
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING TO ROUTE LLMS FROM BANDIT FEED-
BACK: ONE POLICY, MANY TRADE-OFFS

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient use of large language models (LLMs) is critical for deployment at scale:
without adaptive routing, systems either overpay for strong models or risk poor
performance from weaker ones. Selecting the right LLM for each query is funda-
mentally an online decision problem: models differ in strengths, prices fluctuate,
and users value accuracy and cost differently. Yet most routers are trained offline
with labels for all candidate models, an assumption that breaks in deployment,
where only the outcome of the chosen model is observed. We bridge this gap
with BaRP, a Bandit-feedback Routing with Preferences approach that trains under
the same partial-feedback restriction as deployment, while supporting preference-
tunable inference: operators can dial the performance–cost trade-off at test time
without retraining. Framed as a contextual bandit over prompt features and a user
preference vector, our method simulates an online feedback setting during train-
ing and adapts its routing decisions to each new prompt, rather than depending on
full-information offline supervision. Comprehensive experiments show that our
method consistently outperforms strong offline routers by at least 12.46% and the
largest LLM by at least 2.45%, and generalizes robustly for unseen tasks.

1 INTRODUCTION

97

39

65

41

8125

83

47

43

15

68

34

84 25

46

22

ARC-C

GSM8K

MMLU

Winogrande

NQ

MBPP

Hellaswag

HpQA

Smallest LLM
Largest LLM
RouterDC
GraphRouter
BaRP(Ours)

In-Distribution
Out-of-Distribution

Figure 1: Testing score of baselines and BaRP on
in-distribution and out-of-distribution tasks.

Large language models (LLMs) vary substan-
tially in their strengths, weaknesses, and oper-
ating costs. No single model dominates across
all prompts and tasks, and both pricing and
quality change over time. Users and applica-
tions also vary in how they prioritize accuracy
and cost. At deployment scale, a system must
therefore decide per query which model to call
under a performance–cost trade-off. A com-
mon solution is to employ a router, a learned
policy that selects an LLM for each incom-
ing prompt. The challenge is that, once de-
ployed, the router only receives feedback from
the model it actually calls: it observes the accu-
racy and cost of the selected model but learns
nothing about the alternatives. This setting,
where supervision is restricted to the chosen action, is known as bandit feedback. In contrast, most
existing routers are trained offline with labels for all candidate models on every prompt, creating a
mismatch between training and deployment.

Prior work illustrates two recurring limitations. The first is the reliance on full-information offline
supervision, where training requires labels from all candidate LLMs on each prompt. For example,
RouterDC (Chen et al., 2024) compares every prompt across multiple LLM outputs, so it cannot
be trained once deployed, when only the chosen model’s feedback is available. GraphRouter (Feng
et al., 2025) faces the same limitation, as it learns graph-structured representations that rely on full-
information labels. The second limitation is the lack of preference-tunable inference, the ability
to adjust routing at test time to reflect user-specified performance–cost trade-offs without retrain-
ing. For instance, RouterDC (Chen et al., 2024) yields a routing policy tied to the trade-off during

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of routing methods. “Full-information Offline Supervision” indicates that
training requires labels from all candidate LLMs for each prompt. “Preference-tunable Infer-
ence” refers to whether the method can adjust routing at test time to accommodate user-specified
performance–cost trade-offs without retraining.

Method Full-information Offline Supervision Preference-tunable Inference

GraphRouter (Feng et al., 2025) Required No
RouterDC (Chen et al., 2024) Required No
C2MAB-V (Dai et al., 2024) Not required No
MAR (Zhang et al., 2025) Not required No
LLM Bandit (Li, 2025) Required Yes

BARP (Ours) Not required Yes

training, GraphRouter (Feng et al., 2025) supports only three predefined scenarios and is therefore
not fully preference-tunable, while our method can shift its choices depending on whether a user
prioritizes performance or cost. Bandit-style approaches such as C2MAB-V (Dai et al., 2024) and
Multi-Armed Router (MAR) (Zhang et al., 2025) avoid full-information supervision but still lack
this controllability, and LLM Bandit (Li, 2025) introduces preferences but relies on offline pre-
training that assumes full labels. Table 1 summarizes these methods across the two dimensions of
supervision and controllability. Additional related work is discussed in Section 5.

We propose BARP, a Bandit-feedback Routing with Preferences framework that addresses both lim-
itations in a unified manner. Our formulation treats routing as a multi-objective contextual bandit
problem: the router must balance two competing objectives, performance and cost, given only ban-
dit feedback. To capture user preferences, we condition the policy on a trade-off vector that specifies
the relative importance of performance and cost. The router encodes each prompt together with this
vector and outputs a distribution over candidate LLMs. The policy is trained with policy-gradient
updates regularized by entropy for exploration and stabilized by calibrated cost scaling. This de-
sign removes the need for labels from all models during training while allowing operators to adjust
performance–cost preference at inference without retraining. By aligning training with the partial-
feedback setting of deployment and providing controllability at test time, BARP offers a practical
solution for real-world routing.

In summary, our main contributions are as follows:

• We formulate multi-objective LLM routing as a contextual bandit problem in which the
router learns from bandit feedback while conditioning on a user preference vector that
specifies the trade-off between accuracy and cost. This formulation eliminates the need for
full supervision across all candidate models and enables per-request controllability.

• We design a routing policy that integrates prompt representations with the preference vec-
tor, and train it using entropy-regularized policy gradients with calibrated cost scaling,
which encourages exploration and ensures stable optimization under partial feedback.

• We validate our framework on RouterBench and two question-answering datasets, demon-
strating significant performance gains over strong baselines. On in-distribution tasks, our
method surpasses the top-performing individual LLM by 3.81% and full-information of-
fline routers by 12.46%. On out-of-distribution tasks, the gains are 2.45% and 25.99%
respectively, as shown in Fig. 1.

2 APPROACH

We present BARP, a Bandit–feedback Router with Preferences. The core idea is to treat routing as
a multi-objective contextual bandit: the router balances performance and cost while observing feed-
back only for the selected model. This section introduces the problem setting (Sec. 2.1), then defines
the policy architecture (Sec. 2.2), followed by the objective and learning procedure (Sec. 2.3). The
training and inference procedures are provided in Algorithm 1 and Sec. 2.4. For intuition, Fig. 2
illustrates a single request in the training process: a prompt and a user preference enter the router,
which selects an LLM, receives bandit feedback, and updates the policy.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

…

(Query 𝑥, Preference Vector 𝑤)

Encoder
𝒉(𝒙)

Learning
Algorithm

Reward
𝒓 = 𝒘𝒒𝒒 − 𝒘𝒄𝒄

Bandit Feedback:
Only the chosen
LLM 𝒂 is observed

ROUTER 𝝅𝜽(𝒂|𝒙, 𝒘)

…

Score 𝒒
Cost 𝒄

𝑨

Figure 2: The training pipeline of BARP. The router takes the context (query xt and preference wt)
and selects an LLM. It then receives bandit feedback (the score and cost of the chosen LLM only)
to calculate a reward rt. This reward drives a learning algorithm to update the router’s parameters,
including policy gradient methods like REINFORCE (Sec. 2.3) and classic bandit algorithms such
as LinUCB, Thompson Sampling, and ϵ-greedy (Sec. 4.6).

2.1 PROBLEM SETTING

We formally define the preference-conditioned LLM routing task as a contextual bandit problem.
In each round t, an agent observes a context and selects an arm, receiving a reward based on its
choice. The Context (st) is a tuple st = (xt, wt), where xt is the input prompt and wt = (wq

t , w
c
t)

is a user preference vector on the 1-simplex. Here, wq
t represents the weight the user places on

the performance score, while wc
t represents the weight on minimizing cost. The set of K available

LLMs constitutes the Arms (A), or the action space {1, . . . ,K}. The router selects an Action (at)
from this set, corresponding to choosing a single LLM to process the prompt. Upon selection, the
router receives a scalar Reward (rt) based on bandit feedback for the chosen arm. This reward
combines the two objectives according to the user’s preference:

rt = wq
t qt − wc

t c̃t, where c̃t = min
(ct
τ
, 1

)
. (1)

where the score qt is a task-appropriate metric scaled to [0, 1], τ > 0 caps cost ct so that score and
(normalized) cost are on comparable scales. The overall goal is to learn a policy that maximizes the
expected cumulative reward.

2.2 POLICY ARCHITECTURE

The routing policy πθ(a | s) is a neural network that maps a context s = (x,w) to a probability
distribution over the K LLMs. The architecture is composed of three sequential components. First,
a Prompt Encoder, a frozen pre-trained sentence transformer h, encodes the prompt x into a se-
mantic vector h(x) ∈ Rde . Second, a Preference Encoder, a small multilayer perceptron (MLP)
ϕ, maps the 2-dimensional preference vector w into a higher-dimensional embedding ϕ(w) ∈ Rdp .
Finally, the prompt and preference embeddings are concatenated to form a joint representation,
z = [h(x);ϕ(w)], which is passed to a Decision Head, gθ, to produce logits o ∈ RK . The final
policy is obtained by applying a softmax function to these logits:

πθ(a | x,w) = softmax(gθ(z))a =
exp(oa)∑K

a′=1 exp(oa′)
. (2)

During training we sample at ∼ πθ(· | xt, wt) to ensure exploration. At inference, we output the
deterministic choice:

a∗(x,w) = argmax
a∈A

πθ(a | x,w), (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 The Training and Inference Procedure for BARP.

1: Inputs: encoder h, preference MLP ϕ, head gθ; cost cap τ ; entropy coeff β.
2: Initialize parameters θ.
3: for t = 1 to T do
4: Receive prompt xt and sample preference wt (random on the 1-simplex).
5: Compute ht ← h(xt) and ut ← ϕ(wt); form zt ← [ht;ut].
6: ot ← gθ(zt), πt ← softmax(ot).
7: Sample at ∼ Categorical(πt).
8: Query LLM at; observe qt and ct (only for at).
9: c̃t ← min(ct/τ, 1); rt ← wq

t qt − wc
t c̃t.

10: Compute batch baseline bt ← 1
B

∑B
i=1 r

(i).
11: Lt ← −(rt − bt) log πt[at]− β H(πt).
12: Update θ ← θ − η∇θLt.
13: end for
14: Inference (no retraining): given x and w, output a⋆(x,w) = argmaxa πθ(a | x,w).

2.3 OBJECTIVE AND LEARNING ALGORITHM

Given the policy in equation 2 and reward in equation 1, the training objective is to find the param-
eters θ that maximize the expected cumulative reward:

max
θ

J(θ) = Est∼D,at∼πθ(·|st)

[T∑
t=1

rt

]
. (4)

where the expectation is taken over the data distribution of contexts,D, and the actions sampled from
the policy. We optimize this objective using the REINFORCE policy gradient algorithm, enhanced
with a baseline for variance reduction and entropy regularization for improved exploration. The
per-sample loss function to be minimized is:

Lt(θ) = −
(
rt − bt

)
log πθ(at | st) − β H

(
πθ(· | st)

)
, (5)

where H(·) is the Shannon entropy of the policy distribution, β ≥ 0 is a coefficient controlling the
strength of the entropy regularization, and bt is a baseline used for variance reduction. We employ
the mean reward over the current mini-batch as the baseline, defined as:

bt =
1

B

B∑
i=1

r
(i)
t , (6)

where B is the batch size and r
(i)
t is the reward for the i-th example in the batch. While policy

gradient methods are well-suited for training our policy, the formulation of our framework is general
and can accommodate other classic learning algorithms, which we explore in our analysis in Sec. 4.6.

2.4 TRAINING AND INFERENCE

Training. The policy network’s parameters θ are optimized to maximize the expected reward using
the REINFORCE algorithm detailed in Sec. 2.3. The training procedure has two key methodological
features. First, to train a single policy that can serve diverse user preferences, we randomly sample
the preference vector wt for each training instance (uniformly on the 1-simplex). Second, while
our training utilizes pre-existing benchmark logs with complete information, we simulate a bandit
environment to match deployment conditions. For each instance, after an action at is sampled from
the policy, the supervision signal is restricted to only the outcome of that specific action. The policy
gradient updates are performed using the Adam optimizer (Kingma & Ba, 2017).

Inference. At deployment time, the router operates deterministically to exploit the learned policy.
Given a prompt x and a user-specified preference vector w, the router selects the action with the
highest probability:

a∗(x,w) = argmax
a∈A

πθ(a | x,w). (7)

This allows operators to adjust the performance–cost behavior on a per-request basis by simply
modifying the input vector w, without any need for retraining the model.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 EXPERIMENTS SETUP

3.1 DATASETS AND BENCHMARKS

We evaluate on RouterBench (Hu et al., 2024) and two question-answering datasets (Kwiatkowski
et al., 2019; Yang et al., 2018), which provide prompt-level logs with multiple candidate LLMs per
query, including a task identifier, a performance score per LLM, and a monetary cost per LLM.
While the benchmark logs contain scores/costs for all LLMs, our training strictly uses bandit-
consistent supervision (only the chosen arm is observed).

Our experiments evaluate routing across a diverse set of widely used large language models, span-
ning both open-source and proprietary offerings. A detailed list and description of these models is
provided in Appendix A.3.

Tasks and Evaluation. To evaluate our framework, we curate a set of eight distinct tasks(the
dataset details are in A.4). Our model is trained on a mixture of data from five of these tasks:
GSM8K (Cobbe et al., 2021), MMLU (Hendrycks et al., 2021), ARC-C (Clark et al., 2018),
Winogrande (Sakaguchi et al., 2021), and Natural Questions (NQ) (Kwiatkowski et al., 2019).
We create an 80%/20% training/testing split for each of these tasks and combine the training splits
to form the full training set.

Our evaluation is then conducted in two settings:

• In-Distribution Evaluation: We test the model on the held-out 20% test sets of the five tasks it
was trained on. This measures the model’s ability to unseen examples from familiar tasks.

• Out-of-Distribution Generalization: To assess generalization to entirely new tasks, we evaluate
the trained model on three benchmarks it has never seen during training: MBPP (Austin et al.,
2021), Hellaswag (Zellers et al., 2019), and HotpotQA (Yang et al., 2018).

3.2 BASELINE METHODS

We compare our method against representative routers and common-sense baselines:

• Smallest LLM always routes to the smallest model.
• Largest LLM always routes to the largest model.
• RouterDC (Chen et al., 2024) learns dual-contrastive embeddings for queries and models, re-

quires full-information labels.
• GraphRouter (Feng et al., 2025) learns graph-structured representations over queries, tasks, and

models, also requires full labels.

3.3 METRICS

Following RouterBench (Hu et al., 2024), we evaluate methods on two axes:

• Performance score is a normalized value in [0, 1] that indicates task success, derived either from
exact match accuracy or from GPT-4 ratings for more open-ended tasks.

• Monetary cost is the estimated API call cost per query in USD.

3.4 IMPLEMENTATION DETAILS

Our policy is implemented in PyTorch. We use frozen all-MiniLM-L6-v2 (Wang et al., 2020) as the
prompt encoder. The trainable components consist of two small MLPs with ReLU activations: one
to encode the preference vector and a decision head that produces the final logits over the candidate
LLMs. All prompts are tokenized to a maximum length of 512. We train our policy for 100 epochs
using the Adam optimizer (Kingma & Ba, 2017) with a learning rate of 1 × 10−4 and a batch size
of 32. For the REINFORCE algorithm, we set the entropy regularization coefficient β to 0.05. All
experiments were conducted on NVIDIA A100 80GB GPUs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Testing score (%) on in-distribution tasks. The best results are highlighted in bold, and the
second-best results are underlined.

Methods ARC-C GSM8K MMLU Winogrande NQ Avg ↑
Smallest LLM 38.78 41.15 25.43 52.41 14.95 34.54
Largest LLM 96.19 65.88 81.19 81.93 29.15 70.87

RouterDC 91.99 59.68 60.98 74.74 31.00 63.68
GraphRouter 94.18 66.28 80.20 46.83 31.60 65.42
Ours 96.60 64.58 81.06 82.61 43.01 73.57

4 EXPERIMENTS RESULTS

4.1 PERFORMANCE ON IN-DISTRIBUTION TASKS

We first evaluate our method (BARP) against four baselines on in-distribution tasks, with results
illustrated in Fig. 1 and reported in Table 2. BARP achieves the strongest trade-off between per-
formance and cost. It delivers the highest average score (73.57%), outperforming the strong, full-
information routers, RouterDC and GraphRouter, by a relative 15.53% and 12.44% respectively. It
also establishes new best scores on ARC-C, Winogrande, and NQ. While the Largest LLM base-
line is competitive on some tasks, its high monetary cost makes it impractical. In contrast, BARP
achieves a performance level comparable to the strongest baselines while maintaining a cost signif-
icantly lower than other learned routers, establishing its superior efficiency on familiar tasks.

4.2 GENERALIZATION ABILITY TO NEW TASKS

To assess robustness, we further evaluate the trained models on out-of-distribution tasks they have
never seen during training. As shown in Table 3, the full-information routers (RouterDC and
GraphRouter) struggle to generalize, with their performance dropping sharply on MBPP and HpQA.
In contrast, BARP demonstrates robust generalization, achieving the highest average score (66.08%)
among all methods. It obtains the best score on HpQA, where other learned methods fail, and main-
tains performance competitive with the much more expensive Largest LLM baseline on MBPP and
Hellaswag. This confirms that BARP preserves its superiority not only on in-distribution tasks but
also when adapting to unseen tasks, confirming its robustness and practical deployment value.

Table 3: Testing score (%) on out-of-distribution tasks. The best results are highlighted in bold, and
the second-best results are underlined.

Methods MBPP Hellaswag HpQA Avg ↑
Smallest LLM 34.43 25.48 27.49 29.14
Largest LLM 68.62 83.96 40.93 64.50

RouterDC 39.06 69.60 25.00 44.55
GraphRouter 64.29 70.87 22.20 52.45
Ours 68.24 83.72 46.29 66.08

4.3 OVERALL PERFORMANCE AND COST-EFFECTIVENESS

Finally, to provide a holistic measure of performance and cost across all evaluation settings, we
summarize the results by averaging across all eight tasks in Table 4. This view confirms that BARP
provides the best balance of performance and cost. Compared to GraphRouter, the strongest offline
baseline, our method improves the overall average score by 16.84% while simultaneously reducing
monetary cost by 50.00%. In contrast, RouterDC provides a significant cost reduction but at the
expense of a lower score, while the Largest LLM improves accuracy by 13.08% but at the expense
of a more than threefold increase in cost. These results validate that our preference-conditioned,
bandit-feedback approach is not only more effective but also substantially more cost-efficient than
methods relying on full-information supervision.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 4: Comparison of methods in terms of Score, Cost, and the corresponding percentage Score
improvements and Cost reduction rate, relative to the state-of-the-art method(GraphRouter (Feng
et al., 2025)). The score and cost are averaged over in-distribution and out-of-distribution tasks. The
cost is multiplied by 103 for readability.

Method Score Score Improvement (%) Monetary Cost Cost Reduction (%)

Smallest LLM 32.52 -46.30 0.05 94.68
Largest LLM 68.48 13.08 3.29 -250.00

RouterDC 56.51 -6.69 0.79 15.96
GraphRouter 60.56 0 0.94 0
BARP (Ours) 70.76 16.84 0.47 50.00

0.2 0.4 0.6 0.8
c

20

30

40

50

60

70

80

90

100

Te
st

in
g

Sc
or

e
(%

)

ARC-C
GSM8K
MMLU

NQ
Winogrande
Avg

(a) Effects of ωc on Performance Score

0.2 0.4 0.6 0.8
c

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Av
er

ag
e

Co
st

ARC-C
GSM8K
MMLU

NQ
Winogrande
Avg

(b) Effects of ωc on Cost

Figure 3: Effects of ωc

4.4 SENSITIVITY ANALYSIS

4.4.1 ANALYSIS OF THE PREFERENCE TRADE-OFF

We analyze the sensitivity of our router to the user-specified preference, which provides a direct
trade-off between performance and cost. Recall from Sec. 2.1 that the preference vector is w =
(wq, wc), where wc is the weight on cost reduction. In this analysis, we vary the cost weight wc ∈
[0, 1] (with wq = 1− wc) at inference time and observe its effect on the router’s behavior. Figure 3
reports the effects of varying wc on both performance score and monetary cost across tasks.

As shown in Figure 3a, smaller values of the cost weight wc (e.g., 0.2) lead the router to prioritize
performance, achieving strong scores across most tasks. For example, ARC-C remains above a 95%
score and Winogrande above 80%. However, as wc increases, the average score gradually declines,
most noticeably on NQ and MMLU, reflecting the router’s increasing preference for cheaper models
even when they are less performant.

Conversely, Figure 3b shows that larger wc values yield significant reductions in average cost. The
cost decreases steadily from $0.074 at wc = 0.2 to only $0.015 at wc = 0.8, with consistent
reductions across all tasks. This demonstrates that the router effectively adapts its selections in line
with the user-specified trade-off, choosing lower-cost models when cost is emphasized.

Overall, these results confirm that the preference vector provides a clear and interpretable control
knob for operators. Lower cost weights favor high performance at a higher cost, while higher cost
weights sacrifice some performance to achieve substantial cost savings. This allows the behavior of
BARP to be tuned to specific deployment requirements without any need for retraining.

4.4.2 IMPACT OF PROMPT ENCODER CHOICE

We analyze how the choice of the frozen prompt encoder affects routing performance. A more
powerful encoder might provide better representations, but could also be less efficient. We compare
three widely-used pre-trained models of increasing size: all-MiniLM-L6-v2 (Wang et al., 2020)
(384-dim), BERT-base-uncased (Devlin et al., 2018) (768-dim), and E5-large-v2 (Wang et al.,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2022) (1024-dim). For each, we train only the preference encoder and the router’s decision head
using the same bandit-feedback procedure.

The results, averaged over all in-distribution tasks with a balanced preference (wq = wc = 0.5), are
presented in Table 5. The all-MiniLM-L6-v2 encoder achieves the highest average score (0.7432),
establishing the best trade-off between performance and model size. While the much larger E5-large-
v2 performs comparably on score, its increased representational capacity does not translate into
a significant routing advantage. Conversely, BERT-base-uncased yields a noticeably lower score,
suggesting its representations are less effective for this task.

Prompt Encoder Avg Score Avg Monetary Cost

MiniLM-L6-v2 0.7432 0.0007
BERT-base-uncased 0.7226 0.0005
E5-large-v2 0.7418 0.0007

Table 5: Comparison of different frozen prompt en-
coders. Results are averaged across in-distribution tasks
using a balanced preference (wq = wc = 0.5) during
inference. The Avg Cost refers to the monetary cost of
the LLMs selected by the router, not the encoder’s cost.

These findings provide a valuable in-
sight: our routing framework does not
require a large, resource-intensive model
for prompt encoding. A compact, effi-
cient sentence-level encoder like MiniLM
is sufficient to capture the necessary se-
mantics for routing. We hypothesize this
is because modern sentence transform-
ers, trained with contrastive objectives,
produce more suitable sentence-level em-
beddings for this task than older models
like BERT, which were trained on token-level objectives. Given its superior performance and smaller
footprint, we use all-MiniLM-L6-v2 as the default encoder for all other experiments in this paper.

4.5 IMPACT OF DECISION HEAD ARCHITECTURE

We also analyze the impact of the decision head’s architecture, which sits atop the frozen encoder
and maps the context representation to action logits. We evaluate three types of decision heads
mentioned in Sec. 2.2: a simple linear layer, a parameter-efficient bilinear model, and a two-layer
MLP with a ReLU non-linearity.

Head Type Avg Score Avg Monetary Cost

Linear 0.7396 0.0007
Bilinear 0.7317 0.0006
MLP 0.7432 0.0007

Table 6: Comparison of different decision head
architectures. Results are averaged across in-
distribution tasks, using a balanced preference
(wq = wc = 0.5) during inference.

As shown in Table 6, the MLP head achieves
the best overall performance, reaching the high-
est average score (0.7432). The linear head is
competitive, suggesting that a direct mapping
is a strong baseline, while the bilinear head un-
derperforms. These results provide a key in-
sight: while a simple linear mapping is effec-
tive, the added representational capacity of the
MLP’s non-linearity is beneficial for learning
the complex function that maps a prompt and a
user preference to the optimal LLM choice.

We hypothesize that the bilinear head, despite being designed to model interactions, may be more
difficult to optimize with the sparse signal provided by bandit feedback, potentially leading to its
lower score. Given that the MLP head provides the best performance without a significant increase
in complexity, we adopt it as the default architecture for all other experiments.

4.6 ANALYSIS OF LEARNING ALGORITHMS

A key feature of our framework is its flexibility to accommodate different learning algorithms. To an-
alyze the impact of the algorithm choice, we compare our policy-gradient approach (REINFORCE)
with several classic contextual bandit strategies: Linear Thompson Sampling (LinTS) (Agrawal
& Goyal, 2013), LinUCB (Li et al., 2010), and ϵ-greedy. To ensure a fair comparison, all al-
gorithms operate on the identical context representation (the concatenated prompt and preference
embeddings). As is standard, the classic bandit strategies are paired with a linear model to map
these features to rewards, while our main approach uses a non-linear MLP.

Table 7 presents the results evaluated with a balanced preference (wq = wc = 0.5). The policy-
gradient method (REINFORCE) achieves a substantially higher average score, demonstrating supe-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

rior performance on this task. Notably, bandit approaches tend to yield slightly lower costs, suggest-
ing that their conservative exploration might favor cheaper models at the expense of performance.

Method Avg Score Avg Monetary Cost

LinTS 0.6430 0.00046
LinUCB 0.6166 0.00044
ϵ-greedy 0.6556 0.00056
REINFORCE 0.7432 0.00070

Table 7: Comparison between REINFORCE and
classical bandit algorithms. Results are averaged
across in-distribution tasks, using a balanced pref-
erence (wq = wc = 0.5) during inference.

The primary finding from this analysis is that
the routing decision function is inherently
complex. While classic bandit algorithms pro-
vide a strong baseline, their performance is
limited by the linear assumptions they make
about the relationship between context and re-
ward. The significant performance gap sug-
gests that an algorithm capable of learning a
non-linear policy, such as REINFORCE paired
with an MLP, is necessary to effectively model
the nuances of LLM routing.

5 ADDITIONAL RELATED WORK

LLM routing. With the rapid growth of LLMs, there is increasing interest in routing strategies
that decide which model to query for each input. Early approaches often rely on ensembles, such
as majority voting over all outputs, or static heuristics like always choosing the largest or small-
est model. Recently, learning-based routers have been proposed. GraphRouter (Feng et al., 2025)
learns graph-structured representations across prompts, tasks, and models to exploit relational in-
formation. RouterDC (Chen et al., 2024) introduces dual-contrastive objectives for aligning query
and model embeddings. Other efforts design mixture-of-experts systems that dynamically allocate
queries across LLMs (Varangot-Reille et al., 2025).

Contextual bandits. The contextual bandit framework (Langford & Zhang, 2007) formalizes
decision-making under partial feedback: at each round, the learner observes a context, selects an
action, and only receives feedback for that action. Classical bandit algorithms include LinUCB (Li
et al., 2010), which uses optimism in linear reward models; Thompson Sampling (Agrawal & Goyal,
2013), which maintains a posterior over reward parameters; and ϵ-greedy strategies, which trade off
exploration and exploitation through randomization. Beyond linear settings, neural contextual ban-
dits extend these ideas with non-linear function approximators (Riquelme et al., 2018; Zhou et al.,
2020). Bandit methods have been applied to recommendation (Li et al., 2010), online advertis-
ing (Chapelle & Li, 2011), and adaptive experiment design.

6 CONCLUSION AND DISCUSSION

In this work, we address the challenge of efficiently selecting the optimal LLM from a pool of
candidates to balance performance and cost. We formalize this task as a preference-conditioned
contextual bandit problem and introduce BARP. Trained with policy gradients on bandit feedback,
our method learns to map a user’s prompt and specific performance-cost preference to the most
suitable LLM. Extensive experiments demonstrate that BARP significantly outperforms both top-
performing individual LLMs and strong offline routers on both in-distribution and out-of-distribution
tasks. Crucially, we show that the preference vector provides an effective and interpretable control
mechanism, allowing operators to tune the router’s behavior at inference time without retraining.

We acknowledge several limitations for future improvement. Our method trains on static, offline
logs, which is practical but differs from a truly online setting where a router could learn continuously
from live feedback. We only consider performance and monetary cost, while real deployments
may require richer, possibly task-specific preferences and constraints (e.g., latency). The current
contextual bandit formulation also models routing as a single-step decision, making it well-suited
for many tasks but not explicitly designed for multi-turn, conversational scenarios. Furthermore, our
experiments focused on a pool of general-purpose LLMs, and future work could explore routing to
highly specialized, domain-expert models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The primary goal of this research is to improve the efficiency of using large language models, a
direction with a positive societal impact. By enabling users to select smaller, less expensive mod-
els when appropriate without a significant loss in performance, our work contributes to reducing
the overall energy consumption and carbon footprint associated with deploying these powerful but
resource-intensive technologies. Our work relies on existing, publicly available benchmark datasets
and pre-trained language models. We do not use any private or personally identifiable information,
and our research does not involve human subjects. As with any system that improves the efficiency
of LLM routing, there is a possibility of misuse, for example, in routing to optimize spam or mis-
information generation. However, we believe the risk is limited and outweighed by the benefits of
more efficient LLM routing.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. To this end, all code required to
replicate our experiments, including scripts for training, evaluation, and all analyses presented in the
paper, will be made publicly available upon publication in an open-source repository.

Datasets. Our primary experiments are conducted on the publicly available benchmarks. We will
provide scripts to download and process all data into the format required by our codebase. Our data
splits are deterministic, based on the random seed provided in our code.

Models and Hyperparameters. The specific pre-trained models used for the prompt encoder and
the full list of candidate LLMs are detailed in the appendix. All critical hyperparameters, includ-
ing learning rates, batch sizes, and regularization coefficients, are reported in 3.4. Our code is
implemented in PyTorch.

Computational Resources. All experiments were conducted on a single NVIDIA A100 GPU with
80GB of memory. The training for our main model completes in approximately 2-3 hours. The code
for the classic bandit baselines is also provided and runs efficiently on a standard CPU.

REFERENCES

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs.
In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the 30th International Con-
ference on Machine Learning, volume 28 of Proceedings of Machine Learning Research, pp.
127–135, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL https://proceedings.
mlr.press/v28/agrawal13.html.

Anthropic. Model card and evaluations for claude models, 2023. URL
https://www-cdn.anthropic.com/files/4zrzovbb/website/
bd2a28d2535bfb0494cc8e2a3bf135d2e7523226.pdf.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 24. Curran Associates, Inc.,
2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/
file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf.

Shuhao Chen, Weisen Jiang, Baijiong Lin, James T. Kwok, and Yu Zhang. Routerdc: Query-
based router by dual contrastive learning for assembling large language models, 2024. URL
https://arxiv.org/abs/2409.19886.

10

https://proceedings.mlr.press/v28/agrawal13.html
https://proceedings.mlr.press/v28/agrawal13.html
https://www-cdn.anthropic.com/files/4zrzovbb/website/bd2a28d2535bfb0494cc8e2a3bf135d2e7523226.pdf
https://www-cdn.anthropic.com/files/4zrzovbb/website/bd2a28d2535bfb0494cc8e2a3bf135d2e7523226.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
https://arxiv.org/abs/2409.19886

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Xiangxiang Dai, Jin Li, Xutong Liu, Anqi Yu, and John C. S. Lui. Cost-effective online multi-
llm selection with versatile reward models, 2024. URL https://arxiv.org/abs/2405.
16587.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections,
2025. URL https://arxiv.org/abs/2410.03834.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2021.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system, 2024. URL https://arxiv.org/abs/2403.12031.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra S Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mixtral
of experts. arXiv preprint arXiv:2401.04088, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl a 00276. URL
https://aclanthology.org/Q19-1026/.

John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits
with side information. In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), Ad-
vances in Neural Information Processing Systems, volume 20. Curran Associates, Inc.,
2007. URL https://proceedings.neurips.cc/paper_files/paper/2007/
file/4b04a686b0ad13dce35fa99fa4161c65-Paper.pdf.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, WWW ’10, pp. 661–670. ACM, April 2010. doi: 10.1145/1772690.1772758.
URL http://dx.doi.org/10.1145/1772690.1772758.

Yang Li. Llm bandit: Cost-efficient llm generation via preference-conditioned dynamic routing,
2025. URL https://arxiv.org/abs/2502.02743.

11

https://arxiv.org/abs/2405.16587
https://arxiv.org/abs/2405.16587
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2410.03834
https://arxiv.org/abs/2403.12031
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/1412.6980
https://aclanthology.org/Q19-1026/
https://proceedings.neurips.cc/paper_files/paper/2007/file/4b04a686b0ad13dce35fa99fa4161c65-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/4b04a686b0ad13dce35fa99fa4161c65-Paper.pdf
http://dx.doi.org/10.1145/1772690.1772758
https://arxiv.org/abs/2502.02743

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An em-
pirical comparison of bayesian deep networks for thompson sampling, 2018. URL https:
//arxiv.org/abs/1802.09127.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 2021.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Clovis Varangot-Reille, Christophe Bouvard, Antoine Gourru, Mathieu Ciancone, Marion Schaeffer,
and François Jacquenet. Doing more with less: A survey on routing strategies for resource op-
timisation in large language model-based systems, 2025. URL https://arxiv.org/abs/
2502.00409.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep
self-attention distillation for task-agnostic compression of pre-trained transformers, 2020. URL
https://arxiv.org/abs/2002.10957.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Fung, Yining Yin, and Lida
Mou. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao
Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and
Zekun Wang. Qwen2.5 technical report. ArXiv, abs/2412.15115, 2024. URL https://api.
semanticscholar.org/CorpusID:274859421.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2018.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
Li, Jiangcheng Zhu, Jianqun Chen, et al. Yi: Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

12

https://arxiv.org/abs/1802.09127
https://arxiv.org/abs/1802.09127
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2502.00409
https://arxiv.org/abs/2502.00409
https://arxiv.org/abs/2002.10957
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Bowen Zhang, Gang Wang, Qi Chen, and Anton van den Hengel. How do we select right LLM for
each query?, 2025. URL https://openreview.net/forum?id=AfA3qNY0Fq.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration,
2020. URL https://arxiv.org/abs/1911.04462.

13

https://openreview.net/forum?id=AfA3qNY0Fq
https://arxiv.org/abs/1911.04462

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 NOTATION

Table 8: Summary of notations.

Symbol Description
Problem Formulation
K Total number of candidate LLMs (actions).
A The set of actions {1, . . . ,K}.
t The time step or round index.
xt The input prompt at round t.
wt The user preference vector (wq

t , w
c
t) at round t.

wq
t , w

c
t The weights for performance score and cost, respectively.

st The context (state) at round t, defined as the tuple (xt, wt).
at The action (chosen LLM) at round t.
qt The performance score of the chosen LLM’s output, qt ∈ [0, 1].
ct The monetary cost of using the chosen LLM.
c̃t The normalized monetary cost, min(ct/τ, 1).
rt The scalar reward at round t.
D The underlying data distribution of contexts.

Policy and Learning
θ The trainable parameters of the policy network.
πθ(a|s) The policy; probability of selecting action a given context s.
h(·) The frozen prompt encoder function.
ϕ(·) The preference encoder (MLP) function.
z The concatenated context representation [h(x);ϕ(w)].
gθ(·) The decision head of the policy network.
o The vector of logits produced by the decision head.
a∗ The optimal action selected at inference time (via argmax).
J(θ) The expected cumulative reward objective function.
Lt(θ) The policy gradient loss function at round t.
bt The reward baseline (batch-mean reward).
B The batch size used during training.
H(·) The Shannon entropy function.
β The entropy regularization coefficient.
τ The cost scaling and capping hyperparameter.

A.2 ADDITIONAL RESULTS

Table 9: Testing score (%) of each candidate LLM on in-distribution tasks.

Candidate LLM ARC-C GSM8K MMLU Winogrande Avg ↑
WizardLM/WizardLM-13B-V1.2 61.02 50.63 44.65 50.75 51.76
claude-instant-v1 80.27 62.72 59.64 61.96 66.15
claude-v1 86.87 65.08 65.72 65.98 70.91
claude-v2 86.87 66.26 62.81 66.06 70.50
gpt-3.5-turbo-1106 83.06 60.48 64.71 57.93 66.55
gpt-4-1106-preview 96.19 65.88 81.19 81.93 81.30
meta/code-llama-instruct-34b-chat 37.35 45.66 0.48 38.44 30.48
meta/llama-2-70b-chat 73.40 52.30 2.68 48.22 44.15
mistralai/mistral-7b-chat 38.78 41.15 25.43 52.41 39.44
mistralai/mixtral-8x7b-chat 83.20 51.90 63.51 55.25 63.47
zero-one-ai/Yi-34B-Chat 86.12 54.81 65.85 62.90 67.42

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 10: Testing score (%) of each candidate LLM on out-of-distribution tasks.

Candidate LLM MBPP Hellaswag Avg ↑
WizardLM/WizardLM-13B-V1.2 37.00 33.38 35.19
claude-instant-v1 60.42 58.51 59.47
claude-v1 59.72 56.85 58.29
claude-v2 64.17 62.42 63.30
gpt-3.5-turbo-1106 65.34 58.66 62.00
gpt-4-1106-preview 68.62 83.96 76.29
meta/code-llama-instruct-34b-chat 51.76 20.82 36.29
meta/llama-2-70b-chat 33.02 52.59 42.81
mistralai/mistral-7b-chat 34.43 25.48 29.96
mistralai/mixtral-8x7b-chat 54.10 41.69 47.90
zero-one-ai/Yi-34B-Chat 38.64 74.26 56.45

A.3 CANDIDATE LLMS

For tasks from RouterBench (Hu et al., 2024), we have candidate LLMs as follows: (i) WizardLM-
13B-V1.2 (Xu et al., 2023) is a fine-tuned instruction-following model from the WizardLM series;
(ii) Claude-instant-v1 is a lightweight model from Anthropic optimized for speed; (iii) Claude-
v1 is Anthropic’s first-generation flagship model; (iv) Claude-v2 (Anthropic, 2023) is an improved
successor with stronger reasoning ability; (v) GPT-3.5-turbo-1106 is OpenAI’s production-grade
model designed for efficiency and broad coverage; (vi) GPT-4-1106-preview (OpenAI et al., 2023)
is OpenAI’s most capable general-purpose model at the time of release; (vii) Code Llama Instruct-
34B-Chat (Rozière et al., 2024) is a code-specialized instruction-tuned model; (viii) Llama-2-70B-
Chat (Touvron et al., 2023) is a general conversational model trained with reinforcement learning
from human feedback; (ix) Mistral-7B-Chat (Jiang et al., 2023) is an efficient chat-optimized model
from Mistral AI; (x) Mixtral-8x7B-Chat (Jiang et al., 2024) is Mistral’s mixture-of-experts model
offering higher throughput; and (xi) Yi-34B-Chat (Young et al., 2024) is a large-scale bilingual chat
model with strong performance in both English and Chinese.

For NQ and HpQA datasets, the candidate LLMs consist of Llama-3.1-8b-instruct (Grattafiori
et al., 2024), Llama-3.1-70b-instruct (Grattafiori et al., 2024)2, mistral-7b-instruct-v0.3 (Jiang et al.,
2023), qwen2.5-7b-instruct (Yang et al., 2024), gemma-2-27b-it (Team et al., 2024), mixtral-8x22b-
instruct-v0.1 (Jiang et al., 2024).

A.4 DATASET DETAILS

• GSM8K (Cobbe et al., 2021): A dataset of diverse grade school math word problems, testing a
model’s ability to perform multi-step mathematical reasoning.

• MMLU (Hendrycks et al., 2021): A benchmark that measures the knowledge acquired by models
during pretraining and evaluates models in zero-shot and few-shot settings across 57 tasks, testing
both knowledge and reasoning on different fields of human knowledge.

• ARC-C (Clark et al., 2018): A rigorous question answering dataset, ARC-Challenge includes
complex, different grade-school level questions that require reasoning beyond simple retrieval,
testing the true comprehension capabilities of models. Arc Challenge dataset contains those that
both a retrieval and a co-occurrence method fail to answer correctly)

• Winogrande (Sakaguchi et al., 2021): A large-scale and increased harness dataset inspired by
the original Winograd Schema Challenge(WSC) tests models on their ability to resolve pronoun
ambiguity and their ability to understand the context with commonsense knowledge.

• NQ (Kwiatkowski et al., 2019): A comprehensive collection of real user queries submitted to
Google Search, with answers sourced from Wikipedia by expert annotators.

• MBPP (Austin et al., 2021): The benchmark is designed to be solvable by entry-level program-
mers, covering programming fundamentals, standard library functionality, etc. Each problem
comprises a task description, code solution, and 3 automated test cases.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Hellaswag (Zellers et al., 2019): This dataset challenges models to pick the best ending choice
for a given sentence. It uses Adversarial Filtering(AF) to create a Goldilocks zone of complexity,
wherein generations are largely nonsensical to humans but always make models struggle.

• HpQA (Yang et al., 2018): This dataset is designed for question answering and features natural,
multi-hop questions. It provides strong supervision for supporting facts, enabling the development
of more explainable question answering systems.

A.5 USE OF LLMS

The LLM’s role was strictly a writing and editing assistant, used to augment and refine the work.

The primary uses of the LLM included:

• Refining Prose and Tone: Improving the clarity, flow, and academic tone of sentences and para-
graphs across all sections.

• Ensuring Consistency: Cross-referencing the manuscript to identify and correct inconsistencies
in terminology, notation, and quantitative claims between the text and tables.

All scientific contributions, including the core ideas, experimental design, analysis, and final claims,
were conceived and executed by the authors. The LLM served as a tool to help articulate these
contributions more effectively.

16

	Introduction
	Approach
	Problem Setting
	Policy Architecture
	Objective and Learning Algorithm
	Training and Inference

	Experiments Setup
	Datasets and Benchmarks
	Baseline Methods
	Metrics
	Implementation Details

	Experiments Results
	Performance on In-Distribution Tasks
	Generalization Ability to New Tasks
	Overall Performance and Cost-Effectiveness
	Sensitivity Analysis
	Analysis of the Preference Trade-off
	Impact of Prompt Encoder Choice

	Impact of Decision Head Architecture
	Analysis of Learning Algorithms

	Additional Related Work
	Conclusion and Discussion
	Appendix
	Notation
	Additional Results
	Candidate LLMs
	Dataset Details
	Use of LLMs

