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Abstract

Recently, a supertagging-based approach for001
parsing discontinuous constituent trees with002
linear context-free rewriting systems (LCFRS)003
was introduced. We reformulate their algo-004
rithm for the extraction of supertags from tree-005
banks to be more concise. Moreover, we add006
some extensions that give us control over the007
extraction process in terms of supertag gran-008
ularity and which terminal symbols are asso-009
ciated with supertags. Our additions lead to010
an increase in parsing quality with LCFRS su-011
pertagging in all three compared treebanks.012
The scores are among the state of the art in013
discontinuous constituent parsing.014

1 Introduction015

Discontinuous constituency parsing deals with016

the task to find hierarchies of – possibly non-017

contiguous – phrases (constituents) in a given018

sentence of natural language and assigns a la-019

bel (constituent symbol) to each phrase. Tradi-020

tional approaches use grammar formalisms such021

as linear context-free rewriting systems (LCFRS)022

to model these hierarchies (Maier and Søgaard,023

2008; Kallmeyer and Maier, 2013; van Cranen-024

burgh et al., 2016; Gebhardt, 2020). Statisti-025

cal parsing with these grammars is remarkably026

slow and inaccurate by today’s standards. But027

they still find some attraction as both, the gram-028

mars and parsing with them, are easily inter-029

pretable. More recent parsers use neural classifiers030

and either leverage the parsing process into a lin-031

ear task (Coavoux, 2021; Fernández-González and032

Gómez-Rodrı́guez, 2020, 2021b,a) or score con-033

stituent labels for selected phrases (Corro, 2020;034

Stanojević and Steedman, 2020).035

In supertagging-based parsing (Bangalore and036

Joshi, 1999), a grammar is accompanied by a clas-037

sifier that selects and scores a small sample of038

rules in the grammar. After that, the rules and039

their scores are interpreted as a weighted grammar040

which is used for parsing in the usual manner. A 041

recent publication (Ruprecht and Mörbitz, 2021) 042

showed that supertagging improved the quality 043

and speed of parsing with LCFRS significantly, 044

bringing it close to recent discontinuous parsing 045

methods. However, their extraction process for su- 046

pertags is rather convoluted and uses hard-wired 047

options for, e.g., terminal transportation and bina- 048

rization. 049

In Section 3, we will present a formulation of 050

supertags and an extraction algorithm that is eas- 051

ier to grasp than the previous definition. In com- 052

parison, it is re-ordered such that LCFRS rules 053

are assembled after it is determined which termi- 054

nal symbol they are associated with; therefore we 055

will avoid transporting terminal symbols through 056

LCFRS rule derivations. Secondly, the annota- 057

tions that were introduced to revert the terminal 058

transportation will not be a necessary part of the 059

LCFRS rules but a separate component of each 060

supertag. Both changes give us the opportunity 061

to introduce two new parameters to the extraction 062

process: the transportation guide controls which 063

terminal symbol is associated with each part in the 064

constituent tree, and the nonterminal constructor 065

is responsible for the granularity of the underlying 066

grammar. We will give some instances for these 067

two parameters. Section 4 describes our experi- 068

ments with the extraction algorithm for the discon- 069

tinuous English Penn Treebank (DPTB, Marcus 070

et al., 1994; Evang and Kallmeyer, 2011), and the 071

two German treebanks NeGra (Skut et al., 1998) 072

and Tiger (Brants et al., 2004). It explains how we 073

found viable configurations for the introduced pa- 074

rameters and gives results for parsing with them. 075

The implementation will be published on GitHub. 076

2 Notation 077

A discontinuous constituent tree is a tuple 078

(ξ, pos, w) as follows: w is a sequence of termi- 079

nal symbols (phrase), pos is a sequence of part-of- 080
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pos: WRB PT NN VBD VBN RP

w: where the survey was carried out

ξ:

SBAR

S

VP

VP

WH

0 4

PRT

53

NP

1 2

Figure 1: Discontinuous constituent tree for the phrase
where the survey was carried out. The tree is illustrated
with crossing branches, so that the leaves are ordered.

speech (pos) symbols with same length as w, and081

the constituent structure ξ is a tree; its inner nodes082

are constituent symbols and its leaves are phrase083

positions 0 . . . |w| − 1 such that each leaf occurs084

exactly once in ξ. Figure 1 shows an example.085

We use the usual notation for (Gorn-)positions086

in the constituent structure, i.e. each position de-087

termines exactly one node in ξ. The set of all inner088

node positions in ξ is denoted by npos(ξ). The089

subtree of ξ at position ρ is denoted by ξ|ρ. The090

yield yd(ξ) is the set of leaves in ξ. The fanout of091

(a set of leaves) L is the smallest number of con-092

tiguous subsets of L. For instance, in Fig. 1, the093

yield of the subtree governed by the upper node094

labeled by VP is the set {0, 3, 4, 5}, its fanout is 2.095

ξ(ρ) denotes the constituent symbol at position ρ.096

We briefly cover the notation for binary lexical097

LCFRS. Each rule is either of the formA→ [w] or098

A → [u1, . . . , uk](B1, B2). A is called left-hand099

side (lhs) nonterminal, B1, B2 are right-hand side100

(rhs) nonterminals, andw is the rule’s lexical sym-101

bol (or terminal). Each string u1, . . . , uk consists102

of one lexical symbol and variables x1, . . . , xn and103

y1, . . . , ym where each xi (resp. yj) refers to a104

string produced by a first (resp. second) successor.105

They denote a function composing k strings from106

the lexical symbol and n+m successor strings.107

3 Contributions108

A supertag is a tuple (r, t, c, p) where109

• r is an LCFRS rule, its terminal is a wildcard,110

• t is either None or an index that indicates from111

which successor an associated terminal originates,112

• c is either None or a constituent symbol, and113

• p is a pos symbol.114

Previously, supertags were introduced as LCFRS 115

rules with certain annotation that did not fit into 116

the usual LCFRS framework but was necessary to 117

convert supertag derivations into constituent trees. 118

Our notation separates the information needed for 119

the conversion from the grammar rule and hence 120

allows us to generalize the extraction. 121

3.1 Extraction Parameters 122

Apart from the constituent treebank, our extraction 123

algorithm expects parameters for binarization, a 124

guide and a nonterminal constructor. The vanilla 125

parameters coincide with the existing algorithm. 126

Binarization. We use the usual binarization 127

strategies for constituent structures in parsing, 128

(Kallmeyer and Maier, 2013) with factorization 129

from left to right (lr) or head-outward (ho). Both 130

strategies, ho and lr, are extended by markoviza- 131

tion. The width of the horizontal markovization 132

window is denoted by h, the vertical one by v. 133

Guide. A guide for ξ assigns a leaf to each inner 134

node position. During the extraction, a supertag 135

will be constructed for each inner node and its as- 136

signed leaf. Formally, a transportation guide for ξ 137

is an injective function G : npos(ξ)→ yd(ξ) such 138

that, for each ρ ∈ npos(ξ), the transported leaf 139

G(ρ) is in yd(ξ|ρ). We use the following guides:1 140

• The vanilla guide maps each node position ei- 141

ther to the leftmost leaf that is a direct successor, or 142

(if not available) to the leftmost leaf in the yield of 143

its right successor. The assignment is determined 144

for each node from top to bottom. 145

• The strict guide maps each node position to 146

the leftmost leaf in the yield of its right successor. 147

Figure 2 shows the leafs assigned to each node in 148

an example constituent structure. 149

Nonterminals. A nonterminal constructor com- 150

putes the nonterminals for the grammar rule in- 151

cluded in each supertag. Here, we suppose that 152

the lhs nonterminal for the position ρ in ξ is com- 153

puted from the constituent symbol ξ(ρ), the set of 154

leaves yd(ξ|ρ) and the set of leaves L assigned by 155

G to the ancestors of ρ as follows: 156

• vanilla – The nonterminal consists of the 157

symbol ξ(ρ), the fanout fo(yd(ξ|ρ)), a marker if 158

L contains any leaf in yd(ξ|ρ) and, if yes, the dif- 159

ference in fanout fo(yd(ξ|ρ) \ L)− fo(yd(ξ|ρ)). 160

1As shown in Appendix A, we experimented with three
more guides that did not perform as well as the ones shown
here. Among them is the modifier guide that is defined using
head relations in the constituent tree.
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pos: WH+WRB PT NN VBD VBN PRT+RP

t:

SBAR+S

VP

VP

0 VP|<>

4 5

3

NP

1 2

1

23

0

4

1

23

4

5

Figure 2: Constituent structure and pos symbols from
Fig. 1 after binarization (v = 1, h = 0; ho and lr bina-
rization coincide) and merging unary nodes; the sym-
bol “VP|<>” resulted from binarization; merged sym-
bols are joined by “+”. The values assigned by the
vanilla (rectangle) and strict (circle) guides are shown
next to each inner node.

• classic – The nonterminal consists of the first161

symbol2 in ξ(ρ) (including the binarization mark-162

ers) and the fanout fo(yd(ξ|ρ) \ L). This omits163

markers used to revert the extraction and is more164

similar to usual grammars from treebanks (Maier165

and Søgaard, 2008).166

• coarse – Like the classic nonterminals, but167

we replace the constituent and pos symbols occur-168

ring in the treebank by their first letter. This is a169

rough approximation of nonterminals in coarse-to-170

fine parsing (Charniak et al., 2006) that does not171

need a specific clustering for each treebank.172

3.2 Extraction algorithm.173

The extraction is documented in the following174

three steps, we denote the chosen guide by G and175

the nonterminal constructor by NT. We give exam-176

ples for the steps 2 and 3 that refer to (the root po-177

sition in) the constituent structure shown in Fig. 2178

using the vanilla guide (squares next to the nodes179

in the figure) and coarse nonterminals.180

1. The constituent structure is binarized ac-181

cording to the chosen strategy. Unary nodes are182

merged with child nodes or, if their child is a leaf,183

with the pos symbol at the leaf’s position. After184

this step, there are |w| − 1 inner nodes in the con-185

stituent structure; there is exactly one leaf i not in186

the image of G. In the following steps, we con-187

struct a supertag for each inner node in the binary188

constituent structure (step 2) and an additional one189

for the leaf i (step 3). An example is shown in190

Figs. 1 and 2.191

2After merging unary nodes in step 1 of the extraction,
each node may consist of multiple constituent symbols.

2. For each node in the constituency structure, 192

a supertag (r, t, c, p) is constructed as follows: 193

(r) The LCFRS rule is assembled in the usual 194

manner from G(ρ) as lexical symbol (which 195

is later replaced by the wildcard “ ”) and all 196

leaves below ρ except those that are assigned 197

by G to ρ or its ancestors. NT produces the lhs 198

nonterminal for ρ, the rhs nonterminals are 199

adopted from the children. In our example, r 200

is assembled from the lexical symbol 1, the 201

left successor’s leaves are {0
(x1)

, 3, 4, 5
(x2)
} 202

and the right one’s are {2(y1)}; hence r = 203

S1 → [x1 y1x2](V2,N1). 204

(t) If the leaf G(ρ) is a direct child of ρ, then t 205

is None. Otherwise, it is the index among the 206

children where G(ρ) is located. In our exam- 207

ple, 1 is not a child of the root, it is in its 208

second successor; therefore t = 2. 209

(c) If ξ(ρ) was introduced during binarization, 210

then c is None, else it is ξ(ρ). In our example, 211

c = SBAR+S. 212

(p) p is the pos symbol at G(ρ) in pos . In our 213

example p = PT. 214

3. For the leaf i, we create the supertag (L-A→ 215

[ ],None,None, pos(i)) where A is the nonter- 216

minal produced by NT for the parent of i and 217

“L-” marks this supertag for an unassigned leaf. 218

In our example, the leaf i = 5 is not in the 219

image of G, it yields the supertag (L-V|<>1 → 220

[ ],None,None,PRT+RP). 221

Parsing. For parsing, a small sample of su- 222

pertags is predicted for each position in the in- 223

put phrase. The wildcard in the predicted tags 224

is replaced by the input positions and the se- 225

quence of input positions is parsed using these 226

lexical LCFRS rules in the usual manner. The 227

resulting tree of supertags is transformed into a 228

constituent structure by adopting the constituent 229

symbol c from each supertag (if not None), un- 230

merging unary nodes and transporting the associ- 231

ated terminal according to the index t from top to 232

bottom. 233

4 Experiments 234

Our experiments are conducted with the usual 235

train/dev/test splits3 for the three discontinuous 236

3We use the split for Negra by Dubey and Keller (2003),
for Tiger by Seddah et al. (2013), and the standard split for
DPTB (sections 2–21 for training, 22 for development, 23
for testing). In evaluation, we use the implementation for
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Table 1: Our results on test sets compared to other published parsers for discontinuous constituents. Type gives
a rough classification of the parsing approach in the following concepts: G – statistical grammar-based, GS –
grammar-based with supertagging, C – grammarless chart-based, T – transition-based, N – untraditional neural
approaches. bert-b and bert-L are language specific bert-base and bert-large models.

Type Model pretrained Negra Tiger DPTB
embeddings F1 F1-d sent/s F1 F1-d sent/s F1 F1-d sent/s

G van Cranenburgh et al., 2016 – 76.8 – 2 78.2 – 1 87.0 – < 1
Gebhardt, 2020 – 81.7 43.5 – 77.7 40.7 – – – –

GS
ours (bert-b) 91.8 74.6 120 89.7 72.6 105 94.4 82.0 81
ours (bert-L) 93.9 79.1 88 91.6 75.4 77 94.9 82.4 64
Ruprecht and Mörbitz, 2021 (bert-b) 90.9 72.6 68 88.3 69.0 60 93.3 80.5 57

C Corro, 2020 (bert-b) 91.6 66.1 – 90.0 62.1 – 94.8 68.9 –

T Coavoux, 2021 (bert-b) 91.7 73.3 – 90.2 72.9 – 95.0 82.5 –

N

Fernández-G., Gómez-R., 2020 (bert-b) 91.0 76.6 – 90.0 62.6 – – – –
Fernández-G., Gómez-R., 2021a (bert-b) 90.0 65.9 275 88.5 63.0 238 94.0 72.9 231
Fernández-G., Gómez-R., 2021a (bert-L) 92.0 67.9 216 90.5 68.1 207 95.1 74.1 193
Fernández-G., Gómez-R., 2021b (bert-L) 89.1 67.1 – 88.5 67.8 – 95.5 82.9 –

constituent treebanks DPTB, NeGra and Tiger.237

For each treebank, we select parameters for the238

extraction using an incomplete grid search as de-239

scribed in the following paragraph. Each model is240

trained (cf. parameters in Appendix B) to predict241

pos symbols separately from the other supertag242

components (cf. Appendix C). We use the top 10243

(DPTB, Tiger) and top 15 (NeGra) predicted su-244

pertags during parsing (cf. Appendix E). For the245

final models, we fine-tune bert-base and bert-large246

(Devlin et al., 2019; Chan et al., 2020, gbert-large247

for German data) models with the selected final248

parameter configurations for 20 epochs and report249

the parsing scores and speed in Table 1.250

Parameter selection. We conducted a parame-251

ter search in two steps to select satisfactory con-252

figurations. The first step was to exclude underper-253

forming combinations of nonterminal constructors254

and guides, and the second one to select a final255

combination with binarization parameters. Each256

step is a grid search and for each configuration257

in the grid, we fine-tuned a bert-base model for258

5 epochs using the supertags extracted from the259

training set and evaluated using the dev set of the260

treebank. In this search, we found the following261

configurations for our final models:262

(DPTB) strict guide, classic nonterminals with263

lr binarization where h = 0 and v = 2,264

(NeGra) strict guide, classic nonterminals with265

lr binarization where h = 0 and v = 1,266

(Tiger) strict guide, coarse nonterminals with lr267

F-scores by van Cranenburgh et al. (2016) with default pa-
rameters in proper.prm.

binarization where h = 0 and v = 1. 268

This process is documented for the NeGra tree- 269

bank in Appendix D in very detail as an example. 270

5 Conclusion 271

We generalized the extraction of supertags from 272

treebanks by introducing parameters for previ- 273

ously fixed parts of the construction. The parame- 274

ters allow us to control the parts of the constituent 275

tree that is associated with a terminal for each su- 276

pertag (guide) as well as the granularity of the 277

grammar rules (nonterminal constructor). At the 278

same time, the extraction process was re-ordered 279

so that its description is less convoluted while re- 280

taining the same functionality. 281

The introduced guide and nontermninal con- 282

structors performed better than the vanilla vari- 283

ants. Specifically, we observe the following: 284

While the highly ambiguous grammar extracted 285

from DPTB benefits from finer nonterminal gran- 286

ularity with greater markovization window, the 287

large and more specific grammar extracted from 288

Tiger improved with coarser granularity; the 289

grammar for NeGra lies somewhere in between. 290

Compared to the previous implementation of 291

supertagging with LCFRS, we could improve the 292

parsing quality across all three discontinuous tree- 293

banks. The improvements close the gap between 294

the quality of parses with LCFRS supertagging 295

and the most recent discontinuous parsing strate- 296

gies. In case of the two German treebanks, we 297

could even surpass them, most notably in terms of 298

the F1-score for discontinuous constituents. 299
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A Additional Guides424

Additionally to the two guides described in Sec-425

tion 3, we experimented with the following:426

• The modifier guide maps each position to its427

modifier’s lexical head. In constituent trees, a lex-428

ical head is the critical phrase position for a syn-429

tactic category in a phrase, i.e. the leaf that deter-430

mines the constituent symbol at a node. For each431

node, we call each direct child that does not con-432

tain the node’s lexical head a modifier. This guide433

requires that the constituents structures are bina-434

rized head-outward. This ensures that the head of435

each binarized node is attached to the bottom-most436

introduced node; in ho binarized trees, each inner437

node has exactly one modifier.438

• The least transportation guide maps as few439

as possible positions to leafs that are not a direct440

child. The guide is determined for each position441

from bottom to the top and selects the nearest (and442

leftmost, if ambiguous) leaf for each position.443

• The shortest transportation guide maps each444

position in the constituent structure to a leaf that445

is as near as possible. The guide is determined446

for each positions top to bottom and, similar to the447

least transportation guide, selects the nearest (and448

leftmost, if ambiguous) leaf for each position. But,449

when searching for the nearest leaf, we exclude a450

subtree if a leaf in it was selected previously.451

B Training Parameters452

All models were trained using the parameter listed453

in the following table, during parameter search for454

5 epochs, the final models for 20 epochs.455

parameter value

embeddings last 4 layers of bert-base/bert-large
architecture single feed forward layer
loss cross entropy
learning rate 5 · 10−5

weight decay 10−2

dropout 10−1

optimizer AdamW
batchsize 32

456

C Joint Prediction457

In supertags as defined by Ruprecht and Mörbitz458

(2021), grammar rules r, constituent symbols c459

and indices t were all stored in the grammar rules,460

the pos symbols were predicted separately. Here,461

we investigate if there are advantages in predicting462

Table 2: Number of extracted core supertags, pars-
ing scores (F1, F1-d), number of parse fails (E) and
prediction accuracy (acc.) for varying core supertags.
Supertag components are abbreviated (grammar rule,
transport index, constituent, pos).

core no. core F1 F1-d E acc.
tags core c t p

g 2078 88.0 62.1 7 86.8 94.4 95.7 98.8
gt 2294 88.8 68.9 8 86.7 94.3 — 98.7
gc 2151 89.0 62.8 2 86.5 — 95.4 98.8
gp 7695 86.9 62.1 15 84.5 94.1 95.5 96.3
gtc 2368 90.6 70.7 1 86.9 — — 98.7
gtp 8207 87.4 64.1 18 84.6 94.3 — 96.1
gcp 7784 87.6 60.3 10 84.2 — 95.7 96.4
gtcp 8295 88.7 66.4 12 84.0 — — 96.8

other subsets of supertag components jointly while 463

the others are determined independently. We use 464

the following restrictions/terminology: 465

• A subset of supertag components, called core, 466

that always includes the grammar rule is predicted 467

jointly as a tuple. During parsing, we use the k 468

best core predictions for each input position. 469

• Each other component is predicted separately 470

(via a separate feed forward layer, but the same 471

embedding). During parsing, we only use the best 472

prediction for each position in the input. 473

To remain overview, we consider in this experi- 474

ment only the set of supertags extracted with the 475

vanilla guide, classic nonterminals and lr binariza- 476

tion with v = 1 and h = 0. We suggest that the 477

results shown in Table 2 are clear enough to omit 478

experiments with other extraction parameters or 479

other treebanks. From the table we observe that, 480

when pos symbols are excluded from the core, 481

• the number of core supertags is significantly 482

smaller and they can be predicted more accurately, 483

• the quality of pos tags after parsing is signifi- 484

cantly better, and 485

• there are less parse fails. 486

The quality of the predictions and the quality of 487

parse trees benefits from the other components in- 488

cluded in the core supertags. Hence, we suggest 489

that the separation of pos tags from the other com- 490

ponents of the core supertags is the best option and 491

will continue our experiments with that separation. 492

D Parameter Selection 493

This section documents the selection of the nonter- 494

minal constructor, guide and binarization parame- 495

ters for the NeGra treebank. 496
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Guides and Nonterminal Constructors. In the497

first step, we extract supertags for each combina-498

tion of nonterminal constructors and guides. Bina-499

rization is fixed to lr (except for the modifier guide500

which requires ho) with h = 0 and v = 1.501

Table 3: Number of supertags extracted from NeGra.
Rows distinguish nonterminal constructors, columns
distinguish guides.

vanilla strict least shortest modifier

vanilla 3265 2773 4677 4236 4528
classic 2367 2228 3544 3611 3587
coarse 1754 1677 2823 2837 2933

Table 3 shows the size of the extracted gram-502

mars in terms of the number of supertags. We can503

clearly see that both parameters determine the size504

of the grammar; of course that behavior was ex-505

pected for the nonterminal constructors. Signifi-506

cantly less supertags are extracted using the strict507

and vanilla guides than in the three other guides.508

For each combination, a classifier was trained509

(fine-tuned bert-base, pos symbols were predicted510

separately). Table 5 shows the accuracy of tag pre-511

dictions and the quality of parses using the 10 best512

predicted supertags per phrase position. The strict513

guide takes a clear lead in terms of the parsing514

scores as well as the prediction accuracy. Look-515

ing at the parse fails, both, the vanilla and strict516

guides, seem to have a clear advantage over the517

other guides. We continue the search restricted to518

the strict guide and all three nonterminal construc-519

tors.520

Binarization. We extract supertags using differ-521

ent configurations for binarization: ho and lr bi-522

narization, with horizontal markovization context523

h ∈ {0, 1} and vertical markovization context524

v ∈ {0, 1, 2}. Table 6 shows the parsing scores525

for supertags extracted using all those combina-526

tions. Markovization contexts h > 0 and v > 1527

do not seem to give us an advantage in this setting,528

it is clearly disadvantageous with vanilla and clas-529

sic nonterminals. The impact of greater contexts is530

significantly less with coarse nonterminals. How-531

ever, it does not benefit from higher values either.532

We select the final configuration for NeGra via the533

highest F1-score in the table (and the previous re-534

strictions).535

E Predictions per Position 536

After training the final models with bert-base, we 537

pick a suitable value for k, i.e. the number of tags 538

per position that is considered during parsing. The 539

dev set is parsed with k ∈ {5, 10, 15, 25, 40}, Ta- 540

ble 4 shows the results. We suggest that there is 541

only one case where a value k 6= 10 shows im- 542

provements in quality that justifies the given de- 543

crease in speed, that is k = 15 for parsing Ne- 544

Gra. For both other treebanks, we continue with 545

k = 10. 546

Table 4: Parsing scores (F1, F1-d), number of parse
fails (E) and speed (sent/s) in NeGra for varying
amounts of supertags considered during parsing (k).

k
NeGra Tiger DPTB

F1 F1-d E sent/s F1 F1-d E sent/s F1 F1-d E sent/s

5 90.7 73.1 10 148 92.9 76.1 110 133 93.6 85.9 34 85
10 91.1 73.8 1 125 93.1 76.9 10 130 94.7 88.0 7 61
15 91.2 74.4 0 109 93.1 76.8 0 115 94.8 88.1 3 50
25 91.3 74.4 0 72 93.1 76.5 0 83 94.9 88.3 2 52
40 91.3 74.9 0 65 93.1 76.6 0 65 94.9 88.6 0 35
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Table 5: Parsing scores (F1, F1-d), number of parse fails (E) and supertag prediction accuracy (acc.) in NeGra for
combinations of nonterminal constructors (rows) and guides (columns).

vanilla strict least shortest modifier
F1 F1-d E acc. F1 F1-d E acc. F1 F1-d E acc. F1 F1-d E acc. F1 F1-d E acc.

vanilla 89.7 68.7 7 85.9 90.9 72.1 2 88.2 86.9 65.5 41 78.9 87.4 61.7 30 78.9 89.1 69.6 27 87.1
classic 90.5 70.5 1 84.6 91.2 71.9 2 89.0 88.8 68.7 16 82.6 87.8 58.7 3 78.8 90.4 70.6 5 87.3
coarse 89.9 69.9 0 85.7 90.8 70.3 1 88.8 88.3 66.6 9 82.5 87.7 59.1 3 79.6 90.1 70.8 9 87.8

Table 6: Parsing scores (F1, F1-d) and number of parse fails (E) in NeGra using supertags extracted with different
configurations for binarization (rows distinguish lr and ho, columns distinguish values for h and v) and nonterminal
constructors (rows).

h = 0 h = 1
v = 0 v = 1 v = 2 v = 0 v = 1 v = 2

F1 F1-d E F1 F1-d E F1 F1-d E F1 F1-d E F1 F1-d E F1 F1-d E

vanilla
rl 90.8 72.5 2 90.9 72.1 2 89.9 70.5 24 89.3 68.1 11 87.5 68.6 35 85.0 58.3 73
ho 84.6 65.8 0 89.8 70.3 6 88.6 66.2 26 88.2 66.0 17 86.2 63.3 52 81.1 55.4 122

classic
rl 90.9 69.9 0 91.2 71.9 2 89.9 70.7 14 89.8 69.9 6 88.5 67.7 23 86.1 65.8 65
ho 84.2 62.2 0 90.9 71.4 1 88.5 67.1 20 89.2 69.5 9 87.6 67.7 42 83.9 63.6 89

coarse
rl 90.5 70.5 0 90.8 70.3 1 90.1 70.8 3 90.4 69.6 0 90.0 69.2 5 89.5 71.7 13
ho 84.2 62.8 0 90.5 71.1 0 89.7 70.6 0 89.6 68.7 1 89.9 69.3 4 89.2 69.4 11
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