that the bound becomes

T∑
t=1

µ(i∗)− µ(it) ≤ 8σ
√

log(4KT 5+α)
∑
i∈K

M∑
j=0

∑t̂j+1

p=t̂j+1
1{ip = i}√∑t̂j+1

p=t̂j+1
(t̂αj ∨ 1)1{ip = i}

≤ 8σ
√

log(4KT 5+α)
∑
i∈K

M∑
j=0

√∑t̂j+1

p=t̂j+1
1{ip = i}√

t̂αj ∨ 1

(i)

≤ 8σK
√
log(4KT 5+α)

M∑
j=0

√∑
i∈K

∑t̂j+1

p=t̂j+1
1{ip = i}√

K(t̂αj ∨ 1)

≤ 8σ
√
K log(4KT 5+α)

M∑
j=0

√
t̂j+1

t̂αj ∨ 1

where in (i) we used Jensen’s inequality. Replacing this in Lemma 3, and isolating the last term of
the sum, for which we replace t̂M+1 = T that again we assume by convention, we obtain

RT ≤ 8σ
√
K log(4KT 5+α)

M−1∑
j=0

√
t̂j+1

t̂αj ∨ 1
+ 8σ

√
K log(4KT 5+α)

√
T

t̂αM
+ cMt̂M

Now we use the fact that, from the definition of t̂j we have that t̃j ≤ t̂j ≤ t̃j +K, since the number
of active arms is always at most K. Furthermore, as made explicit by Lemma 5, it holds t̃j = λt̃αj−1

Using the notation A = 8σ
√
K log(4KT 5+α), the expression above is

RT ≤ A
M−1∑
j=0

√
t̃j+1 +K

t̃αj ∨ 1
+A

√
T

t̃αM
+ cM(t̃M +K)

≤ AM
(√

λ+
√
K
)
+A

√
T

λαβ(M)
+ cM

(
λβ(M) +K

)
16



≤ AM
√
λ︸ ︷︷ ︸

(A)

+A

√
T

λαβ(M)︸ ︷︷ ︸
(B)

+ cMλβ(M)︸ ︷︷ ︸
(C)

+M
(
A
√
K + cK

)
︸ ︷︷ ︸

(D)

To obtain the optimal regret bound we are left with the task of optimizing λ between (A), (B) and
(C). Note that, for small values of c, (C), is negligible, hence the optimal value λ∗ will be obtained
by optimizing with respect to λ the first two terms, namely

AM
√
λ∗ = A

√
T

(λ∗)αβ(M)

M2(λ∗)1+αβ(M) = T

λ∗ =

(
T

M2

) 1
1+αβ(M)

.

This holds true for values of c for which (A) ≥ (C), which corresponds to

MA

(
T

M2

) 1/2
1+αβ(M)

≥ cM
(
T

M2

) β(M)
1+αβ(M)

(12)

c∗ := A

(
T

M2

) 1/2−β(M)
1+αβ(M)

≥ c . (13)

Hence if c ≤ c∗ it holds

RT ≤ (A) + (B) + (C) + (D)

≤ 3(A) + (D)

= 3MA

(
T

M2

) 1/2
1+αβ(M)

+M
(
A
√
K + cK

)

≤ 4MKA

(
T

M2

) 1/2
1+αβ(M)

.

On the other end, if c ≥ c∗ then the optimal value λ∗ is obtained by balancing terms (B) and (C),
such that

A

√
T

(λ∗)αβ(M)
= cM(λ∗)β(M)

A2T = c2M2(λ∗)β(M)(2+α)

λ∗ =

(
A2 T

c2M2

) 1
β(M)(2+α)

.

Therefore, the final regret bound becomes

RT ≤ (A) + (B) + (C) + (D)

≤ (A) + 2(B) + (D)

= AM

(
A2 T

c2M2

) 1
2β(M)(2+α)

+ 2cM

(
A2 T

c2M2

) β(M)
β(M)(2+α)

+M
(
A
√
K + cK

)
17



≤ 4MKA1+ 1
β(M)(2+α) cT

1
2+α .

Combining the results found, we conclude that the optimal value for λ corresponds to

λ∗ = min

{(
T

M2

) 1
1+αβ(M)

,

(
A2 T

c2M2

) 1
β(M)(2+α)

}

=

[
A2 T

M2
min

{
1

c∗2
,
1

c2

}] 1
(2+α)β(M)

and the regret is bounded by

RT ≤ max

4MKA

(
T

M2

) 1/2
1+αβ(M)

, 4MKA1+ 1
β(M)(2+α) cT

1
2+α


A.2.2 Proof of Theorem 2

To prove the result, we adapt the standard notion of a random strategy to our setting. A strategy is a
family of functions ψ = (ψt)t≤T , that indicates the choices made by the algorithm at every time step.
Formally,

ψt : It → {1, . . . ,K} × {0, . . . ,M}
such that the history It = (U0, r

τ
t (i1), . . . , Ut), given by the internal randomization of previous

rounds and rewards collected, is mapped in a couple (it+1, nt+1) representing the action and retraining
index. The latter is a counter of how many times the model was retrained. To incorporate the fact that
this value can only grow, and it increases by at most 1 between consecutive rounds, we limit the set
of feasible strategies to the ones for which the second component satisfies

(a) n0 = 0 and nT =M

(b) ns ≤ nt ∀t > s

(c) nt+1 − nt ≤ 1

For the sake of generality, we allow this index to be arbitrarily chosen as a function of the past
information under the aforementioned constraints. Note that, using this new notation, the set of
retraining times τ induced by the strategy ψ, is the set of t̂j for which nt̂j = j and nt̂j − nt̂j−1 = 1.
As done in the proof for the upper-bounds, the regret relative to the bandit instance ν can be initially
decomposed as follows

Rψ,ν,T =
T∑
t=1

Eν [µ
τ∗

t (i∗)− µτt (i∗)] +
T∑
t=1

Eν [µ(i
∗)− µ(it)] ,

where, for the sake of clarity, we omit the dependency on ψ in the expectation. As done previously,
we bound the two terms independently.
We consider a bandit instance in which each increment of the average cj is equal to c, therefore by
replacing the expression of the optimal retraining times τ∗, it holds that

T∑
t=1

µτ
∗

t (i∗)− µτt (i∗) =
T∑
t=1

µ(i∗) + t∧M∑
j=0

cj

−
µ(i∗) + nt∑

j=0

cj



=

T∑
t=1

µ(i∗) + c(t ∧M)− (µ(i∗) + cnt)

c

(
M∑
t=1

t− nt +
M∑

t=M+1

M − nt

)

18



We consider two possible bounds for this quantity. On one hand, because of the constraints we
imposed on the strategy, we have nt ≤ t, thus the expression above is always bigger or equal to zero.
On the other hand, if τ ̸= τ∗, then the first sum is always bigger than 1, while in the second, since
t < t̂M , we have M − nt ≥ 1.

T∑
t=1

µτ
∗

t (i∗)− µτt (i∗) ≥ c+ c(t̂M −M − 1) = c(t̂M −M) ≥ c

2
t̂M ,

where the last inequality holds since t̂M ≥M +1 ≥ 2. Hence, introducing the notation Eν
[
t̂j
]
= tj

T∑
t=1

Eν [µ
τ∗

t (i∗)− µτt (i∗)] ≥
c

2
Eν
[
t̂M
]
=
c

2
tM .

Now we focus on bounding the second term of the regret, corresponding to R̃ψ,ν,T =∑T
t=1 Eν [µ(i∗)− µ(it)]. To this end, we initially recover a bound on the regret halted at the

beginning of epoch j, defined as

R̃ψ,ν,j = Eν

 t̂j∑
t=1

µ(i∗)− µ(it)


and later observe that R̃ψ,ν,j ≤ R̃ψ,ν,T for all epochs j. In order to properly define this regret, we
consider an equivalent bandit problem modified as follows. Assume the reward obtained by choosing
arm i at time t to be

rτt (i)1{t ≤ t̂j} (14)

where rτt (i) defined as in Equation (1). Moreover, it is possible to define an accordingly modified
arbitrary strategy ψj = (ψjt )t≤T such that ψjt = ψt for all t ≤ t̂j and ψjt (I

′
t) = (1, nt̂j ) if t > t̂j ,

where I ′t corresponds to the history of the modified model up to time t. Finally denote νj the
probability measure given by the interaction of strategy ψj with the bandit instance whose rewards
are defined as in Equation (14). Then the expected regret generated by a suboptimal choice of the
arm by the strategy ψj , arrested at the start of the j-th epoch is defined as

R̃ψj ,νj ,j = Eνj

 t̂j∑
t=1

µ(i∗)− µ(it)

 (15)

where again we are omitting the dependency on the strategy in the expectation. Observe that due to a
coupling argument, the expectation with respect to the probability measure νj is equivalent to the one
with respect to ν, therefore it holds

R̃ψj ,νj ,j = R̃ψ,ν,j .

Thus, we continue our analysis considering R̃ψj ,νj ,j . The following lemma states a version of the
regret decomposition lemma adapted to our case.

Lemma 6. Let ∆i := µ(i∗) − µ(i) the sub-optimality gap of arm i, and Ni(t̂j) =∑
t≤t̂j

∑
h∈[[0,j−1]] 1

{
ψjt−1(I

′
t−1) = (i, h)

}
the number of times arm i was chosen by the strategy

ψj , then
R̃ψj ,νj ,j =

∑
i∈K

∆iEνj

[
Ni(t̂j)

]
Consider now the following bandit instances. Let ν = (νi)i∈K be a family of gaussian distributions
where ν1 has average ∆ and all the others have average 0. Note that, since

∑
i∈KNi(t̂j) = t̂j

almost surely, by taking the expectation on both sides, we have that
∑
i∈K Eνj [Ni(t̂j)] = tj . This

implies that there must be an arm k for which Eνj [Ni(t̂j)] ≤ tj/K. From this, we define the
instance ν′ = (ν′i)i∈K as the family of distributions for which ν′i = νi, ∀i ̸= k and ν′k is a gaussian
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with average 2∆. For both instances the variance is initially σ2 and then it evolves as detailed by
Equation (1). Note that the definition of k might be different for different t̂j , but without loss of
generality, we can consider it to be the same for all intermediate epochs.

Moreover, define νj and ν′j as the modified version respectively of ν and ν′, stopped at the start at
the j-th epoch, as described above. Then, from Lemma 6, we have that

R̃ψj ,νj ,j ≥ ∆

⌊
tj
2

⌋
Pνj

(
N1(t̂j) ≤

tj
2

)
and

R̃ψj ,ν′j ,t̂j
≥ ∆

⌊
tj
2

⌋
Pν′j

(
N1(t̂j) >

tj
2

)
.

Summing the two equations and using the fact that
⌊

tj
2

⌋
≥ tj

4 since tj ≥ 1 because, by the definition

of the arbitrary strategy t̂j ≥ 1 almost surely, it holds that

max
{
R̃ψj ,νj ,j , R̃ψj ,ν′j ,j

}
≥ tj∆

8

(
Pνj

(
N1(t̂j) ≤

tj
2

)
+ Pν′j

(
N1(t̂j) >

tj
2

))
.

where we have used the fact that a+ b ≤ 2max{a, b}. Moreover, using Bretagnolle-Huber inequality
on the expression above, we obtain

max
{
R̃ψj ,νj ,j , R̃ψj ,ν′j ,j

}
≥ tj∆

16
exp (−KL(Pνj ,Pν′j )) . (16)

To bound the KL divergence above, we make use of the following lemma.
Lemma 7. Let νj and ν′j the bandit instances defined by halting ν and ν′ at epoch j, and Pνj and
Pν′j the respective distributions, then

KL (Pνj ,Pν′j ) ≤ Eνj [Nk(t̂j)]
∆2(tαj−1 ∨ 1)

2σ2

Replacing this in Equation (16) and choosing ∆ =
√

2σ2

Eνj [Nk(t̂j)](tαj−1∨1)
, leads to

max
{
R̃ψj ,νj ,j , R̃ψj ,ν′j ,j

}
≥ σ

8
√
2e

tj√
Eνj [Nk(t̂j)](tαj−1 ∨ 1)

≥ σ
√
K

8
√
2e

√
tj

tαj−1 ∨ 1
,

where the last inequality is obtained by replacing the assumption Eνj [Ni(t̂j)] ≤ tj/K. Finally, recall
that R̃ψ,ν,T ≥ R̃ψ,ν,t̂j , ∀j, hence the following holds

max
ν
R̃ψ,ν,T ≥ max

j=1,...,M+1

{
max{R̃ψj ,νj ,j , R̃ψj ,ν′j ,j}

}

≥ max
j=1,...,M+1

{
σ
√
K

8
√
2e

√
tj

tαj−1 ∨ 1

}

≥ σ
√
K

8
√
2e(M + 1)

M+1∑
j=1

√
tj

tαj−1 ∨ 1
,

where we are using again the convention t0 = 0 and tM+1 = T . The final bound will be obtained
by combining this result with the lower bounds of the first term that correspond either to 0 or ctM/2.
Thus, on one end, it holds

max
ν
Rψ,ν,T ≥

σ
√
K

8
√
2e(M + 1)

M+1∑
j=1

√
tj

tαj−1 ∨ 1
+
c

2
tM .

20



Keeping only the last term of the sum, we have

max
ν
Rψ,ν,T ≥

σ
√
K

8
√
2e(M + 1)

√
T

tαM
+
c

2
tM ,

and optimizing with respect to tM , leads to

max
ν
Rψ,ν,T ≥

1

2

(
σ
√
K

4
√
2e(M + 1)

) 2
2+α

c
α

2+αT
1

2+α (17)

On the other end, if we assume the first term to be lower bounded by 0, the complete expression of
the regret corresponds to

max
ν
Rψ,ν,T ≥

σ
√
K

8
√
2e(M + 1)

M+1∑
j=1

√
tj

tαj−1 ∨ 1

which can be lower bounded by optimally choosing tj . This can be done by solving the following
optimization problem, which takes into account the assumptions made for the tj

minimize
t0, . . . , tM+1 ∈ R

M+1∑
j=1

√
tj

tαj−1 ∨ 1

subject to t0 = 0,

tM+1 = T,

tj ≤ tj+1 ∀j

(18)

To solve this, we start by finding a solution of the unconstrained problem, which can be done by
finding the values that nullify the gradient of the function

∑M+1
j=1

√
tj

tαj−1∨1 . Thus note that, the
derivative of the sum with respect to tj is equal to

1

2

1√
tjtαj−1

− α

2

√
tj+1t−α/2−1

j = 0

√
tj+1

tαj
=

1

α

√
tj

tαj−1

Iterating this relation tells us that the retraining times that minimize the sum are the ones that satisfy
the relation √

tj
tαj−1

=
m

αj
,

which can be rewritten as

tj+1 = m2α2jtαj

= m2α2j(m2α2(j−1)tαj−1)
α

= m2+2αα2j+2(j−1)αtα
2

j ,

from which, by iterating, we found

tj+1 = m2
∑j

p=0 α
p

α2
∑j

p=0 pα
j−p

(tα
j

0 ∨ 1)

Computing this for tM+1, while imposing tM+1 = T and t0 = 0, gives

T = m2
∑M

p=0 α
p

α2
∑M

p=0 pα
M−p

hence

m =

(
T

α2
∑M

p=0 pα
M−p

) 1
2

1−α

1−αM+1

.
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Note now, that the average retraining times t1, . . . , tM found in this way, with the value ofm as above
minimize the sum while satisfying t1 < . . . < tM and t0 = 0, tM+1 = T , hence they constitute a
valid solution of the constrained problem Equation (18). Therefore

max
ν
Rψ,ν,T ≥

σ
√
KP

8
√
2e(M + 1)

T
1
2

1−α

1−αM+1 (19)

where P corresponds to

P =

(
1

α2
∑M

p=0 pα
M−p

) 1
2

1−α

1−αM+1
M+1∑
j=1

1

αj

Combining the bounds obtained in Equation (17) and Equation (19) , we finally recover

max
ν
Rψ,ν,T ≥ max

1

2

(
σ
√
K

4
√
2e(M + 1)

) 2
2+α

c
α

2+αT
1

2+α ,
σ
√
KP

8
√
2e(M + 1)

T
1
2

1−α

1−αM+1

 .

A.3 Proofs of Lemmas of Section 3

A.3.1 Proof of Lemma 1

This lemma constitutes a version of the standard Hoeffding-Azuma inequality adapted to our case,
and the general scheme of the proof is taken by Lemma 12 of Tullii et al. [2024]. Consider the
following sum

Zt(i) =
∑
p≤t

rτp(i)−
(
µ(i) +

∑ι(⌊p⌋τ )
j=0 cj

)
σ2(⌊p⌋τ ∨ 1)−α

1{ip = i} ,

note that both the functions ⌊t⌋τ , and 1{it = i} are Ft−1 measurable. Moreover, it holds that µ(i) +∑ι(⌊p⌋τ )
j=0 cj = E[rτp(i) | Fp−1] ∀p, so that the random variables in Zt(i) correspond to a martingale

difference sequence adapted toFt. We now consider ∀x the martingaleMt = exp(xZt(i)− x2

2 Στt (i))
and we argue that this is indeed a super-martingale. To prove it, consider the sequence of random
variables

rτt (i)−
(
µ(i) +

∑ι(⌊t⌋τ )
j=0 cj

)
σ2(⌊t⌋τ ∨ 1)−α

1{it = i} = ξt1{it = i}
σ2(⌊t⌋τ ∨ 1)−α

(20)

since ξt is σs(⌊t⌋τ ) conditionally subgaussian, and by assumption s(⌊t⌋τ ) ≤ (⌊t⌋τ ∨ 1)−α/2, then the
random variable Equation (20) is a 1/σ(⌊t⌋τ∨1)−

α/2 -subgaussian martingale difference with respect to
the filtration Ft−1 Thus, it holds

E

[
e
x

rτt (i)−(µ(i)+
∑ι(⌊t⌋τ )

j=0
cj)

σ2(⌊t⌋τ∨1)−α 1{it=i}
∣∣∣∣ Ft−1

]
≤ e

x2

2
1{it=i}

σ2(⌊t⌋τ∨1)−α .

Noticing that

Mt =Mt−1e
x

rτt (i)−(µ(i)+
∑ι(⌊t⌋τ )

j=0
cj)

σ2(⌊t⌋τ∨1)−α 1{it=i}− x2

2
1{it=i}

σ2(⌊t⌋τ∨1)−α

we can conclude that Mt is indeed a super-martingale, hence E[Mt] ≤ E[M0] = 1.

Now for all ε > 0 and 0 < a < b ∈ R, and all x > 0

P (Zt(i) ≥ ε and Στt (i) ∈ [a, b]) = P
(
1{Στt (i) ∈ [a, b]}exZt(i) ≥ exε

)
≤ e−xεE

[
1{Στt (i) ∈ [a, b]}exZt(i)

]
≤ e−xε+ x2

2 bE
[
1{Στt (i) ∈ [a, b]}exZt(i)− x2

2 b
]
.
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We can bound the expectation above as follows

E
[
1{Στt (i) ∈ [a, b]}exZt(i)− x2

2 b
]
≤ E

[
1{Στt (i) ∈ [a, b]}exZt(i)− x2

2 Στ
t (i)
]

≤ E
[
exZt(i)− x2

2 Στ
t (i)
]

= E[Mt] ≤ 1 ,

from which we recover

P(Zt(i) ≤ ε and Στt (i) ∈ [a, b]) ≤ e−xε+ x2

2 b .

Since this holds for every x > 0, we choose the value that minimizes the right-hand term, namely
x = ε

b . Furthermore choosing ε =
√

2b log(1/δt), the expression above becomes

P
(
Zt(i) ≥

√
2b log(1/δt) and Στt (i) ∈ [a, b]

)
≤ δt .

Observe that

Στt (i) =
∑
p≤t

⌊p⌋ατ
σ2

1{ip = i} ≤ tTα

σ2
,

and, from its definition, if Στt (i) > 0, it holds Στt (i) ≥ 1/σ2, ∀t. Then for every t, when it is positive,
we know Στt (i) lives in the interval

[
1
σ2 ,

tTα

σ2

]
. Therefore we can recover the probability for the

generic bound with Στt (i) > 0, by considering an union bound over smaller intervals as follows

P
(
Zt(i) ≥2

√
Στt (i) log(1/δt) and Στt (i) > 0

)
= P

(
Zt(i) ≥ 2

√
Στt (i) log(1/δt) and Στt (i) ≥

1

σ2

)

≤
tTα−1∑
k=1

P

(
Zt(i) ≥ 2

√
Στt (i) log(1/δt) and Στt (i) ∈

[
k

σ2
,
k + 1

σ2

])

≤
tTα−1∑
k=1

P

(
Zt(i) ≥

√
4(k/σ2) log(1/δt) and Στt (i) ∈

[
k

σ2
,
k + 1

σ2

])

≤
tTα−1∑
k=1

P

(
Zt(i) ≥

√
2(k+1/σ2) log(1/δt) and Στt (i) ∈

[
k

σ2
,
k + 1

σ2

])

≤
tTα−1∑
k=1

δt ≤ Tαtδt

where we have used the fact that 2(k/σ2) ≥ k+1/σ2.

With the same argument, we can prove also that

P
(
−Zt(i) ≥ 2

√
Στt (i) log(1/δt) and Στt (i) > 0

)
≤ Tαtδt .

We can now conclude by normalizing by Στt and observing that Zt(i)/Στ
t = r̂τt (i)− µ(i).
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A.3.2 Proof of Lemma 3

Starting from the definition of the regret, as in Equation (3), by adding subtracting µτ (i∗), it holds

RT =

T∑
t=1

µτ
∗

t (i∗)− µτt (it)

=

T∑
t=1

µτ
∗

t (i∗)− µτt (i∗) + µτt (i
∗)− µτt (it)

=

T∑
t=1

µτ
∗

t (i∗)− µτt (i∗)︸ ︷︷ ︸
(A)

+

T∑
t=1

µτt (i
∗)− µτt (it)︸ ︷︷ ︸
(B)

.

Note that, the two terms A and B above represent respectively the regret the algorithm incurs by
choosing incorrectly the retraining instants τ , and the one caused by a suboptimal choice of the arm
to be played. We proceed to bound the two quantities independently. In the first case, we replace
the explicit values the optimal times in τ∗, that, as explained in the introduction, correspond to
{1, . . . ,M}

(A) =
T∑
t=1

µ(i∗) + t∧M∑
j=0

cj

−
µ(i∗) + ι(⌊t⌋τ∑

j=0

cj



=

t̂M∑
t=1

t∧M∑
j=0

cj −
ι(⌊t⌋τ )∑
j=0

cj


(i)
=

t̂M∑
t=1

t∧M∑
j=ι(⌊t⌋τ )

cj

≤ c
t̂M∑
t=1

M − ι(⌊t⌋τ )

≤ cMt̂M

where (i) is well defined as ι(⌊t⌋τ ) ≤ t ∧M, ∀t.
For the second term, since the retraining times τ are the same, it is sufficient to replace the explicit
definitions of µτt (i

∗) and µτt (it), such that

(B) =
T∑
t=1

µ(i∗) + ι(⌊t⌋τ )∑
j=0

cj

−
µ(it) + ι(⌊t⌋τ )∑

j=0

cj

 =

T∑
t=1

µ(i∗)− µ(it) .

Considering both the bounds for A and B yields the result.

A.3.3 Proof of Lemma 4

Proving Lemma 4 is equivalent to showing that |r̂t(i)− µ(i)| is a subgaussian random variable. To
this end, consider the following lemma
Lemma 8 ([Lattimore and Szepesvári, 2020, Lemma 5.4]). Suppose that X1 and X2 are independent
σ1 and σ2-subgaussian random variables, respectively then:

(a) γX1 is |γ|σ-subgaussian for all γ ∈ R

(b) X1 +X2 is
√
σ2
1 + σ2

2-subgaussian
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Note that the estimate r̂t(i), defined as in eq. (10) is a convex combination of the reward of arm i at
each time step, where the weights are

1
σ2(⌊t⌋τ∨1)−α∑
p≤t

1
σ2(⌊p⌋τ∨1)−α

.

Hence, an application of Lemma 8 shows that r̂t(i) is a σ̃-subgaussian random variable for every
i ∈ K, for

σ̃ =

√
1∑

p≤t
1

σ2(⌊p⌋τ∨1)−α

.

A.3.4 Proof of Lemma 5

The proof follows from a straightforward algebraic manipulation as follows

x
1−un

1−u = x
1−u+u−un

1−u = x1+
u−un

1−u = x · xu
1−un−1

1−u

A.3.5 Proof of Lemma 6

Let R̃ψj ,νj ,j be the regret interrupted at epoch j with respect to the modified instance and strategy νj

and ψj . It is possible to rewrite it as follows

R̃ψj ,νj ,j = Eνj

 t̂j∑
t=1

µ(i∗)− µ(it)


= Eνj

∑
i∈K

j−1∑
h=1

 t̂j∑
t=1

µ(i∗)− µ(it)

1
{
ψjt−1(I

′
t−1) = (i, h)

}

= Eνj

∑
i∈K

j−1∑
h=1

 t̂j∑
t=1

µ(i∗)− µ(i)

1
{
ψjt−1(I

′
t−1) = (i, h)

}

=
∑
i∈K

(µ(i∗)− µ(i))Eνj

 t̂j∑
t=1

j−1∑
h=1

1
{
ψjt−1(I

′
t−1) = (i, h)

}
=
∑
i∈K

∆iEνj [Ni(t̂j)]

where the last inequality is obtained by replacing the definitions of ∆i and Ni(tj).

A.3.6 Proof of Lemma 7

This proof is adapted from Lemma 15.1 of Lattimore and Szepesvári [2020]. We start by noticing
that,

KL(Pνj ,Pν′j ) = Eν

[
log

(
dPνj

dPν′j

)]
For every h, we denote by Phi and P

′h
i the conditional distributions of arm i, conditioned on t̂h for

the bandit instances νj and ν′j respectively. Furthermore, we denote by fhi and f
′h
i the respective

densities. By consequence, it is possible to define the measure λj−1 =
∑
i∈K

∑j−1
h=0 P

h
i + P

′h
i ,

such that λj−1(A) =
∑
i∈K

∑j−1
h=0 P

h
i (A)+P

′h
i (A) for any measurable set A. Let now ρj−1 be the

counting measure on K × [[0, j − 1]], then from classical results on the distribution of the canonical
bandit model, it follows that the Radon-Nikodym derivatives of Pνj with respect to λj−1 × ρj−1 can
be written as

dPνj

d(λj−1 × ρj−1)

(
(A1, N1), r

τ
1 (A1), . . . , (At̂j , Nt̂j ), r

τ
t̂j
(At̂j )

)
=

t̂j∏
t=1

P((At, Nt)|I ′t−1)f
Nt

At
(rτt (At)) ,
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where I ′t−1 represents the history up to time t− 1. An analogous result holds for Pν′j . So that, we
can rewrite the KL divergence as

KL(Pνj ,Pν′j = Eνj

[
log

(
dPνj

dPν′j

)]

= Eνj

[
Eνj

[
log

(
dPνj

dPν′j

) ∣∣∣∣(t̂h)j−1
h=1

]]

(i)
= Eνj

Eνj

 t̂j∑
t=1

log

(
fNt

At
(rτt (At))

f
′Nt

At
(rτt (At))

)∣∣∣∣(t̂h)j−1
h=1



= Eνj

 t̂j∑
t=1

Eνj

[
log

(
fNt

At
(rτt (At))

f
′Nt

At
(rτt (At))

)∣∣∣∣(t̂h)j−1
h=1

]
where in (i) we have used the chain rule and the explicit definition of the distribution conditioned on
(t̂h)

j−1
h=1 made explicit above. We focus now on the internal expectation. We begin by observing the

following

Eνj

[
log

(
fNt

At
(rτt (At))

f
′Nt

At
(rτt (At))

)∣∣∣∣(t̂h)j−1
h=1

]
= Eνj

[
Eνj

[
log

(
fNt

At
(rτt (At))

f
′Nt

At
(rτt (At))

)∣∣∣∣(At, Nt)
] ∣∣∣∣(t̂h)j−1

h=1

]

= KL
(
PNt

At
, P

′Nt

At

)
,

where we have used the fact that Pνj (·|(At, Nt), (t̂h)j−1
h=1) is dPNt

At
= fNt

At
dλj−1, from which

t̂j∑
t=1

Eνj

[
log

(
fNt

At
(rτt (At))

f
′Nt

At
(rτt (At))

)∣∣∣∣(t̂h)j−1
h=1

]
=

t̂j∑
t=1

KL
(
PNt

At
, P

′Nt

At

)

=

t̂j∑
t=1

∑
i∈K

j−1∑
h=0

1 {(At, Nt) = (i, h)}KL
(
PNt

At
, P

′Nt

At

)

=

t̂j∑
t=1

∑
i∈K

j−1∑
h=0

1 {(At, Nt) = (i, h)}KL
(
Phi , P

′h
i

)
Furthermore, note that

KL
(
Phi , P

′h
i

)
= Eνj

[
log

fhi (Xt)

f
′h
i (Xt)

∣∣∣∣(t̂h)j−1
h=0

]

(i)
= Eνj

[
log

fhi (Xt)

f
′h
i (Xt)

∣∣∣∣t̂h]
(ii)
=

(µ(i)− µ′(i))2

2σ2s(t̂h)2

≤ (µ(i)− µ′(i))2(t̂αh ∨ 1)

2σ2

where (i) follows from the fact that during epoch h, the densities fhi and f
′h
i only depend on the

retraining time t̂h, while (ii) follows from the explicit expression of the KL divergence between two
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gaussian distributions with averages µ(i) and µ′(i) and variance σ2s(t̂h)2, that are the distributions
we are considering thanks to the definitions of the two instances. And again, due to the definition of
νj and ν′j , we note that the difference µ(i)− µ′(i) is equal to zero for all arms but arm k for which
has value ∆. Therefore, replacing this in the expression above and taking the expectation on both
sides, we have

KL(Pνj ,Pν′j ) = Eν

 t̂j∑
t=1

Eνj

[
log

(
fNt

At
(Xt)

f
′Nt

At
(Xt)

)∣∣∣∣(t̂h)j−1
h=1

]

= Eνj

 t̂j∑
t=1

j−1∑
h=0

1 {(At, Nt) = (k, h)}KL
(
Phk , P

′h
k

)

≤ Eνj

 t̂j∑
t=1

j−1∑
h=0

1 {(At, Nt) = (k, h)} ∆
2(t̂αh ∨ 1)

2σ2


(i)

≤ Eνj

 t̂j∑
t=1

j−1∑
h=0

1 {(At, Nt) = (k, h)}
∆2(t̂αj−1 ∨ 1)

2σ2


(ii)
= Eνj

 t̂j∑
t=1

j−1∑
h=0

1 {(At, Nt) = (k, h)}

Eνj

[
∆2(t̂αj−1 ∨ 1)

2σ2

]

where, (i) follows from the fact that t̂h ≤ t̂j−1 almost surely, while (ii) from an application of
Wald’s lemma. Lastly, using the definition of Nk(t̂j) and the fact that Eνj [t̂αj−1] ≤ tαj−1 because of
Jensen’s inequality since α ≤ 1, we obtain

KL(Pνj ,Pν′j )) = Eνj

[
Nk(t̂j)

] ∆2(tαj−1 ∨ 1)

2σ2
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B BIB-DB Model

B.1 BIB-DB with Full Information

In this section, we study the full-information version of the BIB-DB model, where the agent obtains
a reward drawn from the distribution of the arm chosen at every round, but observes a noisy sample
from all of them. The estimators for the averages used in this case again is defined through a two-step
process. Let τ = {t̂1, . . . , t̂M} be the retraining times, initially let

r̂jt (i) =
1

Nτ
j

t̂j+1∧t∑
p=t̂j+1

oτp(i)

where Nτ
j = (t̂j+1 ∧ t) − t̂j . This corresponds to the average of the rewards obtained during the

epoch in which the model has been retrained exactly j times, then the final estimator is obtained as

r̂τt (i) =

ι(⌊t⌋τ )∑
j=0

r̂jt (i)

σ2(t̂j∨1)−α+ϕ2/Nτ
j∑ι(⌊t⌋τ )

j=0
1

σ2(t̂j∨1)−α+ϕ2/Nτ
j

(21)

In this case, there is no need to arrest the updating of the estimator, due to a different concentration
bound that grants a good behavior of the estimator with respect to its average.

Algorithm 3, as before an ad hoc version of Follow-the-Leader, contains the details of the algorithm
used, which relies on the estimates Equation (21).

Thus, we have the following result. Note that, once again the dependency with respect to T is the
same as in the bandit-feedback case.
Theorem 6. The regret of Algorithm 3, that picks at every round the biggest estimate defined as in
Equation (21), is bounded by

RT ≤ 4M
√
2 log(KT 2)

(
σT

1−α/2

1−(α/2)M+1 + ϕ
√
T

)
with probability 1− 1/T , when the retraining times are picked as t̂j = ⌈λκ(j)⌉, ∀j = 1, . . . ,M , with

κ(j) = 1−(α/2)j

1−α/2 and

λ = T
1−α/2

1−(α/2)M+1 . (22)

Proof. Note that, as stated in Section 2, since both the noise at time t and the bias are centered
random variables, the average reward and the optimal strategy are independent of the choice of the
retraining times. Adding and subtracting r̂τt (it) in the explicit expression of the regret gives

RT =

T∑
t=1

µ(i∗)− µ(it)

=

T∑
t=1

µ(i∗)− r̂τt (it) + r̂τt (it)− µ(it)

≤
T∑
t=1

µ(i∗)− r̂τt (i∗) + r̂τt (it)− µ(it)

where the last inequality follows from the selection rule of the algorithm i.e. r̂τt (i
∗) ≤ r̂τt (i). Let the

event Gt be

Gt =

∣∣r̂τt (i)− µ(i)∣∣ ≤
√√√√ 2 log(K/δt)∑ι(⌊t⌋τ )

j=0
1

σ2(t̂j∨1)−α+ϕ2/Nτ
j

, ∀i ∈ K

 .

Lemma 9. The event Gt holds with probability at least 1− δt.
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Under this event, and considering δt = 1/T 2, we have

RT ≤ 2

T∑
t=1

√√√√ 2 log(KT 2)∑ι(⌊t⌋τ )
j=0

1
σ2(t̂j∨1)−α+ϕ2/Nτ

j

,

which follows from the concentration bound applied to i∗ and it. From this, replacing the explicit
expressions of s and Nτ

j , we have

RT ≤ 2
√
2 log(KT 2)


t̂1∑
t=1

√√√√ 1
1

σ2+ϕ2

t

+

M∑
i=1

t̂i+1∑
t=t̂i+1

√√√√ 1∑i−1
j=0

1

σ2(t̂j∨1)−α+ ϕ2

t̂j+1−t̂j

+ 1

σ2 t̂−α
i + ϕ2

t−t̂i︸ ︷︷ ︸
(⋆)


,

where, again we have isolated the regret corresponding to the first epoch that we bound separately.
We can rewrite (⋆) as

(⋆) =

M∑
i=1

t̂i+1∑
t=t̂i+1

√√√√ 1∑i−1
j=0

(t̂αj ∨1)(t̂j+1−t̂j)
σ2(t̂j+1−t̂j)+ϕ2(t̂αi ∨1)

+
(t̂αi ∨1)(t−t̂i)

σ2(t−t̂i)+ϕ2(t̂αi ∨1)

(i)

≤
M∑
i=1

t̂i+1∑
t=t̂i+1

√√√√ 1∑i−1
j=0

(t̂αj ∨1)(t̂j+1−t̂j)
σ2 t̂j+1+ϕ2(t̂αj ∨1)

+
(t̂αi ∨1)(t−t̂i)
σ2t+ϕ2(t̂αi ∨1)

(ii)

≤
M∑
i=1

t̂i+1∑
t=t̂i+1

√√√√ σ2t̂i+1 + ϕ2t̂αi∑i−1
j=0(t̂

α
j ∨ 1)(t̂j+1 − t̂j) + t̂αi (t− t̂i)

≤
M∑
i=1

√
σ2t̂i+1 + ϕ2t̂αi

t̂i+1∑
t=t̂i+1

√
1∑i−1

j=0(t̂
α
j ∨ 1)(t̂j+1 − t̂j) + t̂αi (t− t̂i)

where (i) and (ii) are obtained by first removing the negative term in the denominator, then replacing
it with the biggest term corresponding to σ2t̂i+1 + ϕ2t̂αi . Now the most internal sum in the term
above can be bounded again using integral approximation as done in the proof of Theorem 5, such
that

t̂i+1∑
t=t̂i+1

√
1∑i−1

j=0(t̂
α
j ∨ 1)(t̂j+1 − t̂j) + t̂αi (t− t̂i)

≤
t̂i+1−t̂i−1∑

s=0

1√∑i−1
j=0(t̂j+1 − t̂j)(t̂αj ∨ 1) + st̂αi

≤
∫ t̂i+1−t̂i−1

0

1√∑i−1
j=0(t̂j+1 − t̂j)(t̂αj ∨ 1) + st̂αi

ds

≤ 2

t̂αi

√√√√ i∑
j=0

(t̂j+1 − t̂j)(t̂αj ∨ 1)

≤ 2

√
t̂i+1

t̂αi
.
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Therefore

(⋆) ≤
M∑
i=1

√
σ2t̂i+1 + ϕ2t̂αi

(
2

√
t̂i+1

t̂αi

)
≤

M∑
i=1

σ
t̂i+1√
t̂αi

+ ϕ

√
t̂i+1 ,

and using an analogous argument, we can prove that

t̂1∑
t=1

√√√√ 1
1

σ2+ϕ2

t

≤ σt̂1 + ϕ

√
t̂1 .

such that the complete bound on the regret becomes

RT ≤ 2
√
2 log(KT 2)

M∑
i=0

σ
t̂i+1√
t̂αi ∨ 1

+ ϕ

√
t̂i+1 .

We now replace the values of t̂i, as specified in the statement.

t̂i+1 =
⌈
λκ(i+1)

⌉
=
⌈
λ · λα

2 κ(i)
⌉
≤ ⌈λ⌉t̂i .

where we have used Lemma 5. Replacing these values in the expression of the regret, together with
t̂0 = 0 and t̂M+1 = T , we obtain

RT ≤ 2
√
2 log(KT 2)

M∑
i=0

σ⌈λ⌉+ ϕ
√
T ≤ 4M

√
2 log(KT 2)

(
σT

1−α/2

1−(α/2)M+1 + ϕ
√
T

)
where the last inequality is obtained replacing the value of λ as in eq. (22). Considering an union
bound over all the events Gt, we obtained the desired result.

B.2 Proofs of Section 4

B.2.1 Proof of Theorem 3

Fix an arm i and let t be the last time step where arm i was active before being eliminated. Consider
the event

G̃ =
⋂
t≤T

{
UCBτt (i

∗, δ) > max
i
LCBτt (i, δ)

}
from, the concentration bound, this intersection holds with probability at least 1− 1/2T , where we
have replaced δ = 1/2KT 4, as mentioned in the statement. Under this event, we can assume that with
high probability arm i∗ is still active at time t. Then, from the elimination condition of the algorithm
and the definition of the upper/lower confidence intervals, we have that

µ(i∗)− µ(i) ≤ 2

(
R

√
32 log(4γι(⌊t⌋τ )/δ)

Πτt (i)(σ
2 + ϕ2)

+R

√
32 log(4γι(⌊t⌋τ )/δ)

Πτt (i)(σ
2 + ϕ2)

)
.

As previously, since all the retraining and the elimination of the arms happen at the end of a round-
robin routine, when all the still-active arms have been played, we can conclude that Πτt (i

∗) = Πτt (i).
Furthermore, since t is the last time action i was played, it holds Πτt (i) = ΠτT (i). We can then define
the following event that holds with probability at least 1− δ

Git =

{
|µ(i∗)− µ(i)| ≤ 4R

√
32 log(4γι(⌊t⌋τ )/δ)

Πτt (i)(σ
2 + ϕ2)

}
.

Assuming the event Git holds, using the regret decomposition formula, we obtain

RT =
∑
i∈K

∆i

∑
p≤T

1{ip = i} ≤ 4R

√
32 log(4γι(⌊t⌋τ )/δ)

(σ2 + ϕ2)

∑
i∈K

∑
p≤T 1{ip = i}√

ΠτT (i)
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from which, replacing the explicit expression of ΠτT (i) and splitting the sum into the M epochs, we
have

RT ≤ 4R

√
32 log(4γι(⌊t⌋τ )/δ)

(σ2 + ϕ2)

∑
i∈K

M∑
j=0

∑t̂j+1

p=t̂j+1
1{ip = i}√∑M

j=0
1

σ2

t̂α
j

∨1
+ ϕ2

Nτ
j

(i)

= 4R

√
32 log(4γι(⌊t⌋τ )/δ)

(σ2 + ϕ2)

∑
i∈K


∑t̂1
p=1 1{ip = i}√∑M

j=0

(t̂αj ∨1)Nτ
j (i)

σ2Nτ
j (i)+ϕ2(t̂αj ∨1)

+

M∑
j=1

∑t̂j+1

p=t̂j+1
1{ip = i}√∑M

j=0

(t̂αj ∨1)Nτ
j (i)

σ2Nτ
j (i)+ϕ2(t̂αj ∨1)



≤ 4R

√
32 log(4γι(⌊t⌋τ )/δ)

(σ2 + ϕ2)

∑
i∈K


∑t̂1
p=1 1{ip = i}√

Nτ
1 (i)

σ2Nτ
1 (i)+ϕ2

+

M∑
j=1

∑t̂j+1

p=t̂j+1
1{ip = i}√

t̂αj N
τ
j (i)

σ2Nτ
j (i)+ϕ2 t̂αj


where the last inequality is obtained by omitting all the terms in the sum in the denominator but the
one relative to the j-th epoch, since they are all positive. This can be further simplified as

RT ≤ 4R

√
32 log(4γι(⌊t⌋τ )/δ)

(σ2 + ϕ2)

∑
i∈K

∑t̂1
p=1 1{ip = i}√

Nτ
1 (i)

√
σ2Nτ

1 (i) + ϕ2

+

M∑
j=1

∑t̂j+1

p=t̂j+1
1{ip = i}√

Nτ
j (i)

√√√√σ2Nτ
j (i) + ϕ2t̂αj

t̂αj


and

RT ≤ 4R

√
32 log(4γι(⌊t⌋τ )/δ)

(σ2 + ϕ2)

∑
i∈K

∑t̂1
p=1 1{ip = i}√

Nτ
1 (i)

(
σ
√
Nτ

1 (i) + ϕ

)

+

M∑
j=1

∑t̂j+1

p=t̂j+1
1{ip = i}√

Nτ
j (i)

(
σ

√
Nτ
j (i)

t̂αj
+ ϕ

) .

Now note that, due to the way it is defined, Nτ
j (i) ≤ λκ(j+1)−λκ(j)

K − 1. We start by analyzing the

case Nτ
j (i) =

λκ(j+1)−λκ(j)

K − 1, therefore using the fact that by definition t̃j ≤ t̂j ≤ t̃j +K, and
that t̃j = λκ(j) hence it holds∑t̂j+1

p=t̂j+1
1{ip = i}√

Nτ
j (i)

≤ t̃j+1 +K − t̃j√
Nτ
j (i)

≤ λκ(j+1) − λκ(j) +K√
λκ(j+1)−λκ(j)

K − 1

≤ 2(λκ(j+1) − λκ(j) +K)√
λκ(j+1)−λκ(j)

K

≤ 2
√
K
√
λκ(j+1) − λκ(j) + 2K

√
K

λκ(j+1) − λκ(j)
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from which

M∑
j=1

∑t̂j+1

p=t̂j+1
1{ip = i}√

Nτ
j (i)

(
σ

√
Nτ
j (i)

t̂αj
+ ϕ

)

≤ 2

M∑
j=1

(
√
K
√
λκ(j+1) − λκ(j) +K

√
K

λκ(j+1) − λκ(j)

)(
σ√
K

√
λκ(j+1) − λκ(j)

λακ(j)
+ ϕ

)

≤ 2

M∑
j=1

σ
λκ(j+1)

√
λακ(j)

+ ϕ
√
Kλκ(j+1) + σ

K√
λακ(j)

+ ϕK

√
K

λκ(j+1) − λκ(j)

≤ 2

M∑
j=1

(
σ
λκ(j+1)

√
λακ(j)

+ ϕ
√
Kλκ(j+1)

)
+ 2MK

√
K(σ + ϕ)

Instead, when Nτ
j (i) <

λκ(j+1)−λκ(j)

K − 1, observe that it holds

Nτ
j (i) =

t̂j+1∑
p=t̂j+1

1

{
ip = i ∧Nτ

j (i) ≤
λκ(j+1) − λκ(j)

K
− 1

}
=

t̂j+1∑
p=t̂j+1

1{ip = i}

hence

M∑
j=1

∑t̂j+1

p=t̂j+1
1{ip = i}√

Nτ
j (i)

(
σ

√
Nτ
j (i)

t̂αj
+ ϕ

)

=

M∑
j=1

√√√√√ t̂j+1∑
p=t̂j+1

1{ip = i}

σ
√√√√√∑t̂j+1

p=t̂j+1
1{ip = i}

t̂αj
+ ϕ



≤
M∑
j=1

σ
t̂j+1√
t̂αj

+ ϕ

√
t̂j+1 ,

from which, replacing the values of t̂j as defined in the statement, and using again the fact that
⌈λκ(j)⌉ ≤ λκ(j) +K

M∑
j=1

σ
t̂j+1√
t̂αj

+ ϕ

√
t̂j+1 ≤

M∑
j=1

σ
λκ(j+1) +K√

λακ(j)
+ ϕ

√
λκ(j+1) +K

≤
M∑
j=1

(
σ
λκ(j+1)

√
λακ(j)

+ ϕ
√
λκ(j+1)

)
+MK .

Combining the bounds for both Nτ
j (i) <

λκ(j+1)−λκ(j)

K − 1 and Nτ
j (i) = λκ(j+1)−λκ(j)

K − 1, we
obtain that ∀i ∈ K

M∑
j=1

∑t̂j+1

p=t̂j+1
1{ip = i}√

Nτ
j (i)

(
σ

√
Nτ
j (i)

t̂αj
+ ϕ

)
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≤ 4

M∑
j=1

σ

(
λκ(j+1)

√
λακ(j) ∨ 1

+ ϕ
√
Kλκ(j+1)

)
+ 4MK

√
K(σ + ϕ) .

Notice how with an analogous argument to the one above it holds that∑t̂1
p=1 1{ip = i}√

Nτ
1 (i)

(
σ
√
Nτ

1 (i) + ϕ

)
≤ 4σλκ(1) + 4ϕ

√
Kλκ(1) + 4K

√
K(σ + ϕ) .

Therefore the regret becomes

RT ≤ 16R

√
32 log(4γι(⌊t⌋τ )/δ)

(σ2 + ϕ2)

∑
i∈K

M∑
j=0

σ
λκ(j+1)

√
λακ(j) ∨ 1

+ ϕ
√
Kλκ(j+1) +K

√
K(σ + ϕ) .

From which using the fact that λκ(j+1) = λ
√
λακ(j), as shown in Lemma 5, and λκ(j+1) ≤ T, ∀j

RT ≤ 16R

√
32 log(4γι(⌊t⌋τ )/δ)

(σ2 + ϕ2)

∑
i∈K

M∑
j=0

σλ+ ϕ
√
KT +K

√
K(σ + ϕ)

≤ 16R

√
32 log(4γι(⌊t⌋τ )/δ)

(σ2 + ϕ2)
(M + 1)

(
K(σλ+ ϕ

√
KT ) +K2

√
K(σ + ϕ)

)
with probability at least 1− δ. We conclude by replacing the value of λ as specified in the statement.
Lastly, note that it is possible to bound the quantity γι(⌊t⌋τ ), as

γι(⌊t⌋τ ) =
λκ(j+1) − λκ(j)

K
− 1 ≤ T

K
.

Considering an union bound on the events Git , and G̃ finally yields the result.

B.2.2 Proof of Theorem 4

We begin by considering a random strategy ψ as the one defined in the proof of Theorem 2. Specifi-
cally, ψ = (ψt)t≤T is a family of functions, such that

ψt : It → {1, . . . ,K} × {0, . . . ,M}

thus, where the history It, which contains the past observations and internal randomization of the
algorithm, gets mapped into a couple (it+1, nt+1), action retaining index. Furthermore, we limit
again the set of feasible strategies to the ones for which the sequence of retraining indexes satisfies

(a) n0 = 0 and nT =M

(b) ns ≤ nt ∀t > s

(c) nt+1 − nt ≤ 1

to incorporate the fact that such indexes can only augment, and increase at most by one between
consecutive rounds. The retraining times therefore correspond to the instants of times t̂j , such that
nt̂j = j and nt̂j − nt̂j−1 = 1, and they are arbitrarily selected as a function of the past through the
strategy ψ.

In order to prove the result we will again consider the regret accumulated up to the j-th epoch, which
corresponds to

Rψ,ν,j = Eν

 t̂j∑
t=1

µ(i)− µ(it)

 ,
and observe that, for all j, it holdsRψ,ν,j ≤ Rψ,ν,T . Moreover, we can consider an equivalent bandit
problem in which for every time t, the agent observes

oτt (i)1{t ≤ t̂j} , ∀i ∈ K (23)
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where oτt (i) are observations defined as in Equation (2), and analogously receives rt(it)1{t ≤ t̂j}.
The associated arbitrary strategy ψj = (ψjt )t≤T satisfies ψjt = ψt if t ≤ t̂j and ψjt (I

′
t) = (1, nt̂j )

otherwise, where I ′t corresponds to the history up to time t of this modified bandit instance. We
denote then by νj the probability measure obtained by the interaction between the random strategy
ψj and the bandit instance whose reward are given in Equation (23).

We can now define the regret incurred by strategy ψj , with respect to the bandit instance νj up to
time halted at the j-th epoch as

Rψj ,νj ,j = Eνj

 t̂j∑
t=1

µ(i)− µ(it)

 .
Note that, due to a coupling argument the probability measures ν and νj coincide up to time t̂j ,
therefore

Rψ,ν,j = Rψj ,νj ,j

hence we will prove the lower bound using the expression of the regret on the right-hand side.
Applying Lemma 6, we find that an analogous version of the regret decomposition lemma holds in
this case as well, such that

Rψj ,νj ,j =
∑
i∈K

∆iEνj

[
Ni(t̂j)

]
where Ni(t̂j) =

∑
t≤t̂j

∑
h∈[[0,j−1]] 1

{
ψjt−1(I

′
t−1) = (i, h)

}
.

We specify now two bandit instances ν and ν′ that generate the observations for each arm. Recall
that, for every arm i the observation oτt (i) is obtained as the aggregation of the reward rτt (i) and
the bias term s(t̂nt

)ξt̂nt
(i). For the instance ν, we will assume all the rewards to be distributed as a

gaussian N (µ(i), ϕ2), where

µ(i) =

{
∆ if i = 1

0 if i ̸= 1

where ∆ is a constant to be specified later, and the bias term ξt̂nt
(i) ∼ N (0, σ2).

Note that, since almost surely
∑
i∈KNi(t̂j) = t̂j , by taking the expectation on both sides it follows

that ∑
i∈K

Eνj [Ni(t̂j)] = tj ,

where we have introduced the notation tj := Eνj [t̂j ]. Therefore there must exists an arm k such
that Eνj [Nk(t̂j)] ≤ tj/K. From this we define the instance ν′ as ν′i = νi for all i ̸= k, and
ν′k ∼ N (2∆, ϕ2) +N (0, s(t̂nt

)σ2).

Considering such instances and Lemma 6, it follows that

Rψj ,νj ,j ≥ Pνj

(
N1(t̂j) ≤

tj
2

)
∆

⌊
tj
2

⌋
and

Rψj ,ν′j ,j ≥ Pν′j

(
N1(t̂j) >

tj
2

)
∆

⌊
tj
2

⌋
where νj and ν′j correspond respectively to the instances ν and ν′ halted at t̂j , as previously described.

Now we use the fact that
⌊

tj
2

⌋
≥ tj

4 since tj ≥ 1 due to the fact that t̂j ≥ 1 almost surely, given how
the strategy is defined. Hence, we obtain

max{Rψj ,νj ,j ,Rψj ,ν′j ,j} ≥
tj∆
8

(
Pνj

(
N1(t̂j) ≤

tj
2

)
+ Pν′j

(
N1(t̂j) >

tj
2

))
,
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where we have made use of the fact that a+ b ≤ 2max{a, b}. Furthermore, by applying Bretagnolle-
Huber inequality, the expression above becomes

max{Rψj ,νj ,j ,Rψj ,ν′j ,j} ≥
tj∆
16

exp (−KL(Pνj ,Pν′j )) (24)

The following lemma provides a bound on the KL divergence between Pνj and Pν′j .
Lemma 10. Let νj and ν′j the bandit instances obtained by halting ν and ν′ at time t̂j , and Pνj and
Pν′j the corresponding distributions, then

KL(Pνj ,Pν′j ) ≤ 2∆2 min

{
tj
ϕ2
,

tαj−1 ∨ 1

σ2
log(tj)

}
We study these two possible bounds separately.

Initially consider the case KL(Pνj ,Pν′j ) ≤ 2∆2tj/ϕ2. Replacing this bound in Equation (24) and
choosing ∆ = ϕ/

√
2tj , gives

max{Rψj ,νj ,j ,Rψj ,ν′j ,j} ≥
ϕ
√

tj
16
√
2e
.

Recalling thatRψj ,νj ,j ≤ Rψ,ν,T , ∀j, we have

max
ν
Rψ,ν,T ≥ max

j=1,...,M+1

{
max{Rψj ,νj ,j ,Rψj ,ν′j ,j}

}

≥ max
j=1,...,M+1

{
ϕ
√

tj
16
√
2e

}

=
ϕ
√
T

16
√
2e

(25)

where we have used the fact that, by construction of the strategy th ≤ tj , ∀h ≤ j and the convention
tM+1 = T .

On the other end, if KL(Pνj ,Pν′j ) ≤ 2∆2(tαj−1∨1) log(tj)/σ2, then choosing ∆ = σ/
√

2(tαj−1∨1) log(tj)

gives

max{Rψj ,νj ,j ,Rψj ,ν′j ,j} ≥
σtj

16
√
2e
√
(tαj−1 ∨ 1) log(tj)

from which
max
ν
Rψ,ν,T ≥ max

j=1,...,M+1

{
max{Rψj ,νj ,j ,Rψj ,ν′j ,j}

}

≥ max
j=1,...,M+1

 σtj

16
√
2e
√
(tαj−1 ∨ 1) log(tj)


=

σ

16
√
2e(M + 1) log(T )

M+1∑
j=1

tj√
(tαj−1 ∨ 1)

.

The minimum of the right-hand side can be found by optimally choosing tj , which corresponds to
solving the following constrained problem

minimize
t0, . . . , tM+1 ∈ R

M+1∑
j=1

tj√
tαj−1 ∨ 1

subject to t0 = 0,

tM+1 = T,

tj ≤ tj+1 ∀j

(26)
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As done in the proof of Theorem 2, we begin by recovering a solution of the unconstrained problem,
found by finding the values of the expected retraining times that do make the gradient of the function∑M+1
j=1

tj√
tαj−1∨1

equal to zero. Thus we consider the derivative of the sum with respect to tj+1,

which corresponds to
1√
tαj
− α

2
tj+2t

α/2−1
j+1 = 0

Solving for tj+2 and iterating, it gives

tj+2 =
2

α

(
tj+1

tj

)α/2

tj+1

=
2

α

(
tj+1

tj

)α/2
2

α

(
tj

tj−1

)α/2

tj

=

(
2

α

)2( tj+1

tj−1

)α/2

tj

from which, replacing again the expression for tj and iterating, we find

tj+2 =

(
2

α

)j+1

t
α/2
j+1t1 .

Further using this recursive formula for tj+1, gives

tj+2 =

(
2

α

)j+1

t1

((
2

α

)j
t

α
2
j t1

)α
2

=

(
2

α

)(j+1)+j α
2

t
(α

2 )
2

j t
1+α

2
1 ,

from which, iterating again we finally found

tj+2 = ηj+1t
∑i+1

h=0(
α
2 )

h

1

where

ηj+1 =

(
2

α

)∑j+1
h=0(j+1−h)(α

2 )
j

Lastly, imposing the condition tM+1 = T , we can obtain the optimal value for t1, which is given by

t1 =

(
1

ηM
T

) 1−α/2

1−(α/2)M+1

.

Note that the values derived in this way do satisfy the constraints of Equation (26), hence they
constitute also a valid solution of the constrained optimization problem. We can now replace these
values in the initial sum, observing that each tj satisfies the relation

tj = (2/α)j
√
(tαj−1 ∨ 1)t1 ,

such that
M+1∑
j=1

tj√
tαj−1 ∨ 1

=

M+1∑
j=1

(α/2)j
√
(tαj−1 ∨ 1)t1√

tαj−1 ∨ 1
= t1

M+1∑
j=1

(
2

α

)j
hence

max
ν
Rψ,ν,T ≥

σ

16
√
2e(M + 1) log(T )

t1

M+1∑
j=1

(
2

α

)j
=

σB

16
√
2e(M + 1) log(T )

T
1−α/2

1−(α/2)M+1

(27)
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where

B =
1

ηM

M+1∑
j=1

(
2

α

)j
.

The final lower bound on the regret is obtained by considering the bounds obtained in Equation (25)
and Equation (27), so that

max
ν
Rψ,ν,T ≥

1

16
√
2e

max

{
ϕ
√
T ,

σB

(M + 1) log(T )
T

1−α/2

1−(α/2)M+1

}
B.3 Proofs of Lemmas of Section 4

B.3.1 Proof of Lemma 2

We start our analysis by observing that the estimator r̂τt (i) can be rewritten as

r̂τt (i) = µ(i) +
1

Πτt (i)

ι(⌊t⌋τ )∑
j=0

s(t̂j)ξt̂j (i)

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)
+

1

Πτt (i)

ι(⌊t⌋τ )∑
j=0

ϵj

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)
,

where

ϵj =
1

Nτ
j (i) ∨ 1

t̂j+1∧t∑
p=t̂j+1

εp(ip)1{ip = i ∧Nτ
j (i) ≤ γj} .

Hence, it is possible to rewrite the concentration inequality as follows

P
(
|r̂τt (i)− µ(i)| ≥ u

)
= P

∣∣∣∣∣∣ 1

Πτt (i)

ι(⌊t⌋τ )∑
j=0

s(t̂j)ξt̂j (i)

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)
+

1

Πτt (i)

ι(⌊t⌋τ )∑
j=0

ϵj

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)

∣∣∣∣∣∣ ≥ u


where the right hand term can be bounded by

P

∣∣∣∣∣∣ 1

Πτt (i)

ι(⌊t⌋τ )∑
j=0

s(t̂j)ξt̂j (i)

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)

∣∣∣∣∣∣ ≥ u

2

+ P

∣∣∣∣∣∣ 1

Πτt (i)

ι(⌊t⌋τ )∑
j=0

ϵj

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)

∣∣∣∣∣∣ ≥ u

2

 .

(28)

Observe that, ∀j < ι(⌊t⌋τ ) we have t > t̂j+1, hence, from the way the constant γj is chosen, the
following hold

Nτ
j (i) =

t̂j+1∑
p=t̂j+1

1{ip = i ∧ Nτ
j (i) ≤ γj} = γj .

In the case of j = ι(⌊t⌋τ ), instead t < t̂ι(⌊t⌋τ )+1, hence it holds

Nτ
ι(⌊t⌋τ )(i) =

t∑
p=t̂ι(⌊t⌋τ )+1

1{ip = i ∧ Nτ
j (i) ≤ γι(⌊t⌋τ )} ≤ γι(⌊t⌋τ ) .

Now fix 0 < l ≤ γι(⌊t⌋τ ) such that Nτ
ι(⌊t⌋τ )(i) = l, and consider the random variables

1

Πτt (i)

s(t̂j)ξt̂j (i)

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)

which are adapted with respect to the filtration F = σ(ξt̂0(i), . . . , ξt̂j (i)) ⊂ Ft. Note that this holds
because the functions ⌊t⌋τ and 1{ip = i ∧ Nτ

j (i) ≤ γj} ∀p ≤ t, hidden in the definition of 1
Πτ

t (i)
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are Ft−1 measurable. Moreover, this corresponds to the product between the random variable ξj and
a deterministic constant. The difference between two consecutive terms is bounded by

zj :=

∣∣∣∣ 1

Πτt (i)

s(t̂j)ξt̂j (i)

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)

∣∣∣∣ ≤ R

σΠτt (i)

∣∣∣∣∣ (t̂j ∨ 1)−α/2σ

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)

∣∣∣∣∣
(i)

≤ R

σΠτt (i)

∣∣∣∣∣∣
√
σ2(t̂j ∨ 1)−α + ϕ2

/Nτ
j (i)

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)

∣∣∣∣∣∣
≤ R

σΠτt (i)

∣∣∣∣∣∣ 1√
σ2(t̂j ∨ 1)−α + ϕ2

/Nτ
j (i)

∣∣∣∣∣∣
where we have used the fact that random variables have support bounded by R. Hence, we can apply
the standard Hoeffding-Azuma Inequality, by noticing before that

ι(⌊t⌋τ )∑
j=0

z2j =

ι(⌊t⌋τ )∑
j=0

R2

σ2Πτt (i)
2

 1√
σ2(t̂j ∨ 1)−α + ϕ2

/Nτ
j (i)

2

≤ 4R2

σ2Πτt (i)
2

ι(⌊t⌋τ )∑
j=0

1

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)

≤ 4R2

σ2Πτt (i)
.

Therefore,

P

∣∣∣∣∣∣ 1

Πτt (i)

ι(⌊t⌋τ )∑
j=0

s(t̂j)ξt̂j (i)

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)

∣∣∣∣∣∣ ≥ ω
 ≤ exp

(
−ω

2σ2Πτt (i)

8R2

)
.

Hence, considering an union-bound among all values of l, it holds

P

∣∣∣∣∣∣ 1

Πτt (i)

ι(⌊t⌋τ )∑
j=0

s(t̂j)ξt̂j (i)

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)

∣∣∣∣∣∣ ≥ u

2



≤
γι(⌊t⌋τ )∑
l=1

P

1{Nτ
ι(⌊t⌋τ )(i) = l

}
∣∣∣∣∣∣ 1

Πτt (i)

ι(⌊t⌋τ )∑
j=0

s(t̂j)ξt̂j (i)

(σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)

∣∣∣∣∣∣ ≥ u

2




(i)

≤
γι(⌊t⌋τ )∑
l=1

2e−
u2

32

σ2Πτ
t (i)

R2 ≤ 2γι(⌊t⌋τ )e
−u2

32

σ2Πτ
t (i)

R2 .

An analogous argument holds for the variable
1

Πτt (i)

ϵj

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)

which is again adapted to the filtration F = σ ((ϵp(ip))p≤t, (ip)p≤t) ⊂ Ft, and for which the
difference between two consecutive terms is again bounded by

z̃j :=
R

ϕΠτt (i)

∣∣∣∣∣∣ 1√
σ2(t̂j ∨ 1)−α + ϕ2

/Nτ
j (i)

∣∣∣∣∣∣
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So that it holds

P

∣∣∣∣∣∣ 1

Πτt (i)

ι(⌊t⌋τ )∑
j=0

ϵj

σ2(t̂j ∨ 1)−α + ϕ2
/Nτ

j (i)

∣∣∣∣∣∣ ≥ ω
 ≤ exp

(
−ω

2ϕ2Πτt (i)

8R2

)
.

From this, we can conclude

P (|r̂τt (i)− µ(i)| ≥ u) ≤ 4γι(⌊t⌋τ )e
−u2

32

Πτ
t (i)(σ2+ϕ2)

R2 .

B.3.2 Proof of Lemma 9

The proof follows the same steps of the proof of Lemma 4, again by applying lemma 8 to the estimator
r̂jt (i). Note that this is obtained by initially computing an empirical average to obtain r̂jt (i), which is
therefore ϕ/Nτ

j -subgaussian. And then further modified to obtain the final estimator by considering a
convex combination, whose weights are

1
σ2

t̂αj
+ ϕ2

Nτ
j

,

hence the final estimator is σ̃-subgaussian, where

σ̃ =

√√√√√ 1∑ι(⌊t⌋τ )
j=0

1
σ2

t̂α
j
+ ϕ2

Nτ
j

B.3.3 Proof of Lemma 10

The proof is this lemma is adapted to our case from the proof of Lemma 15.1 of Lattimore and
Szepesvári [2020]. We start by observing that

KL (Pνj ,Pν′j ) = Eνj

[
log

(
dPνj

dPν′j

)]
It is possible to define P ti,h and P

′t
i,h as the conditional distributions of the observation of arm i, at

time t given t̂h, and f ti,h and f
′t
i,h their respective densities. These distributions are well defined since

the switching times t̂h are fixed. Moreover, denote by ρj−1 the counting measure on [[0, j − 1]], and

λj−1 =
∑
iK
∑j−1
h=0

∑t̂h+1

t=t̂h+1
P ti,h + P

′t
i,h. Then, for every fixed arm i and fixed retraining times

t̂1, . . . , t̂j−1 the Radon-Nikodym derivative of Pνj is

dPνj

d(λj−1 × ρj−1)

(
(i,N1), o

τ
1(i), . . . , (i,Nt̂j ), o

τ
t̂j
(i)
)
=

t̂j∏
t=1

P
(
(i,Nt)

∣∣I ′t−1

)
f ti,Nt

(oτt (i))

where I ′t−1 is the history up to time t− 1. Therefore, by conditioning on the previous retraining times
and applying the chain rule the following holds

KL (Pνj ,Pν′j ) = Eνj

[
log

(
dPνj

dPν′j

)]

= Eνj

[
Eνj

[
log

(
dPνj

dPν′j

) ∣∣(t̂h)j−1
h=1

]]

= Eνj

 t̂j∑
t=1

∑
i∈K

Eνj

[
log

(
f ti,Nt

(oτt (i))

f
′t
i,Nt

(oτt (i))

)∣∣(t̂h)j−1
h=1

]
Furthermore it holds

Eνj

[
log

(
f ti,Nt

(oτt (i))

f
′t
i,Nt

(oτt (i))

)∣∣(t̂h)j−1
h=1

]
= KL(P ti,Nt

, P
′t
i,Nt

) ,
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where we have used the fact that, under Pνj the distribution of oτt (i) is dP ti,Nt
= f ti,Nt

dλj−1. The
expression above then becomes

KL (Pνj ,Pν′j ) =

t̂j∑
t=1

∑
i∈K

Eνj

[
KL(P ti,Nt

, P
′t
i,Nt

)
]

=

t̂j∑
t=1

∑
i∈K

j−1∑
h=0

Eνj

[
1{Nt = h}KL(P ti,Nt

, P
′t
i,Nt

)
]

=

t̂j∑
t=1

∑
i∈K

j−1∑
h=0

Eνj

[
1{Nt = h}KL(P ti,h, P

′t
i,h)
]

(29)

We now analyze the term KL
(
P ti,h, P

′t
i,h

)
, by deriving the explicit expression of the distributions

involved thanks to the following lemma.
Lemma 11. Let ν be a bandit instance, where the rewards of each arm follow the structure of
Equation (2), with εt ∼ N (0, ϕ2) and ξ⌊t⌋τ ∼ N (0, σ2), and νj the distribution obtained by halting
ν at time t̂j . Then the conditional distribution P ti,h of the observation oτt (i), received by arm i at time
t given t̂h, follows a gaussian law with parameters µ̂(i), σ̂2, where

µ̂(i) = µ(i) +

t−1∑
p=t̂h+1

oτp(i)− µ(i)
ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)

and

σ̂2 =
ϕ2
(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 1)
)

ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)
.

Therefore, the KL divergence between P ti,h and P
′t
i,h can be explicitly computed thanks to the formula

of the KL divergence between gaussian distributions with the same variance. Furthermore note that
the averages of νj and ν

′j only differ with respect to arm k, hence the same holds for the averages of
P ti,h and P

′t
i,h. From this, we deduce that the only non-zero divergence is the one corresponding to

arm k, for which the averages of the two distributions are

µ̂(k) =

t−1∑
p=t̂h+1

oτp(i)
ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)
µ̂′(k) = 2∆ +

t−1∑
p=t̂h+1

oτp(i)− 2∆
ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)
.

Therefore

KL
(
P tk,h, P

′t
k,h

)
=

(µ̂(k)− µ̂′(k))2

2σ̂2

Note that, the difference between the averages corresponds to t−1∑
p=t̂h+1

oτp(i)
ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)
− 2∆ −

t−1∑
p=t̂h+1

oτp(i)− 2∆
ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)



=

−2∆ +
t−1∑

p=t̂h+1

2∆
ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)


Thus

KL
(
P tk,h,P

′t
k,h

)
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=

−2∆ +

t−1∑
p=t̂h+1

2∆
ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)

2

1

2

ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)

ϕ2
(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 1)
)

= 4∆2

(
ϕ2

s(t̂h)2σ2

)2
(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)
)2 12

ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)

ϕ2
(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 1)
)

= 2∆2

ϕ2

(s(t̂h)2σ2)
2(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)
) 1(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 1)
)

=

2∆2 ϕ2

(s(t̂h)2σ2)
2(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 1)
)2

+
(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 1)
)

We observe now, that the KL divergence can be further bounded into two different ways.

Case 1 We have

KL(P tk,h, P
′t
k,h) =

2∆2 ϕ2

(s(t̂h)2σ2)
2(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 1)
)2

+
(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 1)
)

≤
2∆2 ϕ2

(s(t̂h)2σ2)
2(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 1)
)2

+ ϕ2

s(t̂h)2σ2

≤
2∆2 ϕ2

(s(t̂h)2σ2)
2

ϕ2

s(t̂h)2σ2 (t− t̂h − 1) + ϕ2

s(t̂h)2σ2

=
2∆2

s(t̂h)2σ2(t− t̂h)

therefore, by replacing this in Equation (29), together with s(t̂h)2 ≤ (t̂h ∨ 1)−α we recover

KL (Pνj ,Pν′j ) ≤
t̂j∑
t=1

j−1∑
h=0

Eνj

[
1{Nt = h}2∆

2(t̂αh ∨ 1)

σ2(t− t̂h)

]
from which, the fact that t̂h ≤ t̂j−1 almost surely for h ≤ j − 1 and an application of Wald’s lemma,
gives

KL (Pνj ,Pν′j ) ≤ 2∆2

σ2
Eνj [t̂αj−1 ∨ 1]

t̂j∑
t=1

j−1∑
h=0

Eνj

[
1{Nt = h}
t− t̂h

]

≤ 2∆2

σ2
Eνj [t̂αj−1 ∨ 1]Eνj

[
log(t̂j)

]
and again by using Jensen’s inequality for both the expectations and the notation Eνj [t̂j−1] = tj−1,
we conclude

KL (Pνj ,Pν′j ) ≤
2∆2(tαj−1 ∨ 1)

σ2
log(tj) . (30)
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Case 2 In this case, we bound the KL divergence between P tk,h and P
′t
k,h as

KL(P tk,h, P
′t
k,h) =

2∆2 ϕ2

(s(t̂h)2σ2)
2(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 1)
)2

+
(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 1)
)

≤
2∆2 ϕ2

(s(t̂h)2σ2)
2(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 1)
)2

≤
2∆2 ϕ2

(s(t̂h)2σ2)
2(

ϕ2

s(t̂h)2σ2

)2
≤ 2∆2

ϕ2

Which replaced above gives

KL (Pνj ,Pν′j ) ≤
t̂j∑
t=1

j−1∑
h=0

Eνj

[
1{Nt = h}2∆

2

ϕ2

]
=

2∆2

ϕ2
tj (31)

The final bound follows by considering the min between eq. (30) and eq. (31)

B.3.4 Proof of Lemma 11

By the definition of the bandit instance ν, we can show that the vector of the observations obtained
during epoch h up to time t by arm i has a gaussian distribution. Indeed, let ε(i) = (εp(i))p∈[[t̂h+1,t]]

be the vector of all the noise terms obtained from the start of the h-th epoch, where, by construction,
each component is an independent drawn by a gaussian with parameters 0 and ϕ2. Let s(t̂h)ξt̂h(i)
the bias term of epoch h, which, again by definition of the bandit instance, is distributed as a
gaussian with parameters 0 and s(t̂h)2σ2. Let ξ

h
(i) = (s(t̂h)ξt̂h(i))p∈[[t̂h+1,t]] the vector containing

(t − t̂h − 1) copies of the bias term. Then, the vector of the observations up to time t by arm i,
oτ (i) = (oτp(i))p∈[[t̂h+1,p]], can be written as

oτ (i) = µ(i) + ξ
h
(i) + ε(i) ,

where µ(i) is a vector containing (t− t̂h− 1) copies of the average µ(i). Since gaussian distributions
are maintained by linear transformations, we have that the distribution of oτ (i), is also gaussian with
average µ(i) and covariance matrix Σ, defined as

Σ =

s(t̂h)2σ2 + ϕ2 s(t̂h)2σ2 · · · s(t̂h)2σ2

...
. . .

...
s(t̂h)2σ2 · · · s(t̂h)2σ2 + ϕ2

 .
The distribution P ti,h corresponds to the distribution of the last component of the vector oτ (i) having
observed all the previous ones. Therefore, using the formulas for the conditional distribution of a
subvector of a gaussian multivariate distribution, we find that oτt (i)|(oτp(i))t−1

p=t̂h+1
∼ N (µ̂(i), σ̂2),

where

µ̂(i) = µ(i) + Σ1Σ
−1
2 · (oτp(i)− µ(i))

t−1

p=t̂h+1
(32)

and

σ̂2 = (s(t̂h)
2σ2 + ϕ2)− Σ1Σ

−1
2 Σ⊤

1 , (33)
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where Σ1 is a row vector containing (t− t̂j − 2) copies of ϕ2, and Σ2 is a squared (t− t̂j − 2) matrix
obtained from Σ by removing the last row and column. Note that Σ2 can be written as

Σ2 =

s(t̂h)2σ2 · · · t̂sh(t̂h)
2σ2

...
. . .

...
s(t̂h)2σ2 · · · s(t̂h)2σ2

 +

ϕ
2 · · · 0
...

. . .
...

0 · · · ϕ2


therefore we can compute its inverse by using the fact that if B is a matrix of rank 1, and A a generic
matrix, then

(A+B)−1 = B−1 − 1

1 + g
B−1AB−1

where g = tr(AB−1) the trace of the product. In our case AB−1 corresponds tos(t̂h)2σ2 · · · s(t̂h)2σ2

...
. . .

...
s(t̂h)2σ2 · · · s(t̂h)2σ2

 ·


1
ϕ2 · · · 0
...

. . .
...

0 · · · 1
ϕ2

 =


s(t̂h)

2σ2

ϕ2 · · · s(t̂h)
2σ2

ϕ2

...
. . .

...
s(t̂h)

2σ2

ϕ2 · · · s(t̂h)
2σ2

ϕ2

 ,
therefore its trace corresponds to s(t̂h)

2σ2

ϕ2 (t− t̂h − 2), thus it is possible to compute the inverse of
Σ2 as

Σ−1
2

=


1
ϕ2 · · · 0
...

. . .
...

0 · · · 1
ϕ2

− 1

1 + s(t̂h)2σ2

ϕ2 (t− t̂h − 2)


1
ϕ2 · · · 0
...

. . .
...

0 · · · 1
ϕ2

 ·


s(t̂h)
2σ2

ϕ2 · · · s(t̂h)
2σ2

ϕ2

...
. . .

...
s(t̂h)

2σ2

ϕ2 · · · s(t̂h)
2σ2

ϕ2



=


1
ϕ2 · · · 0
...

. . .
...

0 · · · 1
ϕ2

− 1

1 + s(t̂h)2σ2

ϕ2 (t− t̂h − 2)


s(t̂h)

2σ2

ϕ4 · · · s(t̂h)
2σ2

ϕ4

...
. . .

...
s(t̂h)

2σ2

ϕ4 · · · s(t̂h)
2σ2

ϕ4



=


1
ϕ2 −

s(t̂h)2σ2

ϕ4

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)
· · · −

s(t̂h)2σ2

ϕ4

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)

...
. . .

...

−
s(t̂h)2σ2

ϕ4

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)
· · · 1

ϕ2 −
s(t̂h)2σ2

ϕ4

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)

 .

Moreover

Σ1Σ
−1
2

=
[
s(t̂h)2σ2 · · · s(t̂h)2σ2

]
·


1
ϕ2 −

s(t̂h)2σ2

ϕ4

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)
· · · −

s(t̂h)2σ2

ϕ4

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)

...
. . .

...

−
s(t̂h)2σ2

ϕ4

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)
· · · 1

ϕ2 −
s(t̂h)2σ2

ϕ4

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)



=

s(t̂h)
2σ2

 1

ϕ2
−

s(t̂h)
2σ2

ϕ4

1 + s(t̂h)2σ2

ϕ2 (t− t̂h − 2)

− s(t̂h)2σ2 s(t̂h)
2σ2

ϕ4 (t− t̂h − 3)

1 + s(t̂h)2σ2

ϕ2 (t− t̂h − 2)

 [1, . . . , 1]

43



=

[
s(t̂h)

2σ2

ϕ4 −
s(t̂h)

2σ2 s(t̂h)2σ2

ϕ4 (t−t̂h−2)

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)
· · · s(t̂h)

2σ2

ϕ4 −
s(t̂h)

2σ2 s(t̂h)2σ2

ϕ4 (t−t̂h−2)

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)

]

=

[
s(t̂h)

2σ2

ϕ2

(
1−

s(t̂h)2σ2

ϕ2 (t−t̂h−2)

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)

)
· · · s(t̂h)

2σ2

ϕ2

(
1−

s(t̂h)2σ2

ϕ2 (t−t̂h−2)

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)

)]

=

[
s(t̂h)

2σ2

ϕ2
1

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)
· · · s(t̂h)

2σ2

ϕ2
1

1+
s(t̂h)2σ2

ϕ2 (t−t̂h−2)

]

=
[ 1

ϕ2

s(t̂h)2σ2 +(t−t̂h−2)
· · · 1

ϕ2

s(t̂h)2σ2 +(t−t̂h−2)

]

Therefore, replacing this computations in Equation (32), we obtain

µ̂(i) = µ(i) +

t−1∑
p=t̂h+1

oτp(i)− µ(i)
ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)

and, since

Σ1Σ
−1
2 Σ⊤

1 =
[ 1

ϕ2

s(t̂h)2σ2 +(t−t̂h−2)
· · · 1

ϕ2

s(t̂h)2σ2 +(t−t̂h−2)

]
·

s(t̂h)2σ2

...
s(t̂h)2σ2



=
(t− t̂h − 2s(t̂h)2σ2

ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)
,

using Equation (33)

σ̂2 = (s(t̂h)
2σ2 + ϕ2)− (t− t̂h − 2)s(t̂h)2σ2

ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)

=
ϕ2
(

ϕ2

s(t̂h)2σ2 + (t− t̂h − 1)
)

ϕ2

s(t̂h)2σ2 + (t− t̂h − 2)
.
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