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Abstract
Existing optical character recognition (OCR)
methods rely on task-specific designs with diver-
gent paradigms, architectures, and training strate-
gies, which significantly increases the complex-
ity of research and maintenance and hinders the
fast deployment in applications. To this end, we
propose UPOCR, a simple-yet-effective general-
ist model for Unified Pixel-level OCR interface.
Specifically, the UPOCR unifies the paradigm
of diverse OCR tasks as image-to-image trans-
formation and the architecture as a vision Trans-
former (ViT)-based encoder-decoder with learn-
able task prompts. The prompts push the gen-
eral feature representations extracted by the en-
coder towards task-specific spaces, endowing the
decoder with task awareness. Moreover, the
model training is uniformly aimed at minimiz-
ing the discrepancy between the predicted and
ground-truth images regardless of the inhomo-
geneity among tasks. Experiments are conducted
on three pixel-level OCR tasks including text re-
moval, text segmentation, and tampered text de-
tection. Without bells and whistles, the experi-
mental results showcase that the proposed method
can simultaneously achieve state-of-the-art perfor-
mance on three tasks with a unified single model,
which provides valuable strategies and insights
for future research on generalist OCR models.
Code is available at https://github.com/
shannanyinxiang/UPOCR.

1. Introduction
Optical character recognition (OCR) is a flourishing field
with numerous real-world applications, encompassing a
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Figure 1. The proposed UPOCR is a unified pixel-level OCR inter-
face which is simultaneously capable of diverse pixel-level OCR
tasks (e.g., (a) text removal, (b) text segmentation, and (c) tampered
text detection) by prompting ViT-based encoder-decoder, without
task- or benchmark-specific finetuning. At the bottom right, red
and green colors indicate tampered and real texts, respectively.

wide spectrum of pixel-level tasks that require dense per-
pixel predictions, e.g., text removal (Nakamura et al., 2017),
text segmentation (Xu et al., 2021), and tampered text de-
tection (Wang et al., 2022b). Nowadays, there have been
massive methods that specialize in individual tasks, signifi-
cantly contributing to the OCR advancement.

However, specialized OCR models significantly differ in
aspects of paradigms, architectures, and training strategies,
especially for pixel-level OCR tasks. (1) Paradigm: The
differences in paradigms are particularly reflected by di-
vergent input and output formats. For instance, existing
approaches to text segmentation (Xu et al., 2021) and tam-
pered text detection (Qu et al., 2023) typically transform
the input image into per-pixel classification probabilities to
distinguish text strokes or real/tampered texts from back-
grounds. On the contrary, text removal (Zhang et al., 2019)
is aimed at producing vivid text-erased images from input
images. Moreover, recent studies (Liu et al., 2022a; Lee &
Choi, 2022; Wang et al., 2023c) commonly consolidate text
masks into inputs or outputs to promote text perception of
text removal models. (2) Architecture: Specialized models
typically elaborate dedicated modules for individual tasks.
Concretely, explicit text localization modules (Tursun et al.,
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2020; Du et al., 2023a) and multi-step refinements (Liu
et al., 2020; Lyu & Zhu, 2022; Wang et al., 2023c) are em-
ployed to resolve excessive and inexhaustive text erasure.
As for text segmentation, advanced methods (Bonechi et al.,
2020; Xu et al., 2021; Ren et al., 2022; Wang et al., 2023b)
rely on complex attention and resampling modules as well
as semantic information from text recognizers. Moreover,
the fusion of frequency and RGB domains is crucial to
existing tampered text detection approaches (Wang et al.,
2022c; Qu et al., 2023). (3) Training Strategy: Special-
ized models are optimized in disparate manners. In general,
the cross-entropy loss is adopted for text segmentation (Xu
et al., 2021; Yu et al., 2023) and tampered text detection (Qu
et al., 2023) while L1 distance for text removal (Zhang et al.,
2019; Liu et al., 2020). Additionally, abundant dedicated
losses are designed for individual tasks, e.g., trimap loss (Xu
et al., 2021; 2022) and Lovasz loss (Qu et al., 2023). More-
over, some studies (Xu et al., 2021; 2022; Liu et al., 2022a;
Lyu et al., 2023; Peng et al., 2024) incorporate discrimina-
tors and GAN-based training strategies. The joint training
with text localization modules is another trend in recent
literature (Wang et al., 2021; 2023c; Yu et al., 2023), requir-
ing auxiliary supervision. These inhomogeneities among
specialized OCR models substantially raise the research
complexity and increase the real-world deployment and
maintenance cost. More importantly, the collaboration be-
tween OCR tasks cannot be investigated. Therefore, it is
urgent to develop generalist pixel-level OCR models.

Concurrently, several studies have been devoted to estab-
lishing generalist interfaces. However, OFA (Wang et al.,
2022a) and Unified-IO (Lu et al., 2022) depend on VQ-
GAN (Esser et al., 2021) to decode images from discrete
tokens, thus limiting the diversity and granularity in the
pixel space. Although recent approaches (Alayrac et al.,
2022; Liu et al., 2023a; Li et al., 2023; Ye et al., 2023c;
Zhang et al., 2024; Zhu et al., 2024) investigate the combi-
nation of powerful vision Transformers (ViTs) (Dosovitskiy
et al., 2021) and large language models (LLMs) (Touvron
et al., 2023), they struggle with OCR tasks (Liu et al., 2023b;
Shi et al., 2023) and fail to generate pixels. Painter (Wang
et al., 2023a) tackles diverse tasks as inpainting problems
but implicitly distinguishes tasks via example pairs, hence
difficult to identify OCR tasks with inconspicuous corre-
lation between inputs and outputs. Furthermore, existing
generalist OCR models (Kim et al., 2022; Tang et al., 2023;
Blecher et al., 2023; Lv et al., 2023; Ye et al., 2023b; Feng
et al., 2023b; Ye et al., 2023a; Feng et al., 2023a) primarily
focus on document scenarios and cannot handle pixel-level
tasks. In particular, some of them (Kim et al., 2022; Tang
et al., 2023) still require benchmark-specific finetuning to
reach satisfactory performance.

To this end, we propose UPOCR, a simple-yet-effective gen-
eralist model for Unified Pixel-level OCR interface. For the

first time, UPOCR simultaneously accomplishes multiple
pixel-level OCR tasks via prompting ViT-based encoder-
decoder as shown in Fig. 1. To achieve this, the proposed
method unifies the paradigm, architecture, and training strat-
egy of diverse pixel-level OCR tasks. Specifically, UP-
OCR unified the paradigm of different tasks as transforming
RGB image inputs to RGB image outputs. Moreover, the
pure ViT-based encoder-decoder architecture is uniformly
adopted for all tasks. To distinguish the ongoing task, we
introduce learnable task prompts into the encoder-decoder.
Concretely, the encoder first extracts general OCR-related
feature representations of the input image. Subsequently,
the task prompt pushes the general feature towards the task-
specific region, empowering the decoder to generate output
images for specific tasks. During training, the model is
optimized to minimize the discrepancy between predicted
and ground-truth (GT) images at pixel and feature levels,
eliminating dedicated designs of loss functions, adversarial
learning, and auxiliary supervision.

The effectiveness of UPOCR is extensively verified on three
pixel-level OCR tasks, including text removal, text seg-
mentation, and tampered text detection. Without bells and
whistles, experimental results showcase that UPOCR si-
multaneously achieves state-of-the-art performance on all
three tasks with a unified single model, significantly surpass-
ing specialized methods for individual tasks. In addition,
UPOCR outperforms cutting-edge generalist approaches
on these three tasks, demonstrating its proficiency in the
pixel-level OCR field.

In summary, the contributions of this paper are as follows.

• We propose UPOCR, a simple-yet-effective generalist
model for unified pixel-level OCR interface. Through
the unification of paradigms, architectures, and training
strategies, the proposed UPOCR is the first to simulta-
neously excel in diverse pixel-level OCR tasks.

• Learnable task prompts are introduced to guide the ViT-
based encoder-decoder architecture. The prompts push
general feature representations from the encoder to-
wards regions of individual tasks, allowing the decoder
to perform task-specific decoding.

• The generalist capacity of UPOCR is extensively veri-
fied on text removal, text segmentation, and tampered
text detection tasks, significantly outperforming exist-
ing specialized models. In-depth ablation studies are
also conducted to provide valuable strategies and in-
sights for future research on generalist OCR methods.

2. Related Work
2.1. Specialized Pixel-Level OCR Model

Text Removal. Text removal is targeted at replacing text
strokes with visually coherent backgrounds, primarily focus-
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ing on natural scenes. Early approaches (Nakamura et al.,
2017; Zhang et al., 2019; Liu et al., 2020) follow a one-stage
framework, which implicitly integrates text localization and
inpainting processes into a single network in an image-to-
image translation manner. However, one-stage approaches
struggle with accurate text perception, leaving severe text
remnants in text removal results. Therefore, two-stage meth-
ods incorporate explicit text segmentation modules (Tursun
et al., 2020; Keserwani & Roy, 2021; Lyu & Zhu, 2022;
Bian et al., 2022; Du et al., 2023b; Hou et al., 2022; Du
et al., 2023a; Wang et al., 2023c; Lyu et al., 2023) or exter-
nal text detectors (Zdenek & Nakayama, 2020; Conrad &
Chen, 2021; Liu et al., 2022a; Qin et al., 2018; Tursun et al.,
2019; Tang et al., 2021; Lee & Choi, 2022) for enhanced text
localization capacity and have recently dominated the text
removal field. Moreover, coarse-to-refine (Liu et al., 2020;
Jiang et al., 2022; Tursun et al., 2020; Du et al., 2023a) and
multi-step progressive refinements (Lyu & Zhu, 2022; Bian
et al., 2022; Du et al., 2023b; Wang et al., 2023c) have also
been intensively exploited for exhaustive text removal in
recent studies. Nevertheless, ViTEraser (Peng et al., 2024)
demonstrated a one-stage framework with ViTs and Seg-
MIM pre-training can significantly outperform previous
complicated methods.

Text Segmentation. Text segmentation aims to predict
per-pixel classification for distinguishing text strokes from
backgrounds. SMANet (Bonechi et al., 2020) inserted multi-
scale attention into PSPNet (Zhao et al., 2017)-based ar-
chitecture. TextFormer (Wang et al., 2023b) and ARM-
Net (Ren et al., 2022) further incorporated high-level seman-
tics from text recognizers. Moreover, TexRNet (Xu et al.,
2021) dynamically reactivated low-confidence regions and
adopted a character-level discriminator. Based on TexRNet,
PGTSNet (Xu et al., 2022) additionally integrated a text
detector for text-line cropping and employed a line-level
discriminator. To fully utilize polygon annotations, Wang
et al. (2021) exploited mutual interaction between polygon-
and pixel-level segmentation while Yu et al. (2023) designed
end-to-end hierarchical segmentation Transformers.

Tampered Text Detection. Tampered text detection is de-
fined as the segmentation (or detection) of tampered (or both
real and tampered) texts. In the deep learning era, plenty of
approaches (Zhou et al., 2018; Bappy et al., 2019; Kwon
et al., 2021; 2022; Dong et al., 2022) have been developed
for natural image manipulation detection. Inspired by these
methods, Qu et al. (2023) proposed DTD which combines
frequency and visual perception for document tampered
text detection. Furthermore, Wang et al. (2022c) enhanced
Faster R-CNN with RGB and frequency relationship model-
ing for tampered text detection in receipts. As for natural
scenes, Wang et al. (2022b) equipped scene text detectors
with the proposed S3R strategy to localize both real and
tampered texts.

2.2. Generalist Model

The emergence of Transformer (Vaswani et al., 2017; Doso-
vitskiy et al., 2021) breaks the boundary between different
modalities (Jaegle et al., 2022; Zhang et al., 2023), fostering
a broad variety of generalist models. One category of these
models unifies both the input and output as sequences and
bridges them with a sequence-to-sequence learning frame-
work. Pix2Seq (Chen et al., 2022a) pioneered in unifying
the output vocabulary of natural language and spatial coor-
dinates and demonstrated effectiveness in object detection.
Subsequently, Pix2Seq v2 (Chen et al., 2022b) simultane-
ously tackled multiple tasks with the guidance of specific
prompts. Furthermore, OFA (Wang et al., 2022a) discretized
both the input and output as token sequences, accomplishing
various uni-modal and cross-modal vision-language tasks.
Similarly, Unified-IO (Lu et al., 2022) extended the frame-
work to a wider range of tasks and modalities. With the
rise of LLMs (OpenAI, 2023; Touvron et al., 2023), nu-
merous studies (Alayrac et al., 2022; Li et al., 2023; Liu
et al., 2023a; Ye et al., 2023c; Zhang et al., 2024; Zhu et al.,
2024) connected pretrained ViTs and LLMs for generalist
models with stronger reasoning and robustness. Following
an image-to-image translation pipeline, MAE-VQGAN (Bar
et al., 2022) treated diverse tasks as inpainting problems.
Painter (Wang et al., 2023a) further investigated visual in-
context learning which allows it to adapt to unseen tasks.

In the OCR field, several generalist models have been stud-
ied following sequence-to-sequence paradigms (Kim et al.,
2022; Tang et al., 2023; Blecher et al., 2023; Lv et al.,
2023). Moreover, recent approaches (Ye et al., 2023b;a;
Feng et al., 2023b;a) augment large multimodal models us-
ing OCR-related data and fine-grained visual perception.
However, these approaches primarily focused on document
scenarios and failed to generate pixels. Moreover, some
of them (Tang et al., 2023; Kim et al., 2022) still required
benchmark-specific finetuning.

3. Methodology
The proposed UPOCR is a unified pixel-level OCR inter-
face as depicted in Fig. 2. Specifically, UPOCR unifies
the paradigm, architecture, and training strategy of diverse
pixel-level OCR tasks. In this paper, the UPOCR is particu-
larly verified on simultaneously handling text removal, text
segmentation, and tampered text detection tasks.

3.1. Unified Paradigm

As illustrated in Fig. 2(a), despite their divergent targets
(e.g., image generation and segmentation), the paradigm of
various pixel-level OCR tasks can be unified to translate
RGB images to RGB images. As the inputs are inherently
RGB images, detailed output formats of selected tasks are
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Figure 2. UPOCR is a generalist OCR model which unifies the paradigm, architecture, and training strategy of diverse pixel-level OCR
tasks. (a) The paradigm is unified as RGB image to RGB image translation. (b) The ViT-based encoder-decoder architecture is employed
for all tasks. Learnable task prompts are inserted to shift general hidden representations to task-specific regions. (c) During training, the
model is optimized to minimize the discrepancy between predicted and GT images at pixel and feature spaces.

described as follows.

Text Removal. For the text removal task, the output is the
text-erased image corresponding to the input, which is also
RGB pictures.

Text Segmentation. Text segmentation aims to assign each
pixel to foreground (i.e., text stroke) or background. Exist-
ing methods typically conduct per-pixel binary classifica-
tion. However, under the unified image-to-image translation
paradigm, UPOCR predicts RGB images with white and
black colors. Specifically, the RGB values for foreground
and background pixels are (255, 255, 255) and (0, 0, 0), re-
spectively. During inference, the category is determined by
thresholding the distance between the generated RGB value
and the pre-defined foreground RGB value.

Tampered Text Detection. Following recent studies (Wang
et al., 2022b), we define tampered text detection as per-pixel
classification of tampered text, real text, and background
categories. Similar to text segmentation, we adopt differ-
ent RGB values in the output image to represent different
categories. Concretely, we assign red (255, 0, 0), green
(0, 255, 0), and blue (0, 0, 255) colors to tampered texts,
real texts, and backgrounds, respectively. During inference,
we compare the distance of predicted RGB values with these
three colors to determine the per-pixel category.

3.2. Unified Architecture

As shown in Fig. 2(b), we implement the unified image-
to-image translation paradigm by prompting a ViT-based
encoder-decoder network. Concretely, the task prompts
shift the general representation extracted by the encoder
into task-specific regions at feature space, empowering the
decoder to produce output images for individual tasks.

Encoder-Decoder. We adopt a ViT-based architecture to
implement the encoder-decoder of UPOCR. Specifically,

the encoder consists of four sequential blocks, yielding four
feature maps with strides of {4, 8, 16, 32} w.r.t the input
image. Each encoder block encapsulates a patch embedding
layer for downsampling and multiple Swin Transformer v2
blocks (Liu et al., 2022b). Subsequently, the decoder hi-
erarchically upsamples the final feature of the encoder to
strides of {16, 8, 4, 2, 1} w.r.t the input size through five
blocks. Each decoder block concatenates multiple Swin
Transformer v2 blocks (Liu et al., 2022b) and a patch split-
ting layer (Peng et al., 2024) for upsampling. Based on the
final feature of the decoder, the output image is predicted
using a 3× 3 convolution.

Task Prompt. To effectively handle multiple tasks, we in-
troduce learnable task prompts into the encoder-decoder ar-
chitecture. Retrospectively, recent generalist models (Chen
et al., 2022b; Kim et al., 2022; Tang et al., 2023) commonly
prepend task prompts comprising natural language or pre-
defined tokens to the decoder for task-specific sequence
generation. In contrast, we insert learnable task prompts
into the shared feature space of the encoder and decoder as
shown in Fig. 2(b). Specifically, for each task, its prompt is
formulated as a learnable embedding with the same dimen-
sion as the hidden feature from the encoder. To perform a
certain task, the corresponding prompt is simply added to
every pixel of the hidden feature, pushing the general OCR-
related presentations generated by the encoder towards the
task-specific region. Subsequently, the decoder translates
the adjusted hidden feature into the output image for this
specific task. With negligible parameter and computation
overhead, the UPOCR can simultaneously deal with diverse
tasks in a simple yet effective fashion. See Sec. A.1 of the
appendix for details.

3.3. Unified Training Strategy

Thanks to the unified image-to-image paradigm, the training
of UPOCR consistently aims to minimize the discrepancy
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Table 1. Ablation study on the insertion of task prompts. The bold and underline indicate the best and second best, respectively.
Prompt Insert Position Text Removal Text Segmentation Tampered Text Det.

Encoder Shared Feature Decoder PSNR↑ MSSIM↑ MSE↓ FID↓ fgIoU↑ F↑ mIoU↑ mF↑
✓ ✓ 36.93 97.64 0.0430 10.45 88.61 93.96 70.19 82.48

✓ ✓ 36.96 97.64 0.0428 10.46 88.78 94.06 71.13 83.13
✓ ✓ ✓ 36.86 97.64 0.0436 10.55 88.84 94.09 71.40 83.31

✓ 37.14 97.62 0.0428 10.47 88.76 94.04 71.71 83.53

between the predicted and GT images at pixel and feature
spaces regardless of the inhomogeneity among tasks, as
shown in Fig. 2(c). For conciseness, we define the input,
output, and GT images as Iin, Iout, and Igt, respectively.

Pixel Space. The discrepancy in pixel space is mea-
sured by the L1 distance between output and GT im-
ages. Furthermore, a multi-scale L1 loss is involved to
enhance the perception at multiple granularities during train-
ing. Specifically, multi-scale images I

1
4
out and I

1
2
out are

predicted based on the features from the 3rd and 4th de-
code blocks, each through a 3 × 3 convolution. Denoting
Iout = {I

1
4
out, I

1
2
out, Iout} and Igt = {I

1
4
gt, I

1
2
gt, Igt} (I

1
4
gt and

I
1
2
gt is resized from Igt), the pixel loss is formulated as:

Lpix =
∑3

i=1
αi||Iiout − Iigt||1, (1)

where the balancing factor α is empirically set to {5, 6, 10}
and the superscript i indicates the i-th element of the array.

Feature Space. For tasks associated with realistic image
generation, the similarity at high-level feature space is crit-
ical. Therefore, we additionally align the output and GT
images at the feature space for the text removal task. The fea-
ture loss Lfeat is composed of perceptual loss Lper (John-
son et al., 2016) and style loss Lsty (Gatys et al., 2016):

Lfeat = αperLper + αstyLsty, (2)

where Lper and Lsty are calculated following previous stud-
ies (Liu et al., 2020; 2022a) using a pretrained VGG-16 (Si-
monyan & Zisserman, 2015) network. In addition, the αper

and αsty are heuristically set to 0.01 and 120, respectively.

Total Loss. The total loss Ltotal is the sum of pixel loss
Lpix and feature loss Lfeat (if applicable):

Ltotal = Lpix + Lfeat. (3)

4. Experiment
4.1. Experiment Setting

Task and Dataset. We investigate three pixel-level OCR
tasks, including text removal, text segmentation, and tam-
pered text detection, to demonstrate the effectiveness of

UPOCR on generalist pixel-level OCR processing. The
SCUT-EnsText (Liu et al., 2020), TextSeg (Xu et al., 2021),
and Tampered-IC13 (Wang et al., 2022b) datasets are em-
ployed for these three tasks, respectively.

Network Architecture. The encoder-decoder architecture
of UPOCR inherits from ViTEraser-Small (Peng et al., 2024)
but incorporates three learnable prompts for multi-task pro-
cessing, totally containing 108M parameters. The encoder,
decoder, and task prompts comprise 49.6M, 58.6M, and
2,304 parameters, respectively. During training, UPOCR
are initialized using pretrained ViTEraser-Small (with Seg-
MIM pre-training). The input size is set to 512× 512.

Other Details. See Sec. A of the appendix for implementa-
tion details.

4.2. Evaluation Metrics

Text Removal. Following previous methods (Liu et al.,
2020; 2022a), the evaluation for text removal involves
image- and detection-eval metrics. The image-eval met-
rics include PSNR, MSSIM, MSE, AGE, pEPs, pCEPs, and
FID while the detection-eval metrics are precision (P), re-
call (R), and f-measure (F) using the pretrained text detector
CRAFT (Baek et al., 2019). Note that MSSIM and MSE
are presented in percent (%).

Text Segmentation. The intersection over union (IoU), P,
R, and F of foreground pixels are employed for evaluation
on text segmentation (Xu et al., 2021).

Tampered Text Detection. The evaluation metrics include
the P, R, F, and IoU of both real and tampered pixels. Addi-
tionally, the mean f-measure (mF) and mean IoU (mIoU) of
real and tampered pixels are calculated for overall evaluation
following Wang et al. (2022b).

4.3. Ablation Study

Insertion of Task Prompts. The crucial component of
the generalist proficiency of UPOCR is the learnable task
prompt. As specified in Sec. 3.2 and Fig. 2(b), the task
prompt is inserted to the shared feature space between the
encoder and decoder, following the idea that the encoder
extracts versatile OCR-related features and the decoder de-
codes task-specific output images from adjusted hidden fea-
tures. Nevertheless, the task prompts can also be inserted

5



UPOCR: Towards Unified Pixel-Level OCR Interface

Table 2. Ablation study on task collaboration. (TR: text removal, TS: text segmentation, TTD: tampered text detection)

TR TS TTD Text Removal Text Segmentation Tampered Text Det.

PSNR↑ MSSIM↑ MSE↓ FID↓ fgIoU↑ F↑ mIoU↑ mF↑
✓ 36.97 97.57 0.0500 10.50 - - - -

✓ - - - - 88.83 94.08 - -
✓ - - - - - - 67.73 80.72

✓ ✓ 36.91 97.64 0.0450 10.40 88.64 93.98 - -
✓ ✓ - - - - 89.07 94.22 70.78 82.89

✓ ✓ 37.08 97.60 0.0452 10.47 - - 69.26 81.83

✓ ✓ ✓ 37.14 97.62 0.0428 10.47 88.76 94.04 71.71 83.53

Table 3. Comparison with specialized models for text removal on the SCUT-EnsText dataset. For a fair comparison, MTRNet++ uses
empty coarse masks and GaRNet uses text masks from pretrained CRAFT (Baek et al., 2019) instead of leveraging GT text masks.

Method Image-Eval Detection-Eval

PSNR↑ MSSIM↑ MSE↓ AGE↓ pEPs↓ pCEPs↓ FID↓ R↓ P↓ F↓
Original - - - - - - - 69.5 79.4 74.1

Pix2pix (Isola et al., 2017) 26.70 88.56 0.37 6.09 0.0480 0.0227 46.88 35.4 69.7 47.0
STE (Nakamura et al., 2017) 25.47 90.14 0.47 6.01 0.0533 0.0296 43.39 5.9 40.9 10.2
EnsNet (Zhang et al., 2019) 29.54 92.74 0.24 4.16 0.0307 0.0136 32.71 32.8 68.7 44.4

MTRNet++ (Tursun et al., 2020) 29.63 93.71 0.28 3.51 0.0305 0.0168 35.68 15.1 63.8 24.4
EraseNet (Liu et al., 2020) 32.30 95.42 0.15 3.02 0.0160 0.0090 19.27 4.6 53.2 8.5

SSTE (Tang et al., 2021) 35.34 96.24 0.09 - - - - 3.6 - -
PSSTRNet (Lyu & Zhu, 2022) 34.65 96.75 0.14 1.72 0.0135 0.0074 - 5.1 47.7 9.3

CTRNet (Liu et al., 2022a) 35.20 97.36 0.09 2.20 0.0106 0.0068 13.99 1.4 38.4 2.7
GaRNet (Lee & Choi, 2022) 35.45 97.14 0.08 1.90 0.0105 0.0062 15.50 1.6 42.0 3.0

MBE (Hou et al., 2022) 35.03 97.31 - 2.06 0.0128 0.0088 - - - -
PEN (Du et al., 2023b) 35.72 96.68 0.05 1.95 0.0071 0.0020 - 2.1 26.2 3.9

PERT (Wang et al., 2023c) 33.62 97.00 0.13 2.19 0.0135 0.0088 - 4.1 50.5 7.6
SAEN (Du et al., 2023a) 34.75 96.53 0.07 1.98 0.0125 0.0073 - - - -

FETNet (Lyu et al., 2023) 34.53 97.01 0.13 1.75 0.0137 0.0080 - 5.8 51.3 10.5
ViTEraser-Base (Peng et al., 2024) 37.11 97.61 0.0474 1.70 0.0066 0.0035 10.15 0.389 29.7 0.768

UPOCR (Ours) 37.14 97.62 0.0428 1.72 0.0064 0.0034 10.47 0.614 36.6 1.208

into the intermediate features of the encoder and decoder,
after each encoder block and decoder block. In Tab. 1,
we investigate different inserting positions of task prompts.
If task prompts are supposed to be integrated into the en-
coder or decoder, they will go through linear layers to match
the required dimensions of intermediate features. The ex-
perimental results suggest simply inserting task prompts
into the shared feature space can effectively prompt the de-
coder to generate images for specific tasks, Moreover, it
also brings extremely small overhead on parameters (2.3K)
and computational costs (only an element-wise addition to
a 16× 16× 768 feature map).

Task Collaboration. In Tab. 2, we conduct the experiments
with different task compositions. Based on these results,
We come to the following insights. (1) The task with insuffi-
cient samples can easily benefit from the joint training with
other tasks. For example, the Tampered-IC13 (Wang et al.,
2022b) dataset used for tampered text detection contains
only 229 training samples, which is inadequate to train a
network with 108M parameters. Therefore, the performance
of tampered text detection is consistently improved because
the fundamental text localization capacity can be boosted by
other tasks. (2) The joint training of tasks leads to mutual
collaboration if with similar targets but negative effect if

Table 4. Comparison with specialized models for text segmen-
tation on the TextSeg dataset. The performances of U-Net and
SegFormer are cited from (Ren et al., 2022) and (Yu et al., 2023),
respectively.

Method fgIoU↑ P↑ R↑ F↑
U-Net (Ronneberger et al., 2015) - 89.00 77.40 82.80
DeepLabV3+ (Chen et al., 2018) 84.07 - - 91.40

HRNetv2-W48 (Wang et al., 2020a) 85.03 - - 91.40
HRNetv2-W48+OCR (Wang et al., 2020a) 85.98 - - 91.80

TexRNet+DeepLabV3+ (Xu et al., 2021) 86.06 - - 92.10
TexRNet+HRNetv2-W48 (Xu et al., 2021) 86.84 - - 92.40

SegFormer (Xie et al., 2021) 84.59 - - 91.60
ARM-Net (Ren et al., 2022) - 92.80 92.60 92.70

TFT (Yu et al., 2023) 87.11 - - 93.10

UPOCR (Ours) 88.76 94.55 93.55 94.04

with exclusive targets. For instance, text removal aims at
erasing the texts while text segmentation needs to highlight
them at a fine-grained stroke level. Therefore, additional
text removal task always leads to downgraded text segmen-
tation performance. However, comparing the 2nd and 5th
rows, tampered text detection helps improve the accuracy
of text segmentation, because the former provides auxiliary
polygon-level text location supervision. Due to the large
model capacity, the final model can achieve a good balance
of three tasks.
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Table 5. Comparsion with specialized models for tampered text detection on the Tampered-IC13 dataset. CAT-Net can only perform
binary classification between tampered texts and backgrounds. The mIoU and mF metrics indicate the overall effectiveness on this task.

Method Real Text Tampered Text mIoU↑ mF↑
IoU↑ P↑ R↑ F↑ IoU↑ P↑ R↑ F↑

Detection-based Methods
S3R (Wang et al., 2022b)+ContourNet (Wang et al., 2020b) - 77.88 54.80 64.33 - 86.68 91.45 88.99 - 76.66

ViTEraser (Peng et al., 2024)+ContourNet (Wang et al., 2020b) - 56.84 75.82 64.97 - 92.62 85.77 89.06 - 77.02

Segmentation-based Methods
DeepLabV3+ (Chen et al., 2018) 48.12 79.83 54.78 64.98 72.21 89.75 78.71 83.86 60.17 74.42

HRNetv2 (Wang et al., 2020a) 43.26 76.35 49.95 60.39 73.12 89.98 79.60 84.47 58.19 72.43
Swin-Uper (Liu et al., 2021) 61.82 87.82 67.62 76.41 77.28 89.67 84.83 87.18 69.55 81.80
SegFormer (Xie et al., 2021) 53.22 86.39 58.09 69.47 77.78 91.78 83.60 87.50 65.50 78.49
BEiT-Uper (Bao et al., 2022) 57.07 81.23 65.74 72.67 70.88 82.27 83.66 82.96 63.98 77.82
CAT-Net (Kwon et al., 2022) - - - - 28.31 31.45 73.91 44.13 - -

UPOCR (Ours) 71.80 93.31 75.70 83.59 71.62 79.76 87.53 83.46 71.71 83.53

(a)

(b)

EraseNetMTRNet++Input SSTE GaRNet CTRNet PERT UPOCRGT

(c)

(d)

DeepLabV3+U-NetInput HRNetv2 TexRNet+DeepLabV3+ TexRNet+HRNetv2 ARM-Net UPOCRGT

(e)

(f)

HRNetv2DeepLabV3+Input BEiT-Uper SegFormer Swin-Uper CAT-Net UPOCRGT

Figure 3. Qualitative comparison of UPOCR and existing specialized models on (a)-(b) text removal, (c)-(d) text segmentation, and (e)-(f)
tampered text detection (red: tampered, green: real). Zoom in for a better view.

4.4. Comparison with Specialized Models

The comparisons of UPOCR with existing specialized meth-
ods for text removal, text segmentation, and tampered text
detection are presented in Tabs. 3, 4, and 5, respectively.
Furthermore, the visualization results on three tasks are
shown in Fig. 3. Without bells and whistles, the generalist
UPOCR with shared parameters can simultaneously outper-
form existing specialized models for individual tasks. (1)
Text Removal: The UPOCR eschews the complicated text

localization modules, external text detectors, and multi-step
refinements. Furthermore, UPOCR discards the GAN-based
training strategy and mask branch of ViTEraser during train-
ing. Following a concise pipeline, UPOCR achieves state-
of-the-art image-eval performance on SCUT-EnsText (Liu
et al., 2020), outperforming ViTEraser-Base (Peng et al.,
2024) with a lighter-weight ViTEraser-Small architecture.
As for detection-eval metrics, the 0.614% recall of UPOCR
is comparable to ViTEraser, demonstrating nearly all texts
are exhaustively erased. It is worth noting that compared
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Table 6. Comparison with generalist models on pixel-level OCR tasks.

Method Text Removal Text Segmentation Tampered Text Det.

PSNR↑ MSSIM↑ MSE↓ AGE↓ pEPs↓ pCEPs↓ FID↓ fgIoU↑ P↑ R↑ F↑ mIoU↑ mF↑
Painter (Wang et al., 2023a) 27.13 91.67 0.2942 8.68 0.0898 0.0425 21.90 86.36 93.40 91.97 92.68 69.26 81.83

UPOCR (Ours) 37.14 97.62 0.0428 1.72 0.0064 0.0034 10.47 88.76 94.55 93.55 94.04 71.71 83.53

Input GT Painter UPOCR

(a)

(b)

(c)

Figure 4. Qualitative comparison of UPOCR and Painter on (a) text
removal, (b) text segmentation, and (c) tampered text detection
(red: tampered, green: real). Zoom in for a better view.

with earlier approaches, UPOCR significantly outperforms
them in terms of both image- and detection-eval metrics.
(2) Text Segmentation. Although previous methods uti-
lize attentive modules for refinements, text detectors for
coarse text localization, and text recognizers for seman-
tic supervision, UPOCR significantly outperforms them on
TextSeg (Xu et al., 2021) using a single encoder-decoder
without extra modules and annotations. (3) Tampered Text
Detection. The UPOCR achieves the best performance of
71.71% mIoU and 83.53% mF on Tampered-IC13 (Wang
et al., 2022b), eliminating the need for frequency domain
fusion (Qu et al., 2023; Kwon et al., 2022; Wang et al.,
2022c) and adaptation based on text detectors (Wang et al.,
2022b). Note that the segmentation-based methods are reim-
plemented using MMSegmentation1 and CAT-Net’s official
codes2.

4.5. Comparison with Generalist Models

To demonstrate the effectiveness of UPOCR over existing
generalist models, we re-train Painter (Wang et al., 2023a)
using the official implementation3 and the same dataset as
ours. The performances of UPOCR and Painter are listed
in Tab. 6 while the visualizations are illustrated in Fig. 4.
Because Painter learns the task target from an example

1https://github.com/open-mmlab/mmsegmentation
2https://github.com/mjkwon2021/CAT-Net
3https://github.com/baaivision/Painter

Input

Text Removal

Text Segmentation

Tampered Text Det.

Figure 5. The t-SNE visualization of general features (gray circles)
extracted by the encoder and task-specific features integrated with
task prompts. Red, green and blue circles are for text removal,
tampered text detection, and text segmentation, respectively. The
example input image and three-task outputs are visualized along
with corresponding features (yellow stars).

input-output pair, it may hardly grasp the inconspicuous
correlation such as tiny text erasing (Fig. 4(a)) and a strong
ability to distinguish texts from text-like patterns (Fig. 4(c)).
Moreover, as the image is predicted through inpainting, the
output cannot guarantee consistent colors as inputs, e.g., red
vs. orange walls in Fig. 4(a). Therefore, UPOCR surpasses
Painter on all three tasks, especially the text removal task.

4.6. Interpretability of Task Prompts

To investigate the mechanism of task prompts, we visualize
the features before and after integrated with task prompts in
Fig. 5. Specifically, we perform all three tasks on the 233
testing samples of Tampered-IC13 using corresponding task
prompts. We can observe that there are clear boundaries
between the general features (gray circles) extracted by the
encoder and the task-specific features (red, green, and blue
circles), indicating the proposed task prompts can effec-
tively adapt the general features into task-specific regions to
generate output images for individual tasks.

5. Conclusion
In this paper, we propose UPOCR, a first-of-its-kind simple-
yet-effective unified pixel-level OCR interface. To acquire
generalist capability, UPOCR unifies the paradigm, archi-
tecture, and training strategy of diverse pixel-level OCR
tasks. Specifically, existing divergent paradigms are unified
as RGB image to RGB image transformation. To imple-
ment this paradigm, UPOCR uniformly adopts a ViT-based
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encoder-decoder with learnable task prompts to handle var-
ious tasks. During training, the strategy is unified to min-
imize the discrepancy between the predicted and ground-
truth images at pixel and feature spaces. Extensive experi-
ments are conducted on text removal, text segmentation, and
tampered text detection to verify the generalist proficiency
of UPOCR. The experimental results demonstrate that UP-
OCR simultaneously achieves state-of-the-art performance
with shared parameters, significantly surpassing specialized
OCR models. Comprehensive ablation studies and visual
analyses are also presented to provide in-depth insights. We
believe this work could be extended to broader tasks and
spark more research on generalist OCR models.
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A. Implementation Details
In this section, we supplement every detail to implement the proposed UPOCR, which may not be thoroughly specified in
the main paper due to the page limit.

A.1. Network Architecture

As described in Secs. 3.2 and 4.1 of the main paper, the UPOCR employs a vision Transformer (ViT)-based encoder-decoder
with learnable task prompts. The detailed network architecture of UPOCR is presented in Tab. 7 where the notations are
defined as follows.

• Denc
i : The downsampling ratio of the patch embedding layer in the i-th block of the encoder.

• Eenc
i : The output dimension of the patch embedding layer in the i-th block of the encoder.

• W enc
i : The window size of the Swinv2 (Liu et al., 2022b) blocks in the i-th block of the encoder.

• Henc
i : The number of heads of the Swinv2 blocks in the i-th block of the encoder.

• Cenc
i : The feature dimension of the Swinv2 blocks in the i-th block of the encoder.

• N tp: The number of task prompts which is equal to the number of tasks that the model is supposed to simultaneously
deal with.

• Ctp: The dimension of task prompts.

• Udec
i : The upsampling ratio of the patch splitting layer in the i-th block of the decoder.

• Edec
i : The output dimension of the patch splitting layer in the i-th block of the decoder.

• W dec
i : The window size of the Swinv2 blocks in the i-th block of the decoder.

• Hdec
i : The number of heads of the Swinv2 blocks in the i-th block of the decoder.

• Cdec
i : The feature dimension of the Swinv2 blocks in the i-th block of the decoder.

As shown in Tab. 7, supposing the shape of the input RGB image is H×W ×3, the encoder hierarchically produces features
{fenc

i ∈ R
H

2(i+1)
× W

2(i+1)
×Cenc

i }4i=1. Then the learnable prompt of the target task is integrated into the final feature fenc
4

of the encoder, yielding a task-specific feature for decoding. Subsequently, the decoder hierarchically generates features
{fdec

i ∈ R
H

2(5−i)
× W

2(5−i)
×Cdec

i }5i=1 based on the task-specific feature. Finally, the output image is predicted based on feature
fdec
5 through a 3× 3 convolution.

Task Prompt Insertion. The task prompts are formulated as a set of learnable embeddings f tp ∈ RNtp×Ctp

, where
N tp = 3 and Ctp = 768 are the number of tasks and embedding dimension, respectively. To perform the i-th task, the
correspond prompt f tp

i ∈ R1×768 is first repeated by H
32 × W

32 times, yielding a feature f̂ tp
i ∈ RH

32×
W
32×768. Then the f̂ tp

i is
element-wise added to the final feature fenc

4 ∈ RH
32×

W
32×768 of the encoder, pushing the general representations towards

task-specific regions.

Patch Embedding. Given an input feature map or image fin ∈ Rh×w×cin , a patch embedding layer with a downsampling
ratio of r and an output dimension of cout first flattens each r × r patch, yield an intermediate feature f ′ ∈ Rh

r ×w
r ×r2cin .

Then a linear layer is adopted to transform the dimension of feature f ′, producing the output feature fout ∈ Rh
r ×w

r ×cout .

Patch Splitting. Supposing the input feature is fin ∈ Rh×w×cin , a patch splitting layer with r upsampling ratio and cout
output dimension first generates an intermediate feature f ′ ∈ Rrh×rw× cin

r2 by decomposing each pixel of the input feature
into a r × r patch. Subsequently, the feature f ′ goes through a linear layer to transform the feature dimension, yielding the
output feature fout ∈ Rrh×rw×cout .

Lateral Connection. As shown in Fig. 2(b) of the main paper, lateral connections are built between the encoder and decoder
blocks to shortcut the transmission of fine-grained representations. Specifically, the encoder features {fenc

i }3i=1 are laterally
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Table 7. Detailed network architecture of the proposed UPOCR.
Block Output Size Layer Name Details

E
nc

od
er

Block 1 H
4 × W

4

Patch Embedding Denc
1 = 4, Eenc

1 = 96

Swinv2 block

W enc
1 = 16

Henc
1 = 3

Cenc
1 = 96

× 2

Block 2 H
8 × W

8

Patch Embedding Denc
2 = 2, Eenc

2 = 192

Swinv2 block

W enc
2 = 16

Henc
2 = 6

Cenc
2 = 192

× 2

Block 3 H
16 ×

W
16

Patch Embedding Denc
3 = 2, Eenc

3 = 384

Swinv2 block

W enc
3 = 16

Henc
3 = 12

Cenc
3 = 384

× 18

Block 4 H
32 ×

W
32

Patch Embedding Denc
4 = 2, Eenc

4 = 768

Swinv2 block

W enc
4 = 16

Henc
4 = 24

Cenc
4 = 768

× 2

Task Prompts H
32 ×

W
32 N tp = 3, Ctp = 768

D
ec

od
er

Block 1 H
16 ×

W
16

Swinv2 block

 W dec
1 = 8

Hdec
1 = 24

Cdec
1 = 768

× 2

Patch Splitting Udec
1 = 2, Edec

1 = 384

Block 2 H
8 × W

8
Swinv2 block

 W dec
2 = 8

Hdec
2 = 12

Cdec
2 = 384

× 18

Patch Splitting Udec
2 = 2, Edec

2 = 192

Block 3 H
4 × W

4
Swinv2 block

 W dec
3 = 8

Hdec
3 = 6

Cdec
3 = 192

× 2

Patch Splitting Udec
3 = 2, Edec

3 = 96

Block 4 H
2 × W

2
Swinv2 block

W dec
4 = 8

Hdec
4 = 3

Cdec
4 = 96

× 2

Patch Splitting Udec
4 = 2, Edec

4 = 48

Block 5 H ×W
Swinv2 block

W dec
5 = 8

Hdec
5 = 2

Cdec
5 = 48

× 2

Patch Splitting Udec
5 = 2, Edec

5 = 24

connected to the decoder features {fdec
4−i}3i=1. As for the architecture, if the feature f1 ∈ Rh×w×c is connected to feature

f2 ∈ Rh×w×c, the lateral connection processes the feature f1 sequentially using a 1× 1 convolution with c channels for
non-linear transformation, two 3× 3 convolutions with 2c channels for expanding, and a 1× 1 convolution with c channels
for shrinking, following EraseNet (Liu et al., 2020). Then the resulting feature is element-wise added to feature f2.

A.2. Loss Function

Pixel Space. As described in Sec. 3.3 and defined in Eq. (1) of the main paper, the pixel loss is formulated as the
weighted sum of L1 distances between multi-scale output images Iout = {I

1
4
out, I

1
2
out, Iout} and ground-truth (GT) images

Igt = {I
1
4
gt, I

1
2
gt, Igt}.

In practical implementation, for samples of the text removal task, the GT text box mask Mgt is incorporated to focus more
on the discrepancy in text regions, following most existing text removal methods (Liu et al., 2020; Zhang et al., 2019; Liu
et al., 2022a). Specifically, the Mgt ∈ RH×W is a binary mask at the bounding-box level where 1 and 0 values indicate text

and non-text pixels, respectively. Similar to Igt, we also resize Mgt to multiple scales denoted as Mgt = {M
1
4
gt,M

1
2
gt,Mgt}.

Then the pixel loss of text removal samples is calculated as

Ltr
pix =

∑3

i=1
αi||(Iout(i) − Igt(i))⊙Mgt(i)||1

+ βi||(Iout(i) − Igt(i))⊙ (1−Mgt(i))||1, (4)

where α and β are empircally set to {5, 6, 10} (as specified in Sec. 3.3 of the main paper) and {0.8, 1, 2}, respectively.
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As for the text segmentation and tampered text detection tasks, smooth L1 loss functions are employed in Eq. (1) of the
main paper to replace the standard L1 distance, because it is not required to precisely align the pixel values of output and GT
images but critical to penalize the outliers for these two segmentation-oriented tasks.

Feature Space. As specified in Sec. 3.3 and Eq. (2) of the main paper, a feature loss Lfeat containing perceptual loss Lper

and style loss Lsty is adopted to ensure the visual plausibility of generated images. Concretely, the losses Lper and Lsty are
formulated as

I∗out =Iout ⊙Mgt + Iin ⊙ (1−Mgt), (5)

Lper =
∑3

i=1
||Φi(Iout)− Φi(Igt)||1

+ ||Φ(I∗out)− Φi(Igt)||1, (6)

Lsty =
∑3

i=1
||Gram(Φi(Iout))−Gram(Φi(Igt))||1

+ ||Gram(Φi(I
∗
out))−Gram(Φi(Igt))||1, (7)

where Iin is the input image and Gram(·) calculates the Gram matrix of the input feature map. Moreover, the Φi(x)
represents the feature map produced by the i-th pooling layer of an ImageNet (Deng et al., 2009)-pretrained VGG-
16 (Simonyan & Zisserman, 2015) network fed with an input x.

A.3. Dataset Statistics

As described in Sec. 4.1 of the main paper, experiments are conducted using the SCUT-EnsText (Liu et al., 2020), TextSeg (Xu
et al., 2021), and Tampered-IC13 (Wang et al., 2022b) datasets for the text removal, text segmentation, and tampered text
detection tasks, respectively. The statistics of these datasets are introduced as follows.

SCUT-EnsText is a real-world scene text removal dataset, comprising 2,749 samples for training and 813 samples for
testing.

TextSeg is a large-scale fine-annotated text segmentation dataset with 4,024 images of scene text and design text. The
training, validating, and testing sets contain 2,646, 340, and 1,038 samples, respectively.

Tampered-IC13 is aimed at tampered scene text detection in the wild. The dataset is divided into 229 training samples and
233 testing samples. The annotation includes bounding boxes of real and tampered texts.

A.4. Training Setting

The proposed UPOCR is implemented with PyTorch4. During training, the parameters of UPOCR are initialized using the
pretrained ViTEraser-Small weights (with SegMIM pre-training) (Peng et al., 2024). Subsequently, the model is optimized
for 80,000 iterations with a batch size of 48 using an AdamW (Loshchilov & Hutter, 2019) optimizer in a multi-task fashion.
Specifically, each batch consists of 16 samples from SCUT-EnsText (Liu et al., 2020) for text removal, 16 samples from
TextSeg (Xu et al., 2021) for text segmentation, and 16 samples from Tampered-IC13 (Wang et al., 2022b) for tampered text
detection. The size of training images is set to 512 × 512. The learning rate is initialized as 0.0005 and linearly decays
per 200 iterations, finally reaching 0.00001 at the last 200 iterations. The training lasts approximately 36 hours using two
NVIDIA A100 GPUs with 80GB memory. Note that we perform no task- or benchmark-specific finetuning.

A.5. Inference

In this section, we detail the inference procedure mentioned in Sec. 3.1 of the main paper. For instance, given an input image
Iin ∈ RH×W×3, the UPOCR produces an output image Iout ∈ RH×W×3. In the following, we introduce how to obtain the
formatted prediction for individual tasks from the Iout in detail.

Text Removal. The output image Iout is exactly the text-erased image without additional processing.

Text Segmentation. As we define the RGB values of foreground and background pixels as (255, 255, 255) and (0, 0, 0),
the text-stroke pixels are determined by setting a threshold of the distance between corresponding RGB values and
(255, 255, 255). To achieve this efficiently, we first normalize Iout to the range of [0, 1] and then average the three channels,

4https://pytorch.org/
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Table 8. Upper bound of OFA performance on three pixel-level OCR tasks. The performance of the proposed UPOCR is also provided for
comparison, which has already significantly surpassed the upper bound of OFA on text removal. The bold and underline indicate the best
and the second best, respectively. (Seq. Len.: Sequence Length)

Image Size Seq. Len. Text Removal Text Segmentation Tampered Text Det.

PSNR↑ MSSIM↑ MSE↓ AGE↓ pEPs↓ pCEPs↓ FID↓ fgIoU↑ F↑ mIoU↑ mF↑
512× 512 4096 24.94 78.95 0.4871 8.74 0.1013 0.0125 19.81 92.97 96.36 96.23 98.07
256× 256 1024 24.50 72.88 0.5110 9.43 0.1227 0.0286 41.24 84.15 91.39 94.98 97.42

UPOCR 37.14 97.62 0.0428 1.72 0.0064 0.0034 10.47 88.76 94.04 71.71 83.53

(a) Text Removal (b) Text Segmentation (c) Tampered Text Det.

Figure 6. Visualization of GT images (top) and corresponding reconstructed results (bottom) by VQGAN. The image size is 512× 512.
Zoom in for a better view.

yielding Îout ∈ RH×W . Then the pixel at (i, j) position is identified as the text stroke if Î(i,j)out > 0.4 and the background
otherwise.

Tampered Text Detection. As described in Sec. 3.1 of the main paper, we compare the distance of the generated RGB values
to (255, 0, 0) (red for tamper texts), (0, 255, 0) (green for real texts), and (0, 0, 255) (blue for backgrounds) to determine
per-pixel categories. In practical implementation, it is equivalent to finding the color with the maximum value in the RGB
triplet and assigning the corresponding category to the pixel, getting rid of the complex calculation of distances.

B. Further Comparison with Generalist Model
In Sec. 4.5 and Tab. 6 of the main paper, we compare the proposed UPOCR with the cutting-edge generalist model (i.e.,
Painter (Wang et al., 2023a)) that is based on image-to-image paradigms. However, existing generalist models (Wang
et al., 2022a; Lu et al., 2022) with sequence-to-sequence paradigms are also able to perform image-to-image translation.
For instance, given an input image, OFA (Wang et al., 2022a) produces a sequence composed of discrete tokens from
the VQGAN (Esser et al., 2021) codebook. After that, the output image is reconstructed from the generated sequence
through the decoder of VQGAN. In this way, the OFA accomplishes the image-to-image transformation in a sequence-to-
sequence manner. Therefore, based on the OFA model, we further conduct experiments and in-depth analyses to verify the
effectiveness of sequence-to-sequence generalist models on pixel-level OCR tasks.

Upper Bound of OFA Performance. As described above, OFA relies on the VQGAN decoder to reconstruct the output
image. However, there has already been information loss in the encoding and decoding process of VQGAN, limiting the
upper bound of OFA performance. To quantify the information loss, we use VQGAN to encode the GT image Igt into a
sequence Sgt comprising discrete tokens from the codebook and then directly decode an image Idec from the Sgt. Because
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Figure 7. Qualitative comparison of different scales of OFA with UPOCR on (a)-(b) text removal, (c)-(d) text segmentation, and (e)-(f)
tampered text detection. Zoom in for a better view.

the OFA is optimized to predict the sequence Sgt from the input image, the metrics computed using Idec are the upper bound
of OFA performance.

In Tab. 8, we present the upper bounds with two sizes of GT images, including 256 × 256 and 512 × 512. Using the
VQGAN with a factor of 8 adopted by the OFA, they are encoded into 1024- and 4096-token sequences, respectively. The
metrics listed in Tab. 8 demonstrate that the encoding and decoding procedure based on VQGAN itself has caused severe
information loss. Especially for the text removal task, the proposed UPOCR has already significantly outperformed the
upper bound of OFA. The reason may be that the decoder of VQGAN cannot reconstruct the details and complex patterns
and also struggles to guarantee color consistency as illustrated in Fig. 6.

Comparison with OFA. Because of the overwhelming computational costs required to train an OFA with a sequence length
of 4096, we set the size of input and output images to 256× 256 following the original configuration of OFA. Tab. 9 presents
the comparison between UPOCR and different scales of OFA. Moreover, the visualizations are shown in Fig. 7. Limited by
the intrinsic sequence-to-sequence mechanism, OFA exhibits significantly inferior performance on all three pixel-level OCR
tasks that require strong image-to-image translation capacity. (1) Text Removal: As the model size increases, the OFA tends
to cause larger color deviation and miss more details of the input image as shown in Fig. 7(a)-(b), leading to decreasing
evaluation metrics. (2) Text Segmentation: As shown in Fig. 7(c)-(d), OFA struggles to generate the complex patterns of
texts at the stroke level, primarily limited by the reconstruction capacity of the VQGAN decoder. Moreover, as the network
goes deeper, the less fine-grained alignment with the input image can be guaranteed. It can be seen that OFAhuge just draws
text-like but meaningless patterns. (3) Tampered Text Detection: With the indirect supervision of token sequences with
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Table 9. Comparison with generalist models on pixel-level OCR tasks. (Params: Parameters)

Method Text Removal Text Segmentation Tampered Text Det. Params↓
PSNR↑ MSSIM↑ MSE↓ AGE↓ pEPs↓ pCEPs↓ FID↓ fgIoU↑ F↑ mIoU↑ mF↑

Sequence-to-Sequence-Based Generalist Model

OFAtiny (Wang et al., 2022a) 20.07 67.34 1.2419 15.86 0.2262 0.1038 68.46 48.40 65.23 14.70 25.17 33M
OFAmedium (Wang et al., 2022a) 19.13 62.38 1.4990 18.06 0.2639 0.1354 88.05 38.51 55.61 10.19 17.86 93M

OFAbase (Wang et al., 2022a) 19.45 64.73 1.3994 16.88 0.2430 0.1172 78.85 47.77 64.66 6.34 11.90 182M
OFAlarge (Wang et al., 2022a) 16.04 58.08 3.0576 20.93 0.3115 0.1791 119.82 30.26 46.46 6.07 11.41 472M
OFAhuge (Wang et al., 2022a) 15.73 55.80 3.2342 22.27 0.3351 0.1993 134.73 27.75 43.44 3.78 7.25 930M

Image-to-Image-Based Generalist Model

Painter (Wang et al., 2023a) 27.13 91.67 0.2942 8.68 0.0898 0.0425 21.90 86.36 92.68 69.26 81.83 371M
UPOCR (Ours) 37.14 97.62 0.0428 1.72 0.0064 0.0034 10.47 88.76 94.04 71.71 83.53 108M

Table 10. Ablation study on different model sizes. (Params: Parameters)

Model Size Text Removal Text Segmentation Tampered Text Det. Params↓
PSNR↑ MSSIM↑ MSE↓ AGE↓ pEPs↓ pCEPs↓ FID↓ fgIoU↑ F↑ mIoU↑ mF↑

UPOCR-Tiny 36.87 97.59 0.0430 1.77 0.0065 0.0034 10.60 87.33 93.23 68.84 81.54 65M
UPOCR-Small 37.14 97.62 0.0428 1.72 0.0064 0.0034 10.47 88.76 94.04 71.71 83.53 108M
UPOCR-Base 37.16 97.62 0.0451 1.68 0.0066 0.0035 10.54 87.20 93.16 72.95 84.36 192M

condensed information, OFA can hardly distinguish the inconspicuous difference between real and tampered texts, resulting
in significantly poor performance on tampered text detection (Tab. 9). Moreover, the OFA is likely to produce visually
plausible patches of red and green colors, ignoring the real text distribution of the input image, as shown in Fig. 7(e)-(f).
Finally, it is worth noting that the proposed UPOCR substantially outperforms existing generalist approaches based on either
sequence-to-sequence or image-to-image paradigms, demonstrating its remarkable effectiveness and promising future in
building unified pixel-level OCR interfaces.

Training Details of Painter and OFA. Following the training setting of UPOCR as specified in Sec. A.4, the Painter
(Sec. 4.5 of the main paper) and OFA are trained for 80,000 iterations with a batch size of 48. Moreover, the text removal,
text segmentation, and tampered text detection tasks each occupy 16 samples of a batch. Other training settings are kept the
same as their original implementations.

C. Ablation Study on Model Size
As described in Sec. 4.1 of the main paper, the encoder-decoder architecture of UPOCR inherits from ViTEraser-Small (Peng
et al., 2024). In Tab. 10, we further investigate the effect of model size on the generalist capabilities of UPOCR. In
addition to UPOCR (denoted as UPOCR-Small for clarity), we build UPOCR-Tiny and UPOCR-Base following the
encoder-decoder architectures of ViTEraser-Tiny and ViTEraser-Base, respectively. The UPOCR-Tiny and UPOCR-Base
are trained following the same setting as UPOCR and also use the weights of corresponding ViTEraser as initialization. It
can be seen that UPOCR-Small significantly outperforms UPOCR-Tiny on all three tasks. However, UPOCR-Base with a
larger model size exhibits inferior performance than UPOCR-Small on text segmentation and most metrics of text removal,
probably due to insufficient training samples. Therefore, we opt for UPOCR-Small as the final implementation of the
proposed UPOCR.

D. Ablation Study on Weight Initialization
Retrospectively, existing generalist models (Li et al., 2023; Alayrac et al., 2022; Liu et al., 2023a; Lv et al., 2023; Zhu et al.,
2024) mostly rely on pretrained weights from strong vision or language models. As described in Sec. 4.1 of the main paper,
UPOCR uses the pretrained ViTEraser (with SegMIM pre-training) (Peng et al., 2024) for initialization during training.
In Tab. 11, other two ways of weight initialization are investigated, including ImageNet and SegMIM. Specifically, for
ImageNet manner, a Swin Transformer v2 (Liu et al., 2022b) pretrained on the ImageNet-1k (Deng et al., 2009) classification
task is adopted to initialize the encoder, while for SegMIM manner, pretrained weights using SegMIM (Peng et al., 2024)
are employed to initialize the encoder-decoder. It can be seen that the initialization is critical to the generalist model
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Table 11. Ablation study on different weight initializations during training.

Initialization Text Removal Text Segmentation Tampered Text Det.

PSNR↑ MSSIM↑ MSE↓ FID↓ fgIoU↑ F↑ mIoU↑ mF↑
ImageNet 35.67 96.86 0.3556 12.76 86.53 92.78 47.96 64.80
SegMIM 37.04 97.62 0.0433 10.64 88.53 93.92 73.62 84.80
ViTEraser 37.14 97.62 0.0428 10.47 88.76 94.04 71.71 83.53

Table 12. Ablation study on feature loss.

Feature Loss Text Removal Text Segmentation Tampered Text Det.

PSNR↑ MSSIM↑ MSE↓ FID↓ fgIoU↑ F↑ mIoU↑ mF↑
× 36.99 97.83 0.0433 12.86 88.69 94.01 71.42 83.10
✓ 37.14 97.62 0.0428 10.47 88.76 94.04 71.71 83.53

performance. The SegMIM and ViTEraser pretrained weights may effectively learn the essential capacity to grasp text
shapes and textures as well as the distinctive features between texts and backgrounds. Therefore, the UPOCR can be rapidly
adapted to various pixel-level OCR tasks with superior performance. Although the SegMIM is also an effective pre-training
approach for UPOCR, we opt for the ViTEraser pretrained weights due to the better performance on two of the three tasks.

E. Ablation Study on Feature Loss
As specified in Sec. 3.3, the training strategy of UPOCR is unified as minimizing the distance between predicted and GT
images at pixel and feature spaces despite the heterogeneity within various pixel-level OCR tasks. In Tab. 12, we further
investigate the effect of feature loss on the versatile capacity of UPOCR. It can be seen that removing feature loss leads to a
decline in the performance of all three tasks. Especially for the FID metric of text removal which measures the similarity
between predicted and GT images, the performance drops a lot from 10.47 to 12.86. For the text removal task, the feature
loss diminishes the disparity between predicted and GT images from a human-like perceptual perspective, thereby enhancing
the verisimilitude of text-erased outputs. Moreover, the high-level semantic constraints acquired by feature alignment can
facilitate the perception of text patterns and fine-grained textures, which empowers the model to precisely distinguish texts
from backgrounds and capture inconspicuous differences between real and tampered texts.

F. Ablation Study on Task Prompt
The learnable task prompts are indispensable to the generalist capability of UPOCR. Specifically, they are injected into
the ViT-based encoder-decoder to push the general representations extracted by the encoder towards task-specific regions,
enabling the decoder to generate output images for the target task. In Tab. 13, we present the performance of UPOCR with
and without task prompts. For the experiment without task prompts, we remove task prompts from UPOCR and re-train the
model with the same experimental settings as described in Sec. A.4. The experimental results demonstrated that the UPOCR
with prompts substantially outperforms the counterpart without prompts. Moreover, it is interesting that the performance
of the model without prompts is not extremely low. However, this phenomenon does not indicate the model can actually
be aware of the target task. Because the three datasets adopted in our experiments are not i.i.d., the model can implicitly
recognize which dataset the samples belong to and perform the corresponding task, which is known as the dataset bias
problem (Liu & He, 2024). Nevertheless, the samples of Tampered-IC13 are sourced from general text spotting datasets and
severely overlap with the other two datasets in terms of styles and scenarios; therefore, the model cannot accurately classify
these samples into correct datasets and perform correct tasks, resulting in much lower performance. The visualizations in
Fig. 8 also qualitatively showcase that the model exhibits severe confusion about the target task due to the absence of task
prompts. Moreover, we cannot perform multiple tasks on one image as shown in Fig. 5 if without task prompts, because the
output is deterministic for the same input in this case. In contrast, the proposed task prompts can prevent the model from
implicit dataset classification and effectively guide the model to perform diverse tasks.
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Table 13. Ablation study on task prompt.

Task Prompt Text Removal Text Segmentation Tampered Text Det.

PSNR↑ MSSIM↑ MSE↓ FID↓ fgIoU↑ F↑ mIoU↑ mF↑
× 36.33 96.34 0.641 13.22 83.59 91.06 43.39 60.37
✓ 37.14 97.62 0.0428 10.47 88.76 94.04 71.71 83.53

Input Output Input Output

Figure 8. Visualization results of UPOCR on Tampered-IC13 without task prompts. The output images may comprise a mixture of
predicted pixels for divergent tasks, indicating the model is unaware of the target task.

G. Speed
The inference speed of UPOCR is 17fps using an NVIDIA RTX 3090 GPU and 2.5fps using an Intel Xeon Platinum 8375C
CPU. Both the speeds on GPU and CPU are tested directly with PyTorch implementation and a batch size of 1.

H. Comparison with ViTEraser
Although the encoder-decoder architecture of UPOCR is implemented following ViTEraser (Peng et al., 2024), the proposed
UPOCR is a brand-new approach that significantly differs from ViTEraser in the following aspects.

• The UPOCR aims to build a generalist model for the unified pixel-level OCR interface. To achieve this, UPOCR
unifies the paradigm, architecture, and training strategy of diverse pixel-level OCR tasks. Comprehensive experiments
demonstrate the state-of-the-art performance of UPOCR in simultaneously handling text removal, text segmentation,
and tampered text detection tasks with a single unified model. In contrast, ViTEraser specializes in the text removal
task without generalist capacities. Moreover, it relies on dedicated modules including a discriminator and an auxiliary
mask branch and is trained following a complicated GAN-based strategy. Although ViTEraser can be extended to the
tampered text detection task, its paradigm and training strategy are adapted from image generation to segmentation and
its parameters are re-trained using the tampered text detection dataset.

• To obtain the multi-task processing ability, UPOCR introduces learnable task prompts into ViT-based encoder-decoder
architecture in a simple-yet-effective fashion. The task prompt pushes the general representation extracted by the
encoder towards task-specific regions, empowering the decoder to generate output images for individual tasks. Although
we borrow the encoder-decoder architecture of ViTEraser to instantiate UPOCR, it is irrelevant to the novel part of our
study. Additionally, the U-shaped ViT-based architecture of ViTEraser itself is a general framework which has been
broadly investigated arcoss multiple domains (Cao et al., 2022; Wang et al., 2022d).

• In this paper, extensive experiments and analyses are conducted to provide deep insights into the construction of unified
pixel-level OCR interfaces, which we believe could spark more future research on generalist OCR models.

I. Limitation
Despite the effectiveness of the proposed UPOCR as a unified pixel-level OCR interface, the limitation lies in the generaliza-
tion ability to unseen tasks. Although the learnable task prompts empower the UPOCR to simultaneously handle multiple
tasks, they are fixed once the model training is finished, which means re-training is necessary if the pre-set range of tasks is
expanded. Since task prompts function as feature-level offsets that push general representations to task-specific spaces, the
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EraseNetMTRNet++Input SSTE GaRNet CTRNet PERT UPOCRGT

Figure 9. More visualizations on text removal, where the inference results are obtained by MTRNet++ (Tursun et al., 2020), EraseNet (Liu
et al., 2020), SSTE (Tang et al., 2021), GaRNet (Lee & Choi, 2022), CTRNet (Liu et al., 2022a), PERT (Wang et al., 2023c), and UPOCR
(ours). Zoom in for a better view.

automatic learning of prompts from example input-output pairs of new tasks is critical to a flexible generalist pixel-level
OCR model, which is worth studying in future work.

J. More Visualization
In this section, we provide more qualitative results on text removal, text segmentation, and tampered text detection tasks in
Figs. 9, 10, and 11, respectively. It can be seen that the proposed UPOCR simultaneously excels in multiple tasks using
a unified single model without task- or benchmark-specific finetuning. Especially in the first row in Fig. 9, our method
demonstrates superiority in tackling tiny and densely distributed text.

Moreover, in addition to Fig. 5 of the main paper, we supplement more visualizations of three-task outputs using the test set
of Tampered-IC13 (Wang et al., 2022b) in Fig. 12. Specifically, all tasks are conducted with a single UPOCR model using
corresponding task prompts. As demonstrated by the visualizations, UPOCR can effectively perform diverse tasks on the
same input image, indicating the proposed learnable task prompts adequately guide the generation process of the decoder.
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DeepLabV3+U-NetInput HRNetv2 TexRNet+DeepLabV3+ TexRNet+HRNetv2 ARM-Net UPOCRGT

Figure 10. More visualizations on text segmentation, where the inference results are obtained by U-Net (Ronneberger et al., 2015),
DeepLabV3+ (Chen et al., 2018), HRNetv2 (Wang et al., 2020a), TexRNet+DeepLabV3+ (Xu et al., 2021), TexRNet+HRNetv2 (Xu et al.,
2021), ARM-Net (Ren et al., 2022), and UPOCR (ours). Zoom in for a better view.
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HRNetv2DeepLabV3+Input BEiT-Uper SegFormer Swin-Uper CAT-Net UPOCRGT

Figure 11. More visualizations on tampered text detection, where the inference results are obtained by DeepLabV3+ (Chen et al., 2018),
HRNetv2 (Wang et al., 2020a), BEiT-Uper (Bao et al., 2022), SegFormer (Xie et al., 2021), Swin-Uper (Liu et al., 2021), CAT-Net (Kwon
et al., 2022), and UPOCR (ours). Zoom in for a better view.
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Tampered Text Det.Text Seg.Input GT for TTDText Removal

Figure 12. More visualizations of three-task outputs on Tampered-IC13 dataset. All tasks are performed with a single UPOCR model
using corresponding task prompts. The GT of tampered text detection (TTD) provided by Tampered-IC13 is also presented for comparison.
Zoom in for a better view. (Seg.: Segmentation, Det.: Detection)

24


