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Abstract

Recently, a supertagging-based approach for
parsing discontinuous constituent trees with
linear context-free rewriting systems (LCFRS)
was introduced. We reformulate their algo-
rithm for the extraction of supertags from tree-
banks to be more concise. Moreover, we add
some extensions that give us control over the
extraction process in terms of supertag gran-
ularity and which terminal symbols are asso-
ciated with supertags. Our additions lead to
an increase in parsing quality with LCFRS su-
pertagging in all three compared treebanks.
The scores are among the state of the art in
discontinuous constituent parsing.

1 Introduction

Discontinuous constituency parsing deals with
the task to find hierarchies of — possibly non-
contiguous — phrases (constituents) in a given
sentence of natural language and assigns a la-
bel (constituent symbol) to each phrase. Tradi-
tional approaches use grammar formalisms such
as linear context-free rewriting systems (LCFRS)
to model these hierarchies (Maier and S¢gaard,
2008; Kallmeyer and Maier, 2013; van Cranen-
burgh et al., 2016; Gebhardt, 2020). Statisti-
cal parsing with these grammars is remarkably
slow and inaccurate by today’s standards. But
they still find some attraction as both, the gram-
mars and parsing with them, are easily inter-
pretable. More recent parsers use neural classifiers
and either leverage the parsing process into a lin-
ear task (Coavoux, 2021; Fernandez-Gonzalez and
Gomez-Rodriguez, 2020, 2021b,a) or score con-
stituent labels for selected phrases (Corro, 2020;
Stanojevi¢ and Steedman, 2020).

In supertagging-based parsing (Bangalore and
Joshi, 1999), a grammar is accompanied by a clas-
sifier that selects and scores a small sample of
rules in the grammar. After that, the rules and
their scores are interpreted as a weighted grammar

which is used for parsing in the usual manner. A
recent publication (Ruprecht and Morbitz, 2021)
showed that supertagging improved the quality
and speed of parsing with LCFRS significantly,
bringing it close to recent discontinuous parsing
methods. However, their extraction process for su-
pertags is rather convoluted and uses hard-wired
options for, e.g., terminal transportation and bina-
rization.

In Section 3, we will present a formulation of
supertags and an extraction algorithm that is eas-
ier to grasp than the previous definition. In com-
parison, it is re-ordered such that LCFRS rules
are assembled after it is determined which termi-
nal symbol they are associated with; therefore we
will avoid transporting terminal symbols through
LCFRS rule derivations. Secondly, the annota-
tions that were introduced to revert the terminal
transportation will not be a necessary part of the
LCFRS rules but a separate component of each
supertag. Both changes give us the opportunity
to introduce two new parameters to the extraction
process: the transportation guide controls which
terminal symbol is associated with each part in the
constituent tree, and the nonterminal constructor
is responsible for the granularity of the underlying
grammar. We will give some instances for these
two parameters. Section 4 describes our experi-
ments with the extraction algorithm for the discon-
tinuous English Penn Treebank (DPTB, Marcus
et al., 1994; Evang and Kallmeyer, 2011), and the
two German treebanks NeGra (Skut et al., 1998)
and Tiger (Brants et al., 2004). It explains how we
found viable configurations for the introduced pa-
rameters and gives results for parsing with them.
The implementation will be published on GitHub.

2 Notation

A discontinuous constituent tree is a tuple
(&, pos,w) as follows: w is a sequence of termi-
nal symbols (phrase), pos is a sequence of part-of-
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Figure 1: Discontinuous constituent tree for the phrase
where the survey was carried out. The tree is illustrated
with crossing branches, so that the leaves are ordered.

speech (pos) symbols with same length as w, and
the constituent structure £ is a tree; its inner nodes
are constituent symbols and its leaves are phrase
positions 0. .. |w| — 1 such that each leaf occurs
exactly once in €. Figure 1 shows an example.
We use the usual notation for (Gorn-)positions
in the constituent structure, i.e. each position de-
termines exactly one node in &. The set of all inner
node positions in ¢ is denoted by npos(§). The
subtree of & at position p is denoted by &|,. The
yield yd (&) is the set of leaves in &. The fanout of
(a set of leaves) L is the smallest number of con-
tiguous subsets of L. For instance, in Fig. 1, the
yield of the subtree governed by the upper node
labeled by VP is the set {0, 3,4, 5}, its fanout is 2.
£(p) denotes the constituent symbol at position p.
We briefly cover the notation for binary lexical
LCFRS. Each rule is either of the form A — [w] or
A = [ug,...,u;|(B1, By). Ais called left-hand
side (lhs) nonterminal, By, By are right-hand side
(rhs) nonterminals, and w is the rule’s lexical sym-
bol (or terminal). Each string uq, ..., u; consists
of one lexical symbol and variables z1, . . ., z,, and
Y1,.--,Ym where each x; (resp. y;) refers to a
string produced by a first (resp. second) successor.
They denote a function composing & strings from
the lexical symbol and n 4 m successor strings.

3 Contributions

A supertag is a tuple (r,t, c, p) where
e ris an LCFRS rule, its terminal is a wildcard,
* tis either None or an index that indicates from
which successor an associated terminal originates,
* cis either None or a constituent symbol, and
* pisapos symbol.

Previously, supertags were introduced as LCFRS
rules with certain annotation that did not fit into
the usual LCFRS framework but was necessary to
convert supertag derivations into constituent trees.
Our notation separates the information needed for
the conversion from the grammar rule and hence
allows us to generalize the extraction.

3.1 Extraction Parameters

Apart from the constituent treebank, our extraction
algorithm expects parameters for binarization, a
guide and a nonterminal constructor. The vanilla
parameters coincide with the existing algorithm.

Binarization. We use the usual binarization
strategies for constituent structures in parsing,
(Kallmeyer and Maier, 2013) with factorization
from left to right (Ir) or head-outward (ko). Both
strategies, ho and Ir, are extended by markoviza-
tion. The width of the horizontal markovization
window is denoted by h, the vertical one by v.

Guide. A guide for £ assigns a leaf to each inner
node position. During the extraction, a supertag
will be constructed for each inner node and its as-
signed leaf. Formally, a transportation guide for £
is an injective function G: npos(§) — yd(§) such
that, for each p € npos(&), the transported leaf
G(p) isin yd(€|,). We use the following guides:!

* The vanilla guide maps each node position ei-
ther to the leftmost leaf that is a direct successor, or
(if not available) to the leftmost leaf in the yield of
its right successor. The assignment is determined
for each node from top to bottom.

» The strict guide maps each node position to
the leftmost leaf in the yield of its right successor.
Figure 2 shows the leafs assigned to each node in
an example constituent structure.

Nonterminals. A nonterminal constructor com-
putes the nonterminals for the grammar rule in-
cluded in each supertag. Here, we suppose that
the lhs nonterminal for the position p in £ is com-
puted from the constituent symbol &(p), the set of
leaves yd(|,) and the set of leaves L assigned by
G to the ancestors of p as follows:

* vanilla — The nonterminal consists of the
symbol £(p), the fanout fo(yd(£|,)), a marker if
L contains any leaf in yd(&|,) and, if yes, the dif-
ference in fanout fo(yd(¢|,) \ L) — fo(yd(¢|,))-

'As shown in Appendix A, we experimented with three
more guides that did not perform as well as the ones shown
here. Among them is the modifier guide that is defined using
head relations in the constituent tree.
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Figure 2: Constituent structure and pos symbols from
Fig. 1 after binarization (v = 1, h = 0; ho and Ir bina-
rization coincide) and merging unary nodes; the sym-
bol “VP|<” resulted from binarization; merged sym-
bols are joined by “+”. The values assigned by the
vanilla (rectangle) and strict (circle) guides are shown
next to each inner node.

* classic — The nonterminal consists of the first
symbol? in &(p) (including the binarization mark-
ers) and the fanout fo(yd(¢|,) \ L). This omits
markers used to revert the extraction and is more
similar to usual grammars from treebanks (Maier
and Se¢gaard, 2008).

* coarse — Like the classic nonterminals, but
we replace the constituent and pos symbols occur-
ring in the treebank by their first letter. This is a
rough approximation of nonterminals in coarse-to-
fine parsing (Charniak et al., 2006) that does not
need a specific clustering for each treebank.

3.2 Extraction algorithm.

The extraction is documented in the following
three steps, we denote the chosen guide by G and
the nonterminal constructor by NT. We give exam-
ples for the steps 2 and 3 that refer to (the root po-
sition in) the constituent structure shown in Fig. 2
using the vanilla guide (squares next to the nodes
in the figure) and coarse nonterminals.

1. The constituent structure is binarized ac-
cording to the chosen strategy. Unary nodes are
merged with child nodes or, if their child is a leaf,
with the pos symbol at the leaf’s position. After
this step, there are |w| — 1 inner nodes in the con-
stituent structure; there is exactly one leaf ¢ not in
the image of G. In the following steps, we con-
struct a supertag for each inner node in the binary
constituent structure (step 2) and an additional one
for the leaf 7 (step 3). An example is shown in
Figs. 1 and 2.

2 After merging unary nodes in step 1 of the extraction,
each node may consist of multiple constituent symbols.

2. For each node in the constituency structure,
a supertag (7, t, ¢, p) is constructed as follows:

(r) The LCFRS rule is assembled in the usual
manner from G(p) as lexical symbol (which
is later replaced by the wildcard “_) and all
leaves below p except those that are assigned
by G to p or its ancestors. NT produces the lhs
nonterminal for p, the rhs nonterminals are
adopted from the children. In our example, r
is assembled from the lexical symbol 1, the
left successor’s leaves are {0 (xl),w (m)}

and the right one’s are {2(,)}; hence r =
N i [1‘1 ,ylwg](Vg, Nl).

(t) If the leaf G(p) is a direct child of p, then ¢
is None. Otherwise, it is the index among the
children where G(p) is located. In our exam-
ple, 1 is not a child of the root, it is in its
second successor; therefore ¢ = 2.

(c) If £(p) was introduced during binarization,
then c is None, else it is £(p). In our example,
c = SBAR+S.

(p) p is the pos symbol at G(p) in pos. In our
example p = PT.

3. For the leaf 7, we create the supertag (L-A —
[-], None, None, pos(i)) where A is the nonter-
minal produced by NT for the parent of ¢ and
“L-" marks this supertag for an unassigned leaf.
In our example, the leaf ¢ = 5 is not in the
image of G, it yields the supertag (L-V|<; —
[-], None, None, PRT+RP).

Parsing. For parsing, a small sample of su-
pertags is predicted for each position in the in-
put phrase. The wildcard in the predicted tags
is replaced by the input positions and the se-
quence of input positions is parsed using these
lexical LCFRS rules in the usual manner. The
resulting tree of supertags is transformed into a
constituent structure by adopting the constituent
symbol ¢ from each supertag (if not None), un-
merging unary nodes and transporting the associ-
ated terminal according to the index ¢ from top to
bottom.

4 Experiments

Our experiments are conducted with the usual
train/dev/test splits® for the three discontinuous

3We use the split for Negra by Dubey and Keller (2003),
for Tiger by Seddah et al. (2013), and the standard split for
DPTB (sections 2-21 for training, 22 for development, 23
for testing). In evaluation, we use the implementation for



Table 1: Our results on test sets compared to other published parsers for discontinuous constituents. Type gives
a rough classification of the parsing approach in the following concepts: G — statistical grammar-based, GS —
grammar-based with supertagging, C — grammarless chart-based, T — transition-based, N — untraditional neural

approaches. bert-b and bert-L are language specific bert-base and bert-large models.

pretrained Negra Tiger DPTB
Type | Model embeddings | F1 Fl-d sent/s| F1 Fl-d sent/s| FI Fl-d sent/s
G |van Cranenburgh et al., 2016 - 76.8 - 2 782 - 1 87.0 - <1
Gebhardt, 2020 - 81.7 435 - |777 407 - - - -
ours (bert-b) |91.8 746 120 |[89.7 72.6 105 |944 820 81
GS | ours (bert-L) 939 79.1 88 |91.6 754 77 |949 824 o4
Ruprecht and Mérbitz, 2021 (bert-b) 909 726 68 |883 69.0 60 |933 805 57
C | Corro, 2020 (bert-b) | 91.6 66.1 - ]90.0 621 - |948 689 -
T | Coavoux, 2021 (bert-b) | 917 733 - |902 729 - |950 825 -
Fernandez-G., Gémez-R., 2020 (bert-b) |91.0 766 - ]90.0 626 - - - -
N Fernandez-G., Gomez-R., 2021a  (bert-b) |90.0 659 275 |[88.5 63.0 238 |940 729 231
Fernandez-G., Gémez-R., 2021a  (bert-L) |92.0 679 216 [90.5 68.1 207 |951 741 193
Fernandez-G., Gomez-R., 2021b  (bert-L) | 89.1 67.1 - |85 678 - |955 829 -

constituent treebanks DPTB, NeGra and Tiger.
For each treebank, we select parameters for the
extraction using an incomplete grid search as de-
scribed in the following paragraph. Each model is
trained (cf. parameters in Appendix B) to predict
pos symbols separately from the other supertag
components (cf. Appendix C). We use the top 10
(DPTB, Tiger) and top 15 (NeGra) predicted su-
pertags during parsing (cf. Appendix E). For the
final models, we fine-tune bert-base and bert-large
(Devlin et al., 2019; Chan et al., 2020, gbert-large
for German data) models with the selected final
parameter configurations for 20 epochs and report
the parsing scores and speed in Table 1.

Parameter selection. We conducted a parame-
ter search in two steps to select satisfactory con-
figurations. The first step was to exclude underper-
forming combinations of nonterminal constructors
and guides, and the second one to select a final
combination with binarization parameters. Each
step is a grid search and for each configuration
in the grid, we fine-tuned a bert-base model for
5 epochs using the supertags extracted from the
training set and evaluated using the dev set of the
treebank. In this search, we found the following
configurations for our final models:

(DPTB) strict guide, classic nonterminals with
Ir binarization where h = 0 and v = 2,

(NeGra) strict guide, classic nonterminals with
Ir binarization where h = 0 and v = 1,

(Tiger) strict guide, coarse nonterminals with Ir

F-scores by van Cranenburgh et al. (2016) with default pa-
rameters in proper.prm.

binarization where h = O and v = 1.

This process is documented for the NeGra tree-
bank in Appendix D in very detail as an example.

5 Conclusion

We generalized the extraction of supertags from
treebanks by introducing parameters for previ-
ously fixed parts of the construction. The parame-
ters allow us to control the parts of the constituent
tree that is associated with a terminal for each su-
pertag (guide) as well as the granularity of the
grammar rules (nonterminal constructor). At the
same time, the extraction process was re-ordered
so that its description is less convoluted while re-
taining the same functionality.

The introduced guide and nontermninal con-
structors performed better than the vanilla vari-
ants.  Specifically, we observe the following:
While the highly ambiguous grammar extracted
from DPTB benefits from finer nonterminal gran-
ularity with greater markovization window, the
large and more specific grammar extracted from
Tiger improved with coarser granularity; the
grammar for NeGra lies somewhere in between.

Compared to the previous implementation of
supertagging with LCFRS, we could improve the
parsing quality across all three discontinuous tree-
banks. The improvements close the gap between
the quality of parses with LCFRS supertagging
and the most recent discontinuous parsing strate-
gies. In case of the two German treebanks, we
could even surpass them, most notably in terms of
the F1-score for discontinuous constituents.
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A Additional Guides

Additionally to the two guides described in Sec-
tion 3, we experimented with the following:

* The modifier guide maps each position to its
modifier’s lexical head. In constituent trees, a lex-
ical head is the critical phrase position for a syn-
tactic category in a phrase, i.e. the leaf that deter-
mines the constituent symbol at a node. For each
node, we call each direct child that does not con-
tain the node’s lexical head a modifier. This guide
requires that the constituents structures are bina-
rized head-outward. This ensures that the head of
each binarized node is attached to the bottom-most
introduced node; in ho binarized trees, each inner
node has exactly one modifier.

* The least transportation guide maps as few
as possible positions to leafs that are not a direct
child. The guide is determined for each position
from bottom to the top and selects the nearest (and
leftmost, if ambiguous) leaf for each position.

* The shortest transportation guide maps each
position in the constituent structure to a leaf that
is as near as possible. The guide is determined
for each positions top to bottom and, similar to the
least transportation guide, selects the nearest (and
leftmost, if ambiguous) leaf for each position. But,
when searching for the nearest leaf, we exclude a
subtree if a leaf in it was selected previously.

B Training Parameters

All models were trained using the parameter listed
in the following table, during parameter search for
5 epochs, the final models for 20 epochs.

parameter  value

embeddings last 4 layers of bert-base/bert-large
architecture single feed forward layer

loss Cross entropy

learning rate 5-107°

weight decay 1072

dropout 1071

optimizer AdamW

batchsize 32

C Joint Prediction

In supertags as defined by Ruprecht and Morbitz
(2021), grammar rules r, constituent symbols ¢
and indices t were all stored in the grammar rules,
the pos symbols were predicted separately. Here,
we investigate if there are advantages in predicting

Table 2: Number of extracted core supertags, pars-
ing scores (F1, F1-d), number of parse fails (£) and
prediction accuracy (acc.) for varying core supertags.
Supertag components are abbreviated (grammar rule,
transport index, constituent, pos). B

core |[no. core| F1 Fl-d £ acc.
tags core ¢ t p

g 88.0 62.1 7 | 86.8 944 057 98.8
gt 88.8 68.9 8 | 86.7 943 — | 98.7
gc 89.0 62.8 2 [865 — 9541988
ep 86.9 62.1 - 84.5 94.1 95.5 96.3
gtc 90.6 70.7 1|89 — — 987
stp 87.4 64.1 - 84.6 943 — 96.1
gcp 87.6 60.3 10| 842 — [95.7 964
gtep 88.7 66.4 12| 840 — — 96.8

other subsets of supertag components jointly while
the others are determined independently. We use
the following restrictions/terminology:

* A subset of supertag components, called core,
that always includes the grammar rule is predicted
jointly as a tuple. During parsing, we use the k
best core predictions for each input position.

* Each other component is predicted separately

(via a separate feed forward layer, but the same
embedding). During parsing, we only use the best
prediction for each position in the input.
To remain overview, we consider in this experi-
ment only the set of supertags extracted with the
vanilla guide, classic nonterminals and Ir binariza-
tion with v = 1 and h = 0. We suggest that the
results shown in Table 2 are clear enough to omit
experiments with other extraction parameters or
other treebanks. From the table we observe that,
when pos symbols are excluded from the core,

* the number of core supertags is significantly
smaller and they can be predicted more accurately,

* the quality of pos tags after parsing is signifi-
cantly better, and

* there are less parse fails.

The quality of the predictions and the quality of
parse trees benefits from the other components in-
cluded in the core supertags. Hence, we suggest
that the separation of pos tags from the other com-
ponents of the core supertags is the best option and
will continue our experiments with that separation.

D Parameter Selection

This section documents the selection of the nonter-
minal constructor, guide and binarization parame-
ters for the NeGra treebank.



Guides and Nonterminal Constructors. In the
first step, we extract supertags for each combina-
tion of nonterminal constructors and guides. Bina-
rization is fixed to Ir (except for the modifier guide
which requires ho) with h = 0 and v = 1.

Table 3: Number of supertags extracted from NeGra.
Rows distinguish nonterminal constructors, columns
distinguish guides.

| vanilla | strict | least | shortest | modifier

vanilla | 3265 | 2773 | 4677 | 4236 4528
classic | 2367 3544 | 3611 3587
coarse 2823 2837 2933

Table 3 shows the size of the extracted gram-
mars in terms of the number of supertags. We can
clearly see that both parameters determine the size
of the grammar; of course that behavior was ex-
pected for the nonterminal constructors. Signifi-
cantly less supertags are extracted using the strict
and vanilla guides than in the three other guides.

For each combination, a classifier was trained
(fine-tuned bert-base, pos symbols were predicted
separately). Table 5 shows the accuracy of tag pre-
dictions and the quality of parses using the 10 best
predicted supertags per phrase position. The strict
guide takes a clear lead in terms of the parsing
scores as well as the prediction accuracy. Look-
ing at the parse fails, both, the vanilla and strict
guides, seem to have a clear advantage over the
other guides. We continue the search restricted to
the strict guide and all three nonterminal construc-
tors.

Binarization. We extract supertags using differ-
ent configurations for binarization: ho and Ir bi-
narization, with horizontal markovization context
h € {0,1} and vertical markovization context
v € {0,1,2}. Table 6 shows the parsing scores
for supertags extracted using all those combina-
tions. Markovization contexts ~ > 0 and v > 1
do not seem to give us an advantage in this setting,
it is clearly disadvantageous with vanilla and clas-
sic nonterminals. The impact of greater contexts is
significantly less with coarse nonterminals. How-
ever, it does not benefit from higher values either.
We select the final configuration for NeGra via the
highest F1-score in the table (and the previous re-
strictions).

E Predictions per Position

After training the final models with bert-base, we
pick a suitable value for k, i.e. the number of tags
per position that is considered during parsing. The
dev set is parsed with k& € {5, 10,15, 25,40}, Ta-
ble 4 shows the results. We suggest that there is
only one case where a value £k % 10 shows im-
provements in quality that justifies the given de-
crease in speed, that is & = 15 for parsing Ne-
Gra. For both other treebanks, we continue with
k = 10.

Table 4: Parsing scores (F1, F1-d), number of parse
fails (¢£) and speed (sent/s) in NeGra for varying
amounts of supertags considered during parsing (k).

k NeGra Tiger DPTB

Fl Fl-d ¢ sent/s) F1 Fl-d ¢ sent/s) F1 Fl-d ¢ sent/s
5190.7 73.1 92.9 76.1 93.6 85.9
10/ 91.1 73.8 1 93.1 769 10 947 88.0 7 61
151912 744 0 93.1 768 0 94.8 88.1 3 50
251913 744 0 93.1 765 0 83949 833 2 52
401913 749 0 65931 76.6 0 65949 886 0 35




Table 5: Parsing scores (F1, F1-d), number of parse fails (£) and supertag prediction accuracy (acc.) in NeGra for
combinations of nonterminal constructors (rows) and guides (columns).

vanilla
F1 Fl-d ¢ acc.

89.7 68.7 7 85.9
90.5 70.5 1 84.6
89.9 69.9 0 85.7

strict
F1 Fl-d ¢ acc.

90.9 72.1 2 88.2
912 719 2 89.0
90.8 70.3 1[88.8

least shortest modifier
F1 Fl-d ¢ acc.| F1 Fl-d ¢ acc.| F1I Fl-d / acc.

86.9 655 78.9| 87.4 61.71B0] 78.9| 89.1 69.6 27 87.1
88.8 68.7 16 82.6| 87.8 58.7 3 78.8/904 70.6 5 87.3
88.3 66.6 9 825|877 59.1 3 79.6/90.1 70.8 9 87.8

vanilla
classic
coarse

Table 6: Parsing scores (F1, F1-d) and number of parse fails (#) in NeGra using supertags extracted with different

configurations for binarization (rows distinguish Ir and ho, columns distinguish values for & and v) and nonterminal
constructors (rows).

h= h=
v = v = v = v= v= v =

F1 Fld ¢ | F1 Fld ¢ | FI Fld ¢ F1 Fld ¢ Fl1 Fld ¢ Fl  Fld 1

vanilla 1 908 725 2| 909 721 2| 8.9 705 24| 8.3 681 11| 875 686 35| 8.0 583 | 73
ho 846 658 0| 8.8 703 6| 8.6 662 26| 8.2 660 17| 8.2 633 52 81.1 554 -

classic " 909 699 0| 912 719 2| 8.9 707 14| 8.8 699 6 | 8.5 67.7 23| 8.1 658 65
ho 842 622 0| 909 714 1| 8.5 671 20| 8.2 695 9 | 876 677 42| 839 636 -

coarse " 90.5 705 O] 908 703 1| 90.1 70.8 3| 904 696 0 | 900 692 5| 8.5 717 13

ho 842 628 0| 9.5 711 0| 8.7 706 0 | 8.6 687 1 |89 693 4 | 8.2 694 11




